1
|
Lee YM, Vucic D. The role of autophagy in RIP1 mediated cell death and intestinal inflammation. Adv Immunol 2024; 163:1-20. [PMID: 39271257 DOI: 10.1016/bs.ai.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Autophagy, a highly conserved catabolic process that targets various types of cellular cargoes to lysosomal degradation, is one of the most important biological mechanisms critical for cellular homeostasis. Components of these cellular cargoes can range from individual proteins to invading pathogens, and degrading these materials is important for maintaining organismal health and survival. The process of autophagy is carried out by complex molecular mechanisms, and a growing body of evidence indicates that these mechanisms intersect with those involved in the cell death pathways. In this review, we examine several emerging studies elucidating the role of autophagy in RIP1-mediated cell death signaling, with particular emphasis on impaired autophagy caused by ATG16L1 deficiency. We also discuss how autophagy in RIP1-mediated cell death affects intestinal homeostasis in preclinical models, and the implications of the intersection between RIP1 and autophagy for understanding the intestinal pathologies associated with inflammatory bowel disease (IBD). Finally, we highlight the potential benefits of therapeutic targeting of RIP1 and autophagy proteins, while also proposing areas of research that will likely elucidate new links between autophagy and cell death signaling.
Collapse
Affiliation(s)
| | - Domagoj Vucic
- Immunology Discovery, Genentech, South San Francisco, CA, United States.
| |
Collapse
|
2
|
Wang L, Zhu Y, Zhang L, Guo L, Wang X, Pan Z, Jiang X, Wu F, He G. Mechanisms of PANoptosis and relevant small-molecule compounds for fighting diseases. Cell Death Dis 2023; 14:851. [PMID: 38129399 PMCID: PMC10739961 DOI: 10.1038/s41419-023-06370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Pyroptosis, apoptosis, and necroptosis are mainly programmed cell death (PCD) pathways for host defense and homeostasis. PANoptosis is a newly distinct inflammatory PCD pathway that is uniquely regulated by multifaceted PANoptosome complexes and highlights significant crosstalk and coordination among pyroptosis (P), apoptosis (A), and/or necroptosis(N). Although some studies have focused on the possible role of PANpoptosis in diseases, the pathogenesis of PANoptosis is complex and underestimated. Furthermore, the progress of PANoptosis and related agonists or inhibitors in disorders has not yet been thoroughly discussed. In this perspective, we provide perspectives on PANoptosome and PANoptosis in the context of diverse pathological conditions and human diseases. The treatment targeting on PANoptosis is also summarized. In conclusion, PANoptosis is involved in plenty of disorders including but not limited to microbial infections, cancers, acute lung injury/acute respiratory distress syndrome (ALI/ARDS), ischemia-reperfusion, and organic failure. PANoptosis seems to be a double-edged sword in diverse conditions, as PANoptosis induces a negative impact on treatment and prognosis in disorders like COVID-19 and ALI/ARDS, while PANoptosis provides host protection from HSV1 or Francisella novicida infection, and kills cancer cells and suppresses tumor growth in colorectal cancer, adrenocortical carcinoma, and other cancers. Compounds and endogenous molecules focused on PANoptosis are promising therapeutic strategies, which can act on PANoptosomes-associated members to regulate PANoptosis. More researches on PANoptosis are needed to better understand the pathology of human conditions and develop better treatment.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yanghui Zhu
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Lu Zhang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Linghong Guo
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoyun Wang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhaoping Pan
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xian Jiang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Fengbo Wu
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Gu He
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
3
|
Prado-Acosta M, Jeong S, Utrero-Rico A, Goncharov T, Webster JD, Holler E, Morales G, Dellepiane S, Levine JE, Rothenberg ME, Vucic D, Ferrara JLM. Inhibition of RIP1 improves immune reconstitution and reduces GVHD mortality while preserving graft-versus-leukemia effects. Sci Transl Med 2023; 15:eadf8366. [PMID: 38117900 PMCID: PMC11157567 DOI: 10.1126/scitranslmed.adf8366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Graft-versus-host disease (GVHD) remains the major cause of morbidity and nonrelapse mortality (NRM) after hematopoietic cell transplantation (HCT). Inflammatory cytokines mediate damage to key GVHD targets such as intestinal stem cells (ISCs) and also activate receptor interacting protein kinase 1 (RIP1; RIPK1), a critical regulator of apoptosis and necroptosis. We therefore investigated the role of RIP1 in acute GVHD using samples from HCT patients, modeling GVHD damage in vitro with both human and mouse gastrointestinal (GI) organoids, and blocking RIP1 activation in vivo using several well-characterized mouse HCT models. Increased phospho-RIP1 expression in GI biopsies from patients with acute GVHD correlated with tissue damage and predicted NRM. Both the genetic inactivation of RIP1 and the RIP1 inhibitor GNE684 prevented GVHD-induced apoptosis of ISCs in vivo and in vitro. Daily administration of GNE684 for 14 days reduced inflammatory infiltrates in three GVHD target organs (intestine, liver, and spleen) in mice. Unexpectedly, GNE684 administration also reversed the marked loss of regulatory T cells in the intestines and liver during GVHD and reduced splenic T cell exhaustion, thus improving immune reconstitution. Pharmacological and genetic inhibition of RIP1 improved long-term survival without compromising the graft-versus-leukemia (GVL) effect in lymphocytic and myeloid leukemia mouse models. Thus, RIP1inhibition may represent a nonimmunosuppressive treatment for GVHD.
Collapse
Affiliation(s)
- Mariano Prado-Acosta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seihwan Jeong
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alberto Utrero-Rico
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Joshua D. Webster
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Ernst Holler
- Department of Hematology and Oncology, University of Regensburg, Regensburg 93042, Germany
| | - George Morales
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergio Dellepiane
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John E. Levine
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Domagoj Vucic
- Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - James L. M. Ferrara
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
4
|
Xu L, Zhuang C. Profiling of small-molecule necroptosis inhibitors based on the subpockets of kinase-ligand interactions. Med Res Rev 2023; 43:1974-2024. [PMID: 37119044 DOI: 10.1002/med.21968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Necroptosis is a highly regulated cell death (RCD) form in various inflammatory diseases. Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 are involved in the pathway. Targeting the kinase domains of RIPK1 and/or 3 is a drug design strategy for related diseases. It is generally accepted that essential reoccurring features are observed across the human kinase domains, including RIPK1 and RIPK3. They present common N- and C-terminal domains that are built up mostly by α-helices and β-sheets, respectively. The current RIPK1/3 kinase inhibitors mainly interact with the kinase catalytic cleft. This article aims to present an in-depth profiling for ligand-kinase interactions in the crucial cleft areas by carefully aligning the kinase-ligand cocrystal complexes or molecular docking models. The similarity and differential structural segments of ligands are systematically evaluated. New insights on the adaption of the conserved and selective kinase domains to the diversity of chemical scaffolds are also provided. In a word, our analysis can provide a better structural requirement for RIPK1 and RIPK3 inhibition and a guide for inhibitor discovery and optimization of their potency and selectivity.
