1
|
Singh M, Dolan CV, Lapato DM, Hottenga JJ, Pool R, Verhulst B, Boomsma DI, Breeze CE, de Geus EJC, Hemani G, Min JL, Peterson RE, Maes HHM, van Dongen J, Neale MC. Twin-based Mendelian Randomization Analyses Highlight Smoking's Effects on Blood DNA Methylation, with Putative Reverse Causation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.19.24309184. [PMID: 38946972 PMCID: PMC11213072 DOI: 10.1101/2024.06.19.24309184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Epigenome-wide association studies (EWAS) aim to identify differentially methylated loci associated with complex traits and disorders. EWAS of cigarette smoking shows some of the most widespread DNA methylation (DNAm) associations in blood. However, traditional EWAS cannot differentiate between causation and confounding, leading to ambiguity in etiological interpretations. Here, we apply an integrated approach combining Mendelian Randomization and twin-based Direction-of-Causation analyses (MR-DoC) to examine causality underlying smoking-associated blood DNAm changes in the Netherlands Twin Register (N=2577). Evidence across models suggests that current smoking's causal effects on DNAm likely drive many of the previous EWAS findings, implicating functional pathways relevant to several adverse health outcomes of smoking, including hemopoiesis, cell- and neuro-development, and immune regulation. Additionally, we find evidence of potential reverse causal influences at some DNAm sites, with 17 of these sites enriched for gene regulatory functional elements in the brain. The top three sites with evidence of DNAm's effects on smoking annotate to genes involved in G protein-coupled receptor signaling (GNG7, RGS3) and innate immune response (SLC15A4), elucidating potential biological risk factors for smoking. This study highlights the utility of integrating genotypic and DNAm measures in twin cohorts to clarify the causal relationships between health behaviors and blood DNAm.
Collapse
Affiliation(s)
- Madhurbain Singh
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Conor V. Dolan
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Dana M. Lapato
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Brad Verhulst
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Current address: Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Charles E. Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
- UCL Cancer Institute, University College London, London, UK
| | - Eco J. C. de Geus
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Josine L. Min
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Roseann E. Peterson
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Hermine H. M. Maes
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- These authors jointly supervised this work
| | - Michael C. Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
- These authors jointly supervised this work
| |
Collapse
|
2
|
Snyder MT, Manor J, Gijavanekar C, Mizerik E, Kralik SF, Elsea SH, Machol K, Emrick L, Scaglia F. Heteroplasmic pathogenic m.12315G>A variant in MT-TL2 presenting with MELAS syndrome and depletion of nitric oxide donors. Am J Med Genet A 2024; 194:e63461. [PMID: 37953071 DOI: 10.1002/ajmg.a.63461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
The MT-TL2 m.12315G>A pathogenic variant has previously been reported in five individuals with mild clinical phenotypes. Herein we report the case of a 5-year-old child with heteroplasmy for this variant who developed neurological regression and stroke-like episodes similar to those observed in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochemical evaluation revealed depletion of arginine on plasma amino acid analysis and low z-scores for citrulline on untargeted plasma metabolomics analysis. These findings suggested that decreased availability of nitric oxide may have contributed to the stroke-like episodes. The use of intravenous arginine during stroke-like episodes and daily enteral L-citrulline supplementation normalized her biochemical values of arginine and citrulline. Untargeted plasma metabolomics showed the absence of nicotinamide and 1-methylnicotinamide, and plasma total glutathione levels were low; thus, nicotinamide riboside and N-acetylcysteine therapies were initiated. This report expands the phenotype associated with the rare mitochondrial variant MT-TL2 m.12315G>A to include neurological regression and a MELAS-like phenotype. Individuals with this variant should undergo in-depth biochemical analysis to include untargeted plasma metabolomics, plasma amino acids, and glutathione levels to help guide a targeted approach to treatment.
