1
|
Rams-Pociecha I, Mizia PC, Piprek RP. Histological and immunohistochemical analysis of gonadal development in the veiled chameleon (Chamaeleo calyptratus). Anat Rec (Hoboken) 2024. [PMID: 39719868 DOI: 10.1002/ar.25621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/20/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
Chameleons are a family of lizards distinguished by several unique features related to their arboreal lifestyles, such as a ballistic tongue, skin color changes, independent movement of both eyes, a prehensile tail, and cleft hands and feet. The veiled chameleon (Chamaeleo calyptratus) has been proposed as a promising model species for studying squamate biology. Despite its potential, the developmental biology of this species remains poorly understood, particularly in terms of gonadal development. This study aimed to elucidate the development of the gonads in the veiled chameleon, from the initial appearance of the gonadal ridges through the sexual differentiation into ovaries and testes, to the establishment of the gonadal structures in both sexes. The study showed the accelerated appearance of gonadal primordia compared to the soma in the veiled chameleon, which is unique and possibly influenced by a prolonged in ovo development period due to the slowed rate of embryonic development in this species. The undifferentiated gonads are characterized by a voluminous medulla and a thin cortex. The process of gonadal sexual differentiation mirrors that seen in other vertebrates. Ovarian differentiation involves the development of a cortex containing germ cells and the loss of these cells in the medulla. Differentiated ovaries are characterized by a thin cortex and early induction of meiosis, leading to the formation of ovarian follicles before hatching. In contrast, testis differentiation involves the loss of germ cells from the cortex, its transformation into a thin epithelium, and the development of germ cell-containing testis cords in the medulla. The testis cords originate from invagination and remain without forming a lumen during embryogenesis. This comprehensive examination of gonadal development in the veiled chameleon provides important insights into sexual differentiation processes in this species. Moreover, it may stimulate further, broader studies in vertebrate developmental biology.
Collapse
Affiliation(s)
- Izabela Rams-Pociecha
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Paulina C Mizia
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
2
|
Nie H, Xu Y, Zhang Y, Wen Y, Zhan J, Xia Y, Zhou Y, Wang R, Wu X. The effects of endogenous FSH and its receptor on oogenesis and folliculogenesis in female Alligator sinensis. BMC ZOOL 2023; 8:8. [PMID: 37403129 DOI: 10.1186/s40850-023-00170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/26/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The precise mechanisms of hormone action responsible for the full course of events modulating folliculogenesis in crocodilian have not been determined, although histological features have been identified. RESULTS The Alligator sinensis ovarian morphological characteristics observed at 1, 15, 30, 60, 90, and 300 days post hatching(dph) revealed that the dynamic changes in germ cells varied in different meiotic and developmental stages, confirming that the processes of folliculogenesis were protracted and asynchronous. The presence of endogenous follicle-stimulating hormone(FSH) mRNA and protein expression within the cerebrum at 1 dph, in parallel with the increase in germ cells within the germ cell nests(Nest) from 1 dph to 15 dph, suggested that endocrine regulation of the pituitary-gonad axis is an early event in oogonia division. Furthermore, the endogenous expression of FSH showed a trend of negative feedback augmentation accompanied by the exhaustion of maternal yolk E2 observed at 15 dph. Such significant elevation of endogenous FSH levels was observed to be related to pivotal events in the transition from mitosis to meiosis, as reflected by the proportion of oogonia during premeiosis interphase, with endogenous FSH levels reaching a peak at the earliest time step of 1 dph. In addition, the simultaneous upregulation of premeiotic marker STRA8 mRNA expression and the increase in endogenous FSH further verified the above speculation. The strongly FSHr-positive label in the oocytes within Pre-previtellogenic follicles was synchronized with the significant elevation of ovarian cAMP detected at 300 dph, which suggested that diplotene arrest maintenance during early vitellogenesis might be FSH dependent. In addition, preferential selection in asynchronous meiotic initiation has been supposed to act on somatic supportive cells and not directly on germ cells via regulation of FSH that in turn affects downstream estrogen levels. This suggestion was verified by the reciprocal stimulating effect of FSH and E2 on the accelerated meiotic marker SYCP3 and by the inhibited cell apoptosis demonstrated in ovarian cell culture in vitro. CONCLUSION The corresponding results contribute an expansion of the understanding of physiological processes and shed some light on the specific factors responsible for gonadotropin function in the early folliculogenesis of crocodilians.
