1
|
Lillywhite HB, Jacobson ER, Sheehy Iii CM. Complexity in the timing of the first postnatal ecdysis in snakes. J Exp Biol 2024; 227:jeb247536. [PMID: 38869075 DOI: 10.1242/jeb.247536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Lepidosaurian reptiles, particularly snakes, periodically shed the outer epidermal layers of their skin (ecdysis) to restore or enhance vital functions such as regulating water and gaseous exchange, growth, and protection against insult, infection or physical injury. Although many studies have focused on the nature and mechanisms of skin shedding, little attention has been paid to the timing of the first ecdysis in neonates following birth or hatching. A recent study investigated patterns of the time to first postnatal ecdysis in snakes based on a large dataset taken from the literature. The analysis demonstrated patterns in the time to first postnatal ecdysis related to phylogeny as well as several life history traits. While this assessment provides important advances in our knowledge of this topic, data on known biophysical drivers of ecdysis - temperature and humidity - were largely unavailable and were not evaluated. The first postnatal ecdysis of neonatal snakes can be viewed as an adaptive adjustment to the transition from the aqueous environment of the embryo to the aerial environment of the newborn. Hence, the timing of the first postnatal ecdysis is logically influenced by the aerial environment into which a newborn snake or hatchling finds itself. Therefore, in this Commentary, we first emphasize the putative plasticity of ecdysis with respect to epidermal lipids that structure the water permeability barrier and are established or renewed during ecdysis to reduce transepidermal evaporative water loss. We then discuss the likely importance of biophysical variables as influential covariates that need future investigation as potential co-determinants of the timing of first postnatal ecdysis.
Collapse
Affiliation(s)
| | - Elliott R Jacobson
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Coleman M Sheehy Iii
- Division of Herpetology, Florida Museum of Natural History, 1659 Museum Road, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Silva FM, Guerra-Fuentes RA, Blackburn DC, Prudente ALC. Embryonic development of the neotropical pit viper Bothrops atrox (Serpentes: Viperidae: Crotalinae), with emphasis on pit organ morphogenesis and its evolution in snakes. Dev Dyn 2024; 253:606-623. [PMID: 38157161 DOI: 10.1002/dvdy.677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Bothrops atrox is a pit viper with a loreal pit organ, and its embryological development remains undescribed. Here, we provide a comprehensive description of the embryology of B. atrox, focusing on the loreal pit organ and cephalic scales. RESULTS We characterized 13 developmental stages of B. atrox based on external features consistent with the embryogenesis of previously described snake species. The loreal pit organ originates from the circumorbital region and migrates to its final position. In Crotalinae, the pit organ first becomes visible at stage 28, whereas in Pythonidae labial, pit organs appear at Stage 35. Pit organs evolved independently three times in Serpentes, encompassing Boidae, Pythonidae, and Crotalinae. Boidae lacks embryological information for pit organs. Furthermore, we observed that head scalation onset occurs at Stage 33 in B. atrox, with fusion of scales surrounding the loreal pit organ. CONCLUSIONS The embryology of pit organs in Pythonidae and Boidae species remains poorly understood. Our detailed embryological descriptions are critical for proposing developmental scenarios for pit organs and guiding future research on these structures.
Collapse
Affiliation(s)
- Fernanda Magalhães Silva
- Laboratório de Herpetologia, Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Brazil
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará e Museu Paraense Emílio Goeldi, Belém, Brazil
| | - Ricardo Arturo Guerra-Fuentes
- Faculdade de Ciências Naturais, Campus Universitário do Tocantins-Cametá, Universidade Federal do Pará, Cametá, Brazil
| | - David C Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Ana L Costa Prudente
- Laboratório de Herpetologia, Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Brazil
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará e Museu Paraense Emílio Goeldi, Belém, Brazil
| |
Collapse
|
3
|
Alibardi L. General aspects on skin development in vertebrates with emphasis on sauropsids epidermis. Dev Biol 2023; 501:60-73. [PMID: 37244375 DOI: 10.1016/j.ydbio.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/02/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
General cellular aspects of skin development in vertebrates are presented with emphasis on the epidermis of sauropsids. Anamniote skin develops into a multilayered mucogenic and soft keratinized epidermis made of Intermediate Filament Keratins (IFKs) that is reinforced in most fish and few anurans by dermal bony and fibrous scales. In amniotes, the developing epidermis in contact with the amniotic fluid initially transits through a mucogenic phase recalling that of their anamniotes progenitors. A new gene cluster termed EDC (Epidermal Differentiation Complex) evolved in amniotes contributing to the origin of the stratum corneum. The EDC contains numerous genes coding for over 100 types of corneous proteins (CPs). In sauropsids 2-8 layers of embryonic epidermis accumulate soft keratins (IFKs) but do not form a compact corneous layer. The embryonic epidermis of reptiles and birds produces small amount of other, poorly known proteins in addition to IFKs and mucins. In the following development, a resistant corneous layer is formed underneath the embryonic epidermis that is shed before hatching. The definitive corneous epidermis of sauropsids is mainly composed of CBPs (Corneous beta proteins, formerly indicated as beta-keratins) derived from the EDC. CBPs belong to a gene sub-family of CPs unique for sauropsids, contain an inner amino acid region formed by beta-sheets, are rich in cysteine and glycine, and make most of the protein composition of scales, claws, beaks and feathers. In mammalian epidermis CPs missing the beta-sheet region are instead produced, and include loricrin, involucrin, filaggrin and various cornulins. Small amount of CPs accumulate in the 2-3 layers of mammalian embryonic epidermis and their appendages, that is replaced with the definitive corneous layers before birth. Differently from sauropsids, mammals utilize KAPs (keratin associated proteins) rich in cysteine and glycine for making the hard corneous material of hairs, claws, hooves, horns, and occasionally also scales.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Bologna, Italy.
