1
|
Calamita AG, Stimolo D, Puccini S, Innocenti M, Campanacci DA. Garrè Sclerosing Osteomyelitis of the Clavicle: Clinical Results after Clavicular Resection. Healthcare (Basel) 2024; 12:202. [PMID: 38255092 PMCID: PMC10815155 DOI: 10.3390/healthcare12020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Chronic non-bacterial osteomyelitis (CNO), also known as sclerosing osteomyelitis of Garrè, is a rare inflammatory bone disease with a specific clinical picture, uncertain pathogenesis, and no consensus on an effective treatment. Most frequently affecting other long bones, CNO may rarely involve the clavicle. The aim of this study was to present the results of a series of patients affected by CNO of the clavicle treated with total and partial clavicula resection. In addition, a literature review of different types of treatment of CNO was performed. (2) Methods: We retrospectively reviewed three patients with Sclerosing Osteomyelitis of Garre' of the clavicle treated with partial resection of the clavicle (one) and with total clavicular resection (two). (3) Results: Patients (two female and one male) were an average age of 35.7 years at the time of the operation. At the 4-year follow-up, the mean active ROM was: 143° forward flexion, 133° abduction, 42° external rotation with an internal rotation of two patients at the interscapular level and one patient at the lumbosacral junction. The mean ASES score was 92/100 (range 87-100). In the literature review, after screening the abstracts and full texts for eligibility, 34 studies met the inclusion criteria. Conclusions: Partial or total clavicular resection resulted an effective treatment of CNO of the clavicle. The procedure seems to be particularly indicated after the failure of more conservative treatments.
Collapse
Affiliation(s)
- Andrea Gabriele Calamita
- Department of Orthopaedic Oncology, Careggi University Hospital, 50134 Firenze, Italy; (D.S.); (M.I.); (D.A.C.)
| | | | | | | | | |
Collapse
|
2
|
Tarquini J, Mosto MC, Ercoli MD. Functional and phylogenetic interpretation of the forelimb myology of two South American carnivorans, the ring-tailed coati (Nasua nasua) and crab-eating raccoon (Procyon cancrivorus). J Morphol 2023; 284:e21587. [PMID: 37183491 DOI: 10.1002/jmor.21587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023]
Abstract
A comparative analysis of the forelimb myology of two neotropical procyonids (Nasua nasua and Procyon cancrivorus) was performed to assess how observed differences in their myological configuration would be related to their diverse ecological behaviors and phylogeny. Although both species are associated with the arboreal substrate, N. nasua is a more agile climber that usually digs; whereas P. cancrivorus spends most of its time on the ground foraging, climbing on the trees as shelter and is a good swimmer. Here, myological descriptions, muscle maps, phylogenetic optimizations, and muscle mass data of the forelimb of these two procyonids are presented. The main functional muscular groups are discussed in a comparative framework with other carnivorans that present a wide ecological diversity. Also, muscular characters were mapped onto a phylogeny to explore their evolution and to obtain ancestral state reconstructions. Results indicate clear myological differences among the two neotropical procyonids associated with their ecological preferences. One of the most remarkable anatomical differences is the arrangement and relative mass of the extrinsic musculature, mainly the musculus rhomboideus and the delto-pectoral complexes. In Nasua nasua, these suggested a greater stability in their shoulder girdle for climbing and digging and probably would provide stronger neck and head movements when they use them for foraging on the ground. Conversely, P. cancrivorus has a different extrinsic muscular configuration, which would allow an increment on the stride length and faster movements of the forelimb associated with more frequent terrestrial gaits. Also, significant differences are observed in the distal musculature, associated with strong movements of forepaws when climbing and digging in N. nasua; whereas, P. cancrivorus configuration suggested precise forearm and digits movements, related to manipulation of food items when they are catching prey or feeding. Most of the codified features of P. cancrivorus would reflect retention of plesiomorphies acquired in the common ancestor of caniforms or arctoids, whereas N. nasua shows derived traits, particularly in the proximal forelimb region. The present work increases the information available on the myology of these particular taxa and extant generalized arctoid models in general. The analyses presented here will be useful both for other comparative myological studies (morpho-functional and phylogenetic) and for muscular reconstruction in extinct procyonids, as well as other carnivorans.
Collapse
Affiliation(s)
- Juliana Tarquini
- Laboratorio de Paleontología de Vertebrados, Centro de Investigación Científica y de Transferencia Tecnológica a la Producción (CICYTTP, CONICET-Prov. ER-UADER), Diamante, Entre Ríos, Argentina
| | - M Clelia Mosto
- División Zoología Vertebrados, CONICET, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Marcos D Ercoli
- Instituto de Ecorregiones Andinas (INECOA, UNJu-CONICET), Jujuy, Argentina
- Laboratorio de Paleontología de Vertebrados, Instituto de Geología y Minería UNJu-CONICET, San Salvador de Jujuy, Argentina
| |
Collapse
|
3
|
Preuschoft H, Krahl A, Werneburg I. From sprawling to parasagittal locomotion in Therapsida: A preliminary study of historically collected museum specimens. VERTEBRATE ZOOLOGY 2022. [DOI: 10.3897/vz.72.e85989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Therapsids covered the entire spectrum of terrestrial locomotion from sprawling to parasagittal. Switching between sprawling and more erect locomotion may have been possible in earlier taxa. First, the axial skeleton shows little regionalization and allows lateral undulation, evolving then increasingly towards regionalization enabling dorsoventral swinging. During terrestrial locomotion, every step invokes a ground reaction force and functional loadings which the musculoskeletal system needs to accomodate. First insights into the functional loading regime of the fore- and hindlimb skeleton and the body stem of therapsids presented herein are based on the assessment and preliminary measurements of the historical collection of therapsids exhibited in the Paleontological Collection of Eberhard Karls Universität Tübingen, Germany. The specimens included are the archosaur Hyperodapedon sanjuanensis, the early synapsid Dimetrodon limbatus for comparison, and the therapsids Keratocephalus moloch, Sauroctonus parringtoni, Tetragonias njalilus, and Belesodon magnificus. The vertebral columns and ribs of the mounts were carefully assessed for original fossil material and, when preserved, ribs, sacral, and anterior caudal vertebrae were measured. The body of a tetrapod is exposed to forces as well as bending and torsional moments. To resist these functional stresses, certain musculoskeletal specializations evolved. These include: 1) compression resistant plate-like pectoral and pelvic girdle bones, 2) a vertebral column combined with tendinous and muscular structures to withstand compressive and tensile forces and moments, and 3) ribs and intercostal muscles to resist the transverse forces and torsional moments. The legs are compressive stress-resistant, carry the body weight, and support the body against gravity. Tail reduction leads to restructuring of the musculoskeletal system of the pelvic girdle.
Collapse
|
4
|
Fukuhara A, Gunji M, Masuda Y. Comparative anatomy of quadruped robots and animals: a review. Adv Robot 2022. [DOI: 10.1080/01691864.2022.2086018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Akira Fukuhara
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | - Megu Gunji
- Department of Life Sciences, Faculty of Life Sciences, Toyo University, Gunma, Japan
| | - Yoichi Masuda
- Department of Mechanical Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Scheidt A, Ditzel PC, Geiger SM, Wagner FC, Mülling CKW, Nyakatura JA. A therian mammal with sprawling kinematics? Gait and 3D forelimb X-ray motion analysis in tamanduas. J Exp Biol 2022; 225:275397. [PMID: 35554550 DOI: 10.1242/jeb.243625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Therian mammals are known to move their forelimbs in a parasagittal plane, retracting the mobilised scapula during stance phase. Non-cursorial therian mammals often abduct the elbow out of the shoulder-hip parasagittal plane. This is especially prominent in Tamandua (Xenarthra), which suggests they employ aspects of sprawling (e.g., lizard-like-) locomotion. Here, we test if tamanduas use sprawling forelimb kinematics, i.e., a largely immobile scapula with pronounced lateral spine bending and long-axis rotation of the humerus. We analyse high speed videos and use X-ray motion analysis of tamanduas walking and balancing on branches of varying inclinations and provide a quantitative characterization of gaits and forelimb kinematics. Tamanduas displayed lateral sequence lateral-couplets gaits on flat ground and horizontal branches, but increased diagonality on steeper in- and declines, resulting in lateral sequence diagonal-couplets gaits. This result provides further evidence for high diagonality in arboreal species, likely maximising stability in arboreal environments. Further, the results reveal a mosaic of sprawling and parasagittal kinematic characteristics. The abducted elbow results from a constantly internally rotated scapula about its long axis and a retracted humerus. Scapula retraction contributes considerably to stride length. However, lateral rotation in the pectoral region of the spine (range: 21°) is higher than reported for other therian mammals. Instead, it is similar to skinks and alligators, indicating an aspect generally associated with sprawling locomotion is characteristic for forelimb kinematics of tamanduas. Our study contributes to a growing body of evidence of highly variable non-cursorial therian mammal locomotor kinematics.
