1
|
D'Amore DC, Johnson-Ransom E, Snively E, Hone DWE. Prey size and ecological separation in spinosaurid theropods based on heterodonty and rostrum shape. Anat Rec (Hoboken) 2025; 308:1331-1348. [PMID: 39205383 DOI: 10.1002/ar.25563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/11/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Members of the dinosaur clade Spinosauridae had numerous traits attributed to feeding in or around water, and their feeding apparatus has often been considered analogous to modern crocodylians. Here we quantify the craniodental morphology of Spinosauridae and compare it to modern Crocodylia. We measured from spinosaurid and crocodylian skeletal material the area of alveoli as a proxy for tooth size to determine size-heterodonty. Geometric morphometrics were also conducted on tooth crowns and tooth bearing regions of the skull. Spinosaurids overall had relatively large alveoli, and both they, and crocodylians, had isolated regions of enlarged alveoli. Spinosaurines also had enlarged alveoli along the caudal dentary that baryonychines lacked, which instead had numerous additional caudal tooth positions. Size-heterodonty was positively allometric, and spinosaurids overlapped with generalist/macro-generalist crocodylians of similar sizes. Spinosaurid crown shape morphologies overlapped with certain slender-longirostrine crocodylians, yet lacked molariform distal crowns typical of most crocodylians. Spinosaurid rostra and mandibles were relatively deep with undulating margins correlating with local tooth sizes, which may indicate a developmental constraint. Spinosaurines had a particularly long concavity caudal to their rosette of anterior cranial teeth, with a corresponding bulbous rostral dentary. The spinosaurid feeding apparatus was well suited for quickly striking and creating deep punctures, but not cutting flesh or durophagy. The jaws interlocked to secure prey and move it deeper into the mouth. The baryonychines probably did little oral processing, yet spinosaurines could have processed relatively large vertebrates. Overall, there is no indication that spinosaurids were restricted to fish or small aquatic prey.
Collapse
Affiliation(s)
- Domenic C D'Amore
- Department of Natural Sciences, Daemen University, Amherst, New York, USA
| | - Evan Johnson-Ransom
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Eric Snively
- Oklahoma State University College of Osteopathic Medicine-Cherokee Nation, Tahlequah, Oklahoma, USA
| | - David W E Hone
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Scheyer TM. The pseudosuchian record in paleohistology: A small review. Anat Rec (Hoboken) 2025; 308:245-256. [PMID: 38655735 PMCID: PMC11725709 DOI: 10.1002/ar.25455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/26/2024]
Abstract
Archosauria originated around the Earth's largest biotic crisis that severely affected all ecosystems globally, the Permotriassic Mass extinction event, and comprises two crown-group lineages: the bird-lineage and the crocodylian lineage. The bird lineage includes the iconic pterosaurs, as well as dinosaurs and birds, whereas the crocodylian lineage includes clades such as aetosaurs, poposaurs, "rauisuchians," as well as Crocodylomorpha; the latter being represented today only by less than 30 extant species of Crocodylia. Despite playing important roles during Mesozoic and Cenozoic ecosystems, both on land and in water, Pseudosuchia received far less attention compared to the bird-lineage, which is also reflected in number and scope of histological studies so far. Lately, the field has seen a shift of focus toward pseudosuchians, however, and the symposium on "Paleohistological Inferences of Paleobiological Traits in Pseudosuchia" held during the International Congress of Vertebrate Morphology 2023 in Cairns, Queensland, Australia, is the latest proof of that. To put these novel aspects of paleohistological and paleobiological research into context, an overview of the non-extant pseudosuchian taxa whose postcranial bones were studied so far is provided here (c. 80 species out of a total of more than 700 extinct species described) and recent trends in pseudosuchian osteohistology are highlighted. In addition, histological studies on cranial and dental material and other potential hard tissues, such as eggshells and otoliths, are briefly reviewed as well.
Collapse
|
3
|
Bobe R, Aldeias V, Alemseged Z, Anemone RL, Archer W, Aumaître G, Bamford MK, Biro D, Bourlès DL, Doyle Boyd M, Braun DR, Capelli C, d’Oliveira Coelho J, Habermann JM, Head JJ, Keddadouche K, Kupczik K, Lebatard AE, Lüdecke T, Macôa A, Martínez FI, Mathe J, Mendes C, Paulo LM, Pinto M, Presnyakova D, Püschel TA, Regala FT, Sier M, Ferreira da Silva MJ, Stalmans M, Carvalho S. The first Miocene fossils from coastal woodlands in the southern East African Rift. iScience 2023; 26:107644. [PMID: 37701811 PMCID: PMC10494320 DOI: 10.1016/j.isci.2023.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/20/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
The Miocene was a key time in the evolution of African ecosystems witnessing the origin of the African apes and the isolation of eastern coastal forests through an expanding arid corridor. Until recently, however, Miocene sites from the southeastern regions of the continent were unknown. Here, we report the first Miocene fossil teeth from the shoulders of the Urema Rift in Gorongosa National Park, Mozambique. We provide the first 1) radiometric ages of the Mazamba Formation, 2) reconstructions of paleovegetation in the region based on pedogenic carbonates and fossil wood, and 3) descriptions of fossil teeth. Gorongosa is unique in the East African Rift in combining marine invertebrates, marine vertebrates, reptiles, terrestrial mammals, and fossil woods in coastal paleoenvironments. The Gorongosa fossil sites offer the first evidence of woodlands and forests on the coastal margins of southeastern Africa during the Miocene, and an exceptional assemblage of fossils including new species.
