1
|
Brazeau MD, Castiello M, El Fassi El Fehri A, Hamilton L, Ivanov AO, Johanson Z, Friedman M. Fossil evidence for a pharyngeal origin of the vertebrate pectoral girdle. Nature 2023; 623:550-554. [PMID: 37914937 PMCID: PMC10651482 DOI: 10.1038/s41586-023-06702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
The origin of vertebrate paired appendages is one of the most investigated and debated examples of evolutionary novelty1-7. Paired appendages are widely considered as key innovations that enabled new opportunities for controlled swimming and gill ventilation and were prerequisites for the eventual transition from water to land. The past 150 years of debate8-10 has been shaped by two contentious theories4,5: the ventrolateral fin-fold hypothesis9,10 and the archipterygium hypothesis8. The latter proposes that fins and girdles evolved from an ancestral gill arch. Although studies in animal development have revived interest in this idea11-13, it is apparently unsupported by fossil evidence. Here we present palaeontological support for a pharyngeal basis for the vertebrate shoulder girdle. We use computed tomography scanning to reveal details of the braincase of Kolymaspis sibirica14, an Early Devonian placoderm fish from Siberia, that suggests a pharyngeal component of the shoulder. We combine these findings with refreshed comparative anatomy of placoderms and jawless outgroups to place the origin of the shoulder girdle on the sixth branchial arch. These findings provide a novel framework for understanding the origin of the pectoral girdle. Our evidence clarifies the location of the presumptive head-trunk interface in jawless fishes and explains the constraint on branchial arch number in gnathostomes15. The results revive a key aspect of the archipterygium hypothesis and help reconcile it with the ventrolateral fin-fold model.
Collapse
Affiliation(s)
- Martin D Brazeau
- Department of Life Sciences, Imperial College London, Ascot, UK.
- The Natural History Museum, London, UK.
| | - Marco Castiello
- Department of Life Sciences, Imperial College London, Ascot, UK
- London Academy of Excellence, London, United Kingdom
| | - Amin El Fassi El Fehri
- Department of Life Sciences, Imperial College London, Ascot, UK
- Paläontologisches Institut und Museum, Universität Zürich, Zurich, Switzerland
| | - Louis Hamilton
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Alexander O Ivanov
- Department of Sedimentary Geology, Institute of Earth Sciences, St Petersburg State University, St Petersburg, Russia
- Institute of Geology and Petroleum Technologies, Kazan Federal University, Kazan, Russia
| | | | - Matt Friedman
- The Natural History Museum, London, UK
- Museum of Paleontology, University of Michigan, Ann Arbor, MI, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Li Q, Zhu YA, Lu J, Chen Y, Wang J, Peng L, Wei G, Zhu M. A new Silurian fish close to the common ancestor of modern gnathostomes. Curr Biol 2021; 31:3613-3620.e2. [PMID: 34146483 DOI: 10.1016/j.cub.2021.05.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 02/02/2023]
Abstract
The Silurian Period occupies a pivotal stage in the unfolding of key evolutionary events, including the rise of jawed vertebrates.1-4 However, the understanding of this early diversification is often hampered by the patchy nature of the Silurian fossil record,5 with the articulated specimens of jawed vertebrates only known in isolated localities, most notably Qujing, Yunnan, China.6-9 Here, we report a new Silurian maxillate placoderm, Bianchengichthys micros, from the Ludlow of Chongqing, with a near-complete dermatoskeleton preserved in articulation. Although geographically separated, the new taxon resembles the previously reported Qilinyu in possessing a unique combination of dermatoskeletal characters. However, the dermal bone of the mandible in Bianchengichthys unexpectedly differs from those in both Qilinyu and Entelognathus and displays a broad oral lamina carrying a line of tooth-like denticles, in addition to the marginal toothless flange. The external morphology of the pectoral fin is preserved and reveals an extensively scale-covered lobate part, flanked by a fringe of lepidotrichia-like aligned scales. The phylogenetic analysis reveals that Bianchengichthys is positioned immediately below Entelognathus plus modern gnathostomes. The discovery significantly widens the distribution of Silurian placoderm-grade gnathostomes in South China and provides a range of morphological disparity for the outgroup comparison to the earliest evolution of jaws, dentitions, and pectoral fins in modern gnathostomes. We also demonstrate that the previously reported Silurian placoderms from central Vietnam10 are maxillate placoderms close to Qilinyu, Silurolepis, and Bianchengichthys, corroborating the paleogeographic proximity between the Indochina and South China blocks during the Middle Paleozoic.11.
Collapse
Affiliation(s)
- Qiang Li
- Chongqing Key Laboratory of Exogenic Mineralization and Mine Environment, Chongqing 401120, China; Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China; Qujing Normal University, Yunnan 655000, China
| | - You-An Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China.
