1
|
Kaur T, Wright JS, Henderson BD, Godinez J, Shao X, Scott PJH. Automated production of 11C-labeled carboxylic acids and esters via "in-loop" 11C-carbonylation using GE FX synthesis modules. J Labelled Comp Radiopharm 2024; 67:217-226. [PMID: 37608567 PMCID: PMC10881891 DOI: 10.1002/jlcr.4058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
An in-loop 11C-carbonylation process for the radiosynthesis of 11C-carboxylic acids and esters from halide precursors has been developed. The reaction proceeds at room temperature under mild conditions and enables 11C-carbonylation of both electron deficient and electron rich (hetero)aromatic halides to provide 11C-carboxylic acids and esters in good to excellent radiochemical yields, high radiochemical purity, and excellent molar activity. The process has been fully automated using commercial radiochemistry synthesis modules, and application to clinical production is demonstrated via validated cGMP radiosyntheses of [11C]bexarotene and [11C]acetoacetic acid.
Collapse
Affiliation(s)
- Tanpreet Kaur
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jay S. Wright
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Bradford D. Henderson
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jonathan Godinez
- The Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xia Shao
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- The Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
2
|
Lu S, Telu S, Siméon FG, Cai L, Pike VW. Gas Phase Transformations in Carbon-11 Chemistry. Int J Mol Sci 2024; 25:1167. [PMID: 38256240 PMCID: PMC10816134 DOI: 10.3390/ijms25021167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The short-lived positron-emitter carbon-11 (t1/2 = 20.4 min; β+, 99.8%) is prominent for labeling tracers for use in biomedical research with positron emission tomography (PET). Carbon-11 is produced for this purpose with a cyclotron, nowadays almost exclusively by the 14N(p,α)11C nuclear reaction, either on nitrogen containing a low concentration of oxygen (0.1-0.5%) or hydrogen (~5%) to produce [11C]carbon dioxide or [11C]methane, respectively. These primary radioactive products can be produced in high yields and with high molar activities. However, only [11C]carbon dioxide has some utility for directly labeling PET tracers. Primary products are required to be converted rapidly and efficiently into secondary labeling synthons to provide versatile radiochemistry for labeling diverse tracer chemotypes at molecular positions of choice. This review surveys known gas phase transformations of carbon-11 and summarizes the important roles that many of these transformations now play for producing a broad range of labeling synthons in carbon-11 chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA; (S.L.); (S.T.); (F.G.S.); (L.C.)
| |
Collapse
|
3
|
Dahl K, Lindberg A, Vasdev N, Schou M. Reactive Palladium-Ligand Complexes for 11C-Carbonylation at Ambient Pressure: A Breakthrough in Carbon-11 Chemistry. Pharmaceuticals (Basel) 2023; 16:955. [PMID: 37513867 PMCID: PMC10386706 DOI: 10.3390/ph16070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The Pd-Xantphos-mediated 11C-carbonylation protocol (also known as the "Xantphos- method"), due to its simplistic and convenient nature, has facilitated researchers in meeting a longstanding need for preparing 11C-carbonyl-labeled radiopharmaceuticals at ambient pressure for positron emission tomography (PET) imaging and drug discovery. This development could be viewed as a breakthrough in carbon-11 chemistry, as evidenced by the rapid global adoption of the method by the pharmaceutical industry and academic laboratories worldwide. The method has been fully automated for the good manufacturing practice (GMP)-compliant production of novel radiopharmaceuticals for human use, and it has been adapted for "in-loop" reactions and microwave technology; an impressive number of 11C-labeled compounds (>100) have been synthesized. Given the simplicity and efficiency of the method, as well as the abundance of carbonyl groups in bioactive drug molecules, we expect that this methodology will be even more widely adopted in future PET radiopharmaceutical research and drug development.
Collapse
Affiliation(s)
- Kenneth Dahl
- PET Science Centre, Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Karolinska Institutet, SE-17176 Stockholm, Sweden
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T1R8, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T1R8, Canada
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON M5T1R8, Canada
| | - Magnus Schou
- PET Science Centre, Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Karolinska Institutet, SE-17176 Stockholm, Sweden
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| |
Collapse
|
4
|
Shegani A, Kealey S, Luzi F, Basagni F, Machado JDM, Ekici SD, Ferocino A, Gee AD, Bongarzone S. Radiosynthesis, Preclinical, and Clinical Positron Emission Tomography Studies of Carbon-11 Labeled Endogenous and Natural Exogenous Compounds. Chem Rev 2023; 123:105-229. [PMID: 36399832 PMCID: PMC9837829 DOI: 10.1021/acs.chemrev.2c00398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 11/19/2022]
Abstract
The presence of positron emission tomography (PET) centers at most major hospitals worldwide, along with the improvement of PET scanner sensitivity and the introduction of total body PET systems, has increased the interest in the PET tracer development using the short-lived radionuclides carbon-11. In the last few decades, methodological improvements and fully automated modules have allowed the development of carbon-11 tracers for clinical use. Radiolabeling natural compounds with carbon-11 by substituting one of the backbone carbons with the radionuclide has provided important information on the biochemistry of the authentic compounds and increased the understanding of their in vivo behavior in healthy and diseased states. The number of endogenous and natural compounds essential for human life is staggering, ranging from simple alcohols to vitamins and peptides. This review collates all the carbon-11 radiolabeled endogenous and natural exogenous compounds synthesised to date, including essential information on their radiochemistry methodologies and preclinical and clinical studies in healthy subjects.
Collapse
Affiliation(s)
- Antonio Shegani
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Steven Kealey
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Federico Luzi
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Filippo Basagni
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum−University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Joana do Mar Machado
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Sevban Doğan Ekici
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Alessandra Ferocino
- Institute
of Organic Synthesis and Photoreactivity, Italian National Research Council, via Piero Gobetti 101, 40129 Bologna, Italy
| | - Antony D. Gee
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Salvatore Bongarzone
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
5
|
Donnelly DJ, Preshlock S, Kaur T, Tran T, Wilson TC, Mhanna K, Henderson BD, Batalla D, Scott PJH, Shao X. Synthesis of Radiopharmaceuticals via "In-Loop" 11C-Carbonylation as Exemplified by the Radiolabeling of Inhibitors of Bruton's Tyrosine Kinase. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 1:820235. [PMID: 39355640 PMCID: PMC11440948 DOI: 10.3389/fnume.2021.820235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 10/03/2024]
Abstract
Positron emission tomography (PET) is an important non-invasive tool to help guide the drug discovery and development process. Positron-emitting-radiolabeled drug candidates represent an important tool for drug hunters to gain insight into a drug's biodistribution and target engagement of exploratory biologic targets of interest. Recently, there have been several drug candidates that incorporate an acryloyl functional group due to their ability to form a covalent bond within the biological target of interest through Michael addition. Methods to incorporate a carbon-11 radionuclide into acrylamide derivatives remain challenging given the reactive nature of this moiety. Herein, we report the improved radiosynthesis of carbon-11-containing acrylamide drug candidates, [11C]ibrutinib, [11C]tolebrutinib, and [11C]evobrutinib, using [11C]CO and a novel "in-loop" 11 C-carbonylation reaction. [11C]Ibrutinib, [11C]tolebrutinib, and [11C]evobrutinib were reliably synthesized, generating 2.2-7.1 GBq of these radiopharmaceuticals in radiochemical yields ranging from 3.3 to 12.8% (non-decay corrected; relative to starting [11C]CO2) and molar activities of 281-500 GBq/μmol (7.5-13.5 Ci/μmol), respectively. This study highlights an improved method for incorporating carbon-11 into acrylamide drug candidates using [11C]CO within an HPLC loop suitable for clinical translation using simple modifications of standard automated synthesis modules used for cGMP manufacture of PET radioligands.
