1
|
Khlebnikova A, Kirshina A, Zakharova N, Ivanov R, Reshetnikov V. Current Progress in the Development of mRNA Vaccines Against Bacterial Infections. Int J Mol Sci 2024; 25:13139. [PMID: 39684849 DOI: 10.3390/ijms252313139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Bacterial infections have accompanied humanity for centuries. The discovery of the first antibiotics and the subsequent golden era of their discovery temporarily shifted the balance in this confrontation to the side of humans. Nevertheless, the excessive and improper use of antibacterial drugs and the evolution of bacteria has gotten the better of humans again. Therefore, today, the search for new antibacterial drugs or the development of alternative approaches to the prevention and treatment of bacterial infections is relevant and topical again. Vaccination is one of the most effective strategies for the prevention of bacterial infections. The success of new-generation vaccines, such as mRNA vaccines, in the fight against viral infections has prompted many researchers to design mRNA vaccines against bacterial infections. Nevertheless, the biology of bacteria and their interactions with the host's immunity are much more complex compared to viruses. In this review, we discuss structural features and key mechanisms of evasion of an immune response for nine species of bacterial pathogens against which mRNA vaccines have been developed and tested in animals. We focus on the results of experiments involving the application of mRNA vaccines against various bacterial pathogens in animal models and discuss possible options for improving the vaccines' effectiveness. This is one of the first comprehensive reviews of the use of mRNA vaccines against bacterial infections in vivo to improve our knowledge.
Collapse
Affiliation(s)
- Alina Khlebnikova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Anna Kirshina
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Natalia Zakharova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
2
|
Rahman F. Characterizing the immune response to Mycobacterium tuberculosis: a comprehensive narrative review and implications in disease relapse. Front Immunol 2024; 15:1437901. [PMID: 39650648 PMCID: PMC11620876 DOI: 10.3389/fimmu.2024.1437901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/07/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Tuberculosis remains the leading cause of death from infectious diseases among adults worldwide. To date, an overarching review of the immune response to Mtb in humans has not been fully elucidated, with innate immunity remaining poorly understood due to historic focus on adaptive immunity. Specifically, there is a major gap concerning the contribution of the immune system to overall bacterial clearance, particularly residual bacteria. This review aims to describe the time course of interactions between the host immune system and Mtb, from the start of the infection to the development of the adaptive response. Concordantly, we aim to crystallize the pathogenic effects and immunoevasive mechanisms of Mtb. The translational value of animal data is also discussed. Methods The literature search was conducted in the PubMed, ScienceDirect, and Google Scholar databases, which included reported research from 1990 until 2024. A total of 190 publications were selected and screened, of which 108 were used for abstraction and 86 were used for data extraction. Graphical summaries were created using the narrative information (i.e., recruitment, recognition, and response) to generate clear visual representations of the immune response at the cellular and molecular levels. Results The key cellular players included airway epithelial cells, alveolar epithelial cells, neutrophils, natural killer cells, macrophages, dendritic cells, T cells, and granulomatous lesions; the prominent molecular players included IFN-γ, TNF-α, and IL-10. The paper also sheds light on the immune response to residual bacteria and applications of the data. Discussion We provide a comprehensive characterization of the key immune players that are implicated in pulmonary tuberculosis, in line with the organs or compartments in which mycobacteria reside, offering a broad vignette of the immune response to Mtb and how it responds to residual bacteria. Ultimately, the data presented could provide immunological insights to help establish optimized criteria for identifying efficacious treatment regimens and durations for relapse prevention in the modeling and simulation space and wider fields.
Collapse
Affiliation(s)
- Fatima Rahman
- Department of Pharmacology, University College London, London, United Kingdom
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
3
|
Xuan S, Ma Y, Zhou H, Gu S, Yao X, Zeng X. The implication of dendritic cells in lung diseases: Immunological role of toll-like receptor 4. Genes Dis 2024; 11:101007. [PMID: 39238498 PMCID: PMC11375267 DOI: 10.1016/j.gendis.2023.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 09/07/2024] Open
Abstract
The immune responses play a profound role in the progression of lung lesions in both infectious and non-infectious diseases. Dendritic cells, as the "frontline" immune cells responsible for antigen presentation, set up a bridge between innate and adaptive immunity in the course of these diseases. Among the receptors equipped in dendritic cells, Toll-like receptors are a group of specialized receptors as one type of pattern recognition receptors, capable of sensing environmental signals including invading pathogens and self-antigens. Toll-like receptor 4, a pivotal member of the Toll-like receptor family, was formerly recognized as a receptor sensitive to the outer membrane component lipopolysaccharide derived from Gram-negative bacteria, triggering the subsequent response. Moreover, its other essential roles in immune responses have drawn significant attention in the past decade. A better understanding of the implication of Toll-like receptor 4 in dendritic cells could contribute to the management of pulmonary diseases including pneumonia, pulmonary tuberculosis, asthma, acute lung injury, and lung cancer.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Yuan Ma