| | - Jing Lu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Chen
- Chongqing Key Laboratory of Exogenic Mineralization and Mine Environment, Chongqing 401120, China; Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
| | | | - Lijian Peng
- Qujing Normal University, Yunnan 655000, China
| | - Guangbiao Wei
- Chongqing Institute of Geological Survey, Chongqing 401122, China
| | - Min Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Chen D, Blom H, Sanchez S, Tafforeau P, Märss T, Ahlberg PE. The developmental relationship between teeth and dermal odontodes in the most primitive bony fish Lophosteus. eLife 2020; 9:e60985. [PMID: 33317696 PMCID: PMC7738188 DOI: 10.7554/elife.60985] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
The ontogenetic trajectory of a marginal jawbone of Lophosteus superbus (Late Silurian, 422 Million years old), the phylogenetically most basal stem osteichthyan, visualized by synchrotron microtomography, reveals a developmental relationship between teeth and dermal odontodes that is not evident from the adult morphology. The earliest odontodes are two longitudinal founder ridges formed at the ossification center. Subsequent odontodes that are added lingually to the ridges turn into conical teeth and undergo cyclic replacement, while those added labially achieve a stellate appearance. Stellate odontodes deposited directly on the bony plate are aligned with the alternate files of teeth, whereas new tooth positions are inserted into the files of sequential addition when a gap appears. Successive teeth and overgrowing odontodes show hybrid morphologies around the oral-dermal boundary, suggesting signal cross-communication. We propose that teeth and dermal odontodes are modifications of a single system, regulated and differentiated by the oral and dermal epithelia.
Collapse
Affiliation(s)
- Donglei Chen
- Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| | - Henning Blom
- Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| | - Sophie Sanchez
- Department of Organismal Biology, Uppsala UniversityUppsalaSweden
- SciLifeLab, Uppsala UniversityUppsalaSweden
- European Synchrotron Radiation FacilityGrenobleFrance
| | | | - Tiiu Märss
- Estonian Marine Institute, University of TartuTallinnEstonia
| | - Per E Ahlberg
- Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| |
Collapse
|
4
|
Siomava N, Fuentes JSM, Diogo R. Deconstructing the long‐standing a priori assumption that serial homology generally involves ancestral similarity followed by anatomical divergence. J Morphol 2020; 281:1110-1132. [DOI: 10.1002/jmor.21236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Natalia Siomava
- Department of Anatomy Howard University College of Medicine Washington District of Columbia USA
| | | | - Rui Diogo
- Department of Anatomy Howard University College of Medicine Washington District of Columbia USA
| |
Collapse
|
5
|
Sasagawa I, Oka S, Mikami M, Yokosuka H, Ishiyama M, Imai A, Shimokawa H, Uchida T. Immunohistochemical and Western Blotting Analyses of Ganoine in the Ganoid Scales ofLepisosteus oculatus: an Actinopterygian Fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:193-209. [DOI: 10.1002/jez.b.22676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/11/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Ichiro Sasagawa
- Advanced Research Center; School of Life Dentistry at Niigata; The Nippon Dental University; Niigata Japan
| | - Shunya Oka
- Department of Biology; School of Life Dentistry at Niigata; The Nippon Dental University; Niigata Japan
| | - Masato Mikami
- Department of Microbiology; School of Life Dentistry at Niigata; The Nippon Dental University; Niigata Japan
| | - Hiroyuki Yokosuka
- Department of Histology; School of Life Dentistry at Niigata; The Nippon Dental University; Niigata Japan
| | - Mikio Ishiyama
- Department of Histology; School of Life Dentistry at Niigata; The Nippon Dental University; Niigata Japan
| | - Akane Imai
- Department of Biochemistry, School of Life Dentistry at Niigata; The Nippon Dental University; Niigata Japan
- Department of Dental Hygiene, College at Niigata; The Nippon Dental University; Niigata Japan
| | - Hitoyata Shimokawa
- Division of Pediatric Dentistry, Department of Oral Health Sciences, Graduate School; Tokyo Medical and Dental University; Bunkyo-ku, Tokyo Japan
| | - Takashi Uchida
- Department of Oral Biology, Graduate School of Biomedical Sciences; Hiroshima University; Hiroshima Japan
| |
Collapse
|
6
|
Hirayama Y, Watanabe T, Yokoyama M, Fujiseki M, Yamazaki T, Sohn WJ, Kim JY, Yamamoto H. Histological Observation of the Jaws and Teeth of the Green Spotted Pufferfish (Tetraodon Nigroviridis). J HARD TISSUE BIOL 2015. [DOI: 10.2485/jhtb.24.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yuzo Hirayama
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Tae Watanabe
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Megumi Yokoyama
- Department of Physiology, Nihon University School of Dentistry at Matsudo
| | - Motoya Fujiseki
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Takaki Yamazaki
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Wern-Joo Sohn
- School of Life Science and Biotechnology, Kyungpook National University
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College
| |
Collapse
|
7
|
Abstract
The role of teeth and jaws, as innovations that underpinned the evolutionary success of living jawed vertebrates, is well understood, but their evolutionary origins are less clear. The origin of teeth, in particular, is mired in controversy with competing hypotheses advocating their origin in external dermal denticles ("outside-in") versus a de novo independent origin ("inside-out"). No evidence has ever been presented demonstrating materially the traditional "outside-in" theory of teeth evolving from dermal denticles, besides circumstantial evidence of a commonality of structure and organogenesis, and phylogenetic evidence that dermal denticles appear earlier in vertebrate phylogeny that do teeth. Meanwhile, evidence has mounted in support of "inside-out" theory, through developmental studies that have indicated that endoderm is required for tooth development, and fossil studies that have shown that tooth-like structures evolved before dermal denticles (conodont dental elements), that tooth replacement evolving before teeth (thelodont pharyngeal denticles), and that teeth evolved many times independently through co-option of such structures. However, the foundations of "inside-out" theory have been undermined fatally by critical reanalysis of the evidence on which it was based. Specifically, it has been shown that teeth develop from dermal, endodermal or mixed epithelia and, therefore, developmental distinctions between teeth and dermal denticles are diminished. Furthermore the odontode-like structure of conodont elements has been shown to have evolved independently of dermal and internal odontodes. The tooth-like replacement encountered in thelodont pharyngeal odontodes has been shown to have evolved independently of teeth and tooth replacement and teeth have been shown to have evolved late within the gnathostome stem lineage indicating that it is probable, if not definitive, that teeth evolved just once in gnathostome evolution. Thus, the "inside-out" hypothesis must be rejected. The phylogenetic distribution of teeth and dermal denticles shows that these odontodes were expressed first in the dermal skeleton, but their topological distribution extended internally in association with oral, nasal and pharyngeal orifices, in a number of distinct evolutionary lineages. This suggests that teeth and oral and pharyngeal denticles emerged phylogenetically through extension of odontogenic competence from the external dermis to internal epithelia. Ultimately, internal and external odontodes appear to be distinct developmental modules in living jawed vertebrates, however, the evidence suggests that this distinction was not established until the evolution of jawed vertebrates, not merely gnathostomes.