Collapse
Affiliation(s)
- Lijuan Xu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
5
|
Jones NS, Kshirsagar S, Mohanan V, Ramakrishnan V, Di Nucci F, Ma L, Mao J, Ding H, Klabunde S, Vucic D, Pan L, Lekkerkerker AN, Chen Y, Rothenberg ME. A phase I, randomized, ascending-dose study to assess safety, pharmacokinetics, and activity of GDC-8264, a RIP1 inhibitor, in healthy volunteers. Clin Transl Sci 2023; 16:1997-2009. [PMID: 37596814 PMCID: PMC10582670 DOI: 10.1111/cts.13607] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023] Open
Abstract
Receptor-interacting protein 1 (RIP1) is a key regulator of multiple signaling pathways that mediate inflammatory responses and cell death. RIP1 kinase activity mediates apoptosis and necroptosis induced by tumor necrosis factor (TNF)-α, Toll-like receptors, and ischemic tissue damage. RIP1 has been implicated in several human pathologies and consequently, RIP1 inhibition may represent a therapeutic approach for diseases dependent on RIP1-mediated inflammation and cell death. GDC-8264 is a potent, selective, and reversible small molecule inhibitor of RIP1 kinase activity. This phase I, randomized, placebo-controlled, double-blinded trial examined safety, pharmacokinetics (PKs), and pharmacodynamics (PDs) of single- (5-225 mg) and multiple- (50 and 100 mg once daily, up to 14 days) ascending oral doses of GDC-8264 in healthy volunteers, and also tested the effect of food on the PKs of GDC-8264. All adverse events in GDC-8264-treated subjects in both stages were mild. GDC-8264 exhibited dose-proportional increases in systemic exposure; the mean terminal half-life ranged from 10-13 h, with limited accumulation on multiple dosing (accumulation ratio [AR] ~ 1.4); GDC-8264 had minimal renal excretion at all doses. A high-fat meal had no significant effect on the PKs of GDC-8264. In an ex vivo stimulation assay of whole blood, GDC-8264 rapidly and completely inhibited release of CCL4, a downstream marker of RIP1 pathway activation, indicating a potent pharmacological effect. Based on PK-PD modeling, the GDC-8264 half-maximal inhibitory concentration for the inhibition of CCL4 release was estimated to be 0.58 ng/mL. The favorable safety, PKs, and PDs of GDC-8264 support its further development for treatment of RIP1-driven diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Ma
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | - Jialin Mao
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | - Hao Ding
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | | | - Lin Pan
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | - Yuan Chen
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | |
Collapse
|
6
|
Liu Z, Garcia Reino EJ, Harschnitz O, Guo H, Chan YH, Khobrekar NV, Hasek ML, Dobbs K, Rinchai D, Materna M, Matuozzo D, Lee D, Bastard P, Chen J, Lee YS, Kim SK, Zhao S, Amin P, Lorenzo L, Seeleuthner Y, Chevalier R, Mazzola L, Gay C, Stephan JL, Milisavljevic B, Boucherit S, Rozenberg F, Perez de Diego R, Dix RD, Marr N, Béziat V, Cobat A, Aubart M, Abel L, Chabrier S, Smith GA, Notarangelo LD, Mocarski ES, Studer L, Casanova JL, Zhang SY. Encephalitis and poor neuronal death-mediated control of herpes simplex virus in human inherited RIPK3 deficiency. Sci Immunol 2023; 8:eade2860. [PMID: 37083451 PMCID: PMC10337828 DOI: 10.1126/sciimmunol.ade2860] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Inborn errors of TLR3-dependent type I IFN immunity in cortical neurons underlie forebrain herpes simplex virus-1 (HSV-1) encephalitis (HSE) due to uncontrolled viral growth and subsequent cell death. We report an otherwise healthy patient with HSE who was compound heterozygous for nonsense (R422*) and frameshift (P493fs9*) RIPK3 variants. Receptor-interacting protein kinase 3 (RIPK3) is a ubiquitous cytoplasmic kinase regulating cell death outcomes, including apoptosis and necroptosis. In vitro, the R422* and P493fs9* RIPK3 proteins impaired cellular apoptosis and necroptosis upon TLR3, TLR4, or TNFR1 stimulation and ZBP1/DAI-mediated necroptotic cell death after HSV-1 infection. The patient's fibroblasts displayed no detectable RIPK3 expression. After TNFR1 or TLR3 stimulation, the patient's cells did not undergo apoptosis or necroptosis. After HSV-1 infection, the cells supported excessive viral growth despite normal induction of antiviral IFN-β and IFN-stimulated genes (ISGs). This phenotype was, nevertheless, rescued by application of exogenous type I IFN. The patient's human pluripotent stem cell (hPSC)-derived cortical neurons displayed impaired cell death and enhanced viral growth after HSV-1 infection, as did isogenic RIPK3-knockout hPSC-derived cortical neurons. Inherited RIPK3 deficiency therefore confers a predisposition to HSE by impairing the cell death-dependent control of HSV-1 in cortical neurons but not their production of or response to type I IFNs.
Collapse
Affiliation(s)
- Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Eduardo J Garcia Reino
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Oliver Harschnitz
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
- Human Technopole, Viale Rita Levi-Montalcini, Milan, Italy
| | - Hongyan Guo
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, GA, USA
- School of Medicine, Atlanta, GA, USA
- Louisiana State University Health Sciences Center at Shreveport (LSUHSC-S), Shreveport, LA, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Noopur V Khobrekar
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Mary L Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Daniela Matuozzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Yoon Seung Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | | | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Param Amin
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Remi Chevalier
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Laure Mazzola
- Department of Pediatrics, Hôpital Nord, Saint-Etienne, Paris, France
| | - Claire Gay
- Department of Pediatrics, Hôpital Nord, Saint-Etienne, Paris, France
| | | | - Baptiste Milisavljevic
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, Assistance Publique-Hôpitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - Rebeca Perez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Richard D Dix
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, USA
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
- Institute of Translational Immunology, Brandenburg Medical School, Brandenburg an der Havel, Germany
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Aurelie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Pediatric Neurology Department, Necker Hospital for Sick Children, APHP, Paris City University, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Stephane Chabrier
- Department of Pediatrics, Hôpital Nord, Saint-Etienne, Paris, France
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, GA, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| |
Collapse
|
7
|
Ye K, Chen Z, Xu Y. The double-edged functions of necroptosis. Cell Death Dis 2023; 14:163. [PMID: 36849530 PMCID: PMC9969390 DOI: 10.1038/s41419-023-05691-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Necroptosis refers to a regulated form of cell death induced by a variety of stimuli. Although it has been implicated in the pathogenesis of many diseases, there is evidence to support that necroptosis is not purely a detrimental process. We propose that necroptosis is a "double-edged sword" in terms of physiology and pathology. On the one hand, necroptosis can trigger an uncontrolled inflammatory cascade response, resulting in severe tissue injury, disease chronicity, and even tumor progression. On the other hand, necroptosis functions as a host defense mechanism, exerting antipathogenic and antitumor effects through its powerful pro-inflammatory properties. Moreover, necroptosis plays an important role during both development and regeneration. Misestimation of the multifaceted features of necroptosis may influence the development of therapeutic approaches targeting necroptosis. In this review, we summarize current knowledge of the pathways involved in necroptosis as well as five important steps that determine its occurrence. The dual role of necroptosis in a variety of physiological and pathological conditions is also highlighted. Future studies and the development of therapeutic strategies targeting necroptosis should fully consider the complicated properties of this type of regulated cell death.