Collapse
Affiliation(s)
- Adrian Scheidt
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Paulo C Ditzel
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Sandra M Geiger
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Franziska C Wagner
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Christoph K W Mülling
- Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - John A Nyakatura
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| |
Collapse
|
6
|
Fukuhara A, Gunji M, Masuda Y, Tadakuma K, Ishiguro A. Flexible Shoulder in Quadruped Animals and Robots Guiding Science of Soft Robotics. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cursorial quadrupeds have different connections to the trunk for forelimbs and hindlimbs: a flexible connection through the muscles to the forelimb, and a secure connection through the hip joint to the hindlimb. Although anatomical and biological studies have described the structure and behavior of cursorial quadrupeds by focusing on flexible shoulders, the functionality of the flexible shoulder remains unclear. In this study, we first survey the anatomical and biological studies. Second, we introduce our robotics studies, which focus on flexible connections for proximal limb joints. Further, we discuss future directions for extracting a design principle based on complex animal body structures, and we suggest the potential for interdisciplinary research between anatomy and soft robotics.
Collapse
|
7
|
Brocklehurst N, Ford DP, Benson RBJ. Early origins of divergent patterns of morphological evolution on the mammal and reptile stem-lineages. Syst Biol 2022; 71:1195-1209. [PMID: 35274702 PMCID: PMC9366456 DOI: 10.1093/sysbio/syac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/09/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022] Open
Abstract
The origin of amniotes 320 million years ago signaled independence from water in vertebrates and was closely followed by divergences within the mammal and reptile stem lineages (Synapsida and Reptilia). Early members of both groups had highly similar morphologies, being superficially “lizard-like” forms with many plesiomorphies. However, the extent to which they might have exhibited divergent patterns of evolutionary change, with the potential to explain the large biological differences between their living members, is unresolved. We use a new, comprehensive phylogenetic dataset to quantify variation in rates and constraints of morphological evolution among Carboniferous–early Permian amniotes. We find evidence for an early burst of evolutionary rates, resulting in the early origins of morphologically distinctive subgroups that mostly persisted through the Cisuralian. Rates declined substantially through time, especially in reptiles. Early reptile evolution was also more constrained compared with early synapsids, exploring a more limited character state space. Postcranial innovation in particular was important in early synapsids, potentially related to their early origins of large body size. In contrast, early reptiles predominantly varied the temporal region, suggesting disparity in skull and jaw kinematics, and foreshadowing the variability of cranial biomechanics seen in reptiles today. Our results demonstrate that synapsids and reptiles underwent an early divergence of macroevolutionary patterns. This laid the foundation for subsequent evolutionary events and may be critical in understanding the substantial differences between mammals and reptiles today. Potential explanations include an early divergence of developmental processes or of ecological factors, warranting cross-disciplinary investigation. [Amniote; body size; constraint; phylogeny; rate.]
Collapse
Affiliation(s)
- Neil Brocklehurst
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, UK
| | - David P Ford
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, UK
| | - Roger B J Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
8
|
Botton-Divet L, Nyakatura JA. Vertical clinging and leaping induced evolutionary rate shifts in postcranial evolution of tamarins and marmosets (Primates, Callitrichidae). BMC Ecol Evol 2021; 21:132. [PMID: 34171986 PMCID: PMC8235625 DOI: 10.1186/s12862-021-01848-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Callitrichids comprise a diverse group of platyrrhine monkeys that are present across South and Central America. Their secondarily evolved small size and pointed claws allow them to cling to vertical trunks of a large diameter. Within callitrichids, lineages with a high affinity for vertical supports often engage in trunk-to-trunk leaping. This vertical clinging and leaping (VCL) differs from horizontal leaping (HL) in terms of the functional demands imposed on the musculoskeletal system, all the more so as HL often occurs on small compliant terminal branches. We used quantified shape descriptors (3D geometric morphometrics) and phylogenetically-informed analyses to investigate the evolution of the shape and size of the humerus and femur, and how this variation reflects locomotor behavior within Callitrichidae. RESULTS The humerus of VCL-associated species has a narrower trochlea compared with HL species. It is hypothesized that this contributes to greater elbow mobility. The wider trochlea in HL species appears to correspondingly provide greater stability to the elbow joint. The femur in VCL species has a smaller head and laterally-oriented distal condyles, possibly to reduce stresses during clinging. Similarly, the expanded lesser trochanters visible in VCL species provide a greater lever for the leg retractors and are thus also interpreted as an adaptation to clinging. Evolutionary rate shifts to faster shape and size changes of humerus and femur occurred in the Leontocebus clade when a shift to slower rates occurred in the Saguinus clade. CONCLUSIONS Based on the study of evolutionary rate shifts, the transition to VCL behavior within callitrichids (specifically the Leontocebus clade) appears to have been an opportunity for radiation, rather than a specialization that imposed constraints on morphological diversity. The study of the evolution of callitrichids suffers from a lack of comparative analyses of limb mechanics during trunk-to-trunk leaping, and future work in this direction would be of great interest.
Collapse
Affiliation(s)
- Léo Botton-Divet
- AG Vergleichende Zoologie, Institut Für Biologie, Humboldt-Universität Zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| | - John A Nyakatura
- AG Vergleichende Zoologie, Institut Für Biologie, Humboldt-Universität Zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| |
Collapse
|
9
|
Richards HL, Bishop PJ, Hocking DP, Adams JW, Evans AR. Low elbow mobility indicates unique forelimb posture and function in a giant extinct marsupial. J Anat 2021; 238:1425-1441. [PMID: 33533053 PMCID: PMC8128769 DOI: 10.1111/joa.13389] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Joint mobility is a key factor in determining the functional capacity of tetrapod limbs, and is important in palaeobiological reconstructions of extinct animals. Recent advances have been made in quantifying osteological joint mobility using virtual computational methods; however, these approaches generally focus on the proximal limb joints and have seldom been applied to fossil mammals. Palorchestes azael is an enigmatic, extinct ~1000 kg marsupial with no close living relatives, whose functional ecology within Australian Pleistocene environments is poorly understood. Most intriguing is its flattened elbow morphology, which has long been assumed to indicate very low mobility at this important joint. Here, we tested elbow mobility via virtual range of motion (ROM) mapping and helical axis analysis, to quantitatively explore the limits of Palorchestes' elbow movement and compare this with their living and extinct relatives, as well as extant mammals that may represent functional analogues. We find that Palorchestes had the lowest elbow mobility among mammals sampled, even when afforded joint translations in addition to rotational degrees of freedom. This indicates that Palorchestes was limited to crouched forelimb postures, something highly unusual for mammals of this size. Coupled flexion and abduction created a skewed primary axis of movement at the elbow, suggesting an abducted forelimb posture and humeral rotation gait that is not found among marsupials and unlike that seen in any large mammals alive today. This work introduces new quantitative methods and demonstrates the utility of comparative ROM mapping approaches, highlighting that Palorchestes' forelimb function was unlike its contemporaneous relatives and appears to lack clear functional analogues among living mammals.