| |
Collapse
|
4
|
Alibardi L. Cell adhesion and junctional proteins in the developing skin of snakes indicate they coordinate the differentiation of the epidermis. PROTOPLASMA 2022; 259:981-998. [PMID: 34697661 DOI: 10.1007/s00709-021-01711-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The development of scales and the sequence of epidermal layers during snake embryogenesis has been studied by immunofluorescence for the localization of cell adhesion, adherens, and communicating cell junctional proteins. At about 2nd/3rd of embryonic development in snakes the epidermis forms symmetric bumps at the beginning of scale formation, and they rapidly become asymmetric and elongate forming outer and inner surfaces of the very overlapped scales seen at hatching. The dermis separates a superficial loose from a deeper dense part; the latter is joined to segmental muscles and nerves, likely acting on scale orientation during snake movements. N-cam is present in the differentiating epidermis and mesenchyme of forming scales while L-cam is only/mainly detected in the periderm and epidermis. Mesenchymal N-cam is associated with the epidermis of the elongating dorsal scale surface and with the beta-differentiation that occurs in the overlapping outer surface of scales. Beta-catenin and Connexin-43 show a similar distribution, and they are mainly present in the periderm and differentiating suprabasal keratinocytes likely forming an intense connectivity during epidermal differentiation. Beta-catenin also shows nuclear localization in differentiating cells of the shedding and beta-layers at late stages of scale morphogenesis, before hatching. The study suggests that intensification of adhesion and gap junctions allows synchronization of the differentiation of suprabasal cells to produce the ordered sequence of epidermal layers of snake scales, starting from the shedding complex and the beta-layer.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab, Padua, Italy.
- Dipartimento Di Biologia, Universita Di Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
5
|
Murakami A, Hasegawa M, Kuriyama T. Developmental mechanisms of longitudinal stripes in the Japanese four-lined snake. J Morphol 2017; 279:27-36. [PMID: 28922458 DOI: 10.1002/jmor.20750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/13/2017] [Accepted: 07/29/2017] [Indexed: 11/10/2022]
Abstract
The developmental mechanisms of color patterns formation and its evolution remain unclear in reptilian sauropsids. We, therefore, studied the pigment cell mechanisms of stripe pattern formation during embryonic development of the snake Elaphe quadrivirgata. We identified 10 post-ovipositional embryonic developmental stages based on external morphological characteristics. Examination for the temporal changes in differentiation, distribution, and density of pigment cells during embryonic development revealed that melanophores first appeared in myotome and body cavity but not in skin surface at Stage 5. Epidermal melanophores were first recognized at Stage 7, and dermal melanophores and iridophores appeared in Stage 9. Stripe pattern first appeared to establish at Stage 8 as a spatial density gradient of epidermal melanophores between the regions of future dark brown longitudinal stripes and light colored background. Our study, thus, provides a comprehensive pigment-cell-based understanding of stripe pattern formation during embryonic development. We briefly discuss the importance of the gene expression studies by considering the biologically relevant theoretical models with standard developmental staging for understanding reptilian color pattern evolution.
Collapse
Affiliation(s)
- Arata Murakami
- Toho Junior and Senior High School attached to Toho University, Izumi-cho 2-1-37, Narashino, Chiba, 275-8511, Japan.,Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Masami Hasegawa
- Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Takeo Kuriyama
- Institute of Natural and Environmental Sciences, University of Hyogo, Sawano 940, Aogaki-cho, Tanba, Hyogo, 669-3842, Japan.,Wildlife Management Research Center, Hyogo, Sawano 940, Aogaki-cho, Tanba, Hyogo, 669-3842, Japan
| |
Collapse
|
6
|
Identification and comparative analysis of the epidermal differentiation complex in snakes. Sci Rep 2017; 7:45338. [PMID: 28345630 PMCID: PMC5366951 DOI: 10.1038/srep45338] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
The epidermis of snakes efficiently protects against dehydration and mechanical stress. However, only few proteins of the epidermal barrier to the environment have so far been identified in snakes. Here, we determined the organization of the Epidermal Differentiation Complex (EDC), a cluster of genes encoding protein constituents of cornified epidermal structures, in snakes and compared it to the EDCs of other squamates and non-squamate reptiles. The EDC of snakes displays shared synteny with that of the green anole lizard, including the presence of a cluster of corneous beta-protein (CBP)/beta-keratin genes. We found that a unique CBP comprising 4 putative beta-sheets and multiple cysteine-rich EDC proteins are conserved in all snakes and other squamates investigated. Comparative genomics of squamates suggests that the evolution of snakes was associated with a gene duplication generating two isoforms of the S100 fused-type protein, scaffoldin, the origin of distinct snake-specific EDC genes, and the loss of other genes that were present in the EDC of the last common ancestor of snakes and lizards. Taken together, our results provide new insights into the evolution of the skin in squamates and a basis for the characterization of the molecular composition of the epidermis in snakes.
Collapse
|
7
|
Alibardi L, Minelli D. Sites of cell proliferation during scute morphogenesis in turtle and alligator are different from those of lepidosaurian scales. ACTA ZOOL-STOCKHOLM 2014. [DOI: 10.1111/azo.12114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Bigea; University of Bologna; via Semi 3 Bologna 40126 Italy
| | - Daniela Minelli
- Comparative Histolab and Department of Bigea; University of Bologna; via Semi 3 Bologna 40126 Italy
| |
Collapse
|
8
|
Klein MCG, Gorb SN. Ultrastructure and wear patterns of the ventral epidermis of four snake species (Squamata, Serpentes). ZOOLOGY 2014; 117:295-314. [DOI: 10.1016/j.zool.2014.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 11/13/2013] [Accepted: 01/11/2014] [Indexed: 11/27/2022]
|
9
|
Close M, Cundall D. Snake lower jaw skin: Extension and recovery of a hyperextensible keratinized integument. ACTA ACUST UNITED AC 2013; 321:78-97. [DOI: 10.1002/jez.1839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/15/2013] [Accepted: 09/13/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew Close
- Department of Biological Sciences; Lehigh University; Williams Annex; Bethlehem Pennsylvania
- Biology Department; Radford University; Radford Virginia
| | - David Cundall
- Department of Biological Sciences; Lehigh University; Williams Annex; Bethlehem Pennsylvania
| |
Collapse
|
10
|
Swadźba E, Rupik W. Cross-immunoreactivity between the LH1 antibody and cytokeratin epitopes in the differentiating epidermis of embryos of the grass snake Natrix natrix L. during the end stages of embryogenesis. PROTOPLASMA 2012; 249:31-42. [PMID: 21222007 DOI: 10.1007/s00709-010-0259-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 12/22/2010] [Indexed: 05/09/2023]
Abstract
The monoclonal anti-cytokeratin 1/10 (LH1) antibody recognizing K1/K10 keratin epitopes that characterizes a keratinized epidermis of mammals cross-reacts with the beta and Oberhäutchen layers covering the scales and gastrosteges of grass snake embryos during the final period of epidermis differentiation. The immunolocalization of the anti-cytokeratin 1/10 (LH1) antibody appears in the beta layer of the epidermis, covering the outer surface of the gastrosteges at the beginning of developmental stage XI, and in the beta layer of the epidermis, covering the outer surface of the scales at the end of developmental stage XI. This antibody cross-reacts with the Oberhäutchen layers in the epidermis covering the outer surface of both scales and gastrosteges at developmental stages XI and XII just before its fusion with the beta layers. After fusion of the Oberhäutchen and beta layers, LH1 immunolabeling is weaker than before. This might suggest that alpha-keratins in these layers of the epidermis are masked by beta-keratins, modified, or degraded. The anti-cytokeratin 1/10 (LH1) antibody stains the Oberhäutchen layer in the epidermis covering the inner surface of the gastrosteges and the hinge regions between gastrosteges at the end of developmental stage XI. However, the Oberhäutchen of the epidermis covering the inner surfaces of the scales and the hinge regions between scales does not show cytokeratin 1/10 (LH1) immunolabeling until hatching. This cross-reactivity suggests that the beta and Oberhäutchen layers probably contain some alpha-keratins that react with the LH1 antibody. It is possible that these alpha-keratins create specific scaffolding for the latest beta-keratin deposition. It is also possible that the LH1 antibody cross-reacts with other epidermal proteins such as filament-associated proteins, i.e., filaggrin-like. The anti-cytokeratin 1/10 (LH1) antibody does not stain the alpha and mesos layers until hatching. We suppose that the differentiation of these layers will begin just after the first postnatal sloughing.