Collapse
Affiliation(s)
- René Bobe
- Gorongosa National Park, Sofala, Mozambique
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, School of Anthropology, University of Oxford, Oxford OX2 6PN, UK
- Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Vera Aldeias
- Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Zeresenay Alemseged
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Robert L. Anemone
- University of North Carolina at Greensboro, Department of Anthropology, Greensboro, NC 27402-6170, USA
| | - Will Archer
- Max Planck Partner Group, Department of Archaeology and Anthropology, National Museum, Bloemfontein, South Africa
- Department of Geology, University of the Free State, Bloemfontein, South Africa
| | | | - Marion K. Bamford
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dora Biro
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | | | - Melissa Doyle Boyd
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ 08854, USA
| | - David R. Braun
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, George Washington University, Washington, DC 20052, USA
- Technological Primate Research Group, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Cristian Capelli
- Dipartimento delle Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, 43124 Parma, Italy
| | - João d’Oliveira Coelho
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, School of Anthropology, University of Oxford, Oxford OX2 6PN, UK
- Centre for Functional Ecology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Jörg M. Habermann
- GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jason J. Head
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Kornelius Kupczik
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile
| | - Anne-Elisabeth Lebatard
- Centre Européen de Recherche et d'Enseignement de Géosciences de l'Environnement, CEREGE - UM 34 Aix-Marseille Université, CNRS, IRD, Collège de France, INRAE, OSU Institut Pythéas, Technopole Environnement Arbois - Méditerranée, Domaine du Petit Arbois, Avenue Louis Philibert, Les Milles-Aix en Provence BP80, 13545 AIX en Provence, Cedex 04, France
| | - Tina Lüdecke
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, School of Anthropology, University of Oxford, Oxford OX2 6PN, UK
- Emmy Noether Group for Hominin Meat Consumption, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- Senckenberg Biodiversity and Climate Research Centre, 60325 Frankfurt, Germany
| | - Amélia Macôa
- Departamento de Arqueologia e Antropologia, Faculdade de Letras e Ciências Sociais, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Felipe I. Martínez
- Escuela de Antropología, Facultad de Ciencias Sociales, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jacinto Mathe
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, School of Anthropology, University of Oxford, Oxford OX2 6PN, UK
| | - Clara Mendes
- Departamento de Arqueologia e Antropologia, Faculdade de Letras e Ciências Sociais, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Luis Meira Paulo
- AESDA – Associação de Estudos Subterrâneos e Defesa do Ambiente, Torres Vedras, Portugal
| | - Maria Pinto
- AESDA – Associação de Estudos Subterrâneos e Defesa do Ambiente, Torres Vedras, Portugal
| | - Darya Presnyakova
- CNRS Aix-Marseille Université, Marseille, France
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, 72074 Tübingen, Germany
| | - Thomas A. Püschel
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, School of Anthropology, University of Oxford, Oxford OX2 6PN, UK
- Ecology and Evolutionary Biology Division, School of Biological Sciences, University of Reading, Reading RG6 6LA, UK
| | - Frederico Tátá Regala
- Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Mark Sier
- CENIEH, 09002 Burgos, Spain
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht 3584 CS, the Netherlands
| | - Maria Joana Ferreira da Silva
- CIBIO, Centro de Investigação Em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- ONE - Organisms and Environment Group, Cardiff University, School of Biosciences, Sir Martin Evans Building, c5:15, Cardiff CF10 3AX, UK
| | | | - Susana Carvalho
- Gorongosa National Park, Sofala, Mozambique
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, School of Anthropology, University of Oxford, Oxford OX2 6PN, UK
- Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB), Universidade do Algarve, 8005-139 Faro, Portugal
- Centre for Functional Ecology, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
4
|
Huttenlocker AK, Singh SA, Henrici AC, Sumida SS. A Carboniferous synapsid with caniniform teeth and a reappraisal of mandibular size-shape heterodonty in the origin of mammals. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211237. [PMID: 34925870 PMCID: PMC8672069 DOI: 10.1098/rsos.211237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/01/2021] [Indexed: 05/13/2023]
Abstract
Heterodonty is a hallmark of early mammal evolution that originated among the non-mammalian therapsids by the Middle Permian. Nonetheless, the early evolution of heterodonty in basal synapsids is poorly understood, especially in the mandibular dentition. Here, we describe a new synapsid, Shashajaia bermani gen. et sp. nov., based on a well-preserved dentary and jaw fragments from the Carboniferous-Permian Halgaito Formation of southern Utah. Shashajaia shares with some sphenacodontids enlarged (canine-like) anterior dentary teeth, a dorsoventrally deep symphysis and low-crowned, subthecodont postcanines having festooned plicidentine. A phylogenetic analysis of 20 taxa and 154 characters places Shashajaia near the evolutionary divergence of Sphenacodontidae and Therapsida (Sphenacodontoidea). To investigate the ecomorphological context of Palaeozoic sphenacodontoid dentitions, we performed a principal component analysis based on two-dimensional geometric morphometrics of the mandibular dentition in 65 synapsids. Results emphasize the increasing terrestrialization of predator-prey interactions as a driver of synapsid heterodonty; enhanced raptorial biting (puncture/gripping) aided prey capture, but this behaviour was probably an evolutionary antecedent to more complex processing (shearing/tearing) of larger herbivore prey by the late Early to Middle Permian. The record of Shashajaia supports the notion that the predatory feeding ecology of sphenacodontoids emerged in palaeotropical western Pangea by late Carboniferous times.
Collapse
Affiliation(s)
- Adam K. Huttenlocker
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, CA 90033, USA
- Carnegie Museum of Natural History, Pittsburgh, PA 15213, USA
| | - Suresh A. Singh
- School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK
| | - Amy C. Henrici
- Carnegie Museum of Natural History, Pittsburgh, PA 15213, USA
| | - Stuart S. Sumida
- Department of Biology, California State University San Bernardino, San Bernardino, CA 92407, USA
| |
Collapse
|
5
|
Abramyan J, Geetha-Loganathan P, Šulcová M, Buchtová M. Role of Cell Death in Cellular Processes During Odontogenesis. Front Cell Dev Biol 2021; 9:671475. [PMID: 34222243 PMCID: PMC8250436 DOI: 10.3389/fcell.2021.671475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
The development of a tooth germ in a precise size, shape, and position in the jaw, involves meticulous regulation of cell proliferation and cell death. Apoptosis, as the most common type of programmed cell death during embryonic development, plays a number of key roles during odontogenesis, ranging from the budding of the oral epithelium during tooth initiation, to later tooth germ morphogenesis and removal of enamel knot signaling center. Here, we summarize recent knowledge about the distribution and function of apoptotic cells during odontogenesis in several vertebrate lineages, with a special focus on amniotes (mammals and reptiles). We discuss the regulatory roles that apoptosis plays on various cellular processes during odontogenesis. We also review apoptosis-associated molecular signaling during tooth development, including its relationship with the autophagic pathway. Lastly, we cover apoptotic pathway disruption, and alterations in apoptotic cell distribution in transgenic mouse models. These studies foster a deeper understanding how apoptotic cells affect cellular processes during normal odontogenesis, and how they contribute to dental disorders, which could lead to new avenues of treatment in the future.