Collapse
Affiliation(s)
- David J Donnelly
- Discovery Chemistry Platforms, PET Radiochemical Synthesis, Bristol Myers Squibb Research and Development, Princeton, NJ, United States
| | - Sean Preshlock
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Tanpreet Kaur
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Tritin Tran
- Discovery Chemistry Platforms, PET Radiochemical Synthesis, Bristol Myers Squibb Research and Development, Princeton, NJ, United States
| | - Thomas C Wilson
- Discovery Chemistry Platforms, PET Radiochemical Synthesis, Bristol Myers Squibb Research and Development, Princeton, NJ, United States
| | - Karim Mhanna
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | | | - Daniel Batalla
- Discovery Chemistry Platforms, PET Radiochemical Synthesis, Bristol Myers Squibb Research and Development, Princeton, NJ, United States
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Xia Shao
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Lindberg A, Boyle AJ, Tong J, Harkness MB, Garcia A, Tran T, Zhai D, Liu F, Donnelly DJ, Vasdev N. Radiosynthesis of [ 11C]Ibrutinib via Pd-Mediated [ 11C]CO Carbonylation: Preliminary PET Imaging in Experimental Autoimmune Encephalomyelitis Mice. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2021; 1:772289. [PMID: 39355638 PMCID: PMC11440842 DOI: 10.3389/fnume.2021.772289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 10/03/2024]
Abstract
Ibrutinib is a first-generation Bruton's tyrosine kinase (BTK) inhibitor that has shown efficacy in autoimmune diseases and has consequently been developed as a positron emission tomography (PET) radiotracer. Herein, we report the automated radiosynthesis of [11C]ibrutinib through 11C-carbonylation of the acrylamide functional group, by reaction of the secondary amine precursor with [11C]CO, iodoethylene, and palladium-NiXantphos. [11C]Ibrutinib was reliably formulated in radiochemical yields of 5.4% ± 2.5% (non-decay corrected; n = 9, relative to starting [11C]CO2), radiochemical purity >99%, and molar activity of 58.8 ± 30.8 GBq/μmol (1.55 ± 0.83 Ci/μmol). Preliminary PET/magnetic resonance imaging with [11C]ibrutinib in experimental autoimmune encephalomyelitis (EAE) mice showed a 49% higher radioactivity accumulation in the spinal cord of mice with EAE scores of 2.5 vs. sham mice.
Collapse
Affiliation(s)
- Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Amanda J Boyle
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Michael B Harkness
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Armando Garcia
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Tritin Tran
- Bristol-Myers Squibb Research and Development, New York, NJ, United States
| | - Dongxu Zhai
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Fang Liu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - David J Donnelly
- Bristol-Myers Squibb Research and Development, New York, NJ, United States
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Zhou YP, Makaravage KJ, Brugarolas P. Radiolabeling with [ 11C]HCN for Positron emission tomography. Nucl Med Biol 2021; 102-103:56-86. [PMID: 34624831 PMCID: PMC8978408 DOI: 10.1016/j.nucmedbio.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Hydrogen cyanide (HCN) is a versatile synthon for generating carbon‑carbon and carbon-heteroatom bonds. Unlike other one-carbon synthons (i.e., CO, CO2), HCN can function as a nucleophile (as in potassium cyanide, KCN) and an electrophile (as in cyanogen bromide, (CN)Br). The incorporation of the CN motif into organic molecules generates nitriles, hydantoins and (thio)cyanates, which can be converted to carboxylic acids, aldehydes, amides and amines. Such versatile chemistry is particularly attractive in PET radiochemistry where diverse bioactive small molecules incorporating carbon-11 in different positions need to be produced. The first examples of making [11C]HCN for radiolabeling date back to the 1960s. During the ensuing decades, [11C]cyanide labeling was popular for producing biologically important molecules including 11C-labeled α-amino acids, sugars and neurotransmitters. [11C]cyanation is now reemerging in many PET centers due to its versatility for making novel tracers. Here, we summarize the chemistry of [11C]HCN, review the methods to make [11C]HCN past and present, describe methods for labeling different types of molecules with [11C]HCN, and provide an overview of the reactions available to convert nitriles into other functional groups. Finally, we discuss some of the challenges and opportunities in [11C]HCN labeling such as developing more robust methods to produce [11C]HCN and developing rapid and selective methods to convert nitriles into other functional groups in complex molecules.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Katarina J Makaravage
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
8
|
Cormier M, Tabey A, Christine T, Audrain H, Fouquet E, Hermange P. Synthesis and [*C]CO-labelling of (C,N) gem-dimethylbenzylamine-palladium complexes for potential applications in positron emission tomography. Dalton Trans 2021; 50:10608-10614. [PMID: 34282814 DOI: 10.1039/d1dt01633d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Various aryl-palladium complexes were synthesised from gem-dimethylbenzylamine derivatives by C-H activation under extremely mild conditions. Interestingly, these highly stable structures reacted with [13C]carbon monoxide to produce the desired labelled lactams in 29% to 51% yields over the C-H activation/carbonylation steps. As representative examples, a non-natural amino acid and an estradiol-based conjugate were prepared and labelled in model experiments with [13C]CO in homogeneous or heterogeneous conditions. Especially, the latter was radiolabelled with [11C]CO using a convenient procedure from the resin-supported palladium complex precursor. Thus, these results strongly suggest that cyclometallated palladium complexes obtained from gem-dimethylbenzylamine moieties are promising precursors for the practical synthesis of new [11C]tracers for Positron Emission Tomography.
Collapse
Affiliation(s)
- Morgan Cormier
- Univ. Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France.
| | - Alexis Tabey
- Univ. Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France.
| | - Thifanie Christine
- Univ. Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France.
| | - Hélène Audrain
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Palle Juul-Jensen Boulevard 165, 8200 Aarhus N, Denmark
| | - Eric Fouquet
- Univ. Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France.
| | - Philippe Hermange
- Univ. Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France.
| |
Collapse
|
9
|
PET Radiochemistry. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
10
|
Eriksson J, Antoni G, Långström B, Itsenko O. The development of 11C-carbonylation chemistry: A systematic view. Nucl Med Biol 2021; 92:115-137. [PMID: 32147168 DOI: 10.1016/j.nucmedbio.2020.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/16/2020] [Indexed: 12/18/2022]
Abstract
The prospects for using carbon-11 labelled compounds in molecular imaging has improved with the development of diverse synthesis methods, including 11C-carbonylations and refined techniques to handle [11C]carbon monoxide at a nanomole scale. Facilitating biological research and molecular imaging was the driving force when [11C]carbon monoxide was used in the first in vivo application with carbon-11 in human (1945) and when [11C]carbon monoxide was used for the first time as a chemical reagent in the synthesis of [11C]phosgene (1978). This review examines a rich plethora of labelled compounds synthesized from [11C]carbon monoxide, their chemistry and use in molecular imaging. While the strong development of the 11C-carbonylation chemistry has expanded the carbon-11 domain considerably, it could be argued that the number of 11C-carbonyl compounds entering biological investigations should be higher. The reason for this may partly be the lack of commercially available synthesis instruments designed for 11C-carbonylations. But as this review shows, novel and greatly simplified methods to handle [11C]carbon monoxide have been developed. The next important challenge is to make full use of these technologies and synthesis methods in PET research. When there is a PET-tracer that meets a more general need, the incentive to implement 11C-carbonylation protocols will increase.