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Honglei Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shengwei Gu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Yao
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoning Zeng
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
4
|
Huang L, Liu Z, Lv X, Sun Y. Investigation of shared genetic features and related mechanisms between diabetes and tuberculosis. Int Urol Nephrol 2024; 56:2743-2753. [PMID: 38512440 DOI: 10.1007/s11255-024-04024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE This study aimed to integrate bioinformatics technology to explore shared hub genes and related mechanisms between diabetes and tuberculosis and to provide a theoretical basis for revealing the disease mechanisms in patients with both diabetes and tuberculosis. METHODS Differentially expressed genes and Venn analysis were used to identify shared genes between diabetes and tuberculosis. PPI network analysis was used to screen key hub genes. GO and KEGG analyses were used to analyze the potential biological functions of these key hub genes. Immune infiltration analysis was performed using the ssGSEA algorithm. EnrichR online analysis website was used to explore potential therapeutic drugs. RESULTS The dataset analysis showed that PSMB9, ISG15, RTP4, CXCL10, GBP2, and GBP3 were six hub genes shared by diabetes and tuberculosis, which not only could distinguish between the two disease samples but also had a high diagnostic rate. GO and KEGG analyses showed that these six genes mainly mediate immune-related biological processes such as interferon, interleukin, and chemokine receptor binding, as well as signaling pathways such as RIG-I-like receptor, NOD-like receptor, and proteasome. Immune infiltration analysis showed that high expression of TIL may mediate the development of both diabetes and tuberculosis. In addition, suloctidil HL60 UP, thioridazine HL60 UP, mefloquine HL60 UP, 1-NITROPYRENE CTD 00001569, and chlorophyllin CTD 00000324 were the candidate drugs predicted by this study that were most likely to target hub genes. CONCLUSION Six differentially expressed genes shared by both diseases (PSMB9, ISG15, RTP4, CXCL10, GBP2, and GBP3) may play a key role in the disease progression of patients with both diabetes and tuberculosis. Candidate drugs targeting these hub genes have therapeutic potential and are worthy of further research. In summary, this study reveals potential shared pathogenic mechanisms between tuberculosis and diabetes.
Collapse
Affiliation(s)
- Lifei Huang
- Department of Respiratory and Critical Care Medicine, Haining People's Hospital, Haining, 314400, China
| | - Zhihao Liu
- Department of Respiratory and Critical Care Medicine, Haining People's Hospital, Haining, 314400, China
| | - Xiaodong Lv
- Department of Respiratory, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Yahong Sun
- Department of Respiratory and Critical Care Medicine, Haining People's Hospital, Haining, 314400, China.
| |
Collapse
|
5
|
Nieto-Caballero VE, Reijneveld JF, Ruvalcaba A, Innocenzi G, Abeydeera N, Asgari S, Lopez K, Iwany SK, Luo Y, Nathan A, Fernandez-Salinas D, Chiñas M, Huang CC, Zhang Z, León SR, Calderon RI, Lecca L, Budzik JM, Murray M, Van Rhijn I, Raychaudhuri S, Moody DB, Suliman S, Gutierrez-Arcelus M. History of tuberculosis disease is associated with genetic regulatory variation in Peruvians. PLoS Genet 2024; 20:e1011313. [PMID: 38870230 PMCID: PMC11208071 DOI: 10.1371/journal.pgen.1011313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/26/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
A quarter of humanity is estimated to have been exposed to Mycobacterium tuberculosis (Mtb) with a 5-10% risk of developing tuberculosis (TB) disease. Variability in responses to Mtb infection could be due to host or pathogen heterogeneity. Here, we focused on host genetic variation in a Peruvian population and its associations with gene regulation in monocyte-derived macrophages and dendritic cells (DCs). We recruited former household contacts of TB patients who previously progressed to TB (cases, n = 63) or did not progress to TB (controls, n = 63). Transcriptomic profiling of monocyte-derived DCs and macrophages measured the impact of genetic variants on gene expression by identifying expression quantitative trait loci (eQTL). We identified 330 and 257 eQTL genes in DCs and macrophages (False Discovery Rate (FDR) < 0.05), respectively. Four genes in DCs showed interaction between eQTL variants and TB progression status. The top eQTL interaction for a protein-coding gene was with FAH, the gene encoding fumarylacetoacetate hydrolase, which mediates the last step in mammalian tyrosine catabolism. FAH expression was associated with genetic regulatory variation in cases but not controls. Using public transcriptomic and epigenomic data of Mtb-infected monocyte-derived dendritic cells, we found that Mtb infection results in FAH downregulation and DNA methylation changes in the locus. Overall, this study demonstrates effects of genetic variation on gene expression levels that are dependent on history of infectious disease and highlights a candidate pathogenic mechanism through pathogen-response genes. Furthermore, our results point to tyrosine metabolism and related candidate TB progression pathways for further investigation.