Collapse
Affiliation(s)
- John Abramyan
- Department of Natural Sciences, University of Michigan–Dearborn, Dearborn, MI, United States
| | | | - Marie Šulcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
6
|
Norton LA, Abdala F, Rubidge BS, Botha J. Tooth replacement patterns in the Early Triassic epicynodont Galesaurus planiceps (Therapsida, Cynodontia). PLoS One 2020; 15:e0243985. [PMID: 33378326 PMCID: PMC7773207 DOI: 10.1371/journal.pone.0243985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/02/2020] [Indexed: 01/13/2023] Open
Abstract
Sixteen specimens of the Early Triassic cynodont Galesaurus planiceps (including eight that were scanned using micro-computed tomography) representing different ontogenetic stages were assembled to study the dental replacement in the species. The growth series shows that the incisors and postcanines continue to develop and replace, even in the largest (presumably oldest) specimen. In contrast, replacement of the canines ceased with the attainment of skeletal maturity, at a basal skull length of ~90 mm, suggesting that Galesaurus had a finite number of canine replacement cycles. Additionally, the functional canine root morphology of these larger specimens showed a tendency to be open-rooted, a condition not previously reported in Mesozoic theriodonts. An alternating pattern of tooth replacement was documented in the maxillary and mandibular postcanine series. Both postcanine series increased in tooth number as the skull lengthened, with the mandibular postcanine series containing more teeth than the maxillary series. In the maxilla, the first postcanine is consistently the smallest tooth, showing a proportional reduction in size as skull length increased. The longer retention of a tooth in this first locus is a key difference between Galesaurus and Thrinaxodon, in which the mesial-most postcanines are lost after replacement. This difference has contributed to the lengthening of the postcanine series in Galesaurus, as teeth continued to be added to the distal end of the tooth row through ontogeny. Overall, there are considerable differences between Galesaurus and Thrinaxodon relating to the replacement and development of their teeth.
Collapse
Affiliation(s)
- Luke A. Norton
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- School of Geosciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- * E-mail:
| | - Fernando Abdala
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), Tucumán, Argentina
| | - Bruce S. Rubidge
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- School of Geosciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Jennifer Botha
- Karoo Palaeontology, National Museum, Bloemfontein, Free State, South Africa
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa
| |
Collapse
|
7
|
Kosch JCD, Zanno LE. Sampling impacts the assessment of tooth growth and replacement rates in archosaurs: implications for paleontological studies. PeerJ 2020; 8:e9918. [PMID: 32999766 PMCID: PMC7505082 DOI: 10.7717/peerj.9918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/20/2020] [Indexed: 11/20/2022] Open
Abstract
Dietary habits in extinct species cannot be directly observed; thus, in the absence of extraordinary evidence, they must be reconstructed with a combination of morphological proxies. Such proxies often include information on dental organization and function such as tooth formation time and tooth replacement rate. In extinct organisms, tooth formation times and tooth replacement rate are calculated, in part via extrapolation of the space between incremental lines in dental tissues representing daily growth (von Ebner Line Increment Width; VEIW). However, to date, little work has been conducted testing assumptions about the primary data underpinning these calculations, specifically, the potential impact of differential sampling and data extrapolation protocols. To address this, we tested a variety of intradental, intramandibular, and ontogentic sampling effects on calculations of mean VEIW, tooth formation times, and replacement rates using histological sections and CT reconstructions of a growth series of three specimens of the extant archosaurian Alligator mississippiensis. We find transect position within the tooth and transect orientation with respect to von Ebner lines to have the greatest impact on calculations of mean VEIW—a maximum number of VEIW measurements should be made as near to the central axis (CA) as possible. Measuring in regions away from the central axis can reduce mean VEIW by up to 36%, causing inflated calculations of tooth formation time. We find little demonstrable impact to calculations of mean VEIW from the practice of subsampling along a transect, or from using mean VEIW derived from one portion of the dentition to extrapolate for other regions of the dentition. Subsampling along transects contributes only minor variations in mean VEIW (<12%) that are dwarfed by the standard deviation (SD). Moreover, variation in VEIW with distance from the pulp cavity likely reflects idiosyncratic patterns related to life history, which are difficult to control for; however, we recommend increasing the number of VEIW measured to minimize this effect. Our data reveal only a weak correlation between mean VEIW and body length, suggesting minimal ontogenetic impacts. Finally, we provide a relative SD of mean VEIW for Alligator of 29.94%, which can be used by researchers to create data-driven error bars for tooth formation times and replacement rates in fossil taxa with small sample sizes. We caution that small differences in mean VEIW calculations resulting from non-standardized sampling protocols, especially in a comparative context, will produce inflated error in tooth formation time estimations that intensify with crown height. The same holds true for applications of our relative SD to calculations of tooth formation time in extinct taxa, which produce highly variable maximum and minimum estimates in large-toothed taxa (e.g., 718–1,331 days in Tyrannosaurus).
Collapse
Affiliation(s)
- Jens C D Kosch
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Lindsay E Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Brink KS, Wu P, Chuong CM, Richman JM. The Effects of Premature Tooth Extraction and Damage on Replacement Timing in the Green Iguana. Integr Comp Biol 2020; 60:581-593. [PMID: 32974642 PMCID: PMC7546963 DOI: 10.1093/icb/icaa099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Reptiles with continuous tooth replacement, or polyphyodonty, replace their teeth in predictable, well-timed waves in alternating tooth positions around the mouth. This process is thought to occur irrespective of tooth wear or breakage. In this study, we aimed to determine if damage to teeth and premature tooth extraction affects tooth replacement timing long-term in juvenile green iguanas (Iguana iguana). First, we examined normal tooth development histologically using a BrdU pulse-chase analysis to detect label-retaining cells in replacement teeth and dental tissues. Next, we performed tooth extraction experiments for characterization of dental tissues after functional tooth (FT) extraction, including proliferation and β-Catenin expression, for up to 12 weeks. We then compared these results to a newly analyzed historical dataset of X-rays collected up to 7 months after FT damage and extraction in the green iguana. Results show that proliferation in the dental and successional lamina (SL) does not change after extraction of the FT, and proliferation occurs in the SL only when a tooth differentiates. Damage to an FT crown does not affect the timing of the tooth replacement cycle, however, complete extraction shifts the replacement cycle ahead by 4 weeks by removing the need for resorption of the FT. These results suggest that traumatic FT loss affects the timing of the replacement cycle at that one position, which may have implications for tooth replacement patterning around the entire mouth.