Collapse
Affiliation(s)
- Jonas Eriksson
- Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden.
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Bengt Långström
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Oleksiy Itsenko
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
11
|
Ferrat M, El Khoury Y, Larsen P, Dahl K, Halldin C, Schou M. Development of a fully automated low-pressure [ 11 C]CO carbonylation apparatus. J Labelled Comp Radiopharm 2020; 63:517-522. [PMID: 32588452 PMCID: PMC7590049 DOI: 10.1002/jlcr.3866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 01/19/2023]
Abstract
[11 C]carbon monoxide ([11 C]CO) is a versatile synthon for radiolabeling of drug-like molecules for imaging studies with positron emission tomography (PET). We here report the development of a novel, user-friendly, fully automated, and good manufacturing practice (GMP) compliant low-pressure synthesis module for 11 C-carbonylation reactions using [11 C]CO. In this synthesis module, [11 C]CO was reliably prepared from cyclotron-produced [11 C]carbon dioxide ([11 C]CO2 ) by reduction over heated molybdenum and delivered to the reaction vessel within 7 min after end of bombardment, with an overall radiochemical yield (RCY) of 71%. [11 C]AZ13198083, a histamine type-3 receptor ligand, was used as a model compound to assess the functionality of the radiochemistry module. At full batch production conditions (55 μA, 30 min), our newly developed low-pressure 11 C-carbonylation apparatus enabled us to prepare [11 C]AZ13198083 in an isolated radioactivity of 8540 ± 1400 MBq (n = 3). The radiochemical purity of each of the final formulated batches exceeded 99%, and all other quality control tests results conformed with specifications typically set for carbon-11 labeled radiopharmaceuticals. In conclusion, this novel radiochemistry system offers a convenient GMP compliant production drugs and radioligands for imaging studies in human subjects.
Collapse
Affiliation(s)
- Mélodie Ferrat
- Department of Clinical Neuroscience, Center for Psychiatry ResearchKarolinska Institutet and Stockholm County CouncilStockholmSweden
| | - Youssef El Khoury
- Department of Clinical Neuroscience, Center for Psychiatry ResearchKarolinska Institutet and Stockholm County CouncilStockholmSweden
| | | | - Kenneth Dahl
- RadiopharmacyKarolinska University HospitalStockholmSweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry ResearchKarolinska Institutet and Stockholm County CouncilStockholmSweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Center for Psychiatry ResearchKarolinska Institutet and Stockholm County CouncilStockholmSweden
- AstraZeneca PET Science Centre, Precision Medicine, Oncology R&D, AstraZenecaKarolinska InstitutetStockholmSweden
| |
Collapse
|
12
|
Ismael A, Gevorgyan A, Skrydstrup T, Bayer A. Renewable Solvents for Palladium-Catalyzed Carbonylation Reactions. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Aya Ismael
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ashot Gevorgyan
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Annette Bayer
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
13
|
Dahl K, Turner T, Vasdev N. Radiosynthesis of a Bruton's tyrosine kinase inhibitor, [ 11 C]Tolebrutinib, via palladium-NiXantphos-mediated carbonylation. J Labelled Comp Radiopharm 2020; 63:482-487. [PMID: 32726870 DOI: 10.1002/jlcr.3872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
Bruton's tyrosine kinase (BTK) is a key component in the B-cell receptor signaling pathway and is consequently a target for in vivo imaging of B-cell malignancies as well as in multiple sclerosis (MS) with positron emission tomography (PET). A recent Phase 2b study with Sanofi's BTK inhibitor, Tolebrutinib (also known as [a.k.a.] SAR442168, PRN2246, or BTK'168) showed significantly reduced disease activity associated with MS. Herein, we report the radiosynthesis of [11 C]Tolebrutinib ([11 C]5) as a potential PET imaging agent for BTK. The N-[11 C]acrylamide moiety of [11 C]5 was labeled by 11 C-carbonylation starting from [11 C]CO, iodoethylene, and the secondary amine precursor via a novel palladium-NiXantphos-mediated carbonylation protocol, and the synthesis was fully automated using a commercial carbon-11 synthesis platform (TracerMaker™, Scansys Laboratorieteknik). [11 C]5 was obtained in a decay-corrected radiochemical yield of 37 ± 2% (n = 5, relative to starting [11 C]CO activity) in >99% radiochemical purity, with an average molar activity of 45 GBq/μmol (1200 mCi/μmol). We envision that this methodology will be generally applicable for the syntheses of labeled N-acrylamides.
Collapse
Affiliation(s)
- Kenneth Dahl
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Timothy Turner
- Sanofi MS/Neurology, Sanofi, Cambridge, Massachusetts, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Ontario, Canada
| |
Collapse
|
14
|
Tabey A, Christine T, Fouquet E, Hermange P. Practical synthesis of
13
C‐labeled conjugates by [
13
C]CO‐carbonylation of supported arylbipyridylpalladium complexes and alkyne–azide cycloadditions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alexis Tabey
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 351 Cours de la Libération, 33405 Talence Cedex France
| | - Thifanie Christine
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 351 Cours de la Libération, 33405 Talence Cedex France
| | - Eric Fouquet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 351 Cours de la Libération, 33405 Talence Cedex France
| | - Philippe Hermange
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 351 Cours de la Libération, 33405 Talence Cedex France
| |
Collapse
|
15
|
Radiolabeling of [ 11C]FPS-ZM1, a receptor for advanced glycation end products-targeting positron emission tomography radiotracer, using a [ 11C]CO 2-to-[ 11C]CO chemical conversion. Future Med Chem 2020; 12:511-521. [PMID: 32100545 DOI: 10.4155/fmc-2019-0329] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: The receptor for advanced glycation end products (RAGE) is a viable target for early Alzheimer's disease (AD) diagnosis using positron emission tomography (PET) as RAGE overexpression precedes Aβ plaque formation. The development of a carbon-11 analog of FPS-ZM1 (N-benzyl-4-chloro-N-cyclohexylbenzamide, [11C]FPS-ZM1), possessing nanomolar affinity for RAGE, may enable the imaging of RAGE for early AD detection. Methodology & results: Herein we report an optimized [11C]CO2-to-[11C]CO chemical conversion for the synthesis of [11C]FPS-ZM1 and in vitro brain autoradiography. The [11C]CO2-to-[11C]CO conversion via 11C-silanecarboxylate derivatives was achieved with a 57% yield within 30 s from end of [11C]CO2 delivery. [11C]FPS-ZM1 was obtained with a decay-corrected isolated radiochemical yield of 9.5%. Conclusion: [11C]FPS-ZM1 distribution in brain tissues of wild-type versus transgenic AD model mice showed no statistically significant difference and high nondisplaceable binding.
Collapse
|
16
|
Gaudeau M, Zhang M, Tatoulian M, Lescot C, Ognier S. Fast carbonylation reaction from CO 2 using plasma gas/liquid microreactors for radiolabeling applications. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00289e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The major challenge for 11C-radiolabelling is the short half-life time of 11C (t1/2 = 20.4 min) – in this study, a novel efficient process combining microfluidics and plasma is proposed for fast carbonylation reactions from CO2.