Collapse
Affiliation(s)
- Haitao Nie
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yunlu Xu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yuqian Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yue Wen
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Jixiang Zhan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yong Xia
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yongkang Zhou
- Alligator Research Center of Anhui Province, Xuanzhou, 242000, People's Republic of China
| | - Renping Wang
- Alligator Research Center of Anhui Province, Xuanzhou, 242000, People's Republic of China
| | - Xiaobing Wu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China.
| |
Collapse
|
3
|
Smaga CR, Bock SL, Johnson JM, Parrott BB. Sex Determination and Ovarian Development in Reptiles and Amphibians: From Genetic Pathways to Environmental Influences. Sex Dev 2022; 17:99-119. [PMID: 36380624 DOI: 10.1159/000526009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Reptiles and amphibians provide untapped potential for discovering how a diversity of genetic pathways and environmental conditions are incorporated into developmental processes that can lead to similar functional outcomes. These groups display a multitude of reproductive strategies, and whereas many attributes are conserved within groups and even across vertebrates, several aspects of sexual development show considerable variation. SUMMARY In this review, we focus our attention on the development of the reptilian and amphibian ovary. First, we review and describe the events leading to ovarian development, including sex determination and ovarian maturation, through a comparative lens. We then describe how these events are influenced by environmental factors, focusing on temperature and exposure to anthropogenic chemicals. Lastly, we identify critical knowledge gaps and future research directions that will be crucial to moving forward in our understanding of ovarian development and the influences of the environment in reptiles and amphibians. KEY MESSAGES Reptiles and amphibians provide excellent models for understanding the diversity of sex determination strategies and reproductive development. However, a greater understanding of the basic biology of these systems is necessary for deciphering the adaptive and potentially disruptive implications of embryo-by-environment interactions in a rapidly changing world.
Collapse
Affiliation(s)
- Christopher R Smaga
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Samantha L Bock
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Josiah M Johnson
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Benjamin B Parrott
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| |
Collapse
|
4
|
Yuan L, Wang H, Wang Q, Li C, Yang D. INSL-3 protein expression in normal and cryptorchid testes of Ziwuling black goats. Reprod Domest Anim 2021; 56:725-735. [PMID: 33544931 DOI: 10.1111/rda.13911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Ziwuling black goats are typically found in loess plateaus regions and the Ziwuling Nature Reserve. Cryptorchidism is a common disease in this inbred goat, and its pathogenesis has been linked with the expression of insulin-like factor 3 (INSL-3). Therefore, this study aimed to investigate anatomical alterations caused by cryptorchism and the expression and distribution of INSL-3 in normal and cryptorchid testicular tissues. The testicular tissues of 6-month-old Ziwuling black goats were collected for microscopic analyses using histochemical, immunohistochemical, immunofluorescence and biometrical methods, as well as Western blotting to compare the expression and distribution of INSL-3. A lower expression of INSL-3 was observed in cryptorchid compared with normal testicular tissues (p < .01). Cryptorchidism caused a significant reduction in layers of spermatogenic epithelium and tubule areas in Ziwuling black goat (p < .01). The interstitial to seminiferous tubule area ratio was larger in cryptorchid than in normal group. Periodic Acid-Schiff (PAS) staining revealed pronounced positive bands in the interstitial tissue, while positive Alcian blue (AB) staining was not clear, and AB-PAS staining revealed a positive red band in the basement membrane of cryptorchid group. Immunofluorescence revealed a strong signal of INSL-3 expression in Sertoli and peritubular myoid cells, and moderate signal in Leydig and spermatogenic cells in the normal group. However, in cryptorchid testicular tissues, the signal of INSL-3 expression was strong in primary spermatocytes, occasional in Sertoli cells, limited in Leydig cells and absent in peritubular myoid cells. Furthermore, immunohistochemistry showed that INSL-3 expression was higher in normal testes compared with cryptorchid testicular tissues (p < .05), especially in primary spermatocytes and Sertoli cells. Collectively, our results indicate that cryptorchidism is closely related to the disorder of acid glycoprotein metabolism and the reduction in release of INSL-3 from Leydig cells. Moreover, Sertoli and peritubular myoid cells are crucial for INSL signalling and could underpin further research on the mechanism of cryptorchidism in animal.