Collapse
Affiliation(s)
- Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Martin Rücklin
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.,Naturalis Biodiversity Center, Postbus 9517, 2300, RA, Leiden, The Netherlands
| |
Collapse
|
8
|
Rücklin M, Donoghue PCJ, Cunningham JA, Marone F, Stampanoni M. DEVELOPMENTAL PALEOBIOLOGY OF THE VERTEBRATE SKELETON. JOURNAL OF PALEONTOLOGY 2014; 88:676-683. [PMID: 26306050 PMCID: PMC4545513 DOI: 10.1666/13-107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Studies of the development of organisms can reveal crucial information on homology of structures. Developmental data are not peculiar to living organisms, and they are routinely preserved in the mineralized tissues that comprise the vertebrate skeleton, allowing us to obtain direct insight into the developmental evolution of this most formative of vertebrate innovations. The pattern of developmental processes is recorded in fossils as successive stages inferred from the gross morphology of multiple specimens and, more reliably and routinely, through the ontogenetic stages of development seen in the skeletal histology of individuals. Traditional techniques are destructive and restricted to a 2-D plane with the third dimension inferred. Effective non-invasive methods of visualizing paleohistology to reconstruct developmental stages of the skeleton are necessary. In a brief survey of paleohistological techniques we discuss the pros and cons of these methods. The use of tomographic methods to reconstruct development of organs is exemplified by the study of the placoderm dentition. Testing evidence for the presence of teeth in placoderms, the first jawed vertebrates, we compare the methods that have been used. These include inferring the development from morphology, and using serial sectioning, microCT or synchrotron X-ray tomographic microscopy (SRXTM) to reconstruct growth stages and directions of growth. The ensuing developmental interpretations are biased by the methods and degree of inference. The most direct and reliable method is using SRXTM data to trace sclerochronology. The resulting developmental data can be used to resolve homology and test hypotheses on the origin of evolutionary novelties.
Collapse
Affiliation(s)
- Martin Rücklin
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK ; Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, Netherlands
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| | - John A Cunningham
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
| | - Marco Stampanoni
- Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland ; Institute for Biomedical Engineering, University and ETH Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Oral biosciences: The annual review 2013. J Oral Biosci 2014. [DOI: 10.1016/j.job.2014.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Qu Q, Sanchez S, Blom H, Tafforeau P, Ahlberg PE. Scales and tooth whorls of ancient fishes challenge distinction between external and oral 'teeth'. PLoS One 2013; 8:e71890. [PMID: 23951264 PMCID: PMC3741376 DOI: 10.1371/journal.pone.0071890] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 07/05/2013] [Indexed: 11/19/2022] Open
Abstract
The debate about the origin of the vertebrate dentition has been given fresh fuel by new fossil discoveries and developmental studies of extant animals. Odontodes (teeth or tooth-like structures) can be found in two distinct regions, the ‘internal’ oropharyngeal cavity and the ‘external’ skin. A recent hypothesis argues that regularly patterned odontodes is a specific oropharyngeal feature, whereas odontodes in the external skeleton lack this organization. However, this argument relies on the skeletal system of modern chondrichthyans (sharks and their relatives), which differ from other gnathostome (jawed vertebrate) groups in not having dermal bones associated with the odontodes. Their external skeleton is also composed of monoodontode 'placoid scales', whereas the scales of most early fossil gnathostomes are polyodontode, i.e. constructed from several odontodes on a shared bony base. Propagation phase contrast X-ray Synchrotron microtomography (PPC-SRµCT) is used to study the polyodontode scales of the early bony fish Andreolepis hedei. The odontodes constructing a single scale are reconstructed in 3D, and a linear and regular growth mechanism similar to that in a gnathostome dentition is confirmed, together with a second, gap-filling growth mechanism. Acanthodian tooth whorls are described, which show that ossification of the whorl base preceded and probably patterned the development of the dental lamina, in contrast to the condition in sharks where the dental lamina develops early and patterns the dentition.The new findings reveal, for the first time, how polyodontode scales grow in 3D in an extinct bony fish. They show that dentition-like odontode patterning occurs on scales and that the primary patterning unit of a tooth whorl may be the bony base rather than the odontodes it carries. These results contradict the hypothesis that oropharyngeal and external odontode skeletons are fundamentally separate and suggest that the importance of dermal bone interactions to odontode patterning has been underestimated.