Collapse
Affiliation(s)
- Hazel L. Richards
- School of Biological SciencesMonash UniversityClaytonVicAustralia
- GeosciencesMuseums VictoriaMelbourneVicAustralia
| | - Peter J. Bishop
- Structure and Motion LaboratoryDepartment of Comparative Biomedical SciencesRoyal Veterinary CollegeHatfieldUK
- Geosciences ProgramQueensland MuseumBrisbaneQldAustralia
| | - David P. Hocking
- School of Biological SciencesMonash UniversityClaytonVicAustralia
- GeosciencesMuseums VictoriaMelbourneVicAustralia
| | - Justin W. Adams
- Department of Anatomy & Developmental BiologySchool of Biomedical SciencesFaculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVicAustralia
| | - Alistair R. Evans
- School of Biological SciencesMonash UniversityClaytonVicAustralia
- GeosciencesMuseums VictoriaMelbourneVicAustralia
| |
Collapse
|
10
|
Smith HF, Townsend KEB, Adrian B, Levy S, Marsh S, Hassur R, Manfredi K, Echols MS. Functional Adaptations in the Forelimb of the Snow Leopard (Panthera uncia). Integr Comp Biol 2021; 61:1852-1866. [PMID: 34080623 DOI: 10.1093/icb/icab018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The snow leopard (Panthera uncia) is anatomically and physiologically adapted for life in the rocky terrain of alpine zones in Central and South Asia. Panthera uncia is scansorial, and typically hunts solitarily by using overhead ambush of prey, rather than the typical stalking pattern of other large pantherines. In this study, we conducted dissections, detailed documentation, and illustrated the forelimb anatomy of two adult P. uncia specimens (1M/1F). Qualitative and quantitative data revealed an intriguing combination of functional adaptations illustrating a balance between the diverse demands of head-first descent, pouncing, climbing across rocky terrain, restraint of large prey, rapid pursuit, and navigating deep snow. In many forelimb proportions, P. uncia is intermediate between the cursorial Acinonyx jubatus (cheetah) and the scansorial forest dwelling Panthera onca (jaguar). Enlarged scapular and pectoral musculature provide stability to the shoulder girdle during grappling with large prey, as well as support during jumping and climbing. A small, unarticulated bony clavicle may provide greater stability to the forelimb, while still allowing flexibility. In the brachium and antebrachium of P. uncia, there is a functional compromise between the powerful grip needed for grasping large prey and the stability necessary for rapid pursuit of prey over uneven, rocky terrain. A unique bifurcation in the tendon of m. biceps brachii may provide additional functional stability at the radiohumeral joint. Intrinsic muscles of the palmar manus are broad and fleshy, acting as an enlarged surface area to evenly distribute body weight while walking on soft snow. However, muscles that act to provide fine manual manipulation are reduced, as in other large prey specialists. Overall, P. uncia displays morphological adaptive parallels with scansorial, large prey specializing pantherines, such as P. onca, while also showing adaptations for running.
Collapse
Affiliation(s)
- Heather F Smith
- Department of Anatomy, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA
| | - K E Beth Townsend
- Department of Anatomy, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA
| | - Brent Adrian
- Department of Anatomy, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA
| | - Samuel Levy
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA
| | - Shelby Marsh
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA
| | - Rebecca Hassur
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA
| | - Kevin Manfredi
- Department of Anatomy, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA
| | - M Scott Echols
- S carlet Imaging, 6687 S 1530 E, Salt Lake City, UT 84121, USA
| |
Collapse
|
11
|
Brachiocephalic Muscular Arrangements in Cavioid Rodents (Caviomorpha): a Functional, Anatomical, and Evolutionary Study. J MAMM EVOL 2020. [DOI: 10.1007/s10914-020-09529-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Souza Junior P, Viotto‐Souza W, Mendes VP, Bernardes FCS, Anjos BL, Abidu‐Figueiredo M, Santos ALQ. Clavicle in Carnivorans: A Forgotten Bone. Anat Rec (Hoboken) 2019; 303:1831-1841. [DOI: 10.1002/ar.24294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Paulo Souza Junior
- Laboratory of Animal AnatomyFederal University of Pampa (UNIPAMPA) Uruguaiana RS Brazil
| | - Wilson Viotto‐Souza
- Laboratory of Wild Animals Teaching and ResearchFederal University of Uberlândia (UFU) Uberlândia MG Brazil
- Laboratory of Animal AnatomyPresidente Antonio Carlos University (UNIPAC) Uberlândia RS Brazil
| | - Vanessa Pereira Mendes
- Laboratory of Veterinary PathologyFederal University of Pampa (UNIPAMPA) Uruguaiana RS Brazil
| | | | - Bruno Leite Anjos
- Laboratory of Veterinary PathologyFederal University of Pampa (UNIPAMPA) Uruguaiana RS Brazil
| | - Marcelo Abidu‐Figueiredo
- Department of Animal Biology, Animal Anatomy AreaFederal Rural University of Rio de Janeiro (UFRRJ) Seropédica RJ Brazil
| | | |
Collapse
|
13
|
Camp AL. What Fish Can Teach Us about the Feeding Functions of Postcranial Muscles and Joints. Integr Comp Biol 2019; 59:383-393. [DOI: 10.1093/icb/icz005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Studies of vertebrate feeding have predominantly focused on the bones and muscles of the head, not the body. Yet, postcranial musculoskeletal structures like the spine and pectoral girdle are anatomically linked to the head, and may also have mechanical connections through which they can contribute to feeding. The feeding roles of postcranial structures have been best studied in ray-finned fishes, where the body muscles, vertebral column, and pectoral girdle attach directly to the head and help expand the mouth during suction feeding. Therefore, I use the anatomy and motion of the head–body interface in these fishes to develop a mechanical framework for studying postcranial functions during feeding. In fish the head and body are linked by the vertebral column, the pectoral girdle, and the body muscles that actuate these skeletal systems. The morphology of the joints and muscles of the cranio-vertebral and hyo-pectoral interfaces may determine the mobility of the head relative to the body, and ultimately the role of these interfaces during feeding. The postcranial interfaces can function as anchors during feeding: the body muscles and joints minimize motion between the head and body to stabilize the head or transmit forces from the body. Alternatively, the postcranial interfaces can be motors: body muscles actuate motion between the head and body to generate power for feeding motions. The motor function is likely important for many suction-feeding fishes, while the anchor function may be key for bite- or ram-feeding fishes. This framework can be used to examine the role of the postcranial interface in other vertebrate groups, and how that role changes (or not) with morphology and feeding behaviors. Such studies can expand our understanding of muscle function, as well as the evolution of vertebrate feeding behaviors across major transitions such as the invasion of land and the emergence of jaws.
Collapse
Affiliation(s)
- Ariel L Camp
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
14
|
Wells RT, Camens AB. New skeletal material sheds light on the palaeobiology of the Pleistocene marsupial carnivore, Thylacoleo carnifex. PLoS One 2018; 13:e0208020. [PMID: 30540785 PMCID: PMC6291118 DOI: 10.1371/journal.pone.0208020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
The extinct marsupial ‘lion’ Thylacoleo carnifex was Australia’s largest mammalian carnivore. Despite being the topic of more discussion than any other extinct Australian marsupial (excepting perhaps the Thylacine), basic aspects of its palaeobiology, including its locomotory repertoire, remain poorly understood. Recent discoveries allowed the first reconstruction of an entire skeleton including the first complete tail and hitherto-unrecognised clavicles. Here we describe these elements and re-assess the biomechanics of the postcranial skeleton via comparisons with a range of extant terrestrial, scansorial and arboreal Australian marsupials. Our analysis suggests that T. carnifex possessed: a relatively stiff tail comprising half of the vertebral column length; proximal caudal centra exhibiting a relatively high resistance to sagittal and lateral bending (RSB and RTB); relatively enlarged areas of origin for caudal flexors and extensors; a rigid lumbar spine; and a shoulder girdle braced by strong clavicles. The lever arms of major muscle/tendon systems controlling the axial and appendicular skeleton were identified and RSB and RTB calculated. The combination of these features compared most closely overall with those of the much smaller Tasmanian Devil (Sarcophilus harrisii), a hunter/scavenger capable of climbing. Similar locomotor behaviour is proposed for Thylacoleo carnifex. Orientation of articular facets and RSB stresses also indicate that T. carnifex may have held its tail in a dorsally-flexed position.