Collapse
Affiliation(s)
- Kirstin S Brink
- Department of Oral Health Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Geological Sciences, University of Manitoba, 125 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| | - Ping Wu
- Keck School of Medicine, University of Southern California, 2011 Zonal Ave, Los Angeles, CA HMR313, USA
| | - Cheng-Ming Chuong
- Keck School of Medicine, University of Southern California, 2011 Zonal Ave, Los Angeles, CA HMR313, USA
| | - Joy M Richman
- Department of Oral Health Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
9
|
Guillaume ARD, Moreno-Azanza M, Puértolas-Pascual E, Mateus O. Palaeobiodiversity of crocodylomorphs from the Lourinhã Formation based on the tooth record: insights into the palaeoecology of the Late Jurassic of Portugal. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Crocodylomorphs were a diverse clade in the Late Jurassic of Portugal, with six taxa reported to date. Here we describe 126 isolated teeth recovered by screen-washing of sediments from Valmitão (Lourinhã, Portugal, late Kimmeridgian–Tithonian), a vertebrate microfossil assemblage in which at least five distinct crocodylomorph taxa are represented. Ten morphotypes are described and attributed to five clades (Lusitanisuchus, Atoposauridae, Goniopholididae, Bernissartiidae and an undetermined mesoeucrocodylian). Four different ecomorphotypes are here proposed according to ecological niches and feeding behaviours: these correspond to a diet based on arthropods and small vertebrates (Lusitanisuchus and Atoposauridae), a generalist diet (Goniopholididae), a durophagous diet (Bernissartiidae) and a carnivorous diet. Lusitanisuchus mitracostatus material from Guimarota is here redescribed to achieve a better illustration and comparison with the new material.
This assemblage shares similar ecomorphotypes with other Mesozoic west-central European localities, where a diversity of crocodylomorphs lived together, avoiding direct ecological competition through niche partitioning. The absence of large marine crocodylomorphs, present in other contemporaneous assemblages, is here interpreted as evidence that the Valmitão assemblage was deposited in a freshwater environment, although sample bias cannot be completely ruled out. These affinities are further supported by the presence of lanceolate and leaf-shaped teeth associated with continental clades.
Collapse
Affiliation(s)
- Alexandre R D Guillaume
- GeoBioTec, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, Portugal
- Museu da Lourinhã, Lourinhã. Portugal
| | - Miguel Moreno-Azanza
- GeoBioTec, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, Portugal
- Museu da Lourinhã, Lourinhã. Portugal
| | - Eduardo Puértolas-Pascual
- GeoBioTec, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, Portugal
- Museu da Lourinhã, Lourinhã. Portugal
| | - Octávio Mateus
- GeoBioTec, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, Portugal
- Museu da Lourinhã, Lourinhã. Portugal
| |
Collapse
|
10
|
D’Amore DC, Harmon M, Drumheller SK, Testin JJ. Quantitative heterodonty in Crocodylia: assessing size and shape across modern and extinct taxa. PeerJ 2019; 7:e6485. [PMID: 30842900 PMCID: PMC6397764 DOI: 10.7717/peerj.6485] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/19/2019] [Indexed: 12/31/2022] Open
Abstract
Heterodonty in Crocodylia and closely related taxa has not been defined quantitatively, as the teeth rarely have been measured. This has resulted in a range of qualitative descriptors, with little consensus on the condition of dental morphology in the clade. The purpose of this study is to present a method for the quantification of both size- and shape-heterodonty in members of Crocodylia. Data were collected from dry skeletal and fossil specimens of 34 crown crocodylians and one crocodyliform, resulting in 21 species total. Digital photographs were taken of each tooth and the skull, and the margins of both were converted into landmarks and semilandmarks. We expressed heterodonty through Foote's morphological disparity, and a principal components analysis quantified shape variance. All specimens sampled were heterodont to varying degrees, with the majority of the shape variance represented by a 'caniniform' to 'molariform' transition. Heterodonty varied significantly between positions; size undulated whereas shape was significantly linear from mesial to distal. Size and shape appeared to be primarily decoupled. Skull shape correlated significantly with tooth shape. High size-heterodonty often correlated with relatively large caniniform teeth, reflecting a prioritization of securing prey. Large, highly molariform, distal teeth may be a consequence of high-frequency durophagy combined with prey size. The slender-snouted skull shape correlated with a caniniform arcade with low heterodonty. This was reminiscent of other underwater-feeding tetrapods, as they often focus on small prey that requires minimal processing. Several extinct taxa were very molariform, which was associated with low heterodonty. The terrestrial peirosaurid shared similarities with large modern crocodylian taxa, but may have processed prey differently. Disparity measures can be inflated or deflated if certain teeth are absent from the tooth row, and regression analysis may not best apply to strongly slender-snouted taxa. Nevertheless, when these methods are used in tandem they can give a complete picture of crocodylian heterodonty. Future researchers may apply our proposed method to most crocodylian specimens with an intact enough tooth row regardless of age, species, or rearing conditions, as this will add rigor to many life history studies of the clade.