Collapse
Affiliation(s)
- Victor E. Nieto-Caballero
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Undergraduate Program in Genomic Sciences, Center for Genomic Sciences, Universidad Nacional Autónoma de México (UNAM), Morelos, Mexico
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Josephine F. Reijneveld
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Angel Ruvalcaba
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Gabriel Innocenzi
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Nalin Abeydeera
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Samira Asgari
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kattya Lopez
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Socios En Salud Sucursal Peru, Lima, Peru
| | - Sarah K. Iwany
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yang Luo
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Aparna Nathan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniela Fernandez-Salinas
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marcos Chiñas
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Chuan-Chin Huang
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zibiao Zhang
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Segundo R. León
- Socios En Salud Sucursal Peru, Lima, Peru
- Medical Technology School and Global Health Research Institute, San Juan Bautista Private University, Lima, Perú
| | | | | | - Jonathan M. Budzik
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Megan Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Soumya Raychaudhuri
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - D. Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sara Suliman
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, California, United States of America
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Gladstone-UCSF Institute of Genomic Immunology, University of California San Francisco, San Francisco, California, United States of America
- Chan Zuckerberg Initiative Biohub, San Francisco, California, United States of America
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Bahlool AZ, Cavanagh B, Sullivan AO, MacLoughlin R, Keane J, Sullivan MPO, Cryan SA. Microfluidics produced ATRA-loaded PLGA NPs reduced tuberculosis burden in alveolar epithelial cells and enabled high delivered dose under simulated human breathing pattern in 3D printed head models. Eur J Pharm Sci 2024; 196:106734. [PMID: 38417586 DOI: 10.1016/j.ejps.2024.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is second only to COVID-19 as the top infectious disease killer worldwide. Multi-drug resistant TB (MDR-TB) may arise because of poor patient adherence to medications due to lengthy treatment duration and side effects. Delivering novel host directed therapies (HDT), like all trans retinoic acid (ATRA) may help to improve drug regimens and reduce the incidence of MDR-TB. Local delivery of ATRA to the site of infection leads to higher bioavailability and reduced systemic side effects. ATRA is poorly soluble in water and has a short half-life in plasma. Therefore, it requires a formulation step before it can be administered in vivo. ATRA loaded PLGA nanoparticles suitable for nebulization were manufactured and optimized using a scalable nanomanufacturing microfluidics (MF) mixing approach (MF-ATRA-PLGA NPs). MF-ATRA-PLGA NPs demonstrated a dose dependent inhibition of Mtb growth in TB-infected A549 alveolar epithelial cell model while preserving cell viability. The MF-ATRA-PLGA NPs were nebulized with the Aerogen Solo vibrating mesh nebulizer, with aerosol droplet size characterized using laser diffraction and the estimated delivered dose was determined. The volume median diameter (VMD) of the MF-ATRA-PLGA NPs was 3.00 ± 0.18 μm. The inhaled dose delivered in adult and paediatric 3D printed head models under a simulated normal adult and paediatric breathing pattern was found to be 47.05 ± 3 % and 20.15 ± 3.46 % respectively. These aerosol characteristics of MF-ATRA-PLGA NPs supports its suitability for delivery to the lungs via inhalation. The data generated on the efficacy of an inhalable, scalable and regulatory friendly ATRA-PLGA NPs formulation provides a foundation on which further pre-clinical testing can be built. Overall, the results of this project are promising for future research into ATRA loaded NPs formulations as inhaled host directed therapies for TB.
Collapse
Affiliation(s)
- Ahmad Z Bahlool
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, D02 YN77, Dublin, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin, Ireland; Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland RCSI, Dublin 2, Ireland
| | - Andrew O' Sullivan
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, Galway Business Park, Dangan, Galway, Ireland
| | - Ronan MacLoughlin
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, D02 YN77, Dublin, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Ltd, Galway Business Park, Dangan, Galway, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Mary P O' Sullivan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin 2, D02 YN77, Dublin, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), 123 St Stephens Green, Dublin, Ireland; SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, Dublin, Ireland; SFI Centre for Research in Medical Devices (CÚRAM), NUIG & RCSI, Dublin, Ireland.
| |
Collapse
|
7
|
Rahlwes KC, Dias BR, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023; 14:2150449. [PMID: 36419223 PMCID: PMC9817126 DOI: 10.1080/21505594.2022.2150449] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
Affiliation(s)
- Kathryn C. Rahlwes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beatriz R.S. Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscila C. Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Alvarez-Arguedas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael U. Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,CONTACT Michael U. Shiloh
| |
Collapse
|
8
|
Weng S, Ma H, Lin T, He Y, Zhang J, Zhang X, Wang H, Zhang W, Xu Y. Mycobacterium tuberculosis Mce2D protein blocks M1 polarization in macrophages by inhibiting the ERK signaling pathway. Microb Pathog 2023; 184:106367. [PMID: 37778704 DOI: 10.1016/j.micpath.2023.106367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Macrophages play a pivotal role in controlling Mycobacterium infection, and the pathogen thrives in the event of immune evasion and immunosuppression of macrophages. Mammalian cell entry proteins (Mce) are required for Mycobacterium tuberculosis (M. tb) growth and the host cell's initial phagocytosis and cytokine response. Mce2D protein is one of a family of proteins that infect M. tb; however, the function and mechanism of action remain unclear. In this study, we constructed the Mce2D knockout strain using Mycobacterium smegmatis to study the function of Mce2D in the infection of macrophages. The results indicated that compared to the knockout strain, the release of proinflammatory cytokines (TNF-α and IL-1β) reduced when WT strain infected the macrophages. Moreover, Mce2D boosted the metabolism of oxidized fatty acids, increased the energy supply of TCA, and lowered the glycolysis of glucose in macrophages after bacterial infection, all of which prevented the polarization of macrophages to M1, which was driven by the fact that Mce2D blocked ERK2 phosphorylation by interacting with ERK2 through its DEF motif. This, in turn, promoted nuclear translocation of HIF-1α, allowing signal accumulation, which increased the HIF-1α transcription levels. Finally, the mouse infection experiment showed that Mce2D caused blockage of M1 polarization of alveolar macrophages, resulting in reduced bactericidal activity and antigen presentation, weakening Th1 cell-mediated immune response and helping bacteria escape the immune system. Our results reveal that Mce2D causes immune escape by blocking M1 polarization in macrophages, providing potential targets for the rational design of therapies against M. tb infection.