Collapse
Affiliation(s)
- Elwira Swadźba
- Department of Animal Histology and Embryology, Silesian University, Katowice, Poland
| | | |
Collapse
|
11
|
Swadźba E, Rupik W. Ultrastructural studies of epidermis keratinization in grass snake embryos Natrix natrix L. (Lepidosauria, Serpentes) during late embryogenesis. ZOOLOGY 2010; 113:339-60. [DOI: 10.1016/j.zool.2010.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 11/29/2022]
|
12
|
Swadźba E, Maślak R, Rupik W. Light and scanning microscopic studies of integument differentiation in the grass snakeNatrix natrixL. (Lepidosauria, Serpentes) during embryogenesis. ACTA ZOOL-STOCKHOLM 2009. [DOI: 10.1111/j.1463-6395.2008.00329.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Alibardi L, Gill BJ. Epidermal differentiation in embryos of the tuatara Sphenodon punctatus (Reptilia, Sphenodontidae) in comparison with the epidermis of other reptiles. J Anat 2007; 211:92-103. [PMID: 17532799 PMCID: PMC2375800 DOI: 10.1111/j.1469-7580.2007.00745.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Studying the epidermis in primitive reptiles can provide clues regarding evolution of the epidermis during land adaptation in vertebrates. With this aim, the development of the skin of the relatively primitive reptile Sphenodon punctatus in representative embryonic stages was studied by light and electron microscopy and compared with that of other reptiles previously studied. The dermis organizes into a superficial and deep portion when the epidermis starts to form the first layers. At embryonic stages comparable with those of lizards, only one layer of the inner periderm is formed beneath the outer periderm. This also occurs in lizards and snakes so far studied. The outer and inner periderm form the embryonic epidermis and accumulate thick, coarse filaments (25-30 nm thick) and sparse alpha-keratin filaments as in other reptiles. Beneath the embryonic epidermis an oberhautchen and beta-cells form small horny tips that represent overlapping borders along the margin of beta-cells that overlap other beta-cells (in a tile-like arrangement). The tips resemble those of agamine lizards but at a small scale, forming a lamellate-spinulated pattern as previously described in adult epidermis. The embryonic epidermis matures by the dispersion of coarse filaments among keratin at the end of embryonic development and is shed around hatching. The presence of these matrix organelles in the embryonic epidermis of this primitive reptile further indicates that amniote epidermis acquired interkeratin matrix proteins early for land adaptation. Unlike the condition in lizards and snakes, a shedding complex is not formed in the epidermis of embryonic S. punctatus that is like that of the adult. Therefore, as in chelonians and crocodilians, the epidermis of S. punctatus also represents an initial stage that preceded the evolution of the shedding complex for moulting.
Collapse
Affiliation(s)
- L Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, Bologna, Italy.
| | | |
Collapse
|
14
|
Abstract
SUMMARYThe vertebrate integument represents an evolutionary compromise between the needs for mechanical protection and those of sensing the environment and regulating the exchange of materials and energy. Fibrous keratins evolved as a means of strengthening the integument while simultaneously providing a structural support for lipids, which comprise the principal barrier to cutaneous water efflux in terrestrial taxa. Whereas lipids are of fundamental importance to water barriers, the efficacy of these barriers depends in many cases on structural features that enhance or maintain the integrity of function. Amphibians are exceptional among tetrapods in having very little keratin and a thin stratum corneum. Thus, effective lipid barriers that are present in some specialized anurans living in xeric habitats are external to the epidermis, whereas lipid barriers of amniotes exist as a lipid-keratin complex within the stratum corneum. Amphibians prevent desiccation of the epidermis and underlying tissues either by evaporating water from a superficial aqueous film, which must be replenished, or by shielding the stratum corneum with superficial lipids. Water barrier function in vertebrates generally appears to be relatively fixed, although various species have`plasticity' to adjust the barrier effectiveness facultatively. While it is clear that both phenotypic plasticity and genetic adaptation can account for covariation between environment and skin resistance to water efflux, studies of the relative importance of these two phenomena are few. Fundamental mechanisms for adjusting the skin water barrier include changes in barrier thickness, composition and physicochemical properties of cutaneous lipids,and/or geometry of the barrier within the epidermis. While cutaneous lipids have been studied extensively in the contexts of disease and cosmetics,relatively little is known about the processes of permeability barrier ontogenesis related to adaptation and environment. Advances in such knowledge have didactic significance for understanding vertebrate evolution as well as practical application to clinical dermatology.