Collapse
Affiliation(s)
- Domenic C. D’Amore
- Department of Natural Sciences, Daemen College, Amherst, NY, United States of America
| | - Megan Harmon
- Department of Natural Sciences, Daemen College, Amherst, NY, United States of America
| | - Stephanie K. Drumheller
- Department of Earth and Planetary Sciences, University of Tennessee—Knoxville, Knoxville, TN, United States of America
| | - Jason J. Testin
- Department of Physical Science, Physics and Pre-Engineering, Iowa Western Community College, Council Bluffs, IA, United States of America
| |
Collapse
|
11
|
Kuzmin IT, Skutschas PP, Boitsova EA, Sues HD. Revision of the large crocodyliformKansajsuchus(Neosuchia) from the Late Cretaceous of Central Asia. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ivan T Kuzmin
- Vertebrate Zoology Department, Saint Petersburg State University, Saint Petersburg, Russia
| | - Pavel P Skutschas
- Vertebrate Zoology Department, Saint Petersburg State University, Saint Petersburg, Russia
| | - Elizaveta A Boitsova
- Vertebrate Zoology Department, Saint Petersburg State University, Saint Petersburg, Russia
| | - Hans-Dieter Sues
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
12
|
He Y, Makovicky PJ, Xu X, You H. High-resolution computed tomographic analysis of tooth replacement pattern of the basal neoceratopsian Liaoceratops yanzigouensis informs ceratopsian dental evolution. Sci Rep 2018; 8:5870. [PMID: 29651146 PMCID: PMC5897341 DOI: 10.1038/s41598-018-24283-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/29/2018] [Indexed: 11/09/2022] Open
Abstract
The dental morphology and tooth replacement pattern of Liaoceratops yanzigouensis, the earliest known neoceratopsian, are important for our understanding of the evolution of the ceratopsian dental system. Here we describe the dental morphology and tooth replacement of Liaoceratops yanzigouensis based on high-resolution computed tomographic (CT) scan data of three specimens including the holotype, the first study for basal ceratopsian. The three-dimensional reconstructions reveal some important new information, including: three teeth in the premaxilla in one side, two more teeth in the dentary than in the maxilla, incipiently developed mesial grooves on some crowns, two generations of replacement teeth within some tooth families; and most functional teeth were under heavy resorption by the replacement process, but still remained functional. Comparisons of tooth pair positions from opposite sides in the four jaw quadrants of three specimens revealed a degree of bilateral symmetry in replacement pattern. Reconstruction of Zahnreihen yields an avergae z-spacing of 2.58 with simultaneous front-to-back tooth replacement. Our study presents the earliest evidence of derived neoceratopsian traits of the complex dental batteries in ceratopsids. Most significantly, our models reveal the tracts of partially resorbed functional teeth which appears to track the growth of the jaws, traits previously undocumented in Ceratopsia.
Collapse
Affiliation(s)
- Yiming He
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu, 210046, China.
| | - Peter J Makovicky
- Department of Geology, The Field Museum, Chicago, llinois, 60640, United States of America
| | - Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Palaeontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100046, China
| | - Hailu You
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Palaeontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100046, China
| |
Collapse
|
13
|
Grieco TM, Richman JM. Coordination of bilateral tooth replacement in the juvenile gecko is continuous with in ovo patterning. Evol Dev 2018; 20:51-64. [PMID: 29318754 PMCID: PMC5834371 DOI: 10.1111/ede.12247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We performed a test of how function impacts a genetically programmed process that continues into postnatal life. Using the dentition of the polyphyodont gecko as our model, tooth shedding was recorded longitudinally across the jaw. We compared two time periods: one in which teeth were patterned symmetrically in ovo and a later period when teeth were initiated post-hatching. By pairing shedding events on the right and left sides, we found the patterns of tooth loss are symmetrical and stable between periods, with only subtle deviations. Contralateral tooth positions shed within 3-4 days of each other in most animals (7/10). A minority of animals (3/10) had systematic tooth position shifts between right and left sides, likely due to changes in functional tooth number. Our results suggest that in addition to reproducible organogenesis of individual teeth, there is also a neotenic retention of jaw-wide dental patterning in reptiles. Finer analysis of regional asymmetries revealed changes to which contralateral position shed first, affecting up to one quarter of the jaw (10 tooth positions). Once established, these patterns were retained longitudinally. Taken together, the data support regional and global mechanisms of coordinating tooth cycling post-hatching.
Collapse
Affiliation(s)
- Theresa M Grieco
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joy M Richman
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Benoit J, Norton LA, Manger PR, Rubidge BS. Reappraisal of the envenoming capacity of Euchambersia mirabilis (Therapsida, Therocephalia) using μCT-scanning techniques. PLoS One 2017; 12:e0172047. [PMID: 28187210 PMCID: PMC5302418 DOI: 10.1371/journal.pone.0172047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/30/2017] [Indexed: 11/30/2022] Open
Abstract
Euchambersia mirabilis is an iconic species of Permo-Triassic therapsid because of its unusually large external maxillary fossa linked through a sulcus to a ridged canine. This anatomy led to the commonly accepted conclusion that the large fossa accommodated a venom gland. However, this hypothesis remains untested so far. Here, we conducted a μCT scan assisted reappraisal of the envenoming capacity of Euchambersia, with a special focus on the anatomy of the maxillary fossa and canines. This study shows that the fossa, presumably for the venom-producing gland, is directly linked to the maxillary canal, which carries the trigeminal nerve (responsible for the sensitivity of the face). The peculiar anatomy of the maxillary canal suggests important reorganisation in the somatosensory system and that a ganglion could possibly have been present in the maxillary fossa instead of a venom gland. Nevertheless, the venom gland hypothesis is still preferred since we describe, for the first time, the complete crown morphology of the incisiform teeth of Euchambersia, which strongly suggests that the complete dentition was ridged. Therefore Euchambersia manifests evidence of all characteristics of venomous animals: a venom gland (in the maxillary fossa), a mechanism to deliver the venom (the maxillary canal and/or the sulcus located ventrally to the fossa); and an apparatus with which to inflict a wound for venom delivery (the ridged dentition).