Collapse
Affiliation(s)
- Qingming Qu
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala University, Norbyvägen, Uppsala, Sweden
- * E-mail: (QQ); (PEA)
| | - Sophie Sanchez
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala University, Norbyvägen, Uppsala, Sweden
- European Synchrotron Radiation Facility, Grenoble, France
| | - Henning Blom
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala University, Norbyvägen, Uppsala, Sweden
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Per Erik Ahlberg
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala University, Norbyvägen, Uppsala, Sweden
- * E-mail: (QQ); (PEA)
| |
Collapse
|
11
|
Teeth and ganoid scales in Polypterus and Lepisosteus, the basic actinopterygian fish: An approach to understand the origin of the tooth enamel. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Abstract
Muscles of the vertebrate neck include the cucullaris and hypobranchials. Although a functional neck first evolved in the lobe-finned fishes (Sarcopterygii) with the separation of the pectoral/shoulder girdle from the skull, the neck muscles themselves have a much earlier origin among the vertebrates. For example, lampreys possess hypobranchial muscles, and may also possess the cucullaris. Recent research in chick has established that these two muscles groups have different origins, the hypobranchial muscles having a somitic origin but the cucullaris muscle deriving from anterior lateral plate mesoderm associated with somites 1-3. Additionally, the cucullaris utilizes genetic pathways more similar to the head than the trunk musculature. Although the latter results are from experiments in the chick, cucullaris homologues occur in a variety of more basal vertebrates such as the sharks and zebrafish. Data are urgently needed from these taxa to determine whether the cucullaris in these groups also derives from lateral plate mesoderm or from the anterior somites, and whether the former or the latter represent the basal vertebrate condition. Other lateral plate mesoderm derivatives include the appendicular skeleton (fins, limbs and supporting girdles). If the cucullaris is a definitive lateral plate-derived structure it may have evolved in conjunction with the shoulder/limb skeleton in vertebrates and thereby provided a greater degree of flexibility to the heads of predatory vertebrates.
Collapse
Affiliation(s)
- Rolf Ericsson
- Department of Palaeontology, Natural History Museum, London, UK.
| | | | | |
Collapse
|
13
|
Rücklin M, Donoghue PCJ, Johanson Z, Trinajstic K, Marone F, Stampanoni M. Development of teeth and jaws in the earliest jawed vertebrates. Nature 2012; 491:748-51. [DOI: 10.1038/nature11555] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/10/2012] [Indexed: 11/09/2022]
|
14
|
Coffee LL, Bogdanovic LB, Cushing TL, Bowser PR. Pharyngeal odontoma in an adult walleye (Sander vitreus). Vet Pathol 2012; 50:483-7. [PMID: 22610032 DOI: 10.1177/0300985812446149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An adult walleye (Sander vitreus) was submitted to Cornell University for evaluation of a hard pale-tan pharyngeal mass attached to the gill arches. Dozens of hard white conical structures radiated from the surface. Microscopically, conical structures were identified as denticles and rested on plates of dysplastic orthodentine, cementum, and acellular bone. A diagnosis of compound odontoma was made based upon the presence of proliferative epithelial and mesenchymal odontogenic tissues that recapitulated tooth structures normally present on gill rakers. Odontomas are classified as hamartomas and typically develop in immature diphyodont mammals. The pharyngeal location and lifelong regeneration of teeth in fish, however, both qualify the present diagnosis in the pharyngeal region of an adult teleost. Ontogenic and morphologic differences between mammalian and piscine dentition and differentials for tooth-bearing tumors in fish are presented within the context of a developmental anomaly.
Collapse
Affiliation(s)
- L L Coffee
- Department of Microbiology and Immunology, Aquatic Animal Health Program, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
15
|
Rücklin M, Giles S, Janvier P, Donoghue PCJ. Teeth before jaws? Comparative analysis of the structure and development of the external and internal scales in the extinct jawless vertebrate Loganellia scotica. Evol Dev 2011; 13:523-32. [DOI: 10.1111/j.1525-142x.2011.00508.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Rücklin
- School of Earth Sciences; University of Bristol; Wills Memorial Building; Queen's Road; Bristol; BS8 1RJ; UK
| | - Sam Giles
- School of Earth Sciences; University of Bristol; Wills Memorial Building; Queen's Road; Bristol; BS8 1RJ; UK
| | - Philippe Janvier
- Muséum National d'Histoire Naturelle; CNRS; UMR 7207; Paris; 75231; France
| | - Philip C. J. Donoghue
- School of Earth Sciences; University of Bristol; Wills Memorial Building; Queen's Road; Bristol; BS8 1RJ; UK
| |
Collapse
|
16
|
Debiais-Thibaud M, Oulion S, Bourrat F, Laurenti P, Casane D, Borday-Birraux V. The homology of odontodes in gnathostomes: insights from Dlx gene expression in the dogfish, Scyliorhinus canicula. BMC Evol Biol 2011; 11:307. [PMID: 22008058 PMCID: PMC3217942 DOI: 10.1186/1471-2148-11-307] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/18/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Teeth and tooth-like structures, together named odontodes, are repeated organs thought to share a common evolutionary origin. These structures can be found in gnathostomes at different locations along the body: oral teeth in the jaws, teeth and denticles in the oral-pharyngeal cavity, and dermal denticles on elasmobranch skin. We, and other colleagues, had previously shown that teeth in any location were serially homologous because: i) pharyngeal and oral teeth develop through a common developmental module; and ii) the expression patterns of the Dlx genes during odontogenesis were highly divergent between species but almost identical between oral and pharyngeal dentitions within the same species. Here we examine Dlx gene expression in oral teeth and dermal denticles in order to test the hypothesis of serial homology between these odontodes. RESULTS We present a detailed comparison of the first developing teeth and dermal denticles (caudal primary scales) of the dogfish (Scyliorhinus canicula) and show that both odontodes develop through identical stages that correspond to the common stages of oral and pharyngeal odontogenesis. We identified six Dlx paralogs in the dogfish and found that three showed strong transcription in teeth and dermal denticles (Dlx3, Dlx4 and Dlx5) whereas a weak expression was detected for Dlx1 in dermal denticles and teeth, and for Dlx2 in dermal denticles. Very few differences in Dlx expression patterns could be detected between tooth and dermal denticle development, except for the absence of Dlx2 expression in teeth. CONCLUSIONS Taken together, our histological and expression data strongly suggest that teeth and dermal denticles develop from the same developmental module and under the control of the same set of Dlx genes. Teeth and dermal denticles should therefore be considered as serial homologs developing through the initiation of a common gene regulatory network (GRN) at several body locations. This mechanism of heterotopy supports the 'inside and out' model that has been recently proposed for odontode evolution.