Collapse
|
15
|
Abstract
Little is known about specific proteins involved in keratinization of the epidermis of snakes. The presence of histidine-rich molecules, sulfur, keratins, loricrin, transglutaminase, and isopeptide-bonds have been studied by ultrastructural autoradiography, X-ray microanalysis, and immunohistochemistry in the epidermis of snakes. Shedding takes place along a shedding complex, which is composed of two layers, the clear and the oberhautchen layers. The remaining epidermis comprises different layers, some of which contain beta-keratins and others alpha-keratins. Weak loricrin, transglutaminase, and sometimes also iso-peptide-bond immunoreactivities are seen in some cells, lacunar cells, of the alpha-layer. Tritiated histidine is mainly incorporated in the shedding complex, especially in dense beta-keratin filaments in cells of the oberhautchen layer and to a small amount in cells of the clear layer. This suggests the presence of histidine-rich, matrix proteins among beta-keratin bundles. The latter contain sulfur and are weakly immunolabeled for beta-keratin at the beginning of differentiation of oberhautchen cells. After merging with beta cells, the dense beta-keratin filaments of oberhautchen cells become immunopositive for beta-keratin. The uptake of histidine decreases in beta cells, where little dense matrix material is present, while pale beta-keratin filaments increase. During maturation, little histidine labeling remains in electron-dense areas of the beta layer and in those of oberhautchen spinulae. Some roundish dense granules of oberhautchen cells rich in sulfur are negative to antibodies for alpha-keratin, beta-keratin, and loricrin. The granules eventually merge with beta-keratin, and probably contribute to the formation of the resistant matrix of oberhautchen cells. In conclusion, beta-keratin, histidine-rich, and sulfur-rich proteins contribute to form snake microornamentations.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia Evoluzionistica Sperimentale, University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
16
|
Alibardi L, Toni M. Immunolocalization and characterization of cornification proteins in snake epidermis. ACTA ACUST UNITED AC 2005; 282:138-46. [PMID: 15635676 DOI: 10.1002/ar.a.20153] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Little is known about specific proteins involved in keratinization of the epidermis of snakes, which is composed of alternating beta- and alpha-keratin layers. Using immunological techniques (immunocytochemistry and immunoblotting), the present study reports the presence in snake epidermis of proteins with epitopes that cross-react with certain mammalian cornification proteins (loricrin, filaggrin, sciellin, transglutaminase) and chick beta-keratin. alpha-keratins were found in all epidermal layers except in the hard beta- and alpha-layers. beta-keratins were exclusively present in the oberhautchen and beta-layer. After extraction and electrophoresis, alpha-keratins of 40-67 kDa in molecular weights were found. Loricrin-like proteins recorded molecular weights of 33, 50, and 58 kDa; sciellin, 55 and 62 kDa; filaggrin-like, 52 and 65 kDa; and transglutaminase, 45, 50, and 56 kDa. These results suggest that alpha-layers of snake epidermis utilize proteins with common epitopes to those present during cornification of mammalian epidermis. The beta-keratin antibody on extracts from whole snake epidermis showed a strong cross-reactive band at 13-16 kDa. No cross-reactivity was seen using an antibody against feather beta-keratin, indicating absence of a common epitope between snake and feather keratins.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia Evoluzionistica Sperimentale, University of Bologna, Bologna, Italy.
| | | |
Collapse
|
17
|
Alibardi L. Formation of the corneous layer in the epidermis of the tuatara (Sphenodon punctatus, Sphenodontida, Lepidosauria, Reptilia). ZOOLOGY 2004; 107:275-87. [PMID: 16351945 DOI: 10.1016/j.zool.2004.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 06/28/2004] [Accepted: 06/30/2004] [Indexed: 10/25/2022]
Abstract
The formation of the stratum corneum in the epidermis of the reptile Sphenodon punctatus has been studied by histochemical, immunohistochemical, and ultrastructural methods. Sulfhydryl groups are present in the mesos and pre-alpha-layer but disappear in the keratinized beta-layer and in most of the mature alpha-layer. This suggests a complete cross-linking of keratin filaments. Tyrosine increases in keratinized layers, especially in the beta-layer. Arginine is present in living epidermal layers, in the presumptive alpha-layer, but decreases in keratinized layers. Histidine is present in corneous layers, especially in the intermediate region between the alpha- and a new beta-layer, but disappears in living layers. It is unknown whether histidine-rich proteins are produced in the intermediate region. Small keratohyalin-like granules are incorporated in the intermediate region. The plane of shedding, as confirmed from the study on molts, is located along the basalmost part of the alpha-layer and may involve the degradation of whole cells or cell junctions of the intermediate region. A specific shedding complex, like that of lizards and snakes, is not formed in tuatara epidermis. AE1-, AE2-, or AE3-positive alpha-keratins are present in different epidermal layers with a pattern similar to that previously described in reptiles. The AE1 antibody stains the basal and, less intensely, the first suprabasal layers. Pre-keratinized, alpha- and beta-layers, and the intermediate region remain unlabeled. The AE2 antibody stains suprabasal and forming alpha- and beta-layers, but does not stain the basal and suprabasal layers. In the mature beta-layer the immunostaining disappears. The AE3 antibody stains all epidermal layers but disappears in alpha- and beta-layers. Immunolocalization for chick scale beta-keratins labels the forming and mature beta-layer, but disappears in the mesos and alpha-layer. This suggests the presence of common epitopes in avian and reptilian beta-keratins. Low molecular weight alpha-keratins present in the basal layer are probably replaced by keratins of higher molecular weight in keratinizing layers (AE2-positive). This keratin pattern was probably established since the beginning of land adaptation in amniotes.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia Evoluzionistica Sperimentale, University of Bologna, via Selmi 3, I-40126 Bologna, Italy.