Collapse
Affiliation(s)
- Julien Benoit
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- School of Geosciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- * E-mail:
| | - Luke A. Norton
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- School of Geosciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Paul R. Manger
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Bruce S. Rubidge
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- School of Geosciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
15
|
Dumont M, Tafforeau P, Bertin T, Bhullar BA, Field D, Schulp A, Strilisky B, Thivichon-Prince B, Viriot L, Louchart A. Synchrotron imaging of dentition provides insights into the biology of Hesperornis and Ichthyornis, the "last" toothed birds. BMC Evol Biol 2016; 16:178. [PMID: 27659919 PMCID: PMC5034473 DOI: 10.1186/s12862-016-0753-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/23/2016] [Indexed: 01/28/2023] Open
Abstract
Background The dentitions of extinct organisms can provide pivotal information regarding their phylogenetic position, as well as paleobiology, diet, development, and growth. Extant birds are edentulous (toothless), but their closest relatives among stem birds, the Cretaceous Hesperornithiformes and Ichthyornithiformes, retained teeth. Despite their significant phylogenetic position immediately outside the avian crown group, the dentitions of these taxa have never been studied in detail. To obtain new insight into the biology of these ‘last’ toothed birds, we use cutting-edge visualisation techniques to describe their dentitions at unprecedented levels of detail, in particular propagation phase contrast x-ray synchrotron microtomography at high-resolution. Results Among other characteristics of tooth shape, growth, attachment, implantation, replacement, and dental tissue microstructures, revealed by these analyses, we find that tooth morphology and ornamentation differ greatly between the Hesperornithiformes and Ichthyornithiformes. We also highlight the first Old World, and youngest record of the major Mesozoic clade Ichthyornithiformes. Both taxa exhibit extremely thin and simple enamel. The extension rate of Hesperornis tooth dentine appears relatively high compared to non-avian dinosaurs. Root attachment is found for the first time to be fully thecodont via gomphosis in both taxa, but in Hesperornis secondary evolution led to teeth implantation in a groove, at least locally without a periodontal ligament. Dental replacement is shown to be lingual via a resorption pit in the root, in both taxa. Conclusions Our results allow comparison with other archosaurs and also mammals, with implications regarding dental character evolution across amniotes. Some dental features of the ‘last’ toothed birds can be interpreted as functional adaptations related to diet and mode of predation, while others appear to be products of their peculiar phylogenetic heritage. The autapomorphic Hesperornis groove might have favoured firmer root attachment. These observations highlight complexity in the evolutionary history of tooth reduction in the avian lineage and also clarify alleged avian dental characteristics in the frame of a long-standing debate on bird origins. Finally, new hypotheses emerge that will possibly be tested by further analyses of avian teeth, for instance regarding dental replacement rates, or simplification and thinning of enamel throughout the course of early avian evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0753-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maïtena Dumont
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5242, Institut de Génomique Fonctionnelle de Lyon, Equipe évo-dévo de la denture chez les vertébrés, Ecole Normale Supérieure de Lyon, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon cedex 7, France.,UMR CNRS/MNHN 7179, "Mécanismes adaptatifs: des organismes aux communautés", 57 rue Cuvier CP55, 75005, Paris, France
| | - Paul Tafforeau
- ESRF-The European Synchrotron, 71, avenue des Martyrs, CS 40220, F-38043, Grenoble Cédex 9, France
| | - Thomas Bertin
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5242, Institut de Génomique Fonctionnelle de Lyon, Equipe évo-dévo de la denture chez les vertébrés, Ecole Normale Supérieure de Lyon, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon cedex 7, France
| | - Bhart-Anjan Bhullar
- Department of Geology and Geophysics and Peabody Museum of Natural History, Yale University, New Haven, 06520, CT, USA
| | - Daniel Field
- Department of Geology and Geophysics and Peabody Museum of Natural History, Yale University, New Haven, 06520, CT, USA
| | - Anne Schulp
- Natuurhistorisch Museum Maastricht, De Bosquetplein 6-7, NL-6211 KJ, Maastricht, The Netherlands.,Present Address: Naturalis Biodiversity Center, Darwinweg 2, 2333CR, Leiden, The Netherlands
| | - Brandon Strilisky
- Royal Tyrrell Museum of Palaeontology, P.O. Box 7500, Drumheller, T0J 0Y0, AB, Canada
| | - Béatrice Thivichon-Prince
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5242, Institut de Génomique Fonctionnelle de Lyon, Equipe évo-dévo de la denture chez les vertébrés, Ecole Normale Supérieure de Lyon, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon cedex 7, France
| | - Laurent Viriot
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5242, Institut de Génomique Fonctionnelle de Lyon, Equipe évo-dévo de la denture chez les vertébrés, Ecole Normale Supérieure de Lyon, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon cedex 7, France
| | - Antoine Louchart
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5242, Institut de Génomique Fonctionnelle de Lyon, Equipe évo-dévo de la denture chez les vertébrés, Ecole Normale Supérieure de Lyon, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon cedex 7, France. .,Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5553, LECA, Equipe Paléo-Génomique, and Palgene (CNRS/ENS de Lyon), Ecole Normale Supérieure de Lyon, Université de Lyon, 46 Allée d'Italie, 69364, Lyon cedex 7, France.
| |
Collapse
|
16
|
Sassoon J, Foffa D, Marek R. Dental ontogeny and replacement in Pliosauridae. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150384. [PMID: 26715998 PMCID: PMC4680613 DOI: 10.1098/rsos.150384] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Dental morphology and patterns of tooth replacement in representatives of the clade Pliosauridae (Reptilia, Sauropterygia) are evaluated in detail. The jaws of one basal (Thalassiodracon hawkinsii) and two derived species (Pliosaurus carpenteri, Pliosaurus kevani) were visualized by μCT scans, and the ontogenetic patterns, or 'movement paths', of replacement teeth could be mapped. Other specimens (Peloneustes philarchus and Pliosaurus westbuyensis) with well-preserved jaws containing functional and replacement teeth in situ were also examined directly, and waves of tooth replacement could be inferred from the degree of in situ tooth development and the fusion between functional and replacement alveoli. The analysis revealed symmetrical tooth eruption over the medial axis throughout the length of the jaw in the basal pliosaurid Thalassiodracon. By contrast, symmetrical tooth eruption patterns occur only along the anterior sections of the jaws of derived pliosaurids. In Pliosaurus, replacement schedules differ in the anterior and posterior portions of the jaws and appear to correlate with differences in tooth morphology and symmetrical replacement. The anterior teeth exhibit longer replacement cycle periods and symmetrical replacement, while shorter cycle periods and asymmetry are seen posteriorly. A longer period suggests slower replacement and is characteristic of large, specialized caniniform teeth in the longer snouted Late Jurassic taxa. Smaller posterior teeth have a shorter period and therefore a faster replacement cycle. The transition from long to short replacement period over the length of the jaw is thought to account for the loss of symmetry. This differentiation could relate to differential tooth function and a type of heterodonty. We therefore propose a new model of pliosaurid tooth replacement patterns and present it in a phylogenetic context.