Collapse
Affiliation(s)
- Mélanie Debiais-Thibaud
- Evolution des familles multigéniques, Laboratoire Evolution Génome et Spéciation, UPR CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
17
|
Fraser GJ, Cerny R, Soukup V, Bronner-Fraser M, Streelman JT. The odontode explosion: the origin of tooth-like structures in vertebrates. Bioessays 2010; 32:808-17. [PMID: 20730948 DOI: 10.1002/bies.200900151] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Essentially we show recent data to shed new light on the thorny controversy of how teeth arose in evolution. Essentially we show (a) how teeth can form equally from any epithelium, be it endoderm, ectoderm or a combination of the two and (b) that the gene expression programs of oral versus pharyngeal teeth are remarkably similar. Classic theories suggest that (i) skin denticles evolved first and odontode-inductive surface ectoderm merged inside the oral cavity to form teeth (the 'outside-in' hypothesis) or that (ii) patterned odontodes evolved first from endoderm deep inside the pharyngeal cavity (the 'inside-out' hypothesis). We propose a new perspective that views odontodes as structures sharing a deep molecular homology, united by sets of co-expressed genes defining a competent thickened epithelium and a collaborative neural crest-derived ectomesenchyme. Simply put, odontodes develop 'inside and out', wherever and whenever these co-expressed gene sets signal to one another. Our perspective complements the classic theories and highlights an agenda for specific experimental manipulations in model and non-model organisms.
Collapse
Affiliation(s)
- Gareth J Fraser
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | | | | | | | | |
Collapse
|
18
|
Fraser GJ, Smith MM. Evolution of developmental pattern for vertebrate dentitions: an oro-pharyngeal specific mechanism. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 316B:99-112. [PMID: 21328527 DOI: 10.1002/jez.b.21387] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 08/15/2010] [Accepted: 10/12/2010] [Indexed: 11/07/2022]
Abstract
Classically the oral dentition with teeth regulated into a successional iterative order was thought to have evolved from the superficial skin denticles migrating into the mouth at the stage when jaws evolved. The canonical view is that the initiation of a pattern order for teeth at the mouth margin required development of a sub-epithelial, permanent dental lamina. This provided regulated tooth production in advance of functional need, as exemplified by the Chondrichthyes. It had been assumed that teeth in the Osteichthyes form in this way as in tetrapods. However, this has been shown not to be true for many osteichthyan fish where a dental lamina of this kind does not form, but teeth are regularly patterned and replaced. We question the evolutionary origin of pattern information for the dentition driven by new morphological data on spatial initiation of skin denticles in the catshark. We review recent gene expression data for spatio-temporal order of tooth initiation for Scyliorhinus canicula, selected teleosts in both oral and pharyngeal dentitions, and Neoceratodus forsteri. Although denticles in the chondrichthyan skin appear not to follow a strict pattern order in space and time, tooth replacement in a functional system occurs with precise timing and spatial order. We suggest that the patterning mechanism observed for the oral and pharyngeal dentition is unique to the vertebrate oro-pharynx and independent of the skin system. Therefore, co-option of a successional iterative pattern occurred in evolution not from the skin but from mechanisms existing in the oro-pharynx of now extinct agnathans.