Collapse
Affiliation(s)
- Roderick T. Wells
- Ecology and Evolution, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Palaeontology, South Australian Museum, Adelaide, South Australia, Australia
- * E-mail:
| | - Aaron B. Camens
- Ecology and Evolution, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Regnault S, Pierce SE. Pectoral girdle and forelimb musculoskeletal function in the echidna ( Tachyglossus aculeatus): insights into mammalian locomotor evolution. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181400. [PMID: 30564424 PMCID: PMC6281926 DOI: 10.1098/rsos.181400] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/19/2018] [Indexed: 05/30/2023]
Abstract
Although evolutionary transformation of the pectoral girdle and forelimb appears to have had a profound impact on mammalian locomotor and ecological diversity, both the sequence of anatomical changes and the functional implications remain unclear. Monotremes can provide insight into an important stage of this evolutionary transformation, due to their phylogenetic position as the sister-group to therian mammals and their mosaic of plesiomorphic and derived features. Here we build a musculoskeletal computer model of the echidna pectoral girdle and forelimb to estimate joint ranges of motion (ROM) and muscle moment arms (MMA)-two fundamental descriptors of biomechanical function. We find that the echidna's skeletal morphology restricts scapulocoracoid mobility and glenohumeral flexion-extension compared with therians. Estimated shoulder ROMs and MMAs for muscles crossing the shoulder indicate that morphology of the echidna pectoral girdle and forelimb is optimized for humeral adduction and internal rotation, consistent with limited in vivo data. Further, more muscles act to produce humeral long-axis rotation in the echidna compared to therians, as a consequence of differences in muscle geometry. Our musculoskeletal model allows correlation of anatomy and function, and can guide hypotheses regarding function in extinct taxa and the morphological and locomotor transformation leading to therian mammals.
Collapse
Affiliation(s)
- Sophie Regnault
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, USA
| | | |
Collapse
|
16
|
Balbinot G, Schuch CP, Jeffers MS, McDonald MW, Livingston-Thomas JM, Corbett D. Post-stroke kinematic analysis in rats reveals similar reaching abnormalities as humans. Sci Rep 2018; 8:8738. [PMID: 29880827 PMCID: PMC5992226 DOI: 10.1038/s41598-018-27101-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
A coordinated pattern of multi-muscle activation is essential to produce efficient reaching trajectories. Disruption of these coordinated activation patterns, termed synergies, is evident following stroke and results in reaching deficits; however, preclinical investigation of this phenomenon has been largely ignored. Furthermore, traditional outcome measures of post-stroke performance seldom distinguish between impairment restitution and compensatory movement strategies. We sought to address this by using kinematic analysis to characterize reaching movements and kinematic synergies of rats performing the Montoya staircase task, before and after ischemic stroke. Synergy was defined as the simultaneous movement of the wrist and other proximal forelimb joints (i.e. shoulder, elbow) during reaching. Following stroke, rats exhibited less individuation between joints, moving the affected limb more as a unit. Moreover, abnormal flexor synergy characterized by concurrent elbow flexion, shoulder adduction, and external rotation was evident. These abnormalities ultimately led to inefficient and unstable reaching trajectories, and decreased reaching performance (pellets retrieved). The observed reaching abnormalities in this preclinical stroke model are similar to those classically observed in humans. This highlights the potential of kinematic analysis to better align preclinical and clinical outcome measures, which is essential for developing future rehabilitation strategies following stroke.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Clarissa Pedrini Schuch
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew S Jeffers
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
| | - Matthew W McDonald
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
| | - Jessica M Livingston-Thomas
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
17
|
Fujiwara S. Fitting unanchored puzzle pieces in the skeleton: appropriate 3D scapular positions for the quadrupedal support in tetrapods. J Anat 2018; 232:857-869. [PMID: 29322521 PMCID: PMC5879960 DOI: 10.1111/joa.12778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 11/27/2022] Open
Abstract
Deducing the scapular positions of extinct tetrapod skeletons remains difficult, because the scapulae and rib cage are connected with each other not directly by skeletal joint, but by thoracic muscles. In extant non-testudine quadrupedal tetrapods, the top positions of the scapulae/suprascapulae occur at the anterior portion of the rib cage, above the vertebral column and near the median plane. The adequacy of this position was tested using three-dimensional mechanical models of Felis, Rattus and Chamaeleo that assumed stances on a forelimb on a single side and the hindlimbs. The net moment about the acetabulum generated by the gravity force and the contractive forces of the anti-gravity thoracic muscles, and the resistance of the rib to vertical compression between the downward gravity and upward lifting force from the anti-gravity thoracic muscle depend on the scapular position. The scapular position common among quadrupeds corresponds to the place at which the roll and yaw moments of the uplifted portion of the body are negligible, where the pitch moment is large enough to lift the body, and above the ribs having high strength against vertical compression. These relationships between scapular position and rib cage morphology should allow reliable reconstruction of limb postures of extinct taxa.
Collapse
|
18
|
Ward CV, Maddux SD, Middleton ER. Three‐dimensional anatomy of the anthropoid bony pelvis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:3-25. [DOI: 10.1002/ajpa.23425] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/11/2017] [Accepted: 01/12/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Carol V. Ward
- Department of Pathology and Anatomical Sciences, M263 Medical Sciences BuildingUniversity of MissouriColumbia Missouri 65212
| | - Scott D. Maddux
- Center for Anatomical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie BoulevardFt. Worth Texas 76107
| | - Emily R. Middleton
- Department of Pathology and Anatomical Sciences, M263 Medical Sciences BuildingUniversity of MissouriColumbia Missouri 65212
| |
Collapse
|
19
|
Arnold P, Esteve-Altava B, Fischer MS. Musculoskeletal networks reveal topological disparity in mammalian neck evolution. BMC Evol Biol 2017; 17:251. [PMID: 29237396 PMCID: PMC5729486 DOI: 10.1186/s12862-017-1101-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The increase in locomotor and metabolic performance during mammalian evolution was accompanied by the limitation of the number of cervical vertebrae to only seven. In turn, nuchal muscles underwent a reorganization while forelimb muscles expanded into the neck region. As variation in the cervical spine is low, the variation in the arrangement of the neck muscles and their attachment sites (i.e., the variability of the neck's musculoskeletal organization) is thus proposed to be an important source of neck disparity across mammals. Anatomical network analysis provides a novel framework to study the organization of the anatomical arrangement, or connectivity pattern, of the bones and muscles that constitute the mammalian neck in an evolutionary context. RESULTS Neck organization in mammals is characterized by a combination of conserved and highly variable network properties. We uncovered a conserved regionalization of the musculoskeletal organization of the neck into upper, mid and lower cervical modules. In contrast, there is a varying degree of complexity or specialization and of the integration of the pectoral elements. The musculoskeletal organization of the monotreme neck is distinctively different from that of therian mammals. CONCLUSIONS Our findings reveal that the limited number of vertebrae in the mammalian neck does not result in a low musculoskeletal disparity when examined in an evolutionary context. However, this disparity evolved late in mammalian history in parallel with the radiation of certain lineages (e.g., cetartiodactyls, xenarthrans). Disparity is further facilitated by the enhanced incorporation of forelimb muscles into the neck and their variability in attachment sites.