Collapse
Affiliation(s)
- Ligang Yuan
- College of Veterinary Medicine, Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Hua Wang
- College of Veterinary Medicine, Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Qianmei Wang
- College of Veterinary Medicine, Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Chengye Li
- College of Veterinary Medicine, Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Dapeng Yang
- College of Veterinary Medicine, Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Hale MD, Parrott BB. Assessing the Ability of Developmentally Precocious Estrogen Signaling to Recapitulate Ovarian Transcriptomes and Follicle Dynamics in Alligators from a Contaminated Lake. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:117003. [PMID: 33186072 PMCID: PMC7665278 DOI: 10.1289/ehp6627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Concern has grown in recent decades over anthropogenic contaminants that interfere with the functioning of endocrine hormones. However, mechanisms connecting developmental processes to pathologies associated with endocrine-disrupting chemical (EDC) exposure are poorly understood in naturally exposed populations. OBJECTIVES We sought to a) characterize divergence in ovarian transcriptomic and follicular profiles between alligators originating from a historically EDC-contaminated site, Lake Apopka, and a reference site; b) test the ability of developmentally precocious estrogen exposure to recapitulate site-associated patterns of divergence; and c) test whether treatment with exogenous follicle-stimulating hormone (FSH) is capable of rescuing phenotypes associated with contaminant exposure and/or embryonic estrogen treatment. METHODS Alligators eggs were collected from a contaminated site and a reference site, and a subset of eggs from the reference site were treated with estradiol (E2) during embryonic development prior to gonadal differentiation. After hatching, alligators were raised under controlled laboratory settings for 5 months. Juveniles from both sites were divided and treated with exogenous FSH. Histological analyses and RNA-sequencing were conducted to characterize divergence in ovarian follicle dynamics and transcriptomes between sites, between reference and E2-treated animals, and between FSH-treated and nontreated animals. RESULTS We observed broad site-of-origin divergence in ovarian transcriptomes and reductions in ovarian follicle density between juvenile alligators from Lake Apopka and the reference site. Treating embryos from the reference site with E2 overwhelmingly recapitulated transcriptional and histological alterations observed in Lake Apopka juveniles. Ovarian phenotypes observed in Lake Apopka alligators or resulting from estrogen treatment were only partially rescued by treatment with exogenous FSH. DISCUSSION Recapitulation of ovarian abnormalities by precocious E2 revealed a relatively simple mechanism underlying contaminant-induced pathologies in a historical example of environmental endocrine disruption. Findings reported here support a model where the developmental timing of estrogen signaling has the potential to permanently alter ovarian organization and function. https://doi.org/10.1289/EHP6627.