| |
Collapse
|
18
|
The First Shed Skin of Neonate Corn Snakes Is Chemically Different from Adult Shed Skins. J HERPETOL 2004. [DOI: 10.1670/96-03n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Alibardi L. Dermo-epidermal interactions in reptilian scales: Speculations on the evolution of scales, feathers, and hairs. ACTA ACUST UNITED AC 2004; 302:365-83. [PMID: 15287101 DOI: 10.1002/jez.b.20028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The dermal influence on the epidermis during scale formation in reptiles is poorly known. Cells of the superficial dermis are not homogeneously distributed beneath the epidermis, but are instead connected to specific areas of the epidermis. Dermal cells are joined temporarily or cyclically through the basement membrane, with the reactive region of the epidermis forming specific regions of dermo-epidermal interactions. In these regions morphoregulatory molecules may be exchanged between the dermis and the connected epidermis. Possible changes in the localization of these regions in the skin may result in the production of different appendages, in accordance with the genetic makeup of the epidermis in each species. Regions of dermo-epidermal interactions seem to move their position during development. A hypothesis on the development and evolution of scales, hairs, and feathers from sarcopterigian fish to amniotes is presented, based on the different localization and extension of regions of dermo-epidermal interactions in the skin. It is hypothesized that, during phylogenesis, possible variations in the localization and extension of these regions, from the large scales of basic amniotes to those of sauropsid amniotes, may have originated scales with hard (beta)-keratin. In extant reptiles, extended regions of dermo-epidermal interaction form most of the expanse of outer scale surface. It is hypothesized that the reduction of large regions of dermo-epidermal interactions into small areas in the skin were the origin of dermal condensations. In mammals, small regions of dermo-epidermal interactions have invaginated, forming the dermal papilla with the associated hair matrix epidermis. In birds, small regions of dermo-epidermal interactions have reduced the original scale surface of archosaurian scales, forming the dermal papilla. The latter has invaginated in association with the collar epidermis from which feathers were produced.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
20
|
Alibardi L, Maderson PFA. Distribution of keratin and associated proteins in the epidermis of monotreme, marsupial, and placental mammals. J Morphol 2003; 258:49-66. [PMID: 12905534 DOI: 10.1002/jmor.10118] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The expression of acidic and basic keratins, and of some keratinization marker proteins such as filaggrin, loricrin, involucrin, and trichohyalin, is known for the epidermis of only a few eutherian species. Using light and high-resolution immunocytochemistry, the presence of these proteins has been studied in two monotreme and five marsupial species and compared to that in eutherians. In both monotreme and marsupial epidermis lamellar bodies occur in the upper spinosus and granular layers. Development of the granular layer varies between species and regionally within species. There is great interspecific variation in the size (0.1-3.0 microm) of keratohyalin granules (KHGs) associated with production of orthokeratotic corneous tissues. Those skin regions lacking hairs (platypus web), or showing reduced pelage density (wombat) have, respectively, minute or indiscernible KHGs, associated with patchy, or total, parakeratosis. Ultrastructural analysis shows that monotreme and marsupial KHGs comprise irregular coarse filaments of 25-40 nm that contact keratin filaments. Except for parakeratotic tissues of platypus web, distribution of acidic and basic proteins in monotreme and marsupial epidermis as revealed by anti-keratin antibodies AE1, AE2, and AE3 resembles that of eutherian epidermis. Antibodies against human or rat filaggrins have little or no cross-reactivity with epidermal proteins of other mammals: only sparse areas of wombat and rabbit epidermis show a weak immunofluorescence in transitional cells and in the deepest corneous tissues. Of the available, eutherian-derived antibodies, that against involucrin shows no cross-reactivity with any monotreme and marsupial epidermal tissues and that against trichohyalin cross-reacts only with cells in the inner root sheath and medulla of hairs. These results suggest that if involucrin and trichohyalin are present throughout noneutherian epidermis, they may have species-specific molecular structures. By contrast, eutherian-derived anti-loricrin antibodies show a weak to intense cross-reactivity to KHGs and corneous tissues of both orthokeratotic and parakeratotic epidermis in monotremes and marsupials. High-resolution immunogold analysis of loricrin distribution in immature keratinocytes of platypus parakeratotic web epidermis identifies labeled areas of round or irregular, electron-pale granules within the denser keratohyalin component and keratin network. In the deepest mature tissues, loricrin-like labeling is diffuse throughout the cytoplasm, so that cells lack the preferential distribution of loricrin along the corneous envelope that characterizes mature eutherian keratinocytes. Thus, the irregular distribution of loricrin in platypus parakeratotic tissues more resembles that which has been described for reptilian and avian keratinocytes. These observations on the noneutherian epidermis show that a stratum granulosum is present to different degrees, even discontinuous within one tissue, so that parakeratotic and orthokeratotic areas may alternate: this might imply that parakeratotic monotreme epidermis reflects the primitive pattern of amniote alpha-keratogenesis. Absent from anamniote epidermis and all sauropsid beta-keratogenic tissues, the ubiquitous presence of a loricrin-like protein as a major component of other amniote corneous tissues suggests that this is a primitive feature of amniote alpha-keratogenesis. The apparent lack of specific regionalization of loricin near the plasma membranes of monotreme keratinocytes could be an artifactual result of the immunofluorescence technique employed, or there may be masking of the antigenicity of loricrin-like proteins once they are incorporated into the corneous envelope. Nevertheless, the mechanism of redistribution of such proteins during maturation of monotreme keratinocytes is different from, perhaps more primitive, or less specialized, than that in the epidermis of eutherian mammals.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, 40126, Bologna, Italy
| | | |
Collapse
|
21
|
Alibardi L. Adaptation to the land: The skin of reptiles in comparison to that of amphibians and endotherm amniotes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 298:12-41. [PMID: 12949767 DOI: 10.1002/jez.b.24] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The adaptation to land from amphibians to amniotes was accompanied by drastic changes of the integument, some of which might be reconstructed by studying the formation of the stratum corneum during embryogenesis. As the first amniotes were reptiles, the present review focuses on past and recent information on the evolution of reptilian epidermis and the stratum corneum. We aim to generalize the discussion on the evolution of the skin in amniotes. Corneous cell envelopes were absent in fish, and first appeared in adult amphibian epidermis. Stem reptiles evolved a multilayered stratum corneum based on a programmed cell death, intensified the production of matrix proteins (e.g., HRPs), corneous cell envelope proteins (e.g., loricrine-like, sciellin-like, and transglutaminase), and complex lipids to limit water loss. Other proteins were later produced in association to the soft or hairy epidermis in therapsids (e.g., involucrin, profilaggrin-filaggrin, trichohyalin, trichocytic keratins), or to the hard keratin of hairs, quills, horns, claws (e.g., tyrosine-rich, glycine-rich, sulphur-rich matrix proteins). In sauropsids special proteins associated to hard keratinization in scales (e.g., scale beta-keratins, cytokeratin associated proteins) or feathers (feather beta-keratins and HRPs) were originated. The temporal deposition of beta-keratin in lepidosaurian reptiles originated a vertical stratified epidermis and an intraepidermal shedding layer. The evolutions of the horny layer in Therapsids (mammals) and Saurospids (reptiles and birds) are discussed. The study of the molecules involved in the dermo-epidermal interactions in reptilian skin and the molecular biology of epidermal proteins are among the most urgent future areas of research in the biology of reptilian skin.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