Collapse
Affiliation(s)
- Judyth Sassoon
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK
| | - Davide Foffa
- School of GeoSciences, Grant Institute, University of Edinburgh, The King’s Buildings, James Hutton Road, Edinburgh EH9 3FE, UK
| | - Ryan Marek
- Department of Musculoskeletal Biology, University of Liverpool, Duncan Building, Daulby Street, Liverpool L69 3GE, UK
| |
Collapse
|
17
|
Young MT, Steel L, Foffa D, Price T, Naish D, Tennant JP. Marine tethysuchian crocodyliform from the ?Aptian-Albian (Lower Cretaceous) of the Isle of Wight, UK. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark T. Young
- Institute of Evolutionary Biology; School of Biological Sciences; University of Edinburgh; The King's Buildings Edinburgh EH9 3JW UK
- School of Ocean and Earth Science; National Oceanography Centre; University of Southampton; Southampton SO14 3ZH UK
| | - Lorna Steel
- Department of Earth Sciences; Natural History Museum; London SW7 5BD UK
| | - Davide Foffa
- School of Earth Sciences; University of Bristol; Wills Memorial Building Bristol BS8 1RJ UK
| | - Trevor Price
- Dinosaur Isle Museum; Sandown Isle of Wight PO36 8QA UK
| | - Darren Naish
- School of Ocean and Earth Science; National Oceanography Centre; University of Southampton; Southampton SO14 3ZH UK
| | - Jonathan P. Tennant
- Department of Earth Science and Engineering; Imperial College London; London SW6 2AZ UK
| |
Collapse
|
18
|
Neenan JM, Li C, Rieppel O, Bernardini F, Tuniz C, Muscio G, Scheyer TM. Unique method of tooth replacement in durophagous placodont marine reptiles, with new data on the dentition of Chinese taxa. J Anat 2014; 224:603-13. [PMID: 24517163 DOI: 10.1111/joa.12162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2014] [Indexed: 11/30/2022] Open
Abstract
The placodonts of the Triassic period (~252-201 mya) represent one of the earliest and most extreme specialisations to a durophagous diet of any known reptile group. Exceptionally enlarged crushing tooth plates on the maxilla, dentary and palatine cooperated to form functional crushing areas in the buccal cavity. However, the extreme size of these teeth, combined with the unusual way they occluded, constrained how replacement occurred. Using an extensive micro-computed tomographic dataset of 11 specimens that span all geographic regions and placodont morphotypes, tooth replacement patterns were investigated. In addition, the previously undescribed dental morphologies and formulae of Chinese taxa are described for the first time and incorporated into the analysis. Placodonts have a unique tooth replacement pattern and results follow a phylogenetic trend. The plesiomorphic Placodus species show many replacement teeth at various stages of growth, with little or no discernible pattern. On the other hand, the more derived cyamodontoids tend to have fewer replacement teeth growing at any one time, replacing teeth unilaterally and/or in functional units, thus maintaining at least one functional crushing area at all times. The highly derived placochelyids have fewer teeth and, as a result, only have one or two replacement teeth in the upper jaw. This supports previous suggestions that these taxa had an alternative diet to other placodonts. Importantly, all specimens show at least one replacement tooth growing at the most posterior palatine tooth plates, indicating increased wear at this point and thus the most efficient functional crushing area.
Collapse
Affiliation(s)
- James M Neenan
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
19
|
Enax J, Fabritius HO, Rack A, Prymak O, Raabe D, Epple M. Characterization of crocodile teeth: correlation of composition, microstructure, and hardness. J Struct Biol 2013; 184:155-63. [PMID: 24091039 DOI: 10.1016/j.jsb.2013.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
Structure and composition of teeth of the saltwater crocodile Crocodylus porosus were characterized by several high-resolution analytical techniques. X-ray diffraction in combination with elemental analysis and infrared spectroscopy showed that the mineral phase of the teeth is a carbonated calcium-deficient nanocrystalline hydroxyapatite in all three tooth-constituting tissues: Dentin, enamel, and cementum. The fluoride content in the three tissues is very low (<0.1 wt.%) and comparable to that in human teeth. The mineral content of dentin, enamel, and cementum as determined by thermogravimetry is 71.3, 80.5, and 66.8 wt.%, respectively. Synchrotron X-ray microtomography showed the internal structure and allowed to visualize the degree of mineralization in dentin, enamel, and cementum. Virtual sections through the tooth and scanning electron micrographs showed that the enamel layer is comparably thin (100-200 μm). The crystallites in the enamel are oriented perpendicularly to the tooth surface. At the dentin-enamel-junction, the packing density of crystallites decreases, and the crystallites do not display an ordered structure as in the enamel. The microhardness was 0.60±0.05 GPa for dentin, 3.15±0.15 GPa for enamel, 0.26±0.08 GPa for cementum close to the crown, and 0.31±0.04 GPa for cementum close to the root margin. This can be explained with the different degree of mineralization of the different tissue types and is comparable with human teeth.