Collapse
Affiliation(s)
- Keng Ye
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Zhimin Chen
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
8
|
Tovey Crutchfield EC, Garnish SE, Day J, Anderton H, Chiou S, Hempel A, Hall C, Patel KM, Gangatirkar P, Martin KR, Li Wai Suen CSN, Garnham AL, Kueh AJ, Wicks IP, Silke J, Nachbur U, Samson AL, Murphy JM, Hildebrand JM. MLKL deficiency protects against low-grade, sterile inflammation in aged mice. Cell Death Differ 2023; 30:1059-1071. [PMID: 36755069 PMCID: PMC10070424 DOI: 10.1038/s41418-023-01121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
MLKL and RIPK3 are the core signaling proteins of the inflammatory cell death pathway, necroptosis, which is a known mediator and modifier of human disease. Necroptosis has been implicated in the progression of disease in almost every physiological system and recent reports suggest a role for necroptosis in aging. Here, we present the first comprehensive analysis of age-related histopathological and immunological phenotypes in a cohort of Mlkl-/- and Ripk3-/- mice on a congenic C57BL/6 J genetic background. We show that genetic deletion of Mlkl in female mice interrupts immune system aging, specifically delaying the age-related reduction of circulating lymphocytes. -Seventeen-month-old Mlkl-/- female mice were also protected against age-related chronic sterile inflammation in connective tissue and skeletal muscle relative to wild-type littermate controls, exhibiting a reduced number of immune cell infiltrates in these sites and fewer regenerating myocytes. These observations implicate MLKL in age-related sterile inflammation, suggesting a possible application for long-term anti-necroptotic therapy in humans.
Collapse
Affiliation(s)
- Emma C Tovey Crutchfield
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.,The University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, Parkville, VIC, Australia
| | - Sarah E Garnish
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Jessica Day
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.,Royal Melbourne Hospital, Rheumatology Unit, Parkville, VIC, Australia
| | - Holly Anderton
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Shene Chiou
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Anne Hempel
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Cathrine Hall
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Komal M Patel
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | | | - Katherine R Martin
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | | | | | - Andrew J Kueh
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Ian P Wicks
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.,Royal Melbourne Hospital, Rheumatology Unit, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Ueli Nachbur
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Andre L Samson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia. .,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.
| | - Joanne M Hildebrand
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia. .,The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.
| |
Collapse
|
9
|
Li W, Yuan J. Targeting RIPK1 kinase for modulating inflammation in human diseases. Front Immunol 2023; 14:1159743. [PMID: 36969188 PMCID: PMC10030951 DOI: 10.3389/fimmu.2023.1159743] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Receptor-Interacting Serine/Threonine-Protein Kinase 1 (RIPK1) is a master regulator of TNFR1 signaling in controlling cell death and survival. While the scaffold of RIPK1 participates in the canonical NF-κB pathway, the activation of RIPK1 kinase promotes not only necroptosis and apoptosis, but also inflammation by mediating the transcriptional induction of inflammatory cytokines. The nuclear translocation of activated RIPK1 has been shown to interact BAF-complex to promote chromatin remodeling and transcription. This review will highlight the proinflammatory role of RIPK1 kinase with focus on human neurodegenerative diseases. We will discuss the possibility of targeting RIPK1 kinase for the treatment of inflammatory pathology in human diseases.
Collapse
Affiliation(s)
- Wanjin Li
- *Correspondence: Wanjin Li, ; Junying Yuan,
| | | |
Collapse
|
10
|
Chen L, Zhang X, Ou Y, Liu M, Yu D, Song Z, Niu L, Zhang L, Shi J. Advances in RIPK1 kinase inhibitors. Front Pharmacol 2022; 13:976435. [PMID: 36249746 PMCID: PMC9554302 DOI: 10.3389/fphar.2022.976435] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/27/2023] Open
Abstract
Programmed necrosis is a new modulated cell death mode with necrotizing morphological characteristics. Receptor interacting protein 1 (RIPK1) is a critical mediator of the programmed necrosis pathway that is involved in stroke, myocardial infarction, fatal systemic inflammatory response syndrome, Alzheimer's disease, and malignancy. At present, the reported inhibitors are divided into four categories. The first category is the type I ATP-competitive kinase inhibitors that targets the area occupied by the ATP adenylate ring; The second category is type Ⅱ ATP competitive kinase inhibitors targeting the DLG-out conformation of RIPK1; The third category is type Ⅲ kinase inhibitors that compete for binding to allosteric sites near ATP pockets; The last category is others. This paper reviews the structure, biological function, and recent research progress of receptor interaction protein-1 kinase inhibitors.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqin Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yaqing Ou
- Department of Pharmacy, The Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, Sichuan, China
| | - Maoyu Liu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiheng Song
- Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| | - Lihong Niu
- Institute of Laboratory Animal Sciences, Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China,*Correspondence: Lihong Niu, ; Lijuan Zhang, ; Jianyou Shi,
| | - Lijuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Lihong Niu, ; Lijuan Zhang, ; Jianyou Shi,
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Lihong Niu, ; Lijuan Zhang, ; Jianyou Shi,
| |
Collapse
|
11
|
Zhao W, Liu Y, Xu L, He Y, Cai Z, Yu J, Zhang W, Xing C, Zhuang C, Qu Z. Targeting Necroptosis as a Promising Therapy for Alzheimer's Disease. ACS Chem Neurosci 2022; 13:1697-1713. [PMID: 35607807 DOI: 10.1021/acschemneuro.2c00172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder featured by memory loss and cognitive default. However, there has been no effective therapeutic approach to prevent the development of AD and the available therapies are only to alleviate some symptoms with limited efficacy and severe side effects. Necroptosis is a new kind of cell death, being regarded as a genetically programmed and regulated pattern of necrosis. Increasing evidence reveals that necroptosis is tightly related to the occurrence and development of AD. This review aims to summarize the potential role of necroptosis in AD progression and the therapeutic capacity of targeting necroptosis for AD patients.
