1
|
Healey HM, Penn HB, Small CM, Bassham S, Goyal V, Woods MA, Cresko WA. Single Cell Sequencing Provides Clues about the Developmental Genetic Basis of Evolutionary Adaptations in Syngnathid Fishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588518. [PMID: 38645265 PMCID: PMC11030337 DOI: 10.1101/2024.04.08.588518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provide the opportunity for detailed genetic analyses. We created a single cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how their novelties evolved.
Collapse
Affiliation(s)
- Hope M Healey
- Institute of Ecology and Evolution, University of Oregon
| | - Hayden B Penn
- Institute of Ecology and Evolution, University of Oregon
| | - Clayton M Small
- Institute of Ecology and Evolution, University of Oregon
- School of Computer and Data Science, University of Oregon
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon
| | - Vithika Goyal
- Institute of Ecology and Evolution, University of Oregon
| | - Micah A Woods
- Institute of Ecology and Evolution, University of Oregon
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon
- Knight Campus for Accelerating Scientific Impact, University of Oregon
| |
Collapse
|
2
|
Sea-horse optimizer: a novel nature-inspired meta-heuristic for global optimization problems. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Beck EA, Healey HM, Small CM, Currey MC, Desvignes T, Cresko WA, Postlethwait JH. Advancing human disease research with fish evolutionary mutant models. Trends Genet 2022; 38:22-44. [PMID: 34334238 PMCID: PMC8678158 DOI: 10.1016/j.tig.2021.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/03/2023]
Abstract
Model organism research is essential to understand disease mechanisms. However, laboratory-induced genetic models can lack genetic variation and often fail to mimic the spectrum of disease severity. Evolutionary mutant models (EMMs) are species with evolved phenotypes that mimic human disease. EMMs complement traditional laboratory models by providing unique avenues to study gene-by-environment interactions, modular mutations in noncoding regions, and their evolved compensations. EMMs have improved our understanding of complex diseases, including cancer, diabetes, and aging, and illuminated mechanisms in many organs. Rapid advancements of sequencing and genome-editing technologies have catapulted the utility of EMMs, particularly in fish. Fish are the most diverse group of vertebrates, exhibiting a kaleidoscope of specialized phenotypes, many that would be pathogenic in humans but are adaptive in the species' specialized habitat. Importantly, evolved compensations can suggest avenues for novel disease therapies. This review summarizes current research using fish EMMs to advance our understanding of human disease.
Collapse
Affiliation(s)
- Emily A Beck
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.
| | - Hope M Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Clayton M Small
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Mark C Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - William A Cresko
- Data Science, University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
4
|
Exploring ecological specialization in pipefish using genomic, morphometric and ecological evidence. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
5
|
Wilson AB, Wegmann A, Ahnesjö I, Gonçalves JMS. The evolution of ecological specialization across the range of a broadly distributed marine species. Evolution 2020; 74:629-643. [PMID: 31976557 DOI: 10.1111/evo.13930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 01/01/2023]
Abstract
Ecological specialization is an important engine of evolutionary change and adaptive radiation, but empirical evidence of local adaptation in marine environments is rare, a pattern that has been attributed to the high dispersal ability of marine taxa and limited geographic barriers to gene flow. The broad-nosed pipefish, Syngnathus typhle, is one of the most broadly distributed syngnathid species and shows pronounced variation in cranial morphology across its range, a factor that may contribute to its success in colonizing new environments. We quantified variation in cranial morphology across the species range using geometric morphometrics, and tested for evidence of trophic specialization by comparing individual-level dietary composition with the community of prey available at each site. Although the diets of juvenile pipefish from each site were qualitatively similar, ontogenetic shifts in dietary composition resulted in adult populations with distinctive diets