Collapse
Affiliation(s)
- Marion Gaudeau
- Chimie ParisTech-PSL
- PSL Université Paris
- CNRS
- Institut de Recherche de Chimie Paris
- 75005 Paris
| | - Mengxue Zhang
- Chimie ParisTech-PSL
- PSL Université Paris
- CNRS
- Institut de Recherche de Chimie Paris
- 75005 Paris
| | - Michaël Tatoulian
- Chimie ParisTech-PSL
- PSL Université Paris
- CNRS
- Institut de Recherche de Chimie Paris
- 75005 Paris
| | - Camille Lescot
- Chimie ParisTech-PSL
- PSL Université Paris
- CNRS
- 75005 Paris
- France
| | - Stéphanie Ognier
- Chimie ParisTech-PSL
- PSL Université Paris
- CNRS
- Institut de Recherche de Chimie Paris
- 75005 Paris
| |
Collapse
|
17
|
Syntheses of o-iodobenzyl alcohols‒BODIPY structures as potential precursors of bimodal tags for positron emission tomography and optical imaging. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Taddei C, Pike VW. [ 11C]Carbon monoxide: advances in production and application to PET radiotracer development over the past 15 years. EJNMMI Radiopharm Chem 2019; 4:25. [PMID: 31659516 PMCID: PMC6751244 DOI: 10.1186/s41181-019-0073-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
Abstract
[11C]Carbon monoxide is an appealing synthon for introducing carbon-11 at a carbonyl position (C=O) in a wide variety of chemotypes (e.g., amides, ketones, acids, esters, and ureas). The prevalence of the carbonyl group in drug molecules and the present-day broad versatility of carbonylation reactions have led to an upsurge in the production of this synthon and in its application to PET radiotracer development. This review focuses on the major advances of the past 15 years.
Collapse
Affiliation(s)
- Carlotta Taddei
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Rm B3C342, Bethesda, MD, 20892-1003, USA.
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Rm B3C342, Bethesda, MD, 20892-1003, USA
| |
Collapse
|
19
|
Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, Liang SH. Chemistry for Positron Emission Tomography: Recent Advances in 11 C-, 18 F-, 13 N-, and 15 O-Labeling Reactions. Angew Chem Int Ed Engl 2019; 58:2580-2605. [PMID: 30054961 PMCID: PMC6405341 DOI: 10.1002/anie.201805501] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Indexed: 01/07/2023]
Abstract
Positron emission tomography (PET) is a molecular imaging technology that provides quantitative information about function and metabolism in biological processes in vivo for disease diagnosis and therapy assessment. The broad application and rapid advances of PET has led to an increased demand for new radiochemical methods to synthesize highly specific molecules bearing positron-emitting radionuclides. This Review provides an overview of commonly used labeling reactions through examples of clinically relevant PET tracers and highlights the most recent developments and breakthroughs over the past decade, with a focus on 11 C, 18 F, 13 N, and 15 O.
Collapse
Affiliation(s)
- Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lei Zhang
- Medicine Design, Pfizer Inc., Cambridge, MA, 02139, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
20
|
Lindberg A, Lu S, Nag S, Schou M, Liow JS, Zoghbi SS, Frankland MP, Gladding RL, Morse CL, Takano A, Amini N, Elmore CS, Lee YS, Innis RB, Halldin C, Pike VW. Synthesis and evaluation of two new candidate high-affinity full agonist PET radioligands for imaging 5-HT 1B receptors. Nucl Med Biol 2019; 70:1-13. [PMID: 30811975 DOI: 10.1016/j.nucmedbio.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The serotonin 1B receptor subtype is of interest in the pathophysiology and treatment of depression, anxiety, and migraine. Over recent years 5-HT1B receptor binding in human brain has been examined with PET using radioligands that are partial but not full agonists. To explore how the intrinsic activity of a PET radioligand may affect imaging performance, two high-affinity full 5-HT1B receptor agonists (AZ11136118, 4; and AZ11895987, 5) were selected from a large compound library and radiolabeled for PET examination in non-human primates. METHODS [11C]4 was obtained through Pd(0)-mediated insertion of [11C]carbon monoxide between prepared iodoarene and homochiral amine precursors. [11C]5 was obtained through N-11C-methylation of N-desmethyl precursor 6 with [11C]methyl triflate. [11C]4 and [11C]5 were studied with PET in rhesus or cynomolgus monkey. [11C]4 was studied with PET in mice and rats to measure brain uptake and specific binding. Ex-vivo experiments in rats were performed to identify whether there were radiometabolites in brain. Physiochemical parameters for [11C]4 (pKa, logD and conformational energetics) were evaluated. RESULTS Both [11C]4 and [11C]5 were successfully produced in high radiochemical purity and in adequate amounts for PET experiments. After intravenous injection of [11C]4, brain radioactivity peaked at a low level (0.2 SUV). Pretreatment with tariquidar, an inhibitor of the brain P-gp efflux transporter, increased brain exposure four-fold whereas pretreatment with a high pharmacological dose of the 5-HT1B antagonist, AR-A000002, had no effect on the binding. Ex-vivo experiments in rats showed no radiometabolites entering brain. [11C]5 also failed to enter monkey brain under baseline conditions. CONCLUSIONS [11C]4 and [11C]5 show too low brain uptake and specific binding to be useful PET radioligands. Low brain uptake is partly ascribed to efflux transporter action as well as unfavorable conformations.
Collapse
Affiliation(s)
- Anton Lindberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden; Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA.
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden; PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, SE-17176 Stockholm, Sweden
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Michael P Frankland
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Charles S Elmore
- Isotope Chemistry, Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, SE-43250 Göteborg, Sweden
| | - Yong Sok Lee
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892-5624, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| |
Collapse
|
21
|
Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, Liang SH. Chemie der Positronenemissionstomographie: Aktuelle Fortschritte bei
11
C‐,
18
F‐,
13
N‐ und
15
O‐Markierungsreaktionen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201805501] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaoyun Deng
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Lu Wang
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Lei Zhang
- Medicine DesignPfizer Inc. Cambridge MA 02139 USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| |
Collapse
|
22
|
Tabey A, Audrain H, Fouquet E, Hermange P. Bioconjugated arylpalladium complexes on solid supports for a convenient last-step synthesis of 11C-labelled tracers for positron emission tomography. Chem Commun (Camb) 2019; 55:7587-7590. [DOI: 10.1039/c9cc03215k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioconjugated arylpalladium complexes anchored onto polystyrene beads provided [11C]CO-labelled compounds with excellent radiochemical purities after a simple filtration.
Collapse
Affiliation(s)
| | - Hélène Audrain
- Department of Nuclear Medicine and PET Center
- Aarhus University Hospital
- DK-8000 Aarhus
- Denmark
| | | | | |
Collapse
|
23
|
Van der Wildt B, Shen B, Chin FT. A [ 11 C] CO dispensing system for rapid screening of carbonylation reactions. J Labelled Comp Radiopharm 2018; 61:1110-1114. [PMID: 30286517 DOI: 10.1002/jlcr.3686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022]
Abstract
[11 C] CO is a highly versatile synthon that allows for labeling at carbonyl positions of many molecules by means of transition metal-mediated carbonylation reactions. The intrinsic complexity of carbonylation reactions often requires tedious screening of reaction conditions for obtaining satisfying yields. Herein, a [11 C] CO dispending system for performing multiple reactions with a single batch of cyclotron-produced [11 C]CO2 is described. This semiautomated setup allows for more rapid and efficient screening of reactions and reaction conditions compared with the traditional "one beam for one reaction" strategy.
Collapse
Affiliation(s)
- Berend Van der Wildt
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, California, USA
| | - Bin Shen
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, California, USA
| | - Frederick T Chin
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, School of Medicine, Stanford, California, USA
| |
Collapse
|
24
|
Zhang Z, Niwa T, Watanabe Y, Hosoya T. Palladium(ii)-mediated rapid 11C-cyanation of (hetero)arylborons. Org Biomol Chem 2018; 16:7711-7716. [PMID: 30288522 DOI: 10.1039/c8ob02049c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A palladium(ii)-mediated rapid 11C-cyanation of (hetero)arylborons with [11C]NH4CN/NH3 has been developed using bench-stable and readily available reagents. The method showed excellent functional-group tolerance, and allowed the highly efficient synthesis of a wide range of [11C]cyanoarenes, including PET tracers for aromatase imaging. A mechanistic study of the 11C-cyanation suggests the instantaneous formation of a mono[11C]cyanopalladium(ii) complex that reacts smoothly with arylborons.