Collapse
Affiliation(s)
- Patrick Arnold
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Borja Esteve-Altava
- Structure & Motion Lab, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| | - Martin S. Fischer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
20
|
Middleton ER, Winkler ZJ, Hammond AS, Plavcan JM, Ward CV. Determinants of Iliac Blade Orientation in Anthropoid Primates. Anat Rec (Hoboken) 2017; 300:810-827. [PMID: 28406557 DOI: 10.1002/ar.23557] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/15/2016] [Accepted: 10/09/2016] [Indexed: 01/22/2023]
Abstract
Orientation of the iliac blades is a key feature that appears to distinguish extant apes from monkeys. Iliac morphology is hypothesized to reflect variation in thoracic shape that, in turn, reflects adaptations for shoulder and forearm function in anthropoids. Iliac orientation is traditionally measured relative to the acetabulum, whereas functional explanations pertain to its orientation relative to the cardinal anatomical planes. We investigated iliac orientation relative to a median plane using digital models of hipbones registered to landmark data from articulated pelves. We fit planes to the iliac surfaces, midline, and acetabulum, and investigated linear metrics that characterize geometric relationships of the iliac margins. Our results demonstrate that extant hominoid ilia are not rotated into a coronal plane from a more sagittal position in basal apes and monkeys but that the apparent rotation is the result of geometric changes within the ilia. The whole ilium and its gluteal surface are more coronally oriented in apes, but apes and monkeys do not differ in orientation of the iliac fossa. The angular differences in the whole blade and gluteal surface primarily reflect a narrower iliac tuberosity set closer to the midline in extant apes, reflecting a decrease in erector spinae muscle mass associated with stiffening of the lumbar spine. Mediolateral breadth across the ventral dorsal iliac spines is only slightly greater in extant apes than in monkeys. These results demonstrate that spinal musculature and mobility have a more significant effect on pelvic morphology than does shoulder orientation, as had been previously hypothesized. Anat Rec, 300:810-827, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emily R Middleton
- Department of Pathology and Anatomical Sciences, M263 Medical Sciences Building, University of Missouri, Columbia, Missouri, 65212
| | - Zachariah J Winkler
- Department of Pathology and Anatomical Sciences, M263 Medical Sciences Building, University of Missouri, Columbia, Missouri, 65212
| | - Ashley S Hammond
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, Washington DC, 20052
| | - J Michael Plavcan
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, 72701
| | - Carol V Ward
- Department of Pathology and Anatomical Sciences, M263 Medical Sciences Building, University of Missouri, Columbia, Missouri, 65212
| |
Collapse
|
21
|
Emerson SB. MORPHOLOGICAL VARIATION IN FROG PECTORAL GIRDLES: TESTING ALTERNATIVES TO A TRADITIONAL ADAPTIVE EXPLANATION. Evolution 2017; 38:376-388. [PMID: 28555922 DOI: 10.1111/j.1558-5646.1984.tb00296.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1982] [Revised: 07/18/1983] [Indexed: 11/27/2022]
Affiliation(s)
- Sharon B Emerson
- Division of Amphibians and Reptiles, Field Museum of Natural History, Chicago, Illinois, 60605
| |
Collapse
|
22
|
Bleuze MM, Wheeler SM, Williams LJ, Dupras TL. Growth of the pectoral girdle in a sample of juveniles from the kellis 2 cemetery, Dakhleh Oasis, Egypt. Am J Hum Biol 2016; 28:636-45. [PMID: 26914741 DOI: 10.1002/ajhb.22844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/25/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES This study investigates growth patterns in the scapula and clavicle in a cross-sectional juvenile skeletal sample ranging from 20 weeks gestation to 8.5 years of age from the Kellis 2 cemetery, Dakhleh Oasis, Egypt. The primary goal is to quantify growth patterns and growth velocities in the scapula and clavicle to better understand the development of the pectoral girdle. METHODS A series of low-order polynomial regression models was used to examine growth curves in clavicle diaphyseal length, scapular height, and scapular width. Incremental growth and relative percent increase were examined among successive age groups as a proxy measure of growth velocity. Scapular body proportions were assessed with the scapular index and compared across age groups using a Kruskal-Wallis test with post-hoc tests. RESULTS A third-order polynomial best describes growth in clavicle diaphyseal length and scapular height, and a second-order polynomial best describes growth in scapular width. Growth velocity patterns are similar among clavicle diaphyseal length, scapular height, and scapular width particularly from birth until the end of early childhood. Clavicle diaphyseal length decelerates during middle childhood while scapular height and width accelerate during this time. With increasing age, the scapular body proportionately increases more in height than in width. The relatively narrow scapular body characteristic of adult scapulae is first evident during early childhood. CONCLUSIONS Changes in scapular body shape during ontogeny may be a reflection of the greater alterations taking place in the integrated morphology of the pectoral girdle during the biomechanical shift from crawling to bipedalism. Am. J. Hum. Biol. 28:636-645, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michele M Bleuze
- Department of Anthropology, The University at Albany, State University of New York, Albany, NY, 12222.
| | - Sandra M Wheeler
- Department of Anthropology, University of Central Florida, Orlando, FL, 32816
| | - Lana J Williams
- Department of Anthropology, University of Central Florida, Orlando, FL, 32816
| | - Tosha L Dupras
- Department of Anthropology, University of Central Florida, Orlando, FL, 32816
| |
Collapse
|
23
|
Forelimb Kinematics of Rats Using XROMM, with Implications for Small Eutherians and Their Fossil Relatives. PLoS One 2016; 11:e0149377. [PMID: 26933950 PMCID: PMC4775064 DOI: 10.1371/journal.pone.0149377] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 01/31/2016] [Indexed: 11/18/2022] Open
Abstract
The earliest eutherian mammals were small-bodied locomotor generalists with a forelimb morphology that strongly resembles that of extant rats. Understanding the kinematics of the humerus, radius, and ulna of extant rats can inform and constrain hypotheses concerning typical posture and mobility in early eutherian forelimbs. The locomotion of Rattus norvegicus has been extensively studied, but the three-dimensional kinematics of the bones themselves remains under-explored. Here, for the first time, we use markerless XROMM (Scientific Rotoscoping) to explore the three-dimensional long bone movements in Rattus norvegicus during a normal, symmetrical gait (walking). Our data show a basic kinematic profile that agrees with previous studies on rats and other small therians: rats maintain a crouched forelimb posture throughout the step cycle, and the ulna is confined to flexion/extension in a parasagittal plane. However, our three-dimensional data illuminate long-axis rotation (LAR) movements for both the humerus and the radius for the first time. Medial LAR of the humerus throughout stance maintains an adducted elbow with a caudally-facing olecranon process, which in turn maintains a cranially-directed manus orientation (pronation). The radius also shows significant LAR correlated with manus pronation and supination. Moreover, we report that elbow flexion and manus orientation are correlated in R. norvegicus: as the elbow angle becomes more acute, manus supination increases. Our data also suggest that manus pronation and orientation in R. norvegicus rely on a divided system of labor between the ulna and radius. Given that the radius follows the flexion and extension trajectory of the ulna, it must rotate at the elbow (on the capitulum) so that during the stance phase its distal end lies medial to ulna, ensuring that the manus remains pronated while the forelimb is supporting the body. We suggest that forelimb posture and kinematics in Juramaia, Eomaia, and other basal eutherians were grossly similar to those of rats, and that humerus and radius LAR may have always played a significant role in forelimb and manus posture in small eutherian mammals.
Collapse
|
24
|
Squyres N, DeLeon VB. Clavicular curvature and locomotion in anthropoid primates: A 3D geometric morphometric analysis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 158:257-268. [DOI: 10.1002/ajpa.22785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 04/23/2015] [Accepted: 05/21/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Nicole Squyres
- Center for Functional Anatomy and Evolution; Johns Hopkins University; 1830 East Monument St., Room 302 Baltimore MD 21205
| | - Valerie Burke DeLeon
- Department of Anthropology; University of Florida; PO Box 117305 Gainesville FL 32611
| |
Collapse
|
25
|
Martín-Serra A, Figueirido B, Pérez-Claros JA, Palmqvist P. Patterns of morphological integration in the appendicular skeleton of mammalian carnivores. Evolution 2015; 69:321-40. [DOI: 10.1111/evo.12566] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 10/26/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias; Universidad de Málaga; Campus de Teatinos s/n, 20971-Málaga Spain
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias; Universidad de Málaga; Campus de Teatinos s/n, 20971-Málaga Spain
| | - Juan Antonio Pérez-Claros
- Departamento de Ecología y Geología, Facultad de Ciencias; Universidad de Málaga; Campus de Teatinos s/n, 20971-Málaga Spain
| | - Paul Palmqvist
- Departamento de Ecología y Geología, Facultad de Ciencias; Universidad de Málaga; Campus de Teatinos s/n, 20971-Málaga Spain
| |
Collapse
|
26
|
Osteology and Functional Morphology of the Forelimb of the Marine Sloth Thalassocnus (Mammalia, Tardigrada). J MAMM EVOL 2014. [DOI: 10.1007/s10914-014-9268-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Reuther KE, Thomas SJ, Tucker JJ, Sarver JJ, Gray CF, Rooney SI, Glaser DL, Soslowsky LJ. Disruption of the anterior-posterior rotator cuff force balance alters joint function and leads to joint damage in a rat model. J Orthop Res 2014; 32:638-44. [PMID: 24464961 PMCID: PMC4006275 DOI: 10.1002/jor.22586] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/06/2014] [Indexed: 02/04/2023]
Abstract
The rotator cuff assists in shoulder movement and provides dynamic stability to the glenohumeral joint. Specifically, the anterior-posterior (AP) force balance, provided by the subscapularis anteriorly and the infraspinatus and teres minor posteriorly, is critical for joint stability and concentric rotation of the humeral head on the glenoid. However, limited understanding exists of the consequences associated with disruption of the AP force balance (due to tears of both the supraspinatus and infraspinatus tendons) on joint function and joint damage. We investigated the effect of disrupting the APforce balance on joint function and joint damage in an overuse rat model. Twenty-eight rats underwent 4 weeks of overuse to produce a tendinopathic condition and were then randomized into two surgical groups: Detachment of the supraspinatus only or detachment of the supraspinatus and infraspinatus tendons. Rats were then gradually returned to their overuse protocol. Quantitative ambulatory measures including medial/lateral, propulsion, braking, and vertical forces were significantly different between groups. Additionally, cartilage and adjacent tendon properties were significantly altered. These results identify joint imbalance as a mechanical mechanism for joint damage and demonstrate the importance of preserving rotator cuff balance when treating active cuff tear patients.