Collapse
Affiliation(s)
- Wenli Zhao
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Yue Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lijuan Xu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yuan He
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
| | - Zhenyu Cai
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| |
Collapse
|
12
|
Aguirre JI, Castillo EJ, Kimmel DB. Biologic and pathologic aspects of osteocytes in the setting of medication-related osteonecrosis of the jaw (MRONJ). Bone 2021; 153:116168. [PMID: 34487892 PMCID: PMC8478908 DOI: 10.1016/j.bone.2021.116168] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a potentially severe, debilitating condition affecting patients with cancer and patients with osteoporosis who have been treated with powerful antiresorptives (pARs) or angiogenesis inhibitors (AgIs). Oral risk factors associated with the development of MRONJ include tooth extraction and inflammatory dental disease (e.g., periodontitis, periapical infection). In bone tissues, osteocytes play a bidirectional role in which they not only act as the "receiver" of systemic signals from blood vessels, such as hormones and drugs, or local signals from the mineralized matrix as it is deformed, but they also play a critical role as "transmitter" of signals to the cells that execute bone modeling and remodeling (osteoclasts, osteoblasts and lining cells). When the survival capacity of osteocytes is overwhelmed, they can die. Osteocyte death has been associated with several pathological conditions. Whereas the causes and mechanisms of osteocyte death have been studied in conditions like osteonecrosis of the femoral head (ONFH), few studies of the causes and mechanisms of osteocyte death have been done in MRONJ. The three forms of cell death that affect most of the different cells in the body (apoptosis, autophagy, and necrosis) have been recognized in osteocytes. Notably, necroptosis, a form of regulated cell death with "a necrotic cell death phenotype," has also been identified as a form of cell death in osteocytes under certain pathologic conditions. Improving the understanding of osteocyte death in MRONJ may be critical for preventing disease and developing treatment approaches. In this review, we intend to provide insight into the biology of osteocytes, cell death, in general, and osteocyte death, in particular, and discuss hypothetical mechanisms involved in osteocyte death associated with MRONJ.
Collapse
Affiliation(s)
- J I Aguirre
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - E J Castillo
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - D B Kimmel
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America
| |
Collapse
|
13
|
Abstract
The receptor-interacting protein kinase 1 (RIPK1) is recognized as a master upstream regulator that controls cell survival and inflammatory signaling as well as multiple cell death pathways, including apoptosis and necroptosis. The activation of RIPK1 kinase is extensively modulated by ubiquitination and phosphorylation, which are mediated by multiple factors that also control the activation of the NF-κB pathway. We discuss current findings regarding the genetic modulation of RIPK1 that controls its activation and interaction with downstream mediators, such as caspase-8 and RIPK3, to promote apoptosis and necroptosis. We also address genetic autoinflammatory human conditions that involve abnormal activation of RIPK1. Leveraging these new genetic and mechanistic insights, we postulate how an improved understanding of RIPK1 biology may support the development of therapeutics that target RIPK1 for the treatment of human inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Chengyu Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| |
Collapse
|
14
|
The Role of the Key Effector of Necroptotic Cell Death, MLKL, in Mouse Models of Disease. Biomolecules 2021; 11:biom11060803. [PMID: 34071602 PMCID: PMC8227991 DOI: 10.3390/biom11060803] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Necroptosis is an inflammatory form of lytic programmed cell death that is thought to have evolved to defend against pathogens. Genetic deletion of the terminal effector protein—MLKL—shows no overt phenotype in the C57BL/6 mouse strain under conventional laboratory housing conditions. Small molecules that inhibit necroptosis by targeting the kinase activity of RIPK1, one of the main upstream conduits to MLKL activation, have shown promise in several murine models of non-infectious disease and in phase II human clinical trials. This has triggered in excess of one billion dollars (USD) in investment into the emerging class of necroptosis blocking drugs, and the potential utility of targeting the terminal effector is being closely scrutinised. Here we review murine models of disease, both genetic deletion and mutation, that investigate the role of MLKL. We summarize a series of examples from several broad disease categories including ischemia reperfusion injury, sterile inflammation, pathogen infection and hematological stress. Elucidating MLKL’s contribution to mouse models of disease is an important first step to identify human indications that stand to benefit most from MLKL-targeted drug therapies.
Collapse
|
15
|
Speir M, Djajawi TM, Conos SA, Tye H, Lawlor KE. Targeting RIP Kinases in Chronic Inflammatory Disease. Biomolecules 2021; 11:biom11050646. [PMID: 33924766 PMCID: PMC8146010 DOI: 10.3390/biom11050646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic inflammatory disorders are characterised by aberrant and exaggerated inflammatory immune cell responses. Modes of extrinsic cell death, apoptosis and necroptosis, have now been shown to be potent drivers of deleterious inflammation, and mutations in core repressors of these pathways underlie many autoinflammatory disorders. The receptor-interacting protein (RIP) kinases, RIPK1 and RIPK3, are integral players in extrinsic cell death signalling by regulating the production of pro-inflammatory cytokines, such as tumour necrosis factor (TNF), and coordinating the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, which underpin pathological inflammation in numerous chronic inflammatory disorders. In this review, we firstly give an overview of the inflammatory cell death pathways regulated by RIPK1 and RIPK3. We then discuss how dysregulated signalling along these pathways can contribute to chronic inflammatory disorders of the joints, skin, and gastrointestinal tract, and discuss the emerging evidence for targeting these RIP kinases in the clinic.
Collapse
Affiliation(s)
- Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Tirta M. Djajawi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Stephanie A. Conos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Hazel Tye
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
| | - Kate E. Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
- Correspondence: ; Tel.: +61-85722700
| |
Collapse
|
16
|
Kumari S, Van TM, Preukschat D, Schuenke H, Basic M, Bleich A, Klein U, Pasparakis M. NF-κB inhibition in keratinocytes causes RIPK1-mediated necroptosis and skin inflammation. Life Sci Alliance 2021; 4:4/6/e202000956. [PMID: 33858959 PMCID: PMC8091601 DOI: 10.26508/lsa.202000956] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
TNFR1 was found to cause skin inflammation in mice with epidermal keratinocyte-specific ablation of IKK2 or of both the NF-kB subunits RelA and cRel by triggering RIPK1-dependent, RIPK3-MLKL–mediated necroptosis of keratinocytes. Tumor necrosis factor receptor 1 (TNFR1) activates NF-κB–dependent pro-inflammatory gene expression, but also induces cell death by triggering apoptosis and necroptosis. Inhibition of inhibitor of NF-κB kinase (IKK)/NF-κB signaling in keratinocytes paradoxically unleashed spontaneous TNFR1-mediated skin inflammation in mice, but the underlying mechanisms remain poorly understood. Here, we show that TNFR1 causes skin inflammation in mice with epidermis-specific knockout of IKK2 by inducing receptor interacting protein kinase 1 (RIPK1)–dependent necroptosis, and to a lesser extent also apoptosis, of keratinocytes. Combined epidermis-specific ablation of the NF-κB subunits RelA and c-Rel also caused skin inflammation by inducing TNFR1-mediated keratinocyte necroptosis. Contrary to the currently established model that inhibition of NF-κB–dependent gene transcription causes RIPK1-independent cell death, keratinocyte necroptosis, and skin inflammation in mice with epidermis-specific RelA and c-Rel deficiency also depended on RIPK1 kinase activity. These results advance our understanding of the mechanisms regulating TNFR1-induced cell death and identify RIPK1-mediated necroptosis as a potent driver of skin inflammation.