Collapse
Affiliation(s)
- Shufeng Weng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Huixia Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Taiyue Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yumo He
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinyi Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuelian Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Huashen Institute of Microbes and Infections, Shanghai, China.
| |
Collapse
|
9
|
Sankar P, Mishra BB. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front Immunol 2023; 14:1260859. [PMID: 37965344 PMCID: PMC10641450 DOI: 10.3389/fimmu.2023.1260859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, claiming the lives of up to 1.5 million individuals annually. TB is caused by the human pathogen Mycobacterium tuberculosis (Mtb), which primarily infects innate immune cells in the lungs. These immune cells play a critical role in the host defense against Mtb infection, influencing the inflammatory environment in the lungs, and facilitating the development of adaptive immunity. However, Mtb exploits and manipulates innate immune cells, using them as favorable niche for replication. Unfortunately, our understanding of the early interactions between Mtb and innate effector cells remains limited. This review underscores the interactions between Mtb and various innate immune cells, such as macrophages, dendritic cells, granulocytes, NK cells, innate lymphocytes-iNKT and ILCs. In addition, the contribution of alveolar epithelial cell and endothelial cells that constitutes the mucosal barrier in TB immunity will be discussed. Gaining insights into the early cellular basis of immune reactions to Mtb infection is crucial for our understanding of Mtb resistance and disease tolerance mechanisms. We argue that a better understanding of the early host-pathogen interactions could inform on future vaccination approaches and devise intervention strategies.
Collapse
Affiliation(s)
| | - Bibhuti Bhusan Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
10
|
Wu X, Liu K, Li S, Ren W, Wang W, Shang Y, Zhang F, Huang Y, Pang Y, Gao M. Integrated bioinformatics analysis of dendritic cells hub genes reveal potential early tuberculosis diagnostic markers. BMC Med Genomics 2023; 16:214. [PMID: 37684607 PMCID: PMC10492340 DOI: 10.1186/s12920-023-01646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Dendritic cells (DCs) are most potent antigen-processing cells and play key roles in host defense against Mycobacterium tuberculosis (MTB) infection. In this study, hub genes in DCs during MTB infection were first investigated using bioinformatics approaches and further validated in Monocyte-derived DCs. METHODS Microarray datasets were obtained from Gene Expression Omnibus (GEO) database. Principal component analysis (PCA) and immune infiltration analysis were performed to select suitable samples for further analysis. Differential analysis and functional enrichment analysis were conducted on DC samples, comparing live MTB-infected and non-infected (NI) groups. The CytoHubba plugin in Cytoscape was used to identify hub genes from the differentially expressed genes (DEGs). The expression of the hub genes was validated using two datasets and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in human monocyte-derived DCs. Enzyme-linked immunosorbent assay (ELISA) was used to validate interferon (IFN) secretion. Transcription factors (TFs) and microRNAs (miRNAs) that interact with the hub genes were predicted using prediction databases. The diagnostic value of the hub genes was evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC) values. RESULTS A total of 1835 common DEGs among three comparison groups (18 h, 48 h, 72 h after MTB infection) were identified. Six DEGs (IFIT1, IFIT2, IFIT3, ISG15, MX1, and RSAD2) were determined as hub genes. Functions enrichment analysis revealed that all hub genes all related to IFN response. RT-qPCR showed that the expression levels of six hub genes were significantly increased after DC stimulated by live MTB. According to the results of ELISA, the secretion of IFN-γ, but not IFN-α/β, was upregulated in MTB-stimulated DCs. AUC values of six hub genes ranged from 84 to 94% and AUC values of 5 joint indicators of two hub genes were higher than the two hub genes alone. CONCLUSION The study identified 6 hub genes associated with IFN response pathway. These genes may serve as potential diagnostic biomarkers in tuberculosis (TB). The findings provide insights into the molecular mechanisms involved in the host immune response to MTB infection and highlight the diagnostic potential of these hub genes in TB.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Kewei Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Weicong Ren
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Wei Wang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Fuzhen Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Yingying Huang
- Jining Medical University, Shandong, 272002, China
- Qingdao Mental Health Center, Shandong, 266034, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China.