Collapse
Affiliation(s)
- Zhouen Zhang
- Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST) and Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Takashi Niwa
- Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST) and Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Yasuyoshi Watanabe
- Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST) and Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Takamitsu Hosoya
- Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST) and Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan. and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
25
|
Del Vecchio A, Destro G, Taran F, Audisio D. Recent developments in heterocycle labeling with carbon isotopes. J Labelled Comp Radiopharm 2018; 61:988-1007. [DOI: 10.1002/jlcr.3666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Antonio Del Vecchio
- CEA-Saclay, JOLIOT, Service de Chimie Bioorganique et de Marquage; Gif sur Yvette France
| | - Gianluca Destro
- CEA-Saclay, JOLIOT, Service de Chimie Bioorganique et de Marquage; Gif sur Yvette France
| | - Frédéric Taran
- CEA-Saclay, JOLIOT, Service de Chimie Bioorganique et de Marquage; Gif sur Yvette France
| | - Davide Audisio
- CEA-Saclay, JOLIOT, Service de Chimie Bioorganique et de Marquage; Gif sur Yvette France
| |
Collapse
|
26
|
Nielsen DU, Neumann KT, Lindhardt AT, Skrydstrup T. Recent developments in carbonylation chemistry using [13
C]CO, [11
C]CO, and [14
C]CO. J Labelled Comp Radiopharm 2018; 61:949-987. [DOI: 10.1002/jlcr.3645] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Dennis U. Nielsen
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry; Aarhus University; Aarhus C Denmark
| | - Karoline T. Neumann
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry; Aarhus University; Aarhus C Denmark
| | - Anders T. Lindhardt
- Carbon Dioxide Activation Center (CADIAC), Department of Engineering; Aarhus University; Aarhus N Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry; Aarhus University; Aarhus C Denmark
| |
Collapse
|
27
|
Dahl K, Nakao R, Amini N, Moein MM, Finnema S, Malmquist J, Varnäs K, Schou M. Development of [ Carbonyl- 11C]AZ13198083, a Novel Histamine Type-3 Receptor Radioligand with Favorable Kinetics. ACS Chem Neurosci 2018; 9:906-911. [PMID: 29359917 DOI: 10.1021/acschemneuro.7b00493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The histamine subtype-3 receptor (H3R) is implicated in a range of central nervous system disorders, and several radioligands have been developed for H3R positron emission tomography imaging. However, a limitation of currently used PET radioligands for H3R is the slow binding kinetics in high density brain regions. To address this, we herein report the development of three novel candidate H3R radioligands, namely, [ carbonyl-11C]AZ13153556 ([ carbonyl-11C]4), [ carbonyl-11C]AZD5213([ carbonyl-11C]5), and [ carbonyl-11C]AZ13198083 ([ carbonyl-11C]6), and their subsequent preclinical evaluation in nonhuman primates (NHP). Radioligands [ carbonyl-11C]4-6 were produced and isolated in high radioactivity (>1000 MBq), radiochemical purity (>99%), and moderate molar activity (19-28 GBq/μmol at time of injection) using a palladium-mediated 11C-aminocarbonylation protocol. All three radioligands showed high brain permeability as well as a regional brain radioactivity distribution in accordance with H3R expression (striatum > cortex > cerebellum). [ Carbonyl-11C]6 displayed the most favorable in vivo kinetics and brain uptake, with an early peak in the striatal time-activity curve followed by a progressive washout from the brain. The specificity and on-target kinetics of [ carbonyl-11C]6 were next investigated in pretreatment and displacement studies. After pretreatment or displacement with 5 (0.1 mg/kg), a uniformly low distribution of radioactivity across the NHP brain was observed. Collectively, this work demonstrates that [ carbonyl-11C]6 is a promising candidate for H3R imaging in human subjects.
Collapse
Affiliation(s)
- Kenneth Dahl
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Ryuji Nakao
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Mohammad Mahdi Moein
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Sjoerd Finnema
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Jonas Malmquist
- PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
- PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, S-171 76 Stockholm, Sweden
| |
Collapse
|
28
|
Slobbe P, Windhorst AD, Adamzek K, Bolijn M, Schuit RC, Heideman DAM, van Dongen GAMS, Poot AJ. Development of [11C]vemurafenib employing a carbon-11 carbonylative Stille coupling and preliminary evaluation in mice bearing melanoma tumor xenografts. Oncotarget 2018; 8:38337-38350. [PMID: 28418885 PMCID: PMC5503536 DOI: 10.18632/oncotarget.16321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 02/15/2017] [Indexed: 01/07/2023] Open
Abstract
Over the last decade kinase inhibitors have witnessed tremendous growth as anti-cancer drugs. Unfortunately, despite their promising clinical successes, a large portion of patients does not benefit from these targeted therapeutics. Vemurafenib is a serine/threonine kinase inhibitor approved for the treatment of melanomas specifically expressing the BRAFV600E mutation. The aim of this study was to develop vemurafenib as PET tracer to determine its potential for identification of tumors sensitive to vemurafenib treatment. Therefore, vemurafenib was labeled with carbon-11 and analyzed for its tumor targeting potential in melanoma xenografts Colo829 (BRAFV600E) and MeWo (BRAFwt) using autoradiography on tissue sections, in vitro tumor cell uptake studies and biodistribution studies in xenografted athymic nu/nu mice. [11C]vemurafenib was synthesized in 21 ± 4% yield (decay corrected, calculated from [11C]CO) in > 99% radiochemical purity and a specific activity of 55 ± 18 GBq/μmol. Similar binding of [11C]vemurafenib was shown during autoradiography and cellular uptake studies in both cell lines. Plasma metabolite analysis demonstrated > 95% intact [11C]vemurafenib in vivo at 45 minutes after injection, indicating excellent stability. Biodistribution studies confirmed the in vitro results, showing similar tumor-to-background ratios in both xenografts models. These preliminary results suggest that identification of BRAFV600E mutations in vivo using PET with [11C]vemurafenib will be challenging.
Collapse
Affiliation(s)
- Paul Slobbe
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.,Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Kevin Adamzek
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Marije Bolijn
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert C Schuit
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Guus A M S van Dongen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.,Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Alex J Poot
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Taddei C, Gee AD. Recent progress in [ 11 C]carbon dioxide ([ 11 C]CO 2 ) and [ 11 C]carbon monoxide ([ 11 C]CO) chemistry. J Labelled Comp Radiopharm 2018; 61:237-251. [PMID: 29274276 PMCID: PMC6485328 DOI: 10.1002/jlcr.3596] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/20/2017] [Accepted: 12/12/2017] [Indexed: 01/07/2023]
Abstract
[11 C]Carbon dioxide ([11 C]CO2 ) and [11 C]carbon monoxide ([11 C]CO) are 2 attractive precursors for labelling the carbonyl position (C═O) in a vast range of functionalised molecules (eg, ureas, amides, and carboxylic acids). The development of radiosynthetic methods to produce functionalised 11 C-labelled compounds is required to enhance the radiotracers available for positron emission tomography, molecular, and medical imaging applications. Following a brief summary of secondary 11 C-precursor production and uses, the review focuses on recent progress with direct 11 C-carboxylation routes with [11 C]CO2 and 11 C-carbonylation with [11 C]CO. Novel approaches to generate [11 C]CO using CO-releasing molecules (CO-RMs), such as silacarboxylic acids and disilanes, applied to radiochemistry are described and compared with standard [11 C]CO production methods. These innovative [11 C]CO synthesis strategies represent efficient and reliable [11 C]CO production processes, enabling the widespread use of [11 C]CO chemistry within the wider radiochemistry community.