Collapse
Affiliation(s)
- Snehlata Kumari
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Trieu-My Van
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Daniela Preukschat
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Hannah Schuenke
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Ulf Klein
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Stark K, Goncharov T, Varfolomeev E, Xie L, Ngu H, Peng I, Anderson KR, Verschueren E, Choi M, Kirkpatrick DS, Easton A, Webster JD, McKenzie BS, Vucic D, Bingol B. Genetic inactivation of RIP1 kinase activity in rats protects against ischemic brain injury. Cell Death Dis 2021; 12:379. [PMID: 33828080 PMCID: PMC8026634 DOI: 10.1038/s41419-021-03651-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 02/01/2023]
Abstract
RIP1 kinase-mediated inflammatory and cell death pathways have been implicated in the pathology of acute and chronic disorders of the nervous system. Here, we describe a novel animal model of RIP1 kinase deficiency, generated by knock-in of the kinase-inactivating RIP1(D138N) mutation in rats. Homozygous RIP1 kinase-dead (KD) rats had normal development, reproduction and did not show any gross phenotypes at baseline. However, cells derived from RIP1 KD rats displayed resistance to necroptotic cell death. In addition, RIP1 KD rats were resistant to TNF-induced systemic shock. We studied the utility of RIP1 KD rats for neurological disorders by testing the efficacy of the genetic inactivation in the transient middle cerebral artery occlusion/reperfusion model of brain injury. RIP1 KD rats were protected in this model in a battery of behavioral, imaging, and histopathological endpoints. In addition, RIP1 KD rats had reduced inflammation and accumulation of neuronal injury biomarkers. Unbiased proteomics in the plasma identified additional changes that were ameliorated by RIP1 genetic inactivation. Together these data highlight the utility of the RIP1 KD rats for target validation and biomarker studies for neurological disorders.
Collapse
Affiliation(s)
- Kimberly Stark
- grid.418158.10000 0004 0534 4718Department of Neuroscience, Genentech, South San Francisco, 94080 CA USA
| | - Tatiana Goncharov
- grid.418158.10000 0004 0534 4718Department of Early Discovery Biochemistry, Genentech, South San Francisco, 94080 CA USA
| | - Eugene Varfolomeev
- grid.418158.10000 0004 0534 4718Department of Early Discovery Biochemistry, Genentech, South San Francisco, 94080 CA USA
| | - Luke Xie
- grid.418158.10000 0004 0534 4718Department of Biomedical Imaging, Genentech, South San Francisco, 94080 CA USA
| | - Hai Ngu
- grid.418158.10000 0004 0534 4718Department of Pathology, Genentech, South San Francisco, 94080 CA USA
| | - Ivan Peng
- grid.418158.10000 0004 0534 4718Department of Translational Immunology, Genentech, South San Francisco, 94080 CA USA
| | - Keith R. Anderson
- grid.418158.10000 0004 0534 4718Department of Molecular Biology, Genentech, South San Francisco, 94080 CA USA
| | - Erik Verschueren
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, 94080 CA USA
| | - Meena Choi
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, 94080 CA USA
| | - Donald S. Kirkpatrick
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, 94080 CA USA
| | - Amy Easton
- grid.418158.10000 0004 0534 4718Department of Neuroscience, Genentech, South San Francisco, 94080 CA USA
| | - Joshua D. Webster
- grid.418158.10000 0004 0534 4718Department of Pathology, Genentech, South San Francisco, 94080 CA USA
| | - Brent S. McKenzie
- grid.418158.10000 0004 0534 4718Department of Translational Immunology, Genentech, South San Francisco, 94080 CA USA
| | - Domagoj Vucic
- grid.418158.10000 0004 0534 4718Department of Early Discovery Biochemistry, Genentech, South San Francisco, 94080 CA USA
| | - Baris Bingol
- grid.418158.10000 0004 0534 4718Department of Neuroscience, Genentech, South San Francisco, 94080 CA USA
| |
Collapse
|
18
|
Kist M, Vucic D. Cell death pathways: intricate connections and disease implications. EMBO J 2021; 40:e106700. [PMID: 33439509 PMCID: PMC7917554 DOI: 10.15252/embj.2020106700] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways-apoptosis, necroptosis, and pyroptosis-other forms of regulated cell death including autophagy-dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)-mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs.
Collapse
Affiliation(s)
- Matthias Kist
- Department of Early Discovery BiochemistryGenentechSouth San FranciscoUSA
| | - Domagoj Vucic
- Department of Early Discovery BiochemistryGenentechSouth San FranciscoUSA
| |
Collapse
|
19
|
Meng Y, Sandow JJ, Czabotar PE, Murphy JM. The regulation of necroptosis by post-translational modifications. Cell Death Differ 2021; 28:861-883. [PMID: 33462412 PMCID: PMC7937688 DOI: 10.1038/s41418-020-00722-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
Necroptosis is a caspase-independent, lytic form of programmed cell death whose errant activation has been widely implicated in many pathologies. The pathway relies on the assembly of the apical protein kinases, RIPK1 and RIPK3, into a high molecular weight cytoplasmic complex, termed the necrosome, downstream of death receptor or pathogen detector ligation. The necrosome serves as a platform for RIPK3-mediated phosphorylation of the terminal effector, the MLKL pseudokinase, which induces its oligomerization, translocation to, and perturbation of, the plasma membrane to cause cell death. Over the past 10 years, knowledge of the post-translational modifications that govern RIPK1, RIPK3 and MLKL conformation, activity, interactions, stability and localization has rapidly expanded. Here, we review current knowledge of the functions of phosphorylation, ubiquitylation, GlcNAcylation, proteolytic cleavage, and disulfide bonding in regulating necroptotic signaling. Post-translational modifications serve a broad array of functions in modulating RIPK1 engagement in, or exclusion from, cell death signaling, whereas the bulk of identified RIPK3 and MLKL modifications promote their necroptotic functions. An enhanced understanding of the modifying enzymes that tune RIPK1, RIPK3, and MLKL necroptotic functions will prove valuable in efforts to therapeutically modulate necroptosis.
Collapse
Affiliation(s)
- Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
20
|
Samson AL, Fitzgibbon C, Patel KM, Hildebrand JM, Whitehead LW, Rimes JS, Jacobsen AV, Horne CR, Gavin XJ, Young SN, Rogers KL, Hawkins ED, Murphy JM. A toolbox for imaging RIPK1, RIPK3, and MLKL in mouse and human cells. Cell Death Differ 2021; 28:2126-2144. [PMID: 33589776 DOI: 10.1038/s41418-021-00742-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Necroptosis is a lytic, inflammatory cell death pathway that is dysregulated in many human pathologies. The pathway is executed by a core machinery comprising the RIPK1 and RIPK3 kinases, which assemble into necrosomes in the cytoplasm, and the terminal effector pseudokinase, MLKL. RIPK3-mediated phosphorylation of MLKL induces oligomerization and translocation to the plasma membrane where MLKL accumulates as hotspots and perturbs the lipid bilayer to cause death. The precise choreography of events in the pathway, where they occur within cells, and pathway differences between species, are of immense interest. However, they have been poorly characterized due to a dearth of validated antibodies for microscopy studies. Here, we describe a toolbox of antibodies for immunofluorescent detection of the core necroptosis effectors, RIPK1, RIPK3, and MLKL, and their phosphorylated forms, in human and mouse cells. By comparing reactivity with endogenous proteins in wild-type cells and knockout controls in basal and necroptosis-inducing conditions, we characterise the specificity of frequently-used commercial and recently-developed antibodies for detection of necroptosis signaling events. Importantly, our findings demonstrate that not all frequently-used antibodies are suitable for monitoring necroptosis by immunofluorescence microscopy, and methanol- is preferable to paraformaldehyde-fixation for robust detection of specific RIPK1, RIPK3, and MLKL signals.