Collapse
Affiliation(s)
- Katherine E. Reuther
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery; University of Pennsylvania; Philadelphia Pennsylvania
| | - Stephen J. Thomas
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery; University of Pennsylvania; Philadelphia Pennsylvania
| | - Jennica J. Tucker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery; University of Pennsylvania; Philadelphia Pennsylvania
| | - Joseph J. Sarver
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery; University of Pennsylvania; Philadelphia Pennsylvania
| | - Chancellor F. Gray
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery; University of Pennsylvania; Philadelphia Pennsylvania
| | - Sarah I. Rooney
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery; University of Pennsylvania; Philadelphia Pennsylvania
| | - David L. Glaser
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery; University of Pennsylvania; Philadelphia Pennsylvania
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery; University of Pennsylvania; Philadelphia Pennsylvania
| |
Collapse
|
28
|
Rubright J, Kelleher P, Beardsley C, Paller D, Shackford S, Beynnon B, Shafritz A. Long-term clinical outcomes, motion, strength, and function after total claviculectomy. J Shoulder Elbow Surg 2014; 23:236-44. [PMID: 23942010 DOI: 10.1016/j.jse.2013.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/15/2013] [Accepted: 05/18/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND Total excision of the clavicle is rarely performed. No previous study has documented long-term outcomes with objective measurements of strength, motion, and patient-centered outcomes. We present the long-term consequences of total claviculectomy on shoulder girdle function, global upper extremity function, and overall general health. METHODS Five total claviculectomy patients were evaluated at 2 time points (2005 and 2010, mean 4.8 and 9.4 years postoperatively) by use of the DASH, SF-36, Simple Shoulder Test, ASES, UCLA, HSS, and Constant shoulder scores. Isokinetic strength, clinical range of motion, and kinematic analysis were performed on each limb pair. RESULTS All clinical scores allowing side-to-side comparison were poorer for the aclaviculate side, with significance reached for 2005 ASES scores and 2010 ASES, UCLA, HSS, and Constant scores. DASH scores and SF-36 scores were not significantly inferior to age- and sex-matched population norms. Deficits in strength were present in the aclaviculate limbs, with significance reached for adduction in 2005 and for forward flexion and external rotation in 2010. Kinematic and clinical range of motion analysis revealed scapular dyskinesis and significant deficits in external rotation in the aclaviculate limb. CONCLUSIONS We found that the clavicle contributes to the strength, coordinated scapulohumeral rhythm, and overall range of motion of the shoulder girdle. Patients compensate for loss of the clavicle with minimal functional deficit. With time, patients gradually lose some compensatory ability as evidenced by deteriorating limb-specific, patient-centered outcome measures, diminished strength in certain planes of shoulder motion, and scapular dyskinesis at long-term follow-up. Despite objective deficits, these patients continue to have normal self-perceptions of overall health and global upper extremity function.
Collapse
Affiliation(s)
- James Rubright
- University of Vermont College of Medicine, Department of Orthopaedics and Rehabilitation, Burlington, VT, USA
| | - Peter Kelleher
- University of Vermont College of Medicine, Department of Orthopaedics and Rehabilitation, Burlington, VT, USA
| | - Christina Beardsley
- University of Vermont College of Medicine, Department of Orthopaedics and Rehabilitation, Burlington, VT, USA
| | - David Paller
- The Warren Alpert Medical School of Brown University, Department of Orthopaedics, Providence, RI, USA
| | - Steven Shackford
- University of Vermont College of Medicine, Department of Surgery, Burlington, VT, USA
| | - Bruce Beynnon
- University of Vermont College of Medicine, Department of Orthopaedics and Rehabilitation, Burlington, VT, USA
| | - Adam Shafritz
- University of Vermont College of Medicine, Department of Orthopaedics and Rehabilitation, Burlington, VT, USA.
| |
Collapse
|
29
|
Warburton NM, Grégoire L, Jacques S, Flandrin C. Adaptations for digging in the forelimb muscle anatomy of the southern brown bandicoot (Isoodon obesulus) and bilby (Macrotis lagotis). AUST J ZOOL 2013. [DOI: 10.1071/zo13086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bandicoots and bilbies (Peramelemorphia) represent a distinct lineage within the marsupial adaptive radiation, which despite several curious anatomical traits has received little morphological attention. Many bandicoot species (family Peramelidae) dig for subterranean food, while bilbies (family Thylacomyidae) employ their forelimbs to dig extensive burrow systems for shelter. In the current study, dissections of the southern brown bandicoot (Isoodon obesulus) (n = 7) and greater bilby (Macrotis lagotis) (n = 4) provide the first anatomical descriptions of forelimb musculature in these species. The anatomical arrangement of forelimb muscles in I. obesulus and M. lagotis differs from that of other marsupials and corresponds to the aclaviculate pectoral girdle and modified arrangement of digits in the study species. Comparative and functional interpretations indicate that the forelimb of I. obesulus is well equipped for scratch digging and demonstrates muscular modifications in order to generate large out-forces. The bones of the forelimb, and in particular the antebrachium, are relatively short, stout bones, improving both their resistance to mechanical forces and providing a mechanical advantage via a reduced out-lever length. There has been an increase in the absolute volume of muscles employed during digging, thereby increasing the magnitude of the in-force. Increased in-lever lengths have been achieved via the migration of muscle insertions, including the elongate olecranon for the insertion of the m. triceps brachii, and the distal migration of the humeral attachments of the teres major, latissimus dorsi and superficial pectoral muscles.
Collapse
|
30
|
Hartstone-Rose A, Long RC, Farrell AB, Shaw CA. The clavicles of Smilodon fatalis and Panthera atrox (mammalia: Felidae) from Rancho La Brea, Los Angeles, California. J Morphol 2012; 273:981-91. [DOI: 10.1002/jmor.20036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/05/2012] [Accepted: 03/08/2012] [Indexed: 11/08/2022]
|
31
|
Warburton NM, Harvey KJ, Prideaux GJ, O'Shea JE. Functional morphology of the forelimb of living and extinct tree-kangaroos (Marsupialia: Macropodidae). J Morphol 2011; 272:1230-44. [DOI: 10.1002/jmor.10979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/07/2011] [Accepted: 04/03/2011] [Indexed: 11/11/2022]
|
32
|
Nyakatura JA, Fischer MS. Functional morphology of the muscular sling at the pectoral girdle in tree sloths: convergent morphological solutions to new functional demands? J Anat 2011; 219:360-74. [PMID: 21615397 DOI: 10.1111/j.1469-7580.2011.01394.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recent phylogenetic analyses imply a diphyly of tree sloths and a convergent evolution of their obligatory suspensory locomotion. In mammals the extrinsic shoulder musculature forms a 'muscular sling' to support the trunk in quadrupedal postures. In addition, the extrinsic pectoral muscles are responsible for moving the proximal forelimb elements during locomotion. Due to the inverse orientation of the body in regard to the gravitational force, the muscular sling as configured as in pronograde mammals is unsuited to suspend the weight of the thorax in sloths. We here review the muscular topography of the shoulder in Choloepus didactylus and Bradypus variegatus in the light of presumably convergent evolution to adapt to the altered functional demands of the inverse orientation of the body. In addition, we venture to deduce the effect of the shoulder musculature of C. didactylus during locomotion based on previously published 3D kinematic data. Finally, we assess likely convergences in the muscular topography of both extant sloth lineages to test the hypothesis that convergent evolution is reflected by differing morphological solutions to the same functional demands posed by the suspensory posture. Muscular topography of the shoulder in C. didactylus is altered from the plesiomorphic condition of pronograde mammals, whereas the shoulder in B. variegatus more closely resembles the general pattern. Overall kinematics as well as the muscles suitable for pro- and retraction of the forelimb were found to be largely comparable to pronograde mammals in C. didactylus. We conclude that most of the peculiar topography of extrinsic forelimb musculature can be attributed to the inverse orientation of the body. These characteristics are often similar in both genera, but we also identified different morphological solutions that evolved to satisfy the new functional demands and are indicative of convergent evolution. We suggest that the shared phylogenetic heritage canalized the spectrum of possible solutions to new functional demands, and digging adaptations of early xenarthrans posed morphological constraints that resulted in similar suspensory postures. The data of this study, including muscle maps, will be helpful to infer locomotor characteristics of fossil sloths.