Collapse
Affiliation(s)
- Matthew D. Hale
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Benjamin B. Parrott
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
McNabb NA, Bernhard MC, Brunell A, Lowers RH, Katsu Y, Spyropoulos DD, Kohno S. Oil dispersant Corexit 9500 is weakly estrogenic, but does not skew the sex ratio in Alligator mississippiensis. J Appl Toxicol 2019; 40:245-256. [PMID: 31486105 DOI: 10.1002/jat.3900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 11/06/2022]
Abstract
During the Deepwater Horizon oil spill, vast quantities of a chemical dispersant Corexit 9500 were applied in remediation efforts. In addition to the acute toxicity, it is essential to evaluate Corexit further with a broader scope of long-term sublethal endocrine endpoints. The American alligator (Alligator mississippiensis) is an excellent organism for such an endeavor. It exhibits temperature-dependent sex determination, in which egg incubation temperatures during a thermosensitive period (TSP) in embryonic development determine the sex of embryos. Estrogen signals play a critical role in this process. For example, a single exposure to exogenous estrogen during the TSP overrides the effects of temperature and leads to skewed sex ratios. At a concentration of 100 ppm, Corexit significantly induced transcriptional activity of both alligator nuclear estrogen receptors 1 and 2 in vitro in reporter gene assays. To investigate the estrogenic effects of Corexit on gonadal development, alligator eggs were exposed to Corexit at environmentally relevant concentrations (0.25, 2.5 and 25 ppm) before the TSP in ovo. Exposure to Corexit at 0.25 and 25 ppm significantly delayed hatching and growth. Corexit exposure at any treatment level did not affect sex ratios or testicular mRNA abundance as measured at 1-week post-hatching, suggesting that the combination of Corexit components did not synergize enough to induce ovarian development in ovo. These results point to a need for further investigations on individual and combined components of Corexit to understand better their long-term effects on the development and reproductive health of alligators and other coastal aquatic wildlife.
Collapse
Affiliation(s)
- Nicole A McNabb
- Graduate Program in Marine Biology, The University of Charleston, South Carolina at the College of Charleston, Charleston, South Carolina.,Hollings Marine Laboratory, Charleston, South Carolina.,Department of Environmental Toxicology, University of California, Davis, California
| | - Melissa C Bernhard
- Graduate Program in Marine Biology, The University of Charleston, South Carolina at the College of Charleston, Charleston, South Carolina.,Hollings Marine Laboratory, Charleston, South Carolina.,Mote Marine Laboratory and Aquarium, Sarasota, Florida
| | - Arnold Brunell
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Eustis, Florida
| | | | | | - Demetri D Spyropoulos
- Hollings Marine Laboratory, Charleston, South Carolina.,Department of Pathology, Medical University of South Carolina, Charleston, South Carolina
| | - Satomi Kohno
- Hollings Marine Laboratory, Charleston, South Carolina.,Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina.,Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota
| |
Collapse
|
7
|
Gredler ML, Larkins CE, Leal F, Lewis AK, Herrera AM, Perriton CL, Sanger TJ, Cohn MJ. Evolution of External Genitalia: Insights from Reptilian Development. Sex Dev 2014; 8:311-26. [DOI: 10.1159/000365771] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
8
|
Kohno S, Parrott BB, Yatsu R, Miyagawa S, Moore BC, Iguchi T, Guillette L. Gonadal Differentiation in Reptiles Exhibiting Environmental Sex Determination. Sex Dev 2014; 8:208-26. [DOI: 10.1159/000358892] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Moore BC, Roark AM, Kohno S, Hamlin HJ, Guillette LJ. Gene-environment interactions: the potential role of contaminants in somatic growth and the development of the reproductive system of the American alligator. Mol Cell Endocrinol 2012; 354:111-20. [PMID: 22061623 PMCID: PMC3328103 DOI: 10.1016/j.mce.2011.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 11/25/2022]
Abstract
Developing organisms interpret and integrate environmental signals to produce adaptive phenotypes that are prospectively suited for probable demands in later life. This plasticity can be disrupted when embryos are impacted by exogenous contaminants, such as environmental pollutants, producing potentially deleterious and long-lasting mismatches between phenotype and the future environment. We investigated the ability for in ovo environmental contaminant exposure to alter the growth trajectory and ovarian function of alligators at five months after hatching. Alligators collected as eggs from polluted Lake Apopka, FL, hatched with smaller body masses but grew faster during the first five months after hatching, as compared to reference-site alligators. Further, ovaries from Lake Apopka alligators displayed lower basal expression levels of inhibin beta A mRNA as well as decreased responsiveness of aromatase and follistatin mRNA expression levels to treatment with follicle stimulating hormone. We posit that these differences predispose these animals to increased risks of disease and reproductive dysfunction at adulthood.