Collapse
Affiliation(s)
- André L Samson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Cheree Fitzgibbon
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Komal M Patel
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lachlan W Whitehead
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Joel S Rimes
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Annette V Jacobsen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Xavier J Gavin
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
21
|
Lin YH, Platt MP, Gilley RP, Brown D, Dube PH, Yu Y, Gonzalez-Juarbe N. Influenza Causes MLKL-Driven Cardiac Proteome Remodeling During Convalescence. Circ Res 2021; 128:570-584. [PMID: 33501852 DOI: 10.1161/circresaha.120.318511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RATIONALE Patients with and without cardiovascular diseases have been shown to be at risk of influenza-mediated cardiac complications. Recent clinical reports support the notion of a direct link between laboratory-confirmed influenza virus infections and adverse cardiac events. OBJECTIVE Define the molecular mechanisms underlying influenza virus-induced cardiac pathogenesis after resolution of pulmonary infection and the role of necroptosis in this process. METHODS AND RESULTS Hearts from wild-type and necroptosis-deficient (MLKL [mixed lineage kinase domain-like protein]-KO) mice were dissected 12 days after initial influenza A virus (IAV) infection when viral titers were undetectable in the lungs. Immunofluorescence microscopy and plaque assays showed presence of viable IAV particles in the myocardium without generation of interferon responses. Global proteome and phosphoproteome analyses using high-resolution accurate mass-based LC-MS/MS and label-free quantitation showed that the global proteome as well as the phosphoproteome profiles were significantly altered in IAV-infected mouse hearts in a strain-independent manner. Necroptosis-deficient mice had increased survival and reduced weight loss post-IAV infection, as well as increased antioxidant and mitochondrial function, indicating partial protection to IAV infection. These findings were confirmed in vitro by pretreatment of human and rat myocytes with antioxidants or necroptosis inhibitors, which blunted oxidative stress and mitochondrial damage after IAV infection. CONCLUSIONS This study provides the first evidence that the cardiac proteome and phosphoproteome are significantly altered post-pulmonary influenza infection. Moreover, viral particles can persist in the heart after lung clearance, altering mitochondrial function and promoting cell death without active replication and interferon responses. Finally, our findings show inhibition of necroptosis or prevention of mitochondrial damage as possible therapeutic interventions to reduce cardiac damage during influenza infections. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Yi-Han Lin
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, MD (Y.-H.L., M.P.P., D.B., Y.Y., N.G.-J.)
| | - Maryann P Platt
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, MD (Y.-H.L., M.P.P., D.B., Y.Y., N.G.-J.)
| | - Ryan P Gilley
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, TX (R.P.G., P.H.D.)
| | - David Brown
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, MD (Y.-H.L., M.P.P., D.B., Y.Y., N.G.-J.)
| | - Peter H Dube
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, TX (R.P.G., P.H.D.)
| | - Yanbao Yu
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, MD (Y.-H.L., M.P.P., D.B., Y.Y., N.G.-J.)
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, MD (Y.-H.L., M.P.P., D.B., Y.Y., N.G.-J.)
| |
Collapse
|
22
|
Krishnan D, Menon RN, Gopala S. SHARPIN: Role in Finding NEMO and in Amyloid-Beta Clearance and Degradation (ABCD) Pathway in Alzheimer's Disease? Cell Mol Neurobiol 2021; 42:1267-1281. [PMID: 33400084 DOI: 10.1007/s10571-020-01023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
SHANK- associated RH domain-interacting protein (SHARPIN) is a multifunctional protein associated with numerous physiological functions and many diseases. The primary role of the protein as a LUBAC-dependent component in regulating the activation of the transcription factor NF-κB accounts to its role in inflammation and antiapoptosis. Hence, an alteration of SHARPIN expression or genetic mutations or polymorphisms leads to the alteration of the above-mentioned primary physiological functions contributing to inflammation-associated diseases and cancer, respectively. However, there are complications of targeting SHARPIN as a therapeutic approach, which arises from the wide-range of LUBAC-independent functions and yet unknown roles of SHARPIN including neuronal functions. The identification of SHARPIN as a postsynaptic protein and the emerging studies indicating its role in several neurodegenerative diseases including Alzheimer's disease suggests a strong role of SHARPIN in neuronal functioning. This review summarizes the functional roles of SHARPIN in normal physiology and disease pathogenesis and strongly suggests a need for concentrating more studies on identifying the unknown neuronal functions of SHARPIN and hence its role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dhanya Krishnan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Ramsekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
23
|
Abstract
Introduction: RIP1 kinase is a serine/threonine-protein kinase that has recently emerged as a central regulator of TNF-α dependent programmed necrosis (necroptosis), an inflammatory form of cell death, with important roles in inflammation and neurodegeneration. Small molecule RIP1 kinase inhibitors may provide new opportunities for treating a variety of autoimmune, inflammatory, and neurodegenerative diseases, among others, and thus have attracted widespread drug development efforts and a corresponding large amount of patent activity in recent years. Areas covered: This review focuses on the patent literature covering small molecule inhibitors of RIP1 kinase from 2016-present. Expert opinion: Inhibition of programmed necrosis (necroptosis) by RIP1 kinase inhibitors is a new field that has attracted widespread recent interest as a possible therapeutic means to treat a number of diseases in the inflammatory, neurodegenerative, and oncology areas. The interest in the therapeutic potential of RIP1kinase is evidenced by more than 40 small molecule patent applications published since 2016. To date, only a few RIP1 kinase inhibitors have entered the clinic. An understanding of the optimal clinical setting, in terms of dosing and disease indications for RIP1 inhibition, will require further clinical readouts as the current inhibitors progress and additional molecules enter into full development.
Collapse
|
24
|
Necroptosis is dispensable for the development of inflammation-associated or sporadic colon cancer in mice. Cell Death Differ 2020; 28:1466-1476. [PMID: 33230260 DOI: 10.1038/s41418-020-00673-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation of the large intestine is associated with an increased risk of developing colorectal cancer (CRC), the second most common cause of cancer-related deaths worldwide. Necroptosis has emerged as a form of lytic programmed cell death that, distinct from apoptosis, triggers an inflammatory response. Dysregulation of necroptosis has been linked to multiple chronic inflammatory diseases, including inflammatory bowel disease and cancer. Here, we used murine models of acute colitis, colitis-associated CRC, sporadic CRC, and spontaneous intestinal tumorigenesis to investigate the role of necroptosis in these gastrointestinal pathologies. In the Dextran Sodium Sulfate-induced acute colitis model, in some experiments, mice lacking the terminal necroptosis effector protein, MLKL, or its activator RIPK3, exhibited greater weight loss compared to wild-type mice, consistent with some earlier reports. However, the magnitude of weight loss and accompanying inflammatory pathology upon Mlkl deletion varied substantially between independent repeats. Such variation provides a possible explanation for conflicting literature reports. Furthermore, contrary to earlier reports, we observed that genetic deletion of MLKL had no impact on colon cancer development using several mouse models. Collectively, these data do not support an obligate role for necroptosis in inflammation or cancer within the gastrointestinal tract.