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China.
| |
Collapse
|
11
|
Suliman S, Nieto-Caballero VE, Asgari S, Lopez K, Iwany SK, Luo Y, Nathan A, Fernandez-Salinas D, Chiñas M, Huang CC, Zhang Z, León SR, Calderon RI, Lecca L, Murray M, Van Rhijn I, Raychaudhuri S, Moody DB, Gutierrez-Arcelus M. History of tuberculosis disease is associated with genetic regulatory variation in Peruvians. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.20.23291558. [PMID: 37425785 PMCID: PMC10327177 DOI: 10.1101/2023.06.20.23291558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A quarter of humanity is estimated to be latently infected with Mycobacterium tuberculosis (Mtb) with a 5-10% risk of developing tuberculosis (TB) disease. Variability in responses to Mtb infection could be due to host or pathogen heterogeneity. Here, we focused on host genetic variation in a Peruvian population and its associations with gene regulation in monocyte-derived macrophages and dendritic cells (DCs). We recruited former household contacts of TB patients who previously progressed to TB (cases, n=63) or did not progress to TB (controls, n=63). Transcriptomic profiling of monocyte-derived dendritic cells (DCs) and macrophages measured the impact of genetic variants on gene expression by identifying expression quantitative trait loci (eQTL). We identified 330 and 257 eQTL genes in DCs and macrophages (False Discovery Rate (FDR) < 0.05), respectively. Five genes in DCs showed interaction between eQTL variants and TB progression status. The top eQTL interaction for a protein-coding gene was with FAH, the gene encoding fumarylacetoacetate hydrolase, which mediates the last step in mammalian tyrosine catabolism. FAH expression was associated with genetic regulatory variation in cases but not controls. Using public transcriptomic and epigenomic data of Mtb-infected monocyte-derived dendritic cells, we found that Mtb infection results in FAH downregulation and DNA methylation changes in the locus. Overall, this study demonstrates effects of genetic variation on gene expression levels that are dependent on history of infectious disease and highlights a candidate pathogenic mechanism through pathogen-response genes. Furthermore, our results point to tyrosine metabolism and related candidate TB progression pathways for further investigation.
Collapse
Affiliation(s)
- Sara Suliman
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Zuckerberg San Francisco General Hospital, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Initiative Biohub, San Francisco, CA, USA
| | - Victor E. Nieto-Caballero
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Undergraduate Program in Genomic Sciences, Center for Genomic Sciences, Universidad Nacional Autónoma de México (UNAM), Morelos 62210, Mexico
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samira Asgari
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kattya Lopez
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Socios En Salud Sucursal Peru, Lima, Peru
| | - Sarah K. Iwany
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yang Luo
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Aparna Nathan
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniela Fernandez-Salinas
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcos Chiñas
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chuan-Chin Huang
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zibiao Zhang
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Segundo R León
- Socios En Salud Sucursal Peru, Lima, Peru
- Medical Technology School and Global Health Research Institute, San Juan Bautista Private University, Lima, Perú
| | | | | | - Megan Murray
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - D. Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Polinário G, Primo LMDG, Rosa MABC, Dett FHM, Barbugli PA, Roque-Borda CA, Pavan FR. Antimicrobial peptides as drugs with double response against Mycobacterium tuberculosis coinfections in lung cancer. Front Microbiol 2023; 14:1183247. [PMID: 37342560 PMCID: PMC10277934 DOI: 10.3389/fmicb.2023.1183247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Tuberculosis and lung cancer are, in many cases, correlated diseases that can be confused because they have similar symptoms. Many meta-analyses have proven that there is a greater chance of developing lung cancer in patients who have active pulmonary tuberculosis. It is, therefore, important to monitor the patient for a long time after recovery and search for combined therapies that can treat both diseases, as well as face the great problem of drug resistance. Peptides are molecules derived from the breakdown of proteins, and the membranolytic class is already being studied. It has been proposed that these molecules destabilize cellular homeostasis, performing a dual antimicrobial and anticancer function and offering several possibilities of adaptation for adequate delivery and action. In this review, we focus on two important reason for the use of multifunctional peptides or peptides, namely the double activity and no harmful effects on humans. We review some of the main antimicrobial and anti-inflammatory bioactive peptides and highlight four that have anti-tuberculosis and anti-cancer activity, which may contribute to obtaining drugs with this dual functionality.