Collapse
Affiliation(s)
- John A Nyakatura
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, Jena, Germany.
| | | |
Collapse
|
33
|
|
34
|
Nyakatura JA, Fischer MS. Three-dimensional kinematic analysis of the pectoral girdle during upside-down locomotion of two-toed sloths (Choloepus didactylus, Linné 1758). Front Zool 2010; 7:21. [PMID: 20619000 PMCID: PMC2908604 DOI: 10.1186/1742-9994-7-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 07/12/2010] [Indexed: 11/24/2022] Open
Abstract
Background Theria (marsupials and placental mammals) are characterized by a highly mobile pectoral girdle in which the scapula has been shown to be an important propulsive element during locomotion. Shoulder function and kinematics are highly conservative during locomotion within quadrupedal therian mammals. In order to gain insight into the functional morphology and evolution of the pectoral girdle of the two-toed sloth we here analyze the anatomy and the three-dimensional (3D) pattern of shoulder kinematics during quadrupedal suspensory ('upside-down') locomotion. Methods We use scientific rotoscoping, a new, non-invasive, markerless approach for x-ray reconstruction of moving morphology (XROMM), to quantify in vivo the 3D movements of all constituent skeletal elements of the shoulder girdle. Additionally we use histologic staining to analyze the configuration of the sterno-clavicular articulation (SCA). Results Despite the inverse orientation of the body towards gravity, sloths display a 3D kinematic pattern and an orientation of the scapula relative to the thorax similar to pronograde claviculate mammalian species that differs from that of aclaviculate as well as brachiating mammals. Reduction of the relative length of the scapula alters its displacing effect on limb excursions. The configuration of the SCA maximizes mobility at this joint and demonstrates a tensile loading regime between thorax and limbs. Conclusions The morphological characteristics of the scapula and the SCA allow maximal mobility of the forelimb to facilitate effective locomotion within a discontinuous habitat. These evolutionary changes associated with the adoption of the suspensory posture emphasized humeral influence on forelimb motion, but allowed the retention of the plesiomorphic 3D kinematic pattern.
Collapse
Affiliation(s)
- John A Nyakatura
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, Erbertstrasse 1, 07743 Jena, Germany.
| | | |
Collapse
|
35
|
Is the Clavicle of Apes Long? An Investigation of Clavicular Length in Relation to Body Mass and Upper Thoracic Width. INT J PRIMATOL 2010. [DOI: 10.1007/s10764-010-9402-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Jenkins PA, Weijs WA. The functional anatomy of the shoulder in the Virginia opossum (Didelphis virginiana). J Zool (1987) 2009. [DOI: 10.1111/j.1469-7998.1979.tb03423.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Hermanson JW, Altenbach JS. Functional anatomy of the shoulder and arm of the fruit-eating bat Artibeus jamaicensis. J Zool (1987) 2009. [DOI: 10.1111/j.1469-7998.1985.tb03526.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Voisin JL. The Omo I hominin clavicle: archaic or modern? J Hum Evol 2008; 55:438-43. [PMID: 18692220 DOI: 10.1016/j.jhevol.2008.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 05/15/2008] [Indexed: 11/20/2022]
Abstract
Assessment of clavicular curvatures projected onto two perpendicular planes to decompose the three dimensional shape into cranial and dorsal primary curvatures has shown that two morphological groups of clavicle exist within the genus Homo. The first one includes all species from Homo habilis to Neandertals, while the second includes only Upper Paleolithic remains and more recent modern humans. These morphological differences are associated with different shoulder architectures. The morphology of the Omo I left clavicle is sufficiently complete to compare its curvatures to other clavicles of several species of Homo. Its overall morphology, assessed by its curvatures, is similar to that of Upper Paleolithic remains and modern humans, confirming the conclusions of previous descriptions of the Omo I remains in general and of its clavicles in particular.
Collapse
Affiliation(s)
- Jean-Luc Voisin
- USM 103 and UMR 5198 du CNRS, Institut de Paléontologie Humaine, 1 rue René Panhard, 75013 Paris, France.
| |
Collapse
|
39
|
KING GILLIANM. The postcranial skeleton of Kingoria nowacki (von Huene) (Therapsida: Dicynodontia). Zool J Linn Soc 2008. [DOI: 10.1111/j.1096-3642.1985.tb01801.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Convergences in Scapula Morphology among Small Cursorial Mammals: An Osteological Correlate for Locomotory Specialization. J MAMM EVOL 2008. [DOI: 10.1007/s10914-008-9085-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Swartz SM, Middleton KM. Biomechanics of the Bat Limb Skeleton: Scaling, Material Properties and Mechanics. Cells Tissues Organs 2007; 187:59-84. [DOI: 10.1159/000109964] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
42
|
Voisin JL. Clavicle, a neglected bone: morphology and relation to arm movements and shoulder architecture in primates. ACTA ACUST UNITED AC 2006; 288:944-53. [PMID: 16894572 DOI: 10.1002/ar.a.20354] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In spite of its importance for movements of the upper limbs, the clavicle is an infrequently studied shoulder bone. The present study compares clavicular morphology among different extant primates. Methods have included the assessment of clavicular curvatures projected on two perpendicular planes that can be assessed overall as cranial and dorsal primary curvatures. Results showed that in cranial view, three morphologies can be defined. One group exhibited an external curvature considerably more pronounced than the internal one (Gorilla, Papio); a second group was characterized by an internal curvature much more pronounced than the external one (Hylobates, Ateles); and a third group contained those with the two curvatures equally pronounced (Pan, Homo, Pongo, Procolobus, Colobus). Clavicle curvatures projected on the dorsal plane could be placed into four groups. The first group is characterized by two curvatures, an inferior and a superior (Apes, Spider monkeys). The second included monkeys, whose clavicles have an inferior curvature much more pronounced than the superior one. The third group includes only Hylobates, whose clavicles possess only the superior curvature. The last group includes only modern humans, whose clavicles show only the inferior curvature, which is less pronounced than that which exists in monkeys. Curvatures in cranial view relate information regarding the parameters of arm elevation while those in dorsal view offer insights into the position of the scapula related to the thorax. The use of clavicular curvature analysis offers a new dimension in assessment of the functional morphology of the clavicle and its relationship to the shoulder complex.
Collapse
Affiliation(s)
- Jean-Luc Voisin
- Département de Préhistoire du Muséum National d'Histoire Naturelle, USM 103 and UMR 5198 du CNRS, Institut de Paléontologie Humaine, 1 rue René Pahnard, 75013 Paris, France.
| |
Collapse
|
43
|
Fischer MS, Blickhan R. The tri-segmented limbs of therian mammals: kinematics, dynamics, and self-stabilization—a review. ACTA ACUST UNITED AC 2006; 305:935-52. [PMID: 17029268 DOI: 10.1002/jez.a.333] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The evolution of therian mammals is to a large degree marked by changes in their motion systems. One of the decisive transitions has been from the sprawled, bi-segmented to the parasagittal, tri-segmented limb. Here, we review aspects of the tri-segmented limb in locomotion which have been elucidated in our research groups in the last 10 years. First, we report the kinematics of the tri-segmented therian limb from mouse to elephant in order to explore general principles of the therian limb configuration and locomotion. Torques will be reported from a previous paper (Witte et al., 2002. J Exp Biol 205:1339-1353) for a better understanding of the anti-gravity work of all limb joints. The stability of a limb in z-configuration will be explained and its advantage with respect to other potential solutions from modeling will be discussed. Finally, we describe how the emerging concept of self-stability can be explained for a tri-segmented leg template and how it affects the design of the musculoskeletal system and the operation of legs during locomotion. While locomotion has been considered as mainly a control problem in various disciplines, we stress the necessity to reduce control as much as possible. Central control can be cheap if the limbs are "intelligent" by means of their design. Gravity-induced movements and self-stability seem to be energy-saving mechanisms.