Collapse
|
25
|
Abstract
Despite recent advances in the treatment of autoimmune and inflammatory diseases, unmet medical needs in some areas still exist. One of the main therapeutic approaches to alleviate dysregulated inflammation has been to target the activity of kinases that regulate production of inflammatory mediators. Small-molecule kinase inhibitors have the potential for broad efficacy, convenience and tissue penetrance, and thus often offer important advantages over biologics. However, designing kinase inhibitors with target selectivity and minimal off-target effects can be challenging. Nevertheless, immense progress has been made in advancing kinase inhibitors with desirable drug-like properties into the clinic, including inhibitors of JAKs, IRAK4, RIPKs, BTK, SYK and TPL2. This Review will address the latest discoveries around kinase inhibitors with an emphasis on clinically validated autoimmunity and inflammatory pathways. Unmet medical needs in the treatment of autoimmune and inflammatory diseases still exist. This Review discusses the activity of kinases that regulate production of inflammatory mediators and the recent advances in developing inhibitors to target such kinases.
Collapse
|
26
|
Dominguez S, Varfolomeev E, Brendza R, Stark K, Tea J, Imperio J, Ngu H, Earr T, Foreman O, Webster JD, Easton A, Vucic D, Bingol B. Genetic inactivation of RIP1 kinase does not ameliorate disease in a mouse model of ALS. Cell Death Differ 2020; 28:915-931. [PMID: 32994544 DOI: 10.1038/s41418-020-00625-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022] Open
Abstract
RIP1 kinase is proposed to play a critical role in driving necroptosis and inflammation in neurodegenerative disorders, including Amyotrophic Lateral Sclerosis (ALS). Preclinical studies indicated that while pharmacological inhibition of RIP1 kinase can ameliorate axonal pathology and delay disease onset in the mutant SOD1 transgenic (SOD1-Tg) mice, genetic blockade of necroptosis does not provide benefit in this mouse model. To clarify the role of RIP1 kinase activity in driving pathology in SOD1-Tg mice, we crossed SOD1-Tgs to RIP1 kinase-dead knock-in mice, and measured disease progression using functional and histopathological endpoints. Genetic inactivation of the RIP1 kinase activity in the SOD1-Tgs did not benefit the declining muscle strength or nerve function, motor neuron degeneration or neuroinflammation. In addition, we did not find evidence of phosphorylated RIP1 accumulation in the spinal cords of ALS patients. On the other hand, genetic inactivation of RIP1 kinase activity ameliorated the depletion of the neurotransmitter dopamine in a toxin model of dopaminergic neurodegeneration. These findings indicate that RIP1 kinase activity is dispensable for disease pathogenesis in the SOD1-Tg mice while inhibition of kinase activity may provide benefit in acute injury models.
Collapse
Affiliation(s)
- Sara Dominguez
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Eugene Varfolomeev
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Robert Brendza
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Kim Stark
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Joy Tea
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Jose Imperio
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Hai Ngu
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Timothy Earr
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Oded Foreman
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Amy Easton
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Baris Bingol
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
27
|
Webster JD, Solon M, Gibson-Corley KN. Validating Immunohistochemistry Assay Specificity in Investigative Studies: Considerations for a Weight of Evidence Approach. Vet Pathol 2020; 58:829-840. [PMID: 32975488 DOI: 10.1177/0300985820960132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immunohistochemistry (IHC) is a fundamental molecular technique that provides information on protein expression in the context of spatial localization and tissue morphology. IHC is used in all facets of pathology from identifying infectious agents or characterizing tumors in diagnostics, to characterizing cellular and molecular processes in investigative and experimental studies. Confidence in an IHC assay is primarily driven by the degree to which it is validated. There are many approaches to validate an IHC assay's specificity including bioinformatics approaches using published protein sequences, careful design of positive and negative tissue controls, use of cell pellets with known target protein expression, corroboration of IHC findings with western blots and other analytical methods, and replacement of the primary antibody with an appropriate negative control reagent. Each approach has inherent strengths and weaknesses, and the thoughtful use of these approaches provides cumulative evidence, or a weight of evidence, to support the IHC assay's specificity and build confidence in a study's conclusions. Although it is difficult to be 100% confident in the specificity of any IHC assay, it is important to consider how validation approaches provide evidence to support or to question the specificity of labeling, and how that evidence affects the overall interpretation of a study's results. In this review, we discuss different approaches for IHC antibody validation, with an emphasis on the characterization of antibody specificity in investigative studies. While this review is not prescriptive, it is hoped that it will be thought provoking when considering the interpretation of IHC results.
Collapse
|
28
|
The diverse roles of RIP kinases in host-pathogen interactions. Semin Cell Dev Biol 2020; 109:125-143. [PMID: 32859501 PMCID: PMC7448748 DOI: 10.1016/j.semcdb.2020.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022]
Abstract
Receptor Interacting Protein Kinases (RIPKs) are cellular signaling molecules that are critical for homeostatic signaling in both communicable and non-communicable disease processes. In particular, RIPK1, RIPK2, RIPK3 and RIPK7 have emerged as key mediators of intracellular signal transduction including inflammation, autophagy and programmed cell death, and are thus essential for the early control of many diverse pathogenic organisms. In this review, we discuss the role of each RIPK in host responses to bacterial and viral pathogens, with a focus on studies that have used pathogen infection models rather than artificial stimulation with purified pathogen associated molecular patterns. We also discuss the intricate mechanisms of host evasion by pathogens that specifically target RIPKs for inactivation, and finally, we will touch on the controversial issue of drug development for kinase inhibitors to treat chronic inflammatory and neurological disorders, and the implications this may have on the outcome of pathogen infections.
Collapse
|
29
|
Cuny GD, Degterev A. RIPK protein kinase family: Atypical lives of typical kinases. Semin Cell Dev Biol 2020; 109:96-105. [PMID: 32732131 DOI: 10.1016/j.semcdb.2020.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/11/2023]
Abstract
Receptor Interacting Protein Kinases (RIPKs) are a family of Ser/Thr/Tyr kinases whose functions, regulation and pathophysiologic roles have remained an enigma for a long time. In recent years, these proteins garnered significant interest due to their roles in regulating a variety of host defense functions including control of inflammatory gene expression, different forms of cell death, and cutaneous and intestinal barrier functions. In addition, there is accumulating evidence that while these kinases seemingly follow typical kinase blueprints, their functioning in cells can take forms that are atypical for protein kinases. Lastly, while these kinases generally belong to distinct areas of innate immune regulation, there are emerging overarching themes that may unify the functions of this kinase family. Our review seeks to discuss the biology of RIPKs, and how typical and atypical features of this family informs the activity of a rapidly growing repertoire of RIPK inhibitors.