Collapse
Affiliation(s)
- Gareth J Fraser
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.
| | | |
Collapse
|
19
|
Huysseune A, Sire JY, Witten PE. Evolutionary and developmental origins of the vertebrate dentition. J Anat 2010; 214:465-76. [PMID: 19422425 DOI: 10.1111/j.1469-7580.2009.01053.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
According to the classical theory, teeth derive from odontodes that invaded the oral cavity in conjunction with the origin of jaws (the 'outside in' theory). A recent alternative hypothesis suggests that teeth evolved prior to the origin of jaws as endodermal derivatives (the 'inside out' hypothesis). We compare the two theories in the light of current data and propose a third scenario, a revised 'outside in' hypothesis. We suggest that teeth may have arisen before the origin of jaws, as a result of competent, odontode-forming ectoderm invading the oropharyngeal cavity through the mouth as well as through the gill slits, interacting with neural crest-derived mesenchyme. This hypothesis revives the homology between skin denticles (odontodes) and teeth. Our hypothesis is based on (1) the assumption that endoderm alone, together with neural crest, cannot form teeth; (2) the observation that pharyngeal teeth are present only in species known to possess gill slits, and disappear from the pharyngeal region in early tetrapods concomitant with the closure of gill slits, and (3) the observation that the dental lamina (sensu Reif, 1982) is not a prerequisite for teeth to form. We next discuss the progress that has been made to understand the spatially restricted loss of teeth from certain arches, and the many questions that remain regarding the ontogenetic loss of teeth in specific taxa. The recent advances that have been made in our knowledge on the molecular control of tooth formation in non-mammalians (mostly in some teleost model species) will undoubtedly contribute to answering these questions in the coming years.
Collapse
|
20
|
Wang XP, O'Connell DJ, Lund JJ, Saadi I, Kuraguchi M, Turbe-Doan A, Cavallesco R, Kim H, Park PJ, Harada H, Kucherlapati R, Maas RL. Apc inhibition of Wnt signaling regulates supernumerary tooth formation during embryogenesis and throughout adulthood. Development 2009; 136:1939-49. [PMID: 19429790 DOI: 10.1242/dev.033803] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ablation of Apc function or the constitutive activation of beta-catenin in embryonic mouse oral epithelium results in supernumerary tooth formation, but the underlying mechanisms and whether adult tissues retain this potential are unknown. Here we show that supernumerary teeth can form from multiple regions of the jaw and that they are properly mineralized, vascularized, innervated and can start to form roots. Even adult dental tissues can form new teeth in response to either epithelial Apc loss-of-function or beta-catenin activation, and the effect of Apc deficiency is mediated by beta-catenin. The formation of supernumerary teeth via Apc loss-of-function is non-cell-autonomous. A small number of Apc-deficient cells is sufficient to induce surrounding wild-type epithelial and mesenchymal cells to participate in the formation of new teeth. Strikingly, Msx1, which is necessary for endogenous tooth development, is dispensable for supernumerary tooth formation. In addition, we identify Fgf8, a known tooth initiation marker, as a direct target of Wnt/beta-catenin signaling. These studies identify key mechanistic features responsible for supernumerary tooth formation.
Collapse
Affiliation(s)
- Xiu-Ping Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Young GC. New arthrodires (Family Williamsaspididae) from Wee Jasper, New South Wales (Early Devonian), with comments on placoderm morphology and palaeoecology. ACTA ZOOL-STOCKHOLM 2009. [DOI: 10.1111/j.1463-6395.2008.00366.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Fraser GJ, Hulsey CD, Bloomquist RF, Uyesugi K, Manley NR, Streelman JT. An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol 2009; 7:e31. [PMID: 19215146 PMCID: PMC2637924 DOI: 10.1371/journal.pbio.1000031] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 01/05/2009] [Indexed: 11/18/2022] Open
Abstract
Vertebrate dentitions originated in the posterior pharynx of jawless fishes more than half a billion years ago. As gnathostomes (jawed vertebrates) evolved, teeth developed on oral jaws and helped to establish the dominance of this lineage on land and in the sea. The advent of oral jaws was facilitated, in part, by absence of hox gene expression in the first, most anterior, pharyngeal arch. Much later in evolutionary time, teleost fishes evolved a novel toothed jaw in the pharynx, the location of the first vertebrate teeth. To examine the evolutionary modularity of dentitions, we asked whether oral and pharyngeal teeth develop using common or independent gene regulatory pathways. First, we showed that tooth number is correlated on oral and pharyngeal jaws across species of cichlid fishes from Lake Malawi (East Africa), suggestive of common regulatory mechanisms for tooth initiation. Surprisingly, we found that cichlid pharyngeal dentitions develop in a region of dense hox gene expression. Thus, regulation of tooth number is conserved, despite distinct developmental environments of oral and pharyngeal jaws; pharyngeal jaws occupy hox-positive, endodermal sites, and oral jaws develop in hox-negative regions with ectodermal cell contributions. Next, we studied the expression of a dental gene network for tooth initiation, most genes of which are similarly deployed across the two disparate jaw sites. This collection of genes includes members of the ectodysplasin pathway, eda and edar, expressed identically during the patterning of oral and pharyngeal teeth. Taken together, these data suggest that pharyngeal teeth of jawless vertebrates utilized an ancient gene network before the origin of oral jaws, oral teeth, and ectodermal appendages. The first vertebrate dentition likely appeared in a hox-positive, endodermal environment and expressed a genetic program including ectodysplasin pathway genes. This ancient regulatory circuit was co-opted and modified for teeth in oral jaws of the first jawed vertebrate, and subsequently deployed as jaws enveloped teeth on novel pharyngeal jaws. Our data highlight an amazing modularity of jaws and teeth as they coevolved during the history of vertebrates. We exploit this diversity to infer a core dental gene network, common to the first tooth and all of its descendants.