Collapse
Affiliation(s)
- Giulia Polinário
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | | | | | - Paula Aboud Barbugli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
13
|
Jiang F, Peng C, Cheng P, Wang J, Lian J, Gong W. PP19128R, a Multiepitope Vaccine Designed to Prevent Latent Tuberculosis Infection, Induced Immune Responses In Silico and In Vitro Assays. Vaccines (Basel) 2023; 11:vaccines11040856. [PMID: 37112768 PMCID: PMC10145841 DOI: 10.3390/vaccines11040856] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Background: Latent tuberculosis infection (LTBI) is the primary source of active tuberculosis (ATB), but a preventive vaccine against LTBI is lacking. Methods: In this study, dominant helper T lymphocyte (HTL), cytotoxic T lymphocyte (CTL), and B-cell epitopes were identified from nine antigens related to LTBI and regions of difference (RDs). These epitopes were used to construct a novel multiepitope vaccine (MEV) based on their antigenicity, immunogenicity, sensitization, and toxicity. The immunological characteristics of the MEV were analyzed with immunoinformatics technology and verified by enzyme-linked immunospot assay and Th1/Th2/Th17 cytokine assay in vitro. Results: A novel MEV, designated PP19128R, containing 19 HTL epitopes, 12 CTL epitopes, 8 B-cell epitopes, toll-like receptor (TLR) agonists, and helper peptides, was successfully constructed. Bioinformatics analysis showed that the antigenicity, immunogenicity, and solubility of PP19128R were 0.8067, 9.29811, and 0.900675, respectively. The global population coverage of PP19128R in HLA class I and II alleles reached 82.24% and 93.71%, respectively. The binding energies of the PP19128R-TLR2 and PP19128R-TLR4 complexes were -1324.77 kcal/mol and -1278 kcal/mol, respectively. In vitro experiments showed that the PP19128R vaccine significantly increased the number of interferon gamma-positive (IFN-γ+) T lymphocytes and the levels of cytokines, such as IFN-γ, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-10. Furthermore, positive correlations were observed between PP19128R-specific cytokines in ATB patients and individuals with LTBI. Conclusions: The PP19128R vaccine is a promising MEV with excellent antigenicity and immunogenicity and no toxicity or sensitization that can induce robust immune responses in silico and in vitro. This study provides a vaccine candidate for the prevention of LTBI in the future.
Collapse
Affiliation(s)
- Fan Jiang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
- The Second Brigade of Cadet, Basic Medical Science Academy of Air Force Medical University, Xi'an 710032, China
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an 710032, China
| | - Cong Peng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an 710032, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
14
|
Costa MFDS, Pereira-Dutra F, Deboosere N, Jouny S, Song OR, Iack G, Souza AL, Roma EH, Delorme V, Bozza PT, Brodin P. Mycobacterium tuberculosis induces delayed lipid droplet accumulation in dendritic cells depending on bacterial viability and virulence. Mol Microbiol 2023; 119:224-236. [PMID: 36579614 DOI: 10.1111/mmi.15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
Tuberculosis remains a global health threat with high morbidity. Dendritic cells (DCs) participate in the acute and chronic inflammatory responses to Mycobacterium tuberculosis (Mtb) by directing the adaptive immune response and are present in lung granulomas. In macrophages, the interaction of lipid droplets (LDs) with mycobacteria-containing phagosomes is central to host-pathogen interactions. However, the data available for DCs are still a matter of debate. Here, we reported that bone marrow-derived DCs (BMDCs) were susceptible to Mtb infection and replication at similar rate to macrophages. Unlike macrophages, the analysis of gene expression showed that Mtb infection induced a delayed increase in lipid droplet-related genes and proinflammatory response. Hence, LD accumulation has been observed by high-content imaging in late periods. Infection of BMDCs with killed H37Rv demonstrated that LD accumulation depends on Mtb viability. Moreover, infection with the attenuated strains H37Ra and Mycobacterium bovis-BCG induced only an early transient increase in LDs, whereas virulent Mtb also induced delayed LD accumulation. In addition, infection with the BCG strain with the reintroduced virulence RD1 locus induced higher LD accumulation and bacterial replication when compared to parental BCG. Collectively, our data suggest that delayed LD accumulation in DCs is dependent on mycobacterial viability and virulence.
Collapse
Affiliation(s)
- Maria Fernanda de Souza Costa
- Instituto de Biologia, Departamento de Imunobiologia, Universidade Federal Fluminense, Niteroi, Brazil.,Center for Technological Development in Health, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Filipe Pereira-Dutra
- Immunopharmacology Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Nathalie Deboosere
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Samuel Jouny
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Ok-Ryul Song
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Guilherme Iack
- Instituto de Biologia, Departamento de Imunobiologia, Universidade Federal Fluminense, Niteroi, Brazil.,Immunopharmacology Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Andreia Lamoglia Souza
- Fundação Oswaldo Cruz, Laboratory of Immunology and Immunogenetics in Infectious Diseases at Evandro Chagas National Institute of Infectious Diseases, Rio de Janeiro, Brazil
| | - Eric Henrique Roma
- Fundação Oswaldo Cruz, Laboratory of Immunology and Immunogenetics in Infectious Diseases at Evandro Chagas National Institute of Infectious Diseases, Rio de Janeiro, Brazil
| | - Vincent Delorme
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Patricia T Bozza
- Immunopharmacology Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Priscille Brodin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
15
|
Korotetskaya MV, Rubakova EI. Metabolic biological markers for diagnosing and monitoring the course of tuberculosis. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022. [DOI: 10.15789/2220-7619-mbm-1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The international biomedical community has been currently facing a need to find a simple and most accessible type of analysis that helps to diagnose tuberculosis (TB) with the maximum reliability even before the onset of clinical manifestations. Tuberculosis results in more deaths than any other pathogen, second only to pneumonia caused by the SARS-CoV-2 virus, but the majority of infected people remain asymptomatic. In addition, it is important to develop methods to distinguish various forms of tuberculosis infection course at early stages and to reliably stratify patients into appropriate groups (persons with a rapidly progressing infection, chronic course, latent infection carriers). Immunometabolism investigates a relationship between bioenergetic pathways and specific functions of immune cells that has recently become increasingly important in scientific research. The host anti-mycobacteria immune response in tuberculosis is regulated by a number of metabolic networks that can interact both cooperatively and antagonistically, influencing an outcome of the disease. The balance between inflammatory and immune reactions limits the spread of mycobacteria in vivo and protects from developing tuberculosis. Cytokines are essential for host defense, but if uncontrolled, some mediators may contribute to developing disease and pathology. Differences in plasma levels of metabolites between individuals with advanced infection, LTBI and healthy individuals can be detected long before the onset of the major related clinical signs. Changes in amino acid and cortisol level may be detected as early as 12 months before the onset of the disease and become more prominent at verifying clinical diagnosis. Assessing serum level of certain amino acids and their ratios may be used as additional diagnostic markers of active pulmonary TB. Metabolites, including serum fatty acids, amino acids and lipids may contribute to detecting active TB. Metabolic profiles indicate about increased indolamine 2.3-dioxygenase 1 (IDO1) activity, decreased phospholipase activity, increased adenosine metabolite level, and fibrous lesions in active vs. latent infection. TB treatment can be adjusted based on individual patient metabolism and biomarker profiles. Thus, exploring immunometabolism in tuberculosis is necessary for development of new therapeutic strategies.