Collapse
Affiliation(s)
- Carlotta Taddei
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Antony D. Gee
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| |
Collapse
|
30
|
Cornilleau T, Simonsen M, Vang M, Taib-Maamar N, Dessolin J, Audrain H, Hermange P, Fouquet E. Last-Step Pd-Mediated [11C]CO Labeling of a Moxestrol-Conjugated o-Iodobenzyl Alcohol: From Model Experiments to in Vivo Positron Emission Tomography Studies. Bioconjug Chem 2017; 28:2887-2894. [DOI: 10.1021/acs.bioconjchem.7b00583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Cornilleau
- University of Bordeaux, CNRS, Institut des Sciences Moléculaires, UMR 5255, 351 Cours de la
Libération, 33405 Talence Cedex, France
| | - Mette Simonsen
- Department
of Nuclear Medicine and PET Center, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus, Denmark
| | - Maylou Vang
- University of Bordeaux, CNRS, CBMN, UMR 5248, Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Nada Taib-Maamar
- University of Bordeaux, CNRS, CBMN, UMR 5248, Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Jean Dessolin
- University of Bordeaux, CNRS, CBMN, UMR 5248, Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Hélène Audrain
- Department
of Nuclear Medicine and PET Center, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus, Denmark
| | - Philippe Hermange
- University of Bordeaux, CNRS, Institut des Sciences Moléculaires, UMR 5255, 351 Cours de la
Libération, 33405 Talence Cedex, France
| | - Eric Fouquet
- University of Bordeaux, CNRS, Institut des Sciences Moléculaires, UMR 5255, 351 Cours de la
Libération, 33405 Talence Cedex, France
| |
Collapse
|
31
|
Dahl K, Ulin J, Schou M, Halldin C. Reduction of [11C]CO2to [11C]CO using solid supported zinc. J Labelled Comp Radiopharm 2017; 60:624-628. [DOI: 10.1002/jlcr.3561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Kenneth Dahl
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research; Karolinska Hospital; Stockholm Sweden
| | - Johan Ulin
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research; Karolinska Hospital; Stockholm Sweden
| | - Magnus Schou
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research; Karolinska Hospital; Stockholm Sweden
- AstraZeneca PET Science Centre, Department of Clinical Neuroscience; Karolinska Institutet; Stockholm Sweden
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research; Karolinska Hospital; Stockholm Sweden
| |
Collapse
|
32
|
Synthesis of 11C-Labelled Ureas by Palladium(II)-Mediated Oxidative Carbonylation. Molecules 2017; 22:molecules22101688. [PMID: 28994734 PMCID: PMC6151465 DOI: 10.3390/molecules22101688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 01/12/2023] Open
Abstract
Positron emission tomography is an imaging technique with applications in clinical settings as well as in basic research for the study of biological processes. A PET tracer, a biologically active molecule where a positron-emitting radioisotope such as carbon-11 has been incorporated, is used for the studies. Development of robust methods for incorporation of the radioisotope is therefore of the utmost importance. The urea functional group is present in many biologically active compounds and is thus an attractive target for incorporation of carbon-11 in the form of [11C]carbon monoxide. Starting with amines and [11C]carbon monoxide, both symmetrical and unsymmetrical 11C-labelled ureas were synthesised via a palladium(II)-mediated oxidative carbonylation and obtained in decay-corrected radiochemical yields up to 65%. The added advantage of using [11C]carbon monoxide was shown by the molar activity obtained for an inhibitor of soluble epoxide hydrolase (247 GBq/μmol–319 GBq/μmol). DFT calculations were found to support a reaction mechanism proceeding through an 11C-labelled isocyanate intermediate.
Collapse
|
33
|
Taddei C, Bongarzone S, Gee AD. Instantaneous Conversion of [ 11 C]CO 2 to [ 11 C]CO via Fluoride-Activated Disilane Species. Chemistry 2017; 23:7682-7685. [PMID: 28419627 PMCID: PMC5488231 DOI: 10.1002/chem.201701661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 01/03/2023]
Abstract
The development of a fast and novel methodology to generate carbon-11 carbon monoxide ([11 C]CO) from cyclotron-produced carbon-11 carbon dioxide ([11 C]CO2 ) mediated by a fluoride-activated disilane species is described. This methodology allows up to 74 % conversion of [11 C]CO2 to [11 C]CO using commercially available reagents, readily available laboratory equipment and mild reaction conditions (room temperature). As proof of utility, radiochemically pure [carbonyl-11 C]N-benzylbenzamide was successfully synthesized from produced [11 C]CO in up to 74 % radiochemical yield (RCY) and >99 % radiochemical purity (RCP) in ≤10 min from end of [11 C]CO2 delivery.
Collapse
Affiliation(s)
- Carlotta Taddei
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth WingSt. Thomas' HospitalLondonLambeth Palace RoadSE1 7EHUnited Kingdom
| | - Salvatore Bongarzone
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth WingSt. Thomas' HospitalLondonLambeth Palace RoadSE1 7EHUnited Kingdom
| | - Antony D. Gee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth WingSt. Thomas' HospitalLondonLambeth Palace RoadSE1 7EHUnited Kingdom
| |
Collapse
|
34
|
11
C-Carbonylation through in Situ Generated 11
C-Benzoyl Chlorides with Tetrabutylammonium Chloride as Chloride Source. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Andersen TL, Nordeman P, Christoffersen HF, Audrain H, Antoni G, Skrydstrup T. Application of Methyl Bisphosphine-Ligated Palladium Complexes for Low Pressure N
-11
C-Acetylation of Peptides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Thomas L. Andersen
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Patrik Nordeman
- Department of Medicinal Chemistry; Uppsala University; 75123 Uppsala Sweden
| | - Heidi F. Christoffersen
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Hélène Audrain
- Department of Nuclear Medicine and PET Center; Aarhus University Hospital; 8000 Aarhus Denmark
| | - Gunnar Antoni
- Department of Medicinal Chemistry; Uppsala University; 75123 Uppsala Sweden
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
36
|
Andersen TL, Nordeman P, Christoffersen HF, Audrain H, Antoni G, Skrydstrup T. Application of Methyl Bisphosphine-Ligated Palladium Complexes for Low Pressure N
-11
C-Acetylation of Peptides. Angew Chem Int Ed Engl 2017; 56:4549-4553. [DOI: 10.1002/anie.201700446] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/12/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Thomas L. Andersen
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Patrik Nordeman
- Department of Medicinal Chemistry; Uppsala University; 75123 Uppsala Sweden
| | - Heidi F. Christoffersen
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Hélène Audrain
- Department of Nuclear Medicine and PET Center; Aarhus University Hospital; 8000 Aarhus Denmark
| | - Gunnar Antoni
- Department of Medicinal Chemistry; Uppsala University; 75123 Uppsala Sweden
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
37
|
Dahl K, Halldin C, Schou M. New methodologies for the preparation of carbon-11 labeled radiopharmaceuticals. Clin Transl Imaging 2017; 5:275-289. [PMID: 28596949 PMCID: PMC5437136 DOI: 10.1007/s40336-017-0223-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/01/2017] [Indexed: 12/04/2022]
Abstract
PURPOSE This short review aims to cover the more recent and promising developments of carbon-11 (11C) labeling radiochemistry and its utility in the production of novel radiopharmaceuticals, with special emphasis on methods that have the greatest potential to be translated for clinical positron emission tomography (PET) imaging. METHODS A survey of the literature was undertaken to identify articles focusing on methodological development in 11C chemistry and their use within novel radiopharmaceutical preparation. However, since 11C-labeling chemistry is such a narrow field of research, no systematic literature search was therefore feasible. The survey was further restricted to a specific timeframe (2000-2016) and articles in English. RESULTS From the literature, it is clear that the majority of 11C-labeled radiopharmaceuticals prepared for clinical PET studies have been radiolabeled using the standard heteroatom methylation reaction. However, a number of methodologies have been developed in recent years, both from a technical and chemical point of view. Amongst these, two protocols may have the greatest potential to be widely adapted for the preparation of 11C-radiopharmaceuticals in a clinical setting. First, a novel method for the direct formation of 11C-labeled carbonyl groups, where organic bases are utilized as [11C]carbon dioxide-fixation agents. The second method of clinical importance is a low-pressure 11C-carbonylation technique that utilizes solvable xenon gas to effectively transfer and react [11C]carbon monoxide in a sealed reaction vessel. Both methods appear to be general and provide simple paths to 11C-labeled products. CONCLUSION Radiochemistry is the foundation of PET imaging which relies on the administration of a radiopharmaceutical. The demand for new radiopharmaceuticals for clinical PET imaging is increasing, and 11C-radiopharmaceuticals are especially important within clinical research and drug development. This review gives a comprehensive overview of the most noteworthy 11C-labeling methods with clinical relevance to the field of PET radiochemistry.