Collapse
Affiliation(s)
- Gareth J Fraser
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail: (GJF); (JTS)
| | - C. Darrin Hulsey
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Ryan F Bloomquist
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kristine Uyesugi
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nancy R Manley
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - J. Todd Streelman
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail: (GJF); (JTS)
| |
Collapse
|
23
|
Hecht J, Stricker S, Wiecha U, Stiege A, Panopoulou G, Podsiadlowski L, Poustka AJ, Dieterich C, Ehrich S, Suvorova J, Mundlos S, Seitz V. Evolution of a core gene network for skeletogenesis in chordates. PLoS Genet 2008; 4:e1000025. [PMID: 18369444 PMCID: PMC2265531 DOI: 10.1371/journal.pgen.1000025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 02/07/2008] [Indexed: 01/27/2023] Open
Abstract
The skeleton is one of the most important features for the reconstruction of vertebrate phylogeny but few data are available to understand its molecular origin. In mammals the Runt genes are central regulators of skeletogenesis. Runx2 was shown to be essential for osteoblast differentiation, tooth development, and bone formation. Both Runx2 and Runx3 are essential for chondrocyte maturation. Furthermore, Runx2 directly regulates Indian hedgehog expression, a master coordinator of skeletal development. To clarify the correlation of Runt gene evolution and the emergence of cartilage and bone in vertebrates, we cloned the Runt genes from hagfish as representative of jawless fish (MgRunxA, MgRunxB) and from dogfish as representative of jawed cartilaginous fish (ScRunx1-3). According to our phylogenetic reconstruction the stem species of chordates harboured a single Runt gene and thereafter Runt locus duplications occurred during early vertebrate evolution. All newly isolated Runt genes were expressed in cartilage according to quantitative PCR. In situ hybridisation confirmed high MgRunxA expression in hard cartilage of hagfish. In dogfish ScRunx2 and ScRunx3 were expressed in embryonal cartilage whereas all three Runt genes were detected in teeth and placoid scales. In cephalochordates (lancelets) Runt, Hedgehog and SoxE were strongly expressed in the gill bars and expression of Runt and Hedgehog was found in endo- as well as ectodermal cells. Furthermore we demonstrate that the lancelet Runt protein binds to Runt binding sites in the lancelet Hedgehog promoter and regulates its activity. Together, these results suggest that Runt and Hedgehog were part of a core gene network for cartilage formation, which was already active in the gill bars of the common ancestor of cephalochordates and vertebrates and diversified after Runt duplications had occurred during vertebrate evolution. The similarities in expression patterns of Runt genes support the view that teeth and placoid scales evolved from a homologous developmental module.
Collapse
Affiliation(s)
- Jochen Hecht
- BCRT, Universitätsmedizin Charité, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sigmar Stricker
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ulrike Wiecha
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Asita Stiege
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Lars Podsiadlowski
- Department of Animal Systematics and Evolution, Free University, Berlin, Germany
| | | | - Christoph Dieterich
- MPI for Developmental Biology Department 4 - Evolutionary Biology, Tübingen, Germany
| | | | - Julia Suvorova
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Mundlos
- BCRT, Universitätsmedizin Charité, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Volkhard Seitz
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail:
| |
Collapse
|
24
|
Abstract
A systematic SEM survey of tooth microstructure in (primarily) fossil taxa spanning chondrichthyan phylogeny demonstrates the presence of a superficial cap of single crystallite enameloid (SCE) on the teeth of several basal elasmobranchs, as well as on the tooth plates of Helodus (a basal holocephalan). This suggests that the epithelial-mesenchymal interactions required for the development of enameloid during odontogenesis are plesiomorphic in chondrichthyans, and most likely in toothed gnathostomes, and provides phylogenetic support for the homology of chondrichthyan and actinopterygian enameloid. Along the neoselachian stem, we see a crownward progression, possibly modulated by heterochrony, from a monolayer of SCE lacking microstructural differentiation to the complex triple-layered tooth enameloid fabric of neoselachians. Finally, the occurrence of fully-differentiated neoselachian enameloid microstructure (including compression-resistant tangle fibered enameloid and bending-resistant parallel fibered enameloid) in Chlamydoselachus anguineus, a basal Squalean with teeth that are functionally "cladodont," is evidence that triple-layered enameloid microstructure was a preadaption to the cutting and gouging function of many neoselachian teeth, and thus may have played an integral role in the Mesozoic radiation of the neoselachian crown group.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK.
| | | |
Collapse
|
25
|
Debiais-Thibaud M, Borday-Birraux V, Germon I, Bourrat F, Metcalfe CJ, Casane D, Laurenti P. Development of oral and pharyngeal teeth in the medaka (Oryzias latipes): comparison of morphology and expression ofeve1 gene. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:693-708. [PMID: 17620302 DOI: 10.1002/jez.b.21183] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gnathostome teeth are one of the most promising models for developmental evolutionary studies, they are the most abundant organ in the fossil record and an excellent example of organogenesis. Teeth have a complex morphology and are restricted to the mouth in mammals, whereas actinopterygian teeth have a simple morphology and are found in several locations, notably on pharyngeal bones. Morphological and developmental similarities support the hypothesis that oral and pharyngeal teeth are serially homologous. Gene expression data from the mouse and some teleosts have shown that the gene families involved in pharyngeal odontogenesis are also involved in oral tooth formation, with the notable exception of the evx gene family. Here, we present a complete description of early odontogenesis in the medaka (Oryzias latipes), which has both oral and pharyngeal dentition. We show that oral and pharyngeal teeth share deep developmental similarities. In the medaka, like in the zebrafish, eve1 is the only evx gene expressed during odontogenesis. In each forming tooth, regardless of its location, eve1 transcription is activated in the placode, then becomes restricted to the inner dental epithelium and is activated in the dental mesenchyme during early differentiation, and finally ceases at late differentiation. Thus eve1 expression is not specific to pharyngeal teeth development as was previously suggested. Because it permits direct comparisons between oral and pharyngeal teeth by molecular, development and functional studies, the medaka is an excellent model to develop further insights into the evolution of odontogenesis in gnathostomes.