Collapse
Affiliation(s)
- Brandon C Moore
- Department of Biology, 220 Bartram Hall, P.O. Box 118525, University of Florida, Gainesville, FL 32611-8525, USA.
| | | | | | | | | |
Collapse
|
10
|
Moore BC, Forouhar S, Kohno S, Botteri NL, Hamlin HJ, Guillette LJ. Gonadotropin-induced changes in oviducal mRNA expression levels of sex steroid hormone receptors and activin-related signaling factors in the alligator. Gen Comp Endocrinol 2012; 175:251-8. [PMID: 22154572 PMCID: PMC3328093 DOI: 10.1016/j.ygcen.2011.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 11/01/2011] [Accepted: 11/11/2011] [Indexed: 01/18/2023]
Abstract
Oviducts respond to hormonal cues from ovaries with tissue proliferation and differentiation in preparation of transporting and fostering gametes. These responses produce oviducal microenvironments conducive to reproductive success. Here, we investigated changes in circulating plasma sex steroid hormones concentrations and ovarian and oviducal mRNA expression to an in vivo gonadotropin (FSH) challenge in sexually immature, five-month-old alligators. Further, we investigated differences in these observed responses between alligators hatched from eggs collected at a heavily-polluted (Lake Apopka, FL) and minimally-polluted (Lake Woodruff, FL) site. In oviducts, we measured mRNA expression of estrogen, progesterone, and androgen receptors and also beta A and B subunits which homo- or heterodimerize to produce the transforming growth factor activin. In comparison, minimal inhibin alpha subunit mRNA expression suggests that these oviducts produce a primarily activin-dominated signaling milieu. Ovaries responded to a five-day FSH challenge with increased expression of steroidogenic enzyme mRNA which was concomitant with increased circulating sex steroid hormone concentrations. Oviducts in the FSH-challenged Lake Woodruff alligators increased mRNA expression of progesterone and androgen receptors, proliferating cell nuclear antigen, and the activin signaling antagonist follistatin. In contrast, Lake Apopka alligators displayed a diminished increase in ovarian CYP19A1 aromatase expression and no increase in oviducal AR expression, as compared to those observed in Lake Woodruff alligators. These results demonstrate that five-month-old female alligators display an endocrine-responsive ovarian-oviducal axis and environmental pollution exposure may alter these physiological responses.
Collapse
Affiliation(s)
- Brandon C Moore
- Department of Biology, 220 Bartram Hall, P.O. Box 118525, University of Florida, Gainesville, FL 32611-8525, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Moore BC, Hamlin HJ, Botteri NL, Guillette LJ. Gonadal mRNA expression levels of TGFbeta superfamily signaling factors correspond with post-hatching morphological development in American alligators. Sex Dev 2010; 4:62-72. [PMID: 20110644 DOI: 10.1159/000277934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 05/13/2009] [Indexed: 11/19/2022] Open
Abstract
Paracrine factor signaling regulates many aspects of vertebrate gonadal development. We investigated key ovarian and testicular morphological markers of the American alligator (Alligator mississippiensis) during the first 5 months post-hatching and correlated gonadal development with mRNA expression levels of a suite of regulatory factors. In both sexes, we observed significant morphology changes, including ovarian follicle assembly and meiotic progression of testicular germ cells. Concomitant with these changes were sexually dimorphic and ontogenetically variable mRNA expressions. In ovaries, FOXL2, aromatase, and follistatin mRNA expression was greater than in testes at all ages. At one week after hatching, we observed ovarian medullary remodeling in association with elevated activin/inhibin beta A subunit, follistatin, and aromatase mRNA expressions. Three and 5 months following hatching and concomitant with follicle assembly, ovaries showed increased mRNA expression levels of GDF9 and the mitotic factor PCNA. In testes, the activin/inhibin alpha and beta B subunit transcript levels were greater than in ovaries at all ages. Elevated testicular expression of GDF9 mRNA levels at 5 months after hatching aligned with increased spermatogenic activity. We propose that the mRNA expression levels and concomitant morphological changes observed here affect the establishment of alligator reproductive health and later fertility.
Collapse
Affiliation(s)
- B C Moore
- Department of Biology, Bartram Hall, University of Florida, Gainesville, FL, USA. bmoore2 @ tulane.edu
| | | | | | | |
Collapse
|