Collapse
Affiliation(s)
- Kenneth Dahl
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Neuroscience, AstraZeneca Translational Science Centre, Karolinska Institutet, 171 76 Stockholm, Sweden
| |
Collapse
|
38
|
Nordeman P, Chow SY, Odell AF, Antoni G, Odell LR. Palladium-mediated11C-carbonylations using aryl halides and cyanamide. Org Biomol Chem 2017; 15:4875-4881. [DOI: 10.1039/c7ob01064h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rapid, efficient and high-yielding synthesis of11C-cyanobenzamides, including novel analogs of various drug molecules, is described.
Collapse
Affiliation(s)
- P. Nordeman
- Preclinical PET Platform Chemistry
- Department of Medicinal Chemistry
- Uppsala University
- Sweden
| | - S. Y. Chow
- Division of Organic Pharmaceutical Chemistry
- Department of Medicinal Chemistry
- Uppsala University
- Uppsala
- Sweden
| | - A. F. Odell
- School of Medicine
- St James’ University Hospital
- University of Leeds
- Leeds
- UK
| | - G. Antoni
- Preclinical PET Platform Chemistry
- Department of Medicinal Chemistry
- Uppsala University
- Sweden
| | - L. R. Odell
- Division of Organic Pharmaceutical Chemistry
- Department of Medicinal Chemistry
- Uppsala University
- Uppsala
- Sweden
| |
Collapse
|
39
|
Rotstein BH, Liang SH, Placzek MS, Hooker JM, Gee AD, Dollé F, Wilson AA, Vasdev N. (11)C[double bond, length as m-dash]O bonds made easily for positron emission tomography radiopharmaceuticals. Chem Soc Rev 2016; 45:4708-26. [PMID: 27276357 PMCID: PMC5000859 DOI: 10.1039/c6cs00310a] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The positron-emitting radionuclide carbon-11 ((11)C, t1/2 = 20.3 min) possesses the unique potential for radiolabeling of any biological, naturally occurring, or synthetic organic molecule for in vivo positron emission tomography (PET) imaging. Carbon-11 is most often incorporated into small molecules by methylation of alcohol, thiol, amine or carboxylic acid precursors using [(11)C]methyl iodide or [(11)C]methyl triflate (generated from [(11)C]carbon dioxide or [(11)C]methane). Consequently, small molecules that lack an easily substituted (11)C-methyl group are often considered to have non-obvious strategies for radiolabeling and require a more customized approach. [(11)C]Carbon dioxide itself, [(11)C]carbon monoxide, [(11)C]cyanide, and [(11)C]phosgene represent alternative reactants to enable (11)C-carbonylation. Methodologies developed for preparation of (11)C-carbonyl groups have had a tremendous impact on the development of novel PET tracers and provided key tools for clinical research. (11)C-Carbonyl radiopharmaceuticals based on labeled carboxylic acids, amides, carbamates and ureas now account for a substantial number of important imaging agents that have seen translation to higher species and clinical research of previously inaccessible targets, which is a testament to the creativity, utility and practicality of the underlying radiochemistry.
Collapse
Affiliation(s)
| | - Steven H Liang
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Michael S Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, HMS, Charlestown, USA and McLean Hospital, Belmont, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, HMS, Charlestown, USA
| | | | - Frédéric Dollé
- CEA - Institut d'imagerie biomédicale, Service hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Alan A Wilson
- Centre for Addiction and Mental Health, Toronto, Canada
| | - Neil Vasdev
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
40
|
Rahman O, Långström B, Halldin C. Alkyl Iodides and [11
C]CO in Nickel-Mediated Cross-Coupling Reactions: Successful Use of Alkyl Electrophiles containing a β Hydrogen Atom in Metal-Mediated [11
C]Carbonylation. ChemistrySelect 2016. [DOI: 10.1002/slct.201600643] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Obaidur Rahman
- Karolinska Institutet; Department of Clinical Neuroscience; Centre for Psychiatric Research; Karolinska University Hospital; 171 76 Stockholm Sweden
- Bencar AB; Dag Hammarsjöldsväg 34B 572 37 Uppsala Sweden
| | - Bengt Långström
- Department of Chemistry; Uppsala University; 751 23 Uppsala Sweden
- Bencar AB; Dag Hammarsjöldsväg 34B 572 37 Uppsala Sweden
| | - Christer Halldin
- Karolinska Institutet; Department of Clinical Neuroscience; Centre for Psychiatric Research; Karolinska University Hospital; 171 76 Stockholm Sweden
| |
Collapse
|
41
|
Cornilleau T, Hermange P, Fouquet E. Gold-catalysed cross-coupling between aryldiazonium salts and arylboronic acids: probing the usefulness of photoredox conditions. Chem Commun (Camb) 2016; 52:10040-3. [DOI: 10.1039/c6cc04239b] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Combining gold catalysis and photoredox processes allowed the synthesis of biaryl compounds from diazonium salts and boronic acids under mild conditions.