Collapse
|
16
|
Barman S, Soni D, Brook B, Nanishi E, Dowling DJ. Precision Vaccine Development: Cues From Natural Immunity. Front Immunol 2022; 12:662218. [PMID: 35222350 PMCID: PMC8866702 DOI: 10.3389/fimmu.2021.662218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional vaccine development against infectious diseases has been guided by the overarching aim to generate efficacious vaccines normally indicated by an antibody and/or cellular response that correlates with protection. However, this approach has been shown to be only a partially effective measure, since vaccine- and pathogen-specific immunity may not perfectly overlap. Thus, some vaccine development strategies, normally focused on targeted generation of both antigen specific antibody and T cell responses, resulting in a long-lived heterogenous and stable pool of memory lymphocytes, may benefit from better mimicking the immune response of a natural infection. However, challenges to achieving this goal remain unattended, due to gaps in our understanding of human immunity and full elucidation of infectious pathogenesis. In this review, we describe recent advances in the development of effective vaccines, focusing on how understanding the differences in the immunizing and non-immunizing immune responses to natural infections and corresponding shifts in immune ontogeny are crucial to inform the next generation of infectious disease vaccines.
Collapse
Affiliation(s)
- Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Shantal CJN, Juan CC, Lizbeth BUS, Carlos HGJ, Estela GPB. Candida glabrata is a successful pathogen: an artist manipulating the immune response. Microbiol Res 2022; 260:127038. [DOI: 10.1016/j.micres.2022.127038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
|
18
|
Mycobacterium bovis PknG R242P Mutation Results in Structural Changes with Enhanced Virulence in the Mouse Model of Infection. Microorganisms 2022; 10:microorganisms10040673. [PMID: 35456728 PMCID: PMC9030157 DOI: 10.3390/microorganisms10040673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Mycobacterium bovis is the causative agent of tuberculosis in domestic and wild animal species and sometimes in humans, presenting variable degrees of pathogenicity. It is known that PknG is involved in the first steps of Mycobacterium tuberculosis macrophage infection and immune evasion. We questioned whether M. bovispknG genes were conserved among mycobacteria and if natural genetic modifications would affect its virulence. We discovered a single mutation at a catalytic domain (R242P) of one M. bovis isolate and established the relation between the presence of R242P mutation and enhanced M. bovis virulence. Here, we demonstrated that R242P mutation alters the PknG protein conformation to a more open ATP binding site cleft. It was observed that M. bovis with PknG mutation resulted in increased growth under stress conditions. In addition, infected macrophages by M. bovis (R242P) presented a higher bacterial load compared with M. bovis without the pknG mutation. Furthermore, using the mouse model of infection, animals infected with M. bovis (R242P) had a massive innate immune response migration to the lung that culminated with pneumonia, necrosis, and higher mortality. The PknG protein single point mutation in its catalytic domain did not reduce the bacterial fitness but rather increased its virulence.