Collapse
Affiliation(s)
- Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA.
| | - Alexei Degterev
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
30
|
Mifflin L, Ofengeim D, Yuan J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat Rev Drug Discov 2020; 19:553-571. [PMID: 32669658 PMCID: PMC7362612 DOI: 10.1038/s41573-020-0071-y] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a key mediator of cell death and inflammation. The unique hydrophobic pocket in the allosteric regulatory domain of RIPK1 has enabled the development of highly selective small-molecule inhibitors of its kinase activity, which have demonstrated safety in preclinical models and clinical trials. Potential applications of these RIPK1 inhibitors for the treatment of monogenic and polygenic autoimmune, inflammatory, neurodegenerative, ischaemic and acute conditions, such as sepsis, are emerging. This article reviews RIPK1 biology and disease-associated mutations in RIPK1 signalling pathways, highlighting clinical trials of RIPK1 inhibitors and potential strategies to mitigate development challenges. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) — a key mediator of cell death and inflammation — is activated in human diseases. Here, Yuan and colleagues discuss current understanding of RIPK1 biology and its association with diseases including inflammatory and autoimmune disorders, neurodegenerative diseases and sepsis. The clinical development of small-molecule RIPK1 inhibitors and associated challenges are discussed.
Collapse
Affiliation(s)
- Lauren Mifflin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Dimitry Ofengeim
- Rare and Neurologic Disease Research, Sanofi, Framingham, MA, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Jin L, Liu P, Yin M, Zhang M, Kuang Y, Zhu W. RIPK1: A rising star in inflammatory and neoplastic skin diseases. J Dermatol Sci 2020; 99:146-151. [PMID: 32600738 DOI: 10.1016/j.jdermsci.2020.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 11/27/2022]
Abstract
Skin diseases bring great psychological and physical impacts on patients, however, a considerable number of skin diseases still lack effective treatments, such as psoriasis, systemic lupus erythematosus, melanoma and so on. Receptor-interacting serine threonine kinase 1 (RIPK1) plays an important role in cell death, especially necroptosis, associated with inflammation and tumor. As many molecules modulate the ubiquitination of RIPK1, disruption of this checkpoint can lead to skin diseases, which can be ameliorated by RIPK1 inhibitors. This review will focus on the molecular mechanism of RIPK1 activation in inflammation as well as the current knowledges on the contribution of RIPK1 in skin diseases.
Collapse
Affiliation(s)
- Liping Jin
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Panpan Liu
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Mingzhu Yin
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Mi Zhang
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Yehong Kuang
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
| | - Wu Zhu
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
32
|
Webster JD, Vucic D. The Balance of TNF Mediated Pathways Regulates Inflammatory Cell Death Signaling in Healthy and Diseased Tissues. Front Cell Dev Biol 2020; 8:365. [PMID: 32671059 PMCID: PMC7326080 DOI: 10.3389/fcell.2020.00365] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor alpha (TNF; TNFα) is a critical regulator of immune responses in healthy organisms and in disease. TNF is involved in the development and proper functioning of the immune system by mediating cell survival and cell death inducing signaling. TNF stimulated signaling pathways are tightly regulated by a series of phosphorylation and ubiquitination events, which enable timely association of TNF receptors-associated intracellular signaling complexes. Disruption of these signaling events can disturb the balance and the composition of signaling complexes, potentially resulting in severe inflammatory diseases.
Collapse
Affiliation(s)
- Joshua D Webster
- Departments of Pathology and Early Discovery Biochemistry, Genentech, South San Francisco, CA, United States
| | - Domagoj Vucic
- Departments of Pathology and Early Discovery Biochemistry, Genentech, South San Francisco, CA, United States
| |
Collapse
|
33
|
Webster JD, Kwon YC, Park S, Zhang H, Corr N, Ljumanovic N, Adedeji AO, Varfolomeev E, Goncharov T, Preston J, Santagostino SF, Patel S, Xu M, Maher J, McKenzie BS, Vucic D. RIP1 kinase activity is critical for skin inflammation but not for viral propagation. J Leukoc Biol 2020; 107:941-952. [PMID: 31985117 PMCID: PMC7317411 DOI: 10.1002/jlb.3ma1219-398r] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Receptor interacting protein kinase 1 (RIP1) is a critical effector of inflammatory responses and cell death activation. Cell death pathways regulated by RIP1 include caspase‐dependent apoptosis and caspase‐independent necroptosis. The kinase activity of RIP1 has been associated with a number of inflammatory, neurodegenerative, and oncogenic diseases. In this study, we use the RIP1 kinase inhibitor GNE684 to demonstrate that RIP1 inhibition can effectively block skin inflammation and immune cell infiltrates in livers of Sharpin mutant (Cpdm; chronic proliferative dermatitis) mice in an interventional setting, after disease onset. On the other hand, genetic inactivation of RIP1 (RIP1 KD) or ablation of RIP3 (RIP3 KO) or MLKL (MLKL KO) did not affect testicular pathology of aging male mice. Likewise, infection with vaccinia virus or with mouse gammaherpesvirus MHV68 resulted in similar viral clearance in wild‐type, RIP1 KD, and RIP3 KO mice. In summary, this study highlights the benefits of inhibiting RIP1 in skin inflammation, as opposed to its lack of relevance for testicular longevity and the response to certain viral infections.
Collapse
Affiliation(s)
- Joshua D Webster
- Departments of Pathology, Genentech, South San Francisco, California, USA
| | - Youngsu C Kwon
- Translational Immunology, Genentech, South San Francisco, California, USA
| | - Summer Park
- Translational Immunology, Genentech, South San Francisco, California, USA
| | - Hua Zhang
- Translational Immunology, Genentech, South San Francisco, California, USA
| | - Nick Corr
- Safety Assessment, Genentech, South San Francisco, California, USA
| | - Nina Ljumanovic
- Safety Assessment, Genentech, South San Francisco, California, USA
| | | | - Eugene Varfolomeev
- Early Discovery Biochemistry, Genentech, South San Francisco, California, USA
| | - Tatiana Goncharov
- Early Discovery Biochemistry, Genentech, South San Francisco, California, USA
| | - Jessica Preston
- Departments of Pathology, Genentech, South San Francisco, California, USA
| | | | - Snahel Patel
- Discovery Chemistry, Genentech, South San Francisco, California, USA
| | - Min Xu
- Translational Immunology, Genentech, South San Francisco, California, USA
| | - Jonathan Maher
- Safety Assessment, Genentech, South San Francisco, California, USA
| | - Brent S McKenzie
- Translational Immunology, Genentech, South San Francisco, California, USA
| | - Domagoj Vucic
- Early Discovery Biochemistry, Genentech, South San Francisco, California, USA
| |
Collapse
|