22
|
Alibardi L, Spisni E, Toni M. Presence of putative histidine-rich proteins in the amphibian epidermis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 297:105-17. [PMID: 12945747 DOI: 10.1002/jez.a.10232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In amphibian epidermis mucus is thought to constitute the matrix material that links keratin filaments present in cells of the corneous layer. As contrast in mammals, and perhaps in all amniotes, histidine-rich proteins form the matrix material. In order to address the study of matrix molecules in the epidermis of the first tetrapods, the amphibians, an autoradiographic and electrophoretic study has been done after administration of tritiated histidine. Histological analysis of amphibian epidermis shows that histidine is taken up in the upper intermediate and replacement layers beneath the corneous layer. Ultrastructural autoradiographic analysis reveals that electron-dense interkeratin material is labeled after administration of tritiated histidine. Electrophoretic analysis of the epidermis shows labeled proteic bands at 58-61, 50-55, 40-45, and some only weakly labeled at 30 and 24-25 kDa at 4-48 hours after injection of tritiated histidine. Keratin markers show that bands at 40-61 kDa contain keratins. Most histidine is probably converted into other amino acids such as glutamate and glutamine that are incorporated into newly synthetized keratins. However, non-keratin histidine-incorporating proteins within the keratin range could also be formed. The bands at 30 and 24-25 kDa suggest that these putative histidine-rich proteins are not keratins. In fact, their molecular weigh is below the range of that for keratins. In contrast with the mammalian condition, but resembling reports for lizard epidermis, putative histidine-rich proteins in amphibians have no high molecular weight precursor. Although filaggrin is not detectable by immunofluorescence in sections of amphibian epidermis, protein extraction, electrophoresis and immunoblotting are more sensitive. In the epidermis of toad and frog, but only occasionally in that of newt, filaggrin cross-reactive proteic bands are seen at 50-55, 40-45, and sometimes at 25 kDa. This suggests that after extraction and unmasking of reactive sites in the epidermis of more terrestrial amphians (anurans), some HRPs with filaggrin-like cross-reactivity are present. The overlap that exists at 50-55 kDa between filaggrin-positive and AE2-positive keratins, but not that at 40-45 kDa further indicate that non-keratin, filaggrin-like proteins may be present in anuran epidermis. The present study suggests for the first time that very small amounts of histidine-rich proteins are produced among keratin filaments in upper intermediate, replacement and corneous layers of amphibian epidermis. Although the molecular composition of these proteins is unknown, precluding understanding of their relationship to those of mammals and reptiles, these cationic proteins might have originated in conjunction with the formation of a horny layer during the adaptation to land during the Carboniferous and were possibly refined later in the epidermis of amniotes.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia Evoluzionistica Sperimentale, University of Bologna, 40126, Bologna, Italy.
| | | | | |
Collapse
|
23
|
Alibardi L, Maderson PFA. Observations on the histochemistry and ultrastructure of the epidermis of the tuatara, Sphenodon punctatus (Sphenodontida, Lepidosauria, Reptilia): a contribution to an understanding of the lepidosaurian epidermal generation and the evolutionary origin of the squamate shedding complex. J Morphol 2003; 256:111-33. [PMID: 12635105 DOI: 10.1002/jmor.10079] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Histochemical and TEM analysis of the epidermis of Sphenodon punctatus confirms previous histological studies showing that skin-shedding in this relic species involves the periodic production and loss of epidermal generations, as has been well documented in the related Squamata. The generations are basically similar to those that have been described in the latter, and their formation involves a cyclic alternation between beta- and alpha-keratogenesis. The six differences from the previously described squamate condition revealed by this study include: 1) the absence of a well-defined shedding complex; 2) the persistence of plasma membranes throughout the mature beta-layer, including the oberhautchen; 3) the concomitant presence of lipogenic lamellar bodies and PAS-positive mucous granules in most presumptive alpha-keratinizing cells; 4) the presence of the secreted contents of these organelles in the intercellular domains of the three derived tissues, the homologues of the squamate mesos, alpha-, and lacunar cells; 5) the paucity of lamellated lipid deposits in such domains; 6) the presence of keratohyalin-like granules (KHLG) in the presumptive lacunar, clear, and oberhautchen cells. In toto, the absence of many of the precisely definable, different pathways of cytogenesis discernible during squamate epidermal generation production might be interpreted as primitive for lepidosaurs. However, when the evolutionary significance of each of the six differences listed is evaluated separately, it becomes clear that the epidermis of S. punctatus possesses primitive amniote, shared and derived lepidosaurian, and some unique characters. This evaluation further elucidates the concept of a lepidosaurian epidermal generation as a derived manifestation of the sauropsid synapomorphy of vertical alternation of keratin synthesis and shows that further study of keratinocyte differentiation in the tuatara may contribute to our understanding of the origin and evolution of beta-keratinization in sauropsid amniotes.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, Bologna 40126, Italy
| | | |
Collapse
|
24
|
Alibardi L, Joss JMP. Keratinization of the epidermis of the Australian lungfish Neoceratodus forsteri (dipnoi). J Morphol 2003; 256:13-22. [PMID: 12616571 DOI: 10.1002/jmor.10073] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The differentiation of the epidermis in sarcopterigian fish may reveal some trend of keratinization followed by amphibian ancestors to adapt their epidermis to land. Therefore, the process of keratinization of the epidermis of the Australian lungfish Neoceratodus forsteri was studied by histochemistry, electron microscopy, and keratin immunocytochemistry. The epidermis is tri-stratified in a 2-3-month-old tadpole but becomes 6-8 stratified in young adults. Keratin filaments increase from basal to external cells where loose tonofilament bundles are present. This is shown also by the comparison of positivity to sulfhydryl groups and increasing immunoreactivity to alpha-keratins in more external layers of the epidermis. Two broad-spectrum anti alpha-keratin monoclonal antibodies (AE1 and AE3) stain all epidermal layers as they do in actinopterigian fish. In the adult epidermis, but not in that of the larva, the AE2 antibody (a marker of keratinization in mammalian epidermis) often immunolabels more heavily the external keratinized layers where sulfhydryl groups are more abundant. Mucous granules are numerous and concentrate on the external surface of the epidermis to be discharged and contribute to cuticle formation. Keratin is therefore embedded in a mucus matrix, but neither compact keratin masses nor cell corneous envelope were seen in external cells. It is not known whether specific matrix proteins are associated with mucus. There was no immunolocalization of the keratin-associated proteins, filaggrin and loricrin, which suggests that the epidermis of this species lacks the matrix and cell corneus envelope proteins characteristic of that of amniotes. In conclusion, while specific keratins (AE2 positive) are probably produced in the uppermost layers as in amphibian epidermis, no interkeratin, matrix proteins seem to be present in external keratinocytes of the lungfish other than mucus.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, Bologna, Italy.