Collapse
|
19
|
Liu H, Gui X, Chen S, Fu W, Li X, Xiao T, Hou J, Jiang T. Structural Variability of Lipoarabinomannan Modulates Innate Immune Responses within Infected Alveolar Epithelial Cells. Cells 2022; 11:cells11030361. [PMID: 35159170 PMCID: PMC8834380 DOI: 10.3390/cells11030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) is an intracellular pathogen persisting in phagosomes that has the ability to escape host immune surveillance causing tuberculosis (TB). Lipoarabinomannan (LAM), as a glycolipid, is one of the complex outermost components of the mycobacterial cell envelope and plays a critical role in modulating host responses during M. tb infection. Different species within the Mycobacterium genus exhibit distinct LAM structures and elicit diverse innate immune responses. However, little is known about the mechanisms. In this study, we first constructed a LAM-truncated mutant with fewer arabinofuranose (Araf) residues named M. sm-ΔM_6387 (Mycobacterium smegmatis arabinosyltransferase EmbC gene knockout strain). It exhibited some prominent cell wall defects, including tardiness of mycobacterial migration, loss of acid-fast staining, and increased cell wall permeability. Within alveolar epithelial cells (A549) infected by M. sm-ΔM_6387, the uptake rate was lower, phagosomes with bacterial degradation appeared, and microtubule-associated protein light chain 3 (LC3) recruitment was enhanced compared to wild type Mycobacterium smegmatis (M. smegmatis). We further confirmed that the variability in the removal capability of M. sm-ΔM_6387 resulted from host cell responses rather than the changes in the mycobacterial cell envelope. Moreover, we found that M. sm-ΔM_6387 or its glycolipid extracts significantly induced expression changes in some genes related to innate immune responses, including Toll-like receptor 2 (TLR2), class A scavenger receptor (SR-A), Rubicon, LC3, tumor necrosis factor alpha (TNF-α), Bcl-2, and Bax. Therefore, our studies suggest that nonpathogenic M. smegmatis can deposit LC3 on phagosomal membranes, and the decrease in the quantity of Araf residues for LAM molecules not only impacts mycobacterial cell wall integrity but also enhances host defense responses against the intracellular pathogens and decreases phagocytosis of host cells.
Collapse
Affiliation(s)
- Hanrui Liu
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Xuwen Gui
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Shixing Chen
- Key Laboratory of Science and Technology on Microsystem, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
| | - Weizhe Fu
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Xiang Li
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Tingyuan Xiao
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Jie Hou
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Tao Jiang
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
- Correspondence: ; Tel.: +86-411-8611-0350
| |
Collapse
|
20
|
Gong W, Wu X. Differential Diagnosis of Latent Tuberculosis Infection and Active Tuberculosis: A Key to a Successful Tuberculosis Control Strategy. Front Microbiol 2021; 12:745592. [PMID: 34745048 PMCID: PMC8570039 DOI: 10.3389/fmicb.2021.745592] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
As an ancient infectious disease, tuberculosis (TB) is still the leading cause of death from a single infectious agent worldwide. Latent TB infection (LTBI) has been recognized as the largest source of new TB cases and is one of the biggest obstacles to achieving the aim of the End TB Strategy. The latest data indicate that a considerable percentage of the population with LTBI and the lack of differential diagnosis between LTBI and active TB (aTB) may be potential reasons for the high TB morbidity and mortality in countries with high TB burdens. The tuberculin skin test (TST) has been used to diagnose TB for > 100 years, but it fails to distinguish patients with LTBI from those with aTB and people who have received Bacillus Calmette–Guérin vaccination. To overcome the limitations of TST, several new skin tests and interferon-gamma release assays have been developed, such as the Diaskintest, C-Tb skin test, EC-Test, and T-cell spot of the TB assay, QuantiFERON-TB Gold In-Tube, QuantiFERON-TB Gold-Plus, LIAISON QuantiFERON-TB Gold Plus test, and LIOFeron TB/LTBI. However, these methods cannot distinguish LTBI from aTB. To investigate the reasons why all these methods cannot distinguish LTBI from aTB, we have explained the concept and definition of LTBI and expounded on the immunological mechanism of LTBI in this review. In addition, we have outlined the research status, future directions, and challenges of LTBI differential diagnosis, including novel biomarkers derived from Mycobacterium tuberculosis and hosts, new models and algorithms, omics technologies, and microbiota.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Flores J, Cancino JC, Chavez-Galan L. Lipoarabinomannan as a Point-of-Care Assay for Diagnosis of Tuberculosis: How Far Are We to Use It? Front Microbiol 2021; 12:638047. [PMID: 33935997 PMCID: PMC8081860 DOI: 10.3389/fmicb.2021.638047] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is still a severe public health problem; the current diagnostic tests have limitations that delay treatment onset. Lipoarabinomannan (LAM) is a glycolipid that is a component of the cell wall of the bacillus Mycobacterium tuberculosis, the etiologic agent of TB. This glycolipid is excreted as a soluble form in urine. The World Health Organization has established that the design of new TB diagnostic methods is one of the priorities within the EndTB Strategy. LAM has been suggested as a biomarker to develop diagnostic tests based on its identification in urine, and it is one of the most prominent candidates to develop point-of-care diagnostic test because urine samples can be easily collected. Moreover, LAM can regulate the immune response in the host and can be found in the serum of TB patients, where it probably affects a wide variety of host cell populations, consequently influencing the quality of both innate and adaptive immune responses during TB infection. Here, we revised the evidence that supports that LAM could be used as a tool for the development of new point-of-care tests for TB diagnosis, and we discussed the mechanisms that could contribute to the low sensitivity of diagnostic testing.
Collapse
Affiliation(s)
- Julio Flores
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico.,Laboratory of Immunomicrobiology, Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan Carlos Cancino
- Laboratory of Immunomicrobiology, Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|