Collapse
|
26
|
Fraser GJ, Graham A, Smith MM. Developmental and evolutionary origins of the vertebrate dentition: molecular controls for spatio-temporal organisation of tooth sites in osteichthyans. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 306:183-203. [PMID: 16496402 DOI: 10.1002/jez.b.21097] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The rainbow trout (Oncorhynchus mykiss) as a developmental model surpasses both zebrafish and mouse for a more widespread distribution of teeth in the oro-pharynx as the basis for general vertebrate odontogenesis, one in which replacement is an essential requirement. Studies on the rainbow trout have led to the identification of the initial sequential appearance of teeth, through differential gene expression as a changing spatio-temporal pattern, to set in place the primary teeth of the first generation, and also to regulate the continuous production of replacement tooth families. Here we reveal gene expression data that address both the field and clone theories for patterning a polyphyodont osteichthyan dentition. These data inform how the initial pattern may be established through up-regulation at tooth loci from a broad odontogenic band. It appears that control and regulation of replacement pattern resides in the already primed dental epithelium at the sides of the predecessor tooth. A case is presented for the developmental changes that might have occurred during vertebrate evolution, for the origin of a separate successional dental lamina, by comparison with an osteichthyan tetrapod dentition (Ambystoma mexicanum). The evolutionary origins of such a permanent dental lamina are proposed to have occurred from the transient one demonstrated here in the trout. This has implications for phylogenies based on the homology of teeth as only those developed from a dental lamina. Utilising the data generated from the rainbow trout model, we propose this as a standard for comparative development and evolutionary theories of the vertebrate dentition.
Collapse
Affiliation(s)
- Gareth J Fraser
- MRC Centre for Developmental Neurobiology, King's College London, London, UK.
| | | | | |
Collapse
|
27
|
Zerina J, Smith MM. Origin and evolution of gnathostome dentitions: a question of teeth and pharyngeal denticles in placoderms. Biol Rev Camb Philos Soc 2005; 80:303-45. [PMID: 15921053 DOI: 10.1017/s1464793104006682] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The fossil group Placodermi is the most phylogenetically basal of the clade of jawed vertebrates but lacks a marginal dentition comparable to that of the dentate Chondrichthyes, Acanthodii and Osteichthyes (crown-group Gnathostomata). The teeth of crown-group gnathostomes are part of an ordered dentition replaced from, and patterned by, a dental lamina, exemplified by the elasmobranch model. A dentition recognised by these criteria has been previously judged absent in placoderms, based on structural evidence such as absence of tooth whorls and typical vertebrate dentine. However, evidence for regulated tooth addition in a precise spatiotemporal order can be observed in placoderms, but significantly, only within the group Arthrodira. In these fossils, as in other jawed vertebrates with statodont, non-replacing dentitions, new teeth are added at the ends of rows below the bite, but in line with biting edges of the dentition. The pattern is different on each gnathal bone and probably arises from single odontogenic primordia on each, but tooth rows are arranged in a distinctive placoderm pattern. New teeth are made of regular dentine comparable to that of crown-gnathostomes, formed from a pulp cavity. This differs from semidentine previously described for placoderm gnathalia, a type present in the external dermal tubercles. The Arthrodira is a derived taxon within the Placodermi, hence origin of teeth in placoderms occurs late in the phylogeny and teeth are convergently derived, relative to those of other jawed vertebrates. More basal placoderm taxa adopted other strategies for providing biting surfaces and these vary substantially, but include addition of denticles to the growing gnathal plates, at the margins of pre-existing denticle patches. These alternative strategies and apparent absence of regular dentine have led to previous interpretations that teeth were entirely absent from the placoderm dentition. A consensus view emerged that a dentition, as developed within a dental lamina, is a synapomorphy characterising the clade of crown-group gnathostomes. Recent comparisons between sets of denticle whorls in the pharyngeal region of the jawless fish Loganellia scotica (Thelodonti) and those in sharks suggest homology of these denticle sets on gill arches. Although the placoderm pharyngeal region appears to lack denticles (placoderm gill arches are poorly known), the posterior wall of the pharyngeal cavity, formed by a bony flange termed the postbranchial lamina, is covered in rows of patterned denticle arrays. These arrays differ significantly, both in morphology and arrangement, from those of the denticles located externally on the head and trunkshield plates. Denticles in these arrays are homologous to denticles associated with the gill arches in other crown-gnathostomes, with pattern similarities for order and position of pharyngeal denticles. From their location in the pharynx these are inferred to be under the influence of a cell lineage from endoderm, rather than ectoderm. Tooth sets and tooth whorls in crown-group gnathostomes are suggested to derive from the pharyngeal denticle whorls, at least in sharks, with the patterning mechanisms co-opted to the oral cavity. A comparable co-option is suggested for the Placodermi.
Collapse
Affiliation(s)
- Johanson Zerina
- Palaeontology, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia.
| | | |
Collapse
|