Collapse
Affiliation(s)
- Thomas Cornilleau
- Univ. Bordeaux
- Institut des Sciences Moléculaires
- UMR-CNRS 5255, 351
- Cours de la Libération
- 33405 Talence Cedex
| | - Philippe Hermange
- Univ. Bordeaux
- Institut des Sciences Moléculaires
- UMR-CNRS 5255, 351
- Cours de la Libération
- 33405 Talence Cedex
| | - Eric Fouquet
- Univ. Bordeaux
- Institut des Sciences Moléculaires
- UMR-CNRS 5255, 351
- Cours de la Libération
- 33405 Talence Cedex
| |
Collapse
|
42
|
Pike VW. Considerations in the Development of Reversibly Binding PET Radioligands for Brain Imaging. Curr Med Chem 2016; 23:1818-69. [PMID: 27087244 PMCID: PMC5579844 DOI: 10.2174/0929867323666160418114826] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
The development of reversibly binding radioligands for imaging brain proteins in vivo, such as enzymes, neurotransmitter transporters, receptors and ion channels, with positron emission tomography (PET) is keenly sought for biomedical studies of neuropsychiatric disorders and for drug discovery and development, but is recognized as being highly challenging at the medicinal chemistry level. This article aims to compile and discuss the main considerations to be taken into account by chemists embarking on programs of radioligand development for PET imaging of brain protein targets.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Rm. B3C346A, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Nordeman P, Friis SD, Andersen TL, Audrain H, Larhed M, Skrydstrup T, Antoni G. Rapid and Efficient Conversion of11CO2to11CO through Silacarboxylic Acids: Applications in Pd-Mediated Carbonylations. Chemistry 2015; 21:17601-4. [DOI: 10.1002/chem.201503262] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 11/06/2022]
|
44
|
Taddei C, Bongarzone S, Haji Dheere AK, Gee AD. [(11)C]CO2 to [(11)C]CO conversion mediated by [(11)C]silanes: a novel route for [(11)C]carbonylation reactions. Chem Commun (Camb) 2015; 51:11795-11797. [PMID: 26107103 DOI: 10.1039/c5cc02095f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
A novel chemical methodology is described for the conversion of [(11)C]CO2 to [(11)C]CO. Diphenylmethyl silanes trap [(11)C]CO2 and release [(11)C]CO rapidly when triggered by TBAF. Released [(11)C]CO was used to produce [(11)C]N-benzylbenzamide and AMPA receptor ligand, [(11)C], in radiochemical yields >90% within 6 min from [(11)C]CO2 production.
Collapse
Affiliation(s)
- Carlotta Taddei
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, London, SE1 7EH, UK.
| | - Salvatore Bongarzone
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, London, SE1 7EH, UK.
| | - Abdul Karim Haji Dheere
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, London, SE1 7EH, UK.
| | - Antony D Gee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, London, SE1 7EH, UK.
| |
Collapse
|
45
|
Rahman O, Takano A, Amini N, Dahl K, Kanegawa N, Långström B, Farde L, Halldin C. Synthesis of ([(11)C]carbonyl)raclopride and a comparison with ([(11)C]methyl)raclopride in a monkey PET study. Nucl Med Biol 2015; 42:893-8. [PMID: 26272268 DOI: 10.1016/j.nucmedbio.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/05/2015] [Accepted: 07/12/2015] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The selective dopamine D2 receptor antagonist raclopride is usually labeled with carbon-11 using [(11)C]methyl iodide or [(11)C]methyl triflate for use in the quantification of dopamine D2 receptors in human brain. The aim of this work was to label raclopride at the carbonyl position using [(11)C]carbon monoxide chemistry and to compare ([(11)C]carbonyl)raclopride with ([(11)C]methyl)raclopride in non-human primate (NHP) using PET with regard to quantitative outcome measurement, metabolism of the labeled tracers and protein binding. METHODS Palladium-mediated carbonylation using [(11)C]carbon monoxide, 4,6-dichloro-2-iodo-3-methoxyphenol and (S)-(-)-2-aminomethyl-1-ethylpyrrolidine was applied in the synthesis of ([(11)C]carbonyl)raclopride. The reaction was performed at atmospheric pressure using xantphos as supporting phosphine ligand and palladium (π-cinnamyl) chloride dimer as the palladium source. ([(11)C]Methyl)raclopride was prepared by a previously published method. In the PET study, two female cynomolgus monkeys were used under gas anesthesia of sevoflurane. A dynamic PET measurement was performed for 63 min with an HRRT PET camera after intravenous injection of ([(11)C]carbonyl)raclopride and ([(11)C]methyl)raclopride, respectively, during the same day. The order of injection of the two PET radioligands was changed between the two monkeys. The venous blood sample for measurement of protein binding was taken 3 min prior to the PET scan. Binding potential (BPND) of the putamen and caudate was calculated with SRTM using the cerebellum as a reference region. RESULTS The target compound ([(11)C]carbonyl)raclopride was obtained with 50 ± 5% decay corrected radiochemical yield and 95% radiochemical purity. The trapping efficiency (TE) of [(11)C]carbon monoxide was 65 ± 5% and the specific radioactivity of the final product was 34 ± 1 GBq/μmol after a 50 min of synthesis time. The radiochemical yield of ([(11)C]methyl)raclopride was in the same range as published previously i. e. 50-60% and specific radioactivity of those two batches which were used in the present PET study were 192 GBq/μmol and 638 GBq/μmol respectively after a synthesis time of 32 min. In monkey PET studies, the percentage difference of BPND in putamen was <3% and that in caudate was <9% for the two radioligands. The plasma protein binding was 86.2 ± 0.3% and 85.7 ± 0.6% for ([(11)C]carbonyl)raclopride and ([(11)C]methyl)raclopride, respectively. The radiometabolite pattern was similar for both radioligands. CONCLUSION Raclopride was (11)C-labeled at the carbonyl position using a palladium-mediated [(11)C]carbonylation reaction. A comparison between ([(11)C]carbonyl)raclopride and ([(11)C]methyl)raclopride with regard to quantitative PET outcome measurements, metabolism of radioligands and protein binding in monkey was performed. The monkey PET study with ([(11)C]carbonyl)raclopride showed similar results as for ([(11)C]methyl)raclopride. The PET studies were performed on 2 subjects.
Collapse
Affiliation(s)
- Obaidur Rahman
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska University Hospital, R5:U1, 17176 Stockholm, Sweden; Bencar AB, Dag Hammarskjöldsväg 34B, 75183 Uppsala, Sweden; Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - Akihiro Takano
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska University Hospital, R5:U1, 17176 Stockholm, Sweden
| | - Nahid Amini
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska University Hospital, R5:U1, 17176 Stockholm, Sweden
| | - Kenneth Dahl
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska University Hospital, R5:U1, 17176 Stockholm, Sweden
| | - Naoki Kanegawa
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska University Hospital, R5:U1, 17176 Stockholm, Sweden
| | - Bengt Långström
- Bencar AB, Dag Hammarskjöldsväg 34B, 75183 Uppsala, Sweden; Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - Lars Farde
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska University Hospital, R5:U1, 17176 Stockholm, Sweden
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska University Hospital, R5:U1, 17176 Stockholm, Sweden; Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| |
Collapse
|
46
|
Dahl K, Schou M, Ulin J, Sjöberg CO, Farde L, Halldin C. 11C-carbonylation reactions using gas–liquid segmented microfluidics. RSC Adv 2015. [DOI: 10.1039/c5ra20646d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel gas–liquid segmented microfluidic platform has been developed, allowing for the direct access to11C-labelled drug-like molecules.
Collapse
Affiliation(s)
- Kenneth Dahl
- Karolinska Institutet
- Department of Clinical Neuroscience
- Centre for Psychiatric Research
- Karolinska Hospital
- S-171 76 Stockholm
| | - Magnus Schou
- AstraZeneca Translational Science Centre
- Department of Clinical Neuroscience
- Karolinska Institutet
- S-171 76 Stockholm
- Sweden
| | - Johan Ulin
- Bencar AB
- Uppsala Science Park
- S-751 83 Uppsala
- Sweden
| | | | - Lars Farde
- Karolinska Institutet
- Department of Clinical Neuroscience
- Centre for Psychiatric Research
- Karolinska Hospital
- S-171 76 Stockholm
| | - Christer Halldin
- Karolinska Institutet
- Department of Clinical Neuroscience
- Centre for Psychiatric Research
- Karolinska Hospital
- S-171 76 Stockholm
| |
Collapse
|