Collapse
Affiliation(s)
- Joachim Enax
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | | | | | | | | | | |
Collapse
|
20
|
NORMAN DAVIDB, CROMPTON ALFREDW, BUTLER RICHARDJ, PORRO LAURAB, CHARIG ALANJ. The Lower Jurassic ornithischian dinosaur Heterodontosaurus tucki Crompton & Charig, 1962: cranial anatomy, functional morphology, taxonomy, and relationships. Zool J Linn Soc 2011. [DOI: 10.1111/j.1096-3642.2011.00697.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Stock DW. Zebrafish dentition in comparative context. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:523-49. [PMID: 17607704 DOI: 10.1002/jez.b.21187] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies of the zebrafish (Danio rerio) promise to contribute much to an understanding of the developmental genetic mechanisms underlying diversification of the vertebrate dentition. Tooth development, structure, and replacement in the zebrafish largely reflect the primitive condition of jawed vertebrates, providing a basis for comparison with features of the more extensively studied mammalian dentition. A distinctive derived feature of the zebrafish dentition is restriction of teeth to a single pair of pharyngeal bones. Such reduction of the dentition, characteristic of the order Cypriniformes, has never been reversed, despite subsequent and extensive diversification of the group in numbers of species and variety of feeding modes. Studies of the developmental genetic mechanism of dentition reduction in the zebrafish suggest a potential explanation for irreversibility in that tooth loss seems to be associated with loss of developmental activators rather than gain of repressors. The zebrafish and other members of the family Cyprinidae exhibit species-specific numbers and arrangements of pharyngeal teeth, and extensive variation in tooth shape also occurs within the family. Mutant screens and experimental alteration of gene expression in the zebrafish are likely to yield variant tooth number and shape phenotypes that can be compared with those occurring naturally within the Cyprinidae. Such studies may reveal the relative contribution to trends in dental evolution of biases in the generation of variation and sorting of this variation by selection or drift.
Collapse
Affiliation(s)
- David W Stock
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309-0334, USA.
| |
Collapse
|
22
|
Stock DW. The genetic basis of modularity in the development and evolution of the vertebrate dentition. Philos Trans R Soc Lond B Biol Sci 2001; 356:1633-53. [PMID: 11604128 PMCID: PMC1088541 DOI: 10.1098/rstb.2001.0917] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The construction of organisms from units that develop under semi-autonomous genetic control (modules) has been proposed to be an important component of their ability to undergo adaptive phenotypic evolution. The organization of the vertebrate dentition as a system of repeated parts provides an opportunity to study the extent to which phenotypic modules, identified by their evolutionary independence from other such units, are related to modularity in the genetic control of development. The evolutionary history of vertebrates provides numerous examples of both correlated and independent evolution of groups of teeth. The dentition itself appears to be a module of the dermal exoskeleton, from which it has long been under independent genetic control. Region-specific tooth loss has been a common trend in vertebrate evolution. Novel deployment of teeth and reacquisition of lost teeth have also occurred, although less frequently. Tooth shape differences within the dentition may be discontinuous (referred to as heterodonty) or graded. The occurrence of homeotic changes in tooth shape provides evidence for the decoupling of tooth shape and location in the course of evolution. Potential mechanisms for region-specific evolutionary tooth loss are suggested by a number of mouse gene knockouts and human genetic dental anomalies, as well as a comparison between fully-developed and rudimentary teeth in the dentition of rodents. These mechanisms include loss of a tooth-type-specific initiation signal, alterations of the relative strength of inductive and inhibitory signals acting at the time of tooth initiation and the overall reduction in levels of proteins required for the development of all teeth. Ectopic expression of tooth initiation signals provides a potential mechanism for the novel deployment or reacquisition of teeth; a single instance is known of a gene whose ectopic expression in transgenic mice can lead to ectopic teeth. Differences in shape between incisor and molar teeth in the mouse have been proposed to be controlled by the region-specific expression of signalling molecules in the oral epithelium. These molecules induce the expression of transcription factors in the underlying jaw mesenchyme that may act as selectors of tooth type. It is speculated that shifts in the expression domains of the epithelial signalling molecules might be responsible for homeotic changes in tooth shape. The observation that these molecules are regionally restricted in the chicken, whose ancestors were not heterodont, suggests that mammalian heterodonty may have evolved through the use of patterning mechanisms already acting on skeletal elements of the jaws. In general, genetic and morphological approaches identify similar types of modules in the dentition, but the data are not yet sufficient to identify exact correspondences. It is speculated that modularity may be achieved by gene expression differences between teeth or by differences in the time of their development, causing mutations to have cumulative effects on later-developing teeth. The mammalian dentition, for which virtually all of the available developmental genetic data have been collected, represents a small subset of the dental diversity present in vertebrates as a whole. In particular, teleost fishes may have a much more extensive dentition. Extension of research on the genetic control of tooth development to this and other vertebrate groups has great potential to further the understanding of modularity in the dentition.
Collapse
Affiliation(s)
- D W Stock
- Department of Environmental, Population, and Organismic Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| |
Collapse
|
23
|
Abstract
The temporal and spatial patterns in which teeth are initiated in the growing jaws of embryos are constant for a species but different for different species. The sources of the patterns have been explained in two ways. First, they are the outcome of reactions between molecules created at stationary targets and those which diffuse through embryonic tissues (e.g., Edmund, 1960). Second, Osborn (1978) supposed that the patterns mirror the way a (mixed) population of parent cells, the tooth clone, grows. Westergaard and Ferguson (1986, 1987, 1990) concluded, from their observations of the sequence of tooth initiation in alligators, that the complicated sequences in which 20 teeth are initiated in each tooth quadrant could not be explained by jaw growth. The present study attempts to refute this criticism by means of measurements made from the raw data published by Westergaard and Ferguson. These data reveal that new teeth, here called primary teeth, are added at a constant rate at the back of the jaw. Interstitial growth of the cells between primary teeth creates space for secondary teeth in secondary regions. The secondary regions increase in length exponentially with time. The sequence in which teeth are initiated in the growing secondary regions was found to be the same in every part of the upper and lower jaws. It was accurately reproduced by a computer program based on a linear contraction rate of inhibitory zones and exponential growth of secondary regions. The results suggest that the posterior progress zone in alligator embryos grows about 125 microm a day. Newly initiated tooth germs are surrounded by an inhibitory zone about 250 microm in diameter. These zones contract from 20 to 30 microm a day until they are about 170 microm in diameter. The sequences in which tooth positions are initiated in embryos may be more the result of the pattern in which cells escape from molecules that inhibit induction rather than the pattern in which cells create molecules that initiate induction.
Collapse
Affiliation(s)
- J W Osborn
- Department of Oral Health Sciences, Faculty of Medicine and Oral Health Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|