| | | |
Collapse
|
25
|
Alibardi L, Thompson MB. Epidermal differentiation during ontogeny and after hatching in the snake Liasis fuscus (Pythonidae, Serpentes, Reptilia), with emphasis on the formation of the shedding complex. J Morphol 2003; 256:29-41. [PMID: 12616573 DOI: 10.1002/jmor.10071] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Differentiation and localization of keratin in the epidermis during embryonic development and up to 3 months posthatching in the Australian water python, Liasis fuscus, was studied by ultrastructural and immunocytochemical methods. Scales arise from dome-like folds in the skin that produce tightly imbricating scales. The dermis of these scales is completely differentiated before any epidermal differentiation begins, with a loose dermis made of mesenchymal cells beneath the differentiating outer scale surface. At this stage (33) the embryo is still unpigmented and two layers of suprabasal cells contain abundant glycogen. At Stage 34 (beginning of pigmentation) the first layers of cells beneath the bilayered periderm (presumptive clear and oberhautchen layers) have not yet formed a shedding complex, within which prehatching shedding takes place. At Stage 35 the shedding complex, consisting of the clear and oberhautchen layers, is discernible. The clear layer contains a fine fibrous network that faces the underlying oberhautchen, where the spinulae initially contain a core of fibrous material and small beta-keratin packets. Differentiation continues at Stage 36 when the beta-layer forms and beta-keratin packets are deposited both on the fibrous core of the oberhautchen and within beta-cells. Mesos cells are produced from the germinal layer but remain undifferentiated. At Stage 37, before hatching, the beta-layer is compact, the mesos layer contains mesos granules, and cells of the alpha-layer are present but are not yet keratinized. They are still only partially differentiated a few hours after hatching, when a new shedding complex is forming underneath. Using antibodies against chick scale beta-keratin resolved at high magnification with immunofluorescent or immunogold conjugates, we offer the first molecular confirmation that in snakes only the oberhautchen component of the shedding complex and the underlying beta cells contain beta-keratin. Initially, there is little immunoreactivity in the small beta-packets of the oberhautchen, but it increases after fusion with the underlying cells to produce the syncytial beta layer. The beta-keratin packets coalesce with the tonofilaments, including those attached to desmosomes, which rapidly disappear in both oberhautchen and beta-cells as differentiation progresses. The labeling is low to absent in forming mesos-cells beneath the beta-layer. This study further supports the hypothesis that the shedding complex in lepidosaurian reptiles evolved after there was a segregation between alpha-keratogenic cells from beta-keratogenic cells during epidermal renewal.
Collapse
Affiliation(s)
- L Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, 40126, Bologna, Italy.
| | | |
Collapse
|
26
|
Alibardi L, Maurizii MG, Toni M, Spisni E, Taddei C. Putative histidin-rich proteins in the epidermis of lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 296:1-17. [PMID: 12589686 DOI: 10.1002/jez.a.10216] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the stratum granulosum of mammalian epidermis, histidin-rich proteins (filaggrins) determine keratin clumping and matrix formation into terminal keratinocytes of the stratum corneum. The nature of matrix, interkeratin proteins in the epidermis of nonmammalian vertebrates, and in particular in that of reptilian, mammalian progenitors are unknown. The present biochemical study is the first to address this problem. During a specific period of the renewal phase of the epidermis of lizards and during epidermal regeneration, keratohyalin-like granules are formed, at which time they take up tritiated histidine. The latter also accumulate in cells of the alpha-keratin layer (soft keratin). This pattern of histidine incorporation resembles that seen in keratohyalin granules of the stratum granulosum of mammalian epidermis. After injection of tritiated histidine, we have analysed the distribution of the radioactivity by histoautoradiography and electrophoretic gel autoradiography of epidermal proteins. Extraction and electrophoretic separation of interfilamentous matrix proteins from regenerating epidermis 3-48 hours post-injection reveals the appearance of protein bands at 65-70, 55-58, 40-43, 30-33, 25-27, and 20-22 kDa. Much weaker bands were seen at 100, 140-160, and 200 kDa. A weak band at 20-22 kDa or no bands at all are seen in the normal epidermis in resting phase and in the dermis. In regenerating epidermis at 22 and 48 hours post-injection, little variation in bands is detectable, but low molecular weight bands tend to increase slightly, suggesting metabolic turnover. Using anti-filaggrin antibodies against rat, human, or mouse filaggrins, some cross-reactivity was seen with more reactive bands at 40-42 and 33 kDa, but it was reduced or absent at 140, 95-100, 65-70, 50-55, and 25 kDa. This suggests that different intermediate degradative proteins of lizard epidermis may share some epitopes with mammalian filaggrins and are different from keratins with molecular weight ranging from 40 to 65-68 kDa. The immunocytochemical observation confirms that a weak filaggrin-like immunoreactivity characterizes differentiating alpha-keratogenic layers in normal and regenerating tail. A weak filaggrin labeling is discernable in small keratohyalin-like granules but is absent from the larger granules and from mature keratinocytes. The present results indicate, for the first time, that histidine-rich proteins are involved in the process of alpha-keratinization in reptilian epidermis. The cationic, interkeratin matrix proteins implicated may be fundamentally similar in both theropsid-derived and sauropsid amniotes.
Collapse
Affiliation(s)
- L Alibardi
- Dipartimento di Biologia Evoluzionistica Sperimentale, University of Bologna, 40126 Bologna, Italy.
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Tu MC, Lillywhite HB, Menon JG, Menon GK. Postnatal ecdysis establishes the permeability barrier in snake skin: new insights into barrier lipid structures. J Exp Biol 2002; 205:3019-30. [PMID: 12200405 DOI: 10.1242/jeb.205.19.3019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
A competent barrier to transepidermal water loss (TEWL) is essential for terrestrial life. In various vertebrates, epidermal water barriers composed of lipids prevent excessive TEWL, which varies inversely with habitat aridity. Little is known, however, about the mechanisms and regulation of permeability relative to natal transition from the `aqueous' environments of gestation to the `aerial' environments of terrestrial neonates. We investigated newly hatched California king snakes Lampropeltis getula to test the hypothesis that the first ecdysis is important for establishing the barrier to TEWL. We found that skin resistance to TEWL increases twofold following the first postnatal ecdysis, corresponding with a roughly twofold increase in thickness and deposition of lamellar lipids in the mesos layer, the site of the skin permeability barrier in snakes. In addition, novel observations on lipid inclusions within the alpha layer of epidermis suggest that this layer has functional similarities with avian epidermis. It appears that emergence of the integument from embryonic fluids, and its subsequent pan-body replacement following contact with air, are essential for completion of barrier competence in the newborn. These conditions provide a potentially useful model for investigations on the mechanism of barrier formation. We also found that hatchling snakes are transiently endothermic, with skin temperatures elevated by approximately 0.6°C above ambient air temperature during the period of barrier formation. Behaviourally, hatchlings showed a higher tendency to seek humid microenvironments before the first ecdysis than after. The degree of water movement across the integument might explain the switch from reclusive to dispersive behaviours associated with postnatal ecdysis in snakes.