Collapse
Affiliation(s)
- Martin S Fischer
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, Jena, Germany.
| | | |
Collapse
|
44
|
Limb joints kinematics and their relation to increasing speed in the guinea pig Cavia porcellus (Mammalia: Rodentia). J Zool (1987) 2005. [DOI: 10.1017/s0952836905006928] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Voisin JL, Balzeau A. Structures internes claviculaires chez Pan, Gorilla et Homo. Méthode d’analyse et résultats préliminaires. ACTA ACUST UNITED AC 2004. [DOI: 10.4000/bmsap.583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Fischer MS, Schilling N, Schmidt M, Haarhaus D, Witte H. Basic limb kinematics of small therian mammals. J Exp Biol 2002; 205:1315-38. [PMID: 11948208 DOI: 10.1242/jeb.205.9.1315] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYA comparative study of quantitative kinematic data of fore- and hindlimb movements of eight different mammalian species leads to the recognition of basic principles in the locomotion of small therians. The description of kinematics comprises fore- and hindlimb movements as well as sagittal spine movements including displacement patterns of limb segments, their contribution to step length, and joint movements. The comparison of the contributions of different segments to step length clearly shows the proximal parts (scapula,femur) to produce more than half of the propulsive movement of the whole limb at symmetrical gaits. Basically, a three-segmented limb with zigzag configuration of segments is mainly displaced at the scapular pivot or hip joint, both of which have the same vertical distance to the ground. Two segments operate in matched motion during retraction of the limb. While kinematic parameters of forelimbs are independent of speed and gait (with the scapula as the dominant element), fundamental changes occur in hindlimb kinematics with the change from symmetrical to in-phase gaits. Forward motion of the hindlimbs is now mainly due to sagittal lumbar spine movements contributing to half of the step length. Kinematics of small therian mammals are independent of their systematic position, their natural habitat, and also of specific anatomical dispositions (e.g. reduction of fingers, toes, or clavicle). In contrast, the possession of a tail influences `pelvic movements'.
Collapse
Affiliation(s)
- Martin S Fischer
- Institut für Spezielle Zoologie und Evolutionsbiologie, Friedrich-Schiller-Universität, Jena, Erbertstrasse 1, D-07743 Jena, Germany.
| | | | | | | | | |
Collapse
|
47
|
Neveu P, Villanova J, Gasc JP. Modelisation of an unspecialized quadruped walking mammal. Comp Biochem Physiol A Mol Integr Physiol 2001; 131:135-44. [PMID: 11733172 DOI: 10.1016/s1095-6433(01)00460-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Kinematics and structural analyses were used as basic data to elaborate a dynamic quadruped model that may represent an unspecialized mammal. Hedgehogs were filmed on a treadmill with a cinefluorographic system providing trajectories of skeletal elements during locomotion. Body parameters such as limb segments mass and length, and segments centre of mass were checked from cadavers. These biological parameters were compiled in order to build a virtual quadruped robot. The robot locomotor behaviour was compared with the actual hedgehog to improve the model and to disclose the necessary changes. Apart from use in robotics, the resulting model may be useful to simulate the locomotion of extinct mammals.
Collapse
Affiliation(s)
- P Neveu
- CNRS-UMR 8570, Laboratoire d'Anatomie Comparée, Muséum National d'Histoire Naturelle, 55, rue Buffon, 75005 Paris, France.
| | | | | |
Collapse
|
48
|
Richmond FJ, Singh K, Corneil BD. Neck muscles in the rhesus monkey. I. Muscle morphometry and histochemistry. J Neurophysiol 2001; 86:1717-28. [PMID: 11600634 DOI: 10.1152/jn.2001.86.4.1717] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Morphometric methods were used to describe the musculotendinous lengths, fascicle lengths, pennation angles, and cross-sectional areas of neck muscles in adult Macaca mulatta monkeys. Additionally, muscles were frozen, sectioned, and stained for ATPase activity to determine fiber-type composition. Individual rhesus muscles were found to vary widely in their degree of similarity to feline and human muscles studied previously. Suboccipital muscles and muscles supplied by the spinal accessory nerve were most similar to human homologs, whereas most other muscles exhibited architectural specializations. Many neck muscles were architecturally complex, with multiple attachments and internal aponeuroses or tendinous inscriptions that affected the determination of their cross-sectional areas. All muscles were composed of a mixture of type I, IIa, and IIb fiber types the relative proportions of which varied. Typically, head-turning muscles had lower proportions of type II (fast) fibers than homologous feline muscles, whereas extensor muscles contained higher proportions of type II fibers. The physical and histochemical specializations described here are known to have a direct bearing on functional properties, such as force-developing capacity and fatigue-resistance. These specializations must be recognized if muscles are to be modeled accurately or studied electrophysiologically.
Collapse
Affiliation(s)
- F J Richmond
- Medical Research Council Group in Sensory-Motor Neuroscience, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
49
|
Schmidt M, Fischer MS. Cineradiographic study of forelimb movements during quadrupedal walking in the brown lemur (Eulemur fulvus, Primates: Lemuridae). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2000; 111:245-62. [PMID: 10640950 DOI: 10.1002/(sici)1096-8644(200002)111:2<245::aid-ajpa9>3.0.co;2-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Movements of forelimb joints and segments during walking in the brown lemur (Eulemur fulvus) were analyzed using cineradiography (150 frames/sec). Metric gait parameters, forelimb kinematics, and intralimb coordination are described. Calculation of contribution of segment displacements to stance propulsion shows that scapular retroversion in a fulcrum near the vertebral border causes more than 60% of propulsion. The contribution by the shoulder joint is 30%, elbow joint 5%, and wrist joint 1%. Correlation analysis was applied to reveal the interdependency between metric and kinematic parameters. Only the effective angular movement of the elbow joint during stance is speed-dependent. Movements of all other forelimb joints and segments are independent of speed and influence, mainly, linear gait parameters (stride length, stance length). Perhaps the most important result is the hitherto unknown and unexpected degree of scapular mobility. Scapular movements consist of ante-/retroversion, adduction/abduction, and scapular rotation about the longitudinal axis. Inside rotation of the scapula (60 degrees -70 degrees ), together with flexion in the shoulder joint, mediates abduction of the humerus, which is not achieved in the shoulder joint, and is therefore strikingly different from humeral abduction in man. Movements of the shoulder joint are restricted to flexion and extension. At touch down, the shoulder joint of the brown lemur is more extended compared to that of other small mammals. The relatively long humerus and forearm, characteristic for primates, are thus effectively converted into stride length. Observed asymmetries in metric and kinematic behavior of the left and right forelimb are caused by an unequal lateral bending of the spinal column.
Collapse
Affiliation(s)
- M Schmidt
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Museum, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany.
| | | |
Collapse
|
50
|
Hu Y, Wang Y, Luo Z, Li C. A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 1997; 390:137-42. [PMID: 9367151 DOI: 10.1038/36505] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A new symmetrodont mammal has been discovered in the Mesozoic era (Late Jurassic or Early Cretaceous period) of Liaoning Province, China. Archaic therian mammals, including symmetrodonts, are extinct relatives of the living marsupial and placental therians. However, these archaic therians have been mostly documented by fragmentary fossils. This newfossil taxon, represented by a nearly complete postcranial skeleton and a partial skull with dentition, is the best-preserved symmetrodont mammal yet discovered. It provides a new insight into the relationships of the major lineages of mammals and the evolution of the mammalian skeleton. Our analysis suggests that this new taxon represents a part of the early therian radiation before the divergence of living marsupials and placentals; that therians and multituberculates are more closely related to each other than either group is to other mammalian lineages; that archaic therians lacked the more parasagittal posture of the forelimb of most living therian mammals; and that archaic therians, such as symmetrodonts, retained the primitive feature of a finger-like promontorium (possibly with a straight cochlea) of the non-therian mammals. The fully coiled cochlea evolved later in more derived therian mammals, and is therefore convergent to the partially coiled cochlea of monotremes.
Collapse
Affiliation(s)
- Y Hu
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing
| | | | | | | |
Collapse
|