Collapse
Affiliation(s)
- Matthew T Snyder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Joshua Manor
- Metabolic Diseases Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Charul Gijavanekar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Elizabeth Mizerik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Stephen F Kralik
- Texas Children's Hospital, Houston, Texas, USA
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Keren Machol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Lisa Emrick
- Texas Children's Hospital, Houston, Texas, USA
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
- Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
3
|
Nataraj J, MacLean JA, Davies J, Kurtz J, Salisbury A, Liker MA, Sanger TD, Olaya J. Application of deep brain stimulation for the treatment of childhood-onset dystonia in patients with MEPAN syndrome. Front Neurol 2024; 14:1307595. [PMID: 38328756 PMCID: PMC10847241 DOI: 10.3389/fneur.2023.1307595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Mitochondrial Enoyl CoA Reductase Protein-Associated Neurodegeneration (MEPAN) syndrome is a rare inherited metabolic condition caused by MECR gene mutations. This gene encodes a protein essential for fatty acid synthesis, and defects cause progressively worsening childhood-onset dystonia, optic atrophy, and basal ganglia abnormalities. Deep brain stimulation (DBS) has shown mixed improvement in other childhood-onset dystonia conditions. To the best of our knowledge, DBS has not been investigated as a treatment for dystonia in patients with MEPAN syndrome. Methods Two children with MEPAN were identified as possible DBS candidates due to severe generalized dystonia unresponsive to pharmacotherapy. Temporary depth electrodes were placed in six locations bilaterally and tested during a 6-day hospitalization to determine the best locations for permanent electrode placement. The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and Barry-Albright Dystonia Scale (BADS) were used for preoperative and postoperative testing to quantitatively assess dystonia severity changes. Patient 1 had permanent electrodes placed at the globus pallidus internus (GPi) and pedunculopontine nucleus (PPN). Patient 2 had permanent electrodes placed at the GPi and ventralis intermedius nucleus of the thalamus (VIM). Results Both patients successfully underwent DBS placement with no perioperative complications and significant improvement in their BFMDRS score. Patient 2 also demonstrated improvement in the BADS. Discussion We demonstrated a novel application of DBS in MEPAN syndrome patients with childhood-onset dystonia. These patients showed clinically significant improvements in dystonia following DBS, indicating that DBS can be considered for dystonia in patients with rare metabolic disorders that currently have no other proven treatment options.
Collapse
Affiliation(s)
- Jaya Nataraj
- Samueli School of Engineering, University of California Irvine, Irvine, CA, United States
- Research Institute, Children’s Hospital of Orange County, Orange, CA, United States
| | - Jennifer A. MacLean
- Research Institute, Children’s Hospital of Orange County, Orange, CA, United States
- Department of Neurology, Children’s Hospital of Orange County, Orange, CA, United States
| | - Jordan Davies
- Division of Neurosurgery, Children’s Hospital of Orange County, Orange, CA, United States
- Department of Neurological Surgery, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Joshua Kurtz
- School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Amanda Salisbury
- Research Institute, Children’s Hospital of Orange County, Orange, CA, United States
| | - Mark A. Liker
- Division of Neurosurgery, Children’s Hospital of Orange County, Orange, CA, United States
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Terence D. Sanger
- Samueli School of Engineering, University of California Irvine, Irvine, CA, United States
- Research Institute, Children’s Hospital of Orange County, Orange, CA, United States
- Department of Neurology, Children’s Hospital of Orange County, Orange, CA, United States
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Joffre Olaya
- Division of Neurosurgery, Children’s Hospital of Orange County, Orange, CA, United States
- Department of Neurological Surgery, School of Medicine, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Zea Vera A, Gropman AL. Surgical treatment of movement disorders in neurometabolic conditions. Front Neurol 2023; 14:1205339. [PMID: 37333007 PMCID: PMC10272416 DOI: 10.3389/fneur.2023.1205339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Refractory movement disorders are a common feature of inborn errors of metabolism (IEMs), significantly impacting quality of life and potentially leading to life-threatening complications such as status dystonicus. Surgical techniques, including deep brain stimulation (DBS) and lesioning techniques, represent an additional treatment option. However, the application and benefits of these procedures in neurometabolic conditions is not well understood. This results in challenges selecting surgical candidates and counseling patients preoperatively. In this review, we explore the literature of surgical techniques for the treatment of movement disorders in IEMs. Globus pallidus internus DBS has emerged as a beneficial treatment option for dystonia in Panthotate-Kinase-associated Neurodegeneration. Additionally, several patients with Lesch-Nyhan Disease have shown improvement following pallidal stimulation, with more robust effects on self-injurious behavior than dystonia. Although there are numerous reports describing benefits of DBS for movement disorders in other IEMs, the sample sizes have generally been small, limiting meaningful conclusions. Currently, DBS is preferred to lesioning techniques. However, successful use of pallidotomy and thalamotomy in neurometabolic conditions has been reported and may have a role in selected patients. Surgical techniques have also been used successfully in patients with IEMs to treat status dystonicus. Advancing our knowledge of these treatment options could significantly improve the care for patients with neurometabolic conditions.
Collapse
Affiliation(s)
- Alonso Zea Vera
- Division of Neurology, Children’s National Hospital, Washington, DC, United States
- Department of Neurology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Andrea L. Gropman
- Department of Neurology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children’s National Hospital, Washington DC, United States
| |
Collapse
|
5
|
BAO WEI, HAN QIANGUANG, GUAN XIAO, WANG ZIJIE, GU MIN. Solute carrier-related signature for assessing prognosis and immunity in patients with clear-cell renal cell carcinoma. Oncol Res 2023; 31:181-192. [PMID: 37304236 PMCID: PMC10208045 DOI: 10.32604/or.2023.028051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/07/2023] [Indexed: 06/13/2023] Open
Abstract
Background Clear-cell renal cell carcinoma (ccRCC) is the most common malignant kidney cancer. However, the tumor microenvironment and crosstalk involved in metabolic reprogramming in ccRCC are not well-understood. Methods We used The Cancer Genome Atlas to obtain ccRCC transcriptome data and clinical information. The E-MTAB-1980 cohort was used for external validation. The GENECARDS database contains the first 100 solute carrier (SLC)-related genes. The predictive value of SLC-related genes for ccRCC prognosis and treatment was assessed using univariate Cox regression analysis. An SLC-related predictive signature was developed through Lasso regression analysis and used to determine the risk profiles of patients with ccRCC. Patients in each cohort were separated into high- and low-risk groups based on their risk scores. The clinical importance of the signature was assessed through survival, immune microenvironment, drug sensitivity, and nomogram analyses using R software. Results SLC25A23, SLC25A42, SLC5A1, SLC3A1, SLC25A37, SLC5A6, SLCO5A1, and SCP2 comprised the signatures of the eight SLC-related genes. Patients with ccRCC were separated into high- and low-risk groups based on the risk value in the training and validation cohorts; the high-risk group had a significantly worse prognosis (p < 0.001). The risk score was an independent predictive indicator of ccRCC in the two cohorts according to univariate and multivariate Cox regression (p < 0.05). Analysis of the immune microenvironment showed that immune cell infiltration and immune checkpoint gene expression differed between the two groups (p < 0.05). Drug sensitivity analysis showed that compared to the low-risk group, the high-risk group was more sensitive to sunitinib, nilotinib, JNK-inhibitor-VIII, dasatinib, bosutinib, and bortezomib (p < 0.001). Survival analysis and receiver operating characteristic curves were validated using the E-MTAB-1980 cohort. Conclusions SLC-related genes have predictive relevance in ccRCC and play roles in the immunological milieu. Our results provide insight into metabolic reprogramming in ccRCC and identify promising treatment targets for ccRCC.
Collapse
Affiliation(s)
- WEI BAO
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - QIANGUANG HAN
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - XIAO GUAN
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - ZIJIE WANG
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - MIN GU
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Aldhalaan H, AlBakheet A, AlRuways S, AlMutairi N, AlNakiyah M, AlGhofaili R, Cardona-Londoño KJ, Alahmadi KO, AlQudairy H, AlRasheed MM, Colak D, Arold ST, Kaya N. A Novel GEMIN4 Variant in a Consanguineous Family Leads to Neurodevelopmental Impairment with Severe Microcephaly, Spastic Quadriplegia, Epilepsy, and Cataracts. Genes (Basel) 2021; 13:genes13010092. [PMID: 35052432 PMCID: PMC8774908 DOI: 10.3390/genes13010092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/24/2022] Open
Abstract
Pathogenic variants in GEMIN4 contribute to a hereditary disorder characterized by neurodevelopmental features, microcephaly, cataracts, and renal abnormalities (known as NEDMCR). To date, only two homoallelic variations have been linked to the disease. Moreover, clinical features associated with the variants have not been fully elucidated yet. Here, we identified a novel variant in GEMIN4 (NM_015721:exon2:c.440A>G:p.His147Arg) in two siblings from a consanguineous Saudi family by using whole exome sequencing followed by Sanger sequence verification. We comprehensively investigated the patients’ clinical features, including brain imaging and electroencephalogram findings, and compared their phenotypic characteristics with those of previously reported cases. In silico prediction and structural modeling support that the p.His147Arg variant is pathogenic.
Collapse
Affiliation(s)
- Hesham Aldhalaan
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Albandary AlBakheet
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
| | - Sarah AlRuways
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Nouf AlMutairi
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Maha AlNakiyah
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Reema AlGhofaili
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Kelly J. Cardona-Londoño
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.J.C.-L.); (S.T.A.)
| | - Khalid Omar Alahmadi
- Department of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Hanan AlQudairy
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
| | - Maha M. AlRasheed
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Stefan T. Arold
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.J.C.-L.); (S.T.A.)
| | - Namik Kaya
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Correspondence: ; Tel.: +966-11-4647272 (ext. 39612)
| |
Collapse
|
7
|
Marra F, Lunetti P, Curcio R, Lasorsa FM, Capobianco L, Porcelli V, Dolce V, Fiermonte G, Scarcia P. An Overview of Mitochondrial Protein Defects in Neuromuscular Diseases. Biomolecules 2021; 11:1633. [PMID: 34827632 PMCID: PMC8615828 DOI: 10.3390/biom11111633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Neuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and β-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcome.
Collapse
Affiliation(s)
- Federica Marra
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Rosita Curcio
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Francesco Massimo Lasorsa
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Vito Porcelli
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| | - Vincenza Dolce
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Giuseppe Fiermonte
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Pasquale Scarcia
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| |
Collapse
|