Collapse
Affiliation(s)
- M C Tu
- Department of Zoology, University of Florida, Gainesville, FL 32611-8525, USA.
| | | | | | | |
Collapse
|
29
|
Alibardi L, Sawyer RH. Immunocytochemical analysis of beta keratins in the epidermis of chelonians, lepidosaurians, and archosaurians. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 293:27-38. [PMID: 12115916 DOI: 10.1002/jez.10145] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Beta (beta) keratins are present only in the avian and reptilian epidermises. Although much is known about the biochemistry and molecular biology of the beta keratins in birds, little is known for reptiles. In this study we have examined the distribution of beta keratins in the adult epidermis of turtle, lizard, snake, tuatara, and alligator using light and electron immunocytochemistry with a well-characterized antiserum (anti-beta(1) antiserum) made against a known avian scale type beta keratin. In lizard, snake, and tuatara epidermis this antiserum reacts strongly with the beta-layer, more weakly with the oberhautchen before it merges with the beta-layer, and least intensely with the mesos layer. In addition, the anti-beta(1) antiserum reacts specifically with the setae of climbing pads in gekos, the plastron and carapace of turtles, and the stratum corneum of alligator epidermis. Electron microscopic studies confirm that the reaction of the anti-beta(1) antiserum is exclusively with characteristic bundles of the 3-nm beta keratin filaments in the cells of the forming beta-layer, and with the densely packed electron-lucent areas of beta keratin in the mature bet- layer. These immunocytochemical results suggest that the 3-nm beta keratin filaments of the reptilian integument are phylogenetically related to those found in avian epidermal appendages.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, 40126, Bologna, Italy.
| | | |
Collapse
|
30
|
Alibardi L. Histidine uptake in the epidermis of lizards and snakes in relation to the formation of the shedding complex. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 292:331-44. [PMID: 11857467 DOI: 10.1002/jez.10087] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mammalian epidermis utilizes histidine-rich proteins (filaggrins) to aggregate keratin filaments and form the stratum corneum. Little is known about the involvement of histidine-rich proteins during reptilian keratinization. The formation of the shedding complex in the epidermis of snakes and lizards, made of the clear and the oberhautchen layers, determines the cyclical epidermal sloughing. Differently from snakes, keratohyalin-like granules are present in the clear layer of lizards. The uptake of tritiated histidine into the epidermis of two lizards and one snake has been studied by autoradiography in sections at progressive post-injection periods. At 40 min and 1 hr post-injection keratohyalin-like granules were not or poorly labeled. At 3-22 hr post-injection most of the labeling was present over suprabasal cells destined to form the shedding complex, in keratohyalin-like granules of the clear layer, and in the forming a-layer but was low in the forming b-layer, and in superficial keratinized layers. The analysis of the shedding complex in the pad lamellae (a specialized scale used for climbing) of a gecko showed that the setae and the cytoplasm of clear cells among them are main sites of histidine uptake at 4 hr post-injection. In the snake most of the labeling at 4 hr post-injection was localized in the shedding complex along the boundary between the clear and oberhautchen layers. The present study suggests that, in the epidermis of lepidosaurian reptiles, the synthesis of a histidine-rich protein is involved in the formation of the shedding layer and, as in mammals, in a-keratinization.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
31
|
Alibardi L. Immunocytochemical observations on the cornification of soft and hard epidermis in the turtle Chrysemys picta. ZOOLOGY 2002; 105:31-44. [PMID: 16351854 DOI: 10.1078/0944-2006-00048] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Revised: 04/04/2002] [Accepted: 04/08/2002] [Indexed: 11/18/2022]
Abstract
The process of cornification in the shell and non-shelled areas of the epidermis of the turtle Chrysemys picta was analyzed by light and ultrastructural immunohistochemistry for keratins, filaggrin and loricrin. Beta-keratin (hard keratin) was only present in the corneus layer of the plastron and carapace. The use of a beta-keratin antibody, developed against a specific chick scale beta-keratin, demonstrated that avian and reptilian hard keratins share common amino acid sequences. In both, shelled and non-shelled epidermis, acidic alpha keratin (AE1 positive) was limited to tonofilament bundles of the basal and suprabasal layer, while basic keratin (AE3 positive) was present in basal, suprabasal, and less intensely, pre-corneus layers, but tended to disappear in the corneus layer. The AE2 antibody, which in mammalian epidermis recognizes specific keratins of cornification, did not stain turtle shell but only the corneus layer of non-shelled (soft) epidermis. Two and four hours after an injection of tritiated histidine, the labelling was evenly distributed over the whole epidermis of both shelled and non-shelled areas, but was absent from the stratum corneum. In the areas of growth at the margin of the scutes of the shell, the labelling increased in precorneus layers. This suggests that histidine uptake is only related to shell growth and not to the production of a histidine-rich protein involved in keratinization. No filaggrin-like and loricrin-like immunoreactivity was seen in the carapace or plastron epidermis. However, in both proteins, some immunoreactivity was found in the transitional layer and in the lower level of the corneus layer of non-shelled areas. Loricrin- and filaggrin-like labelling was seen in small organelles (0.05-0.3 mum) among keratin bundles, identified with mucous-like granules and vesicular bodies. These organelles, present only in non-shelled epidermis, were more frequent along the border with the corneus layer, and labelling was low to absent in mature keratinocytes. This may be due to epitope masking or degradation. The immunolabelling for filaggrin was seen instead in the extracellular space among mature keratinocytes, over a material previously identified as mucus. The possibility that this labelling identified some epitopes derived from degraded portions of a filaggrin-like molecule is discussed. The present study suggests that proteins with some filaggrin- and loricrin-immunoreactivity are present in alpha-keratinocytes but not in beta-keratin cells of the shell.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, Italy.
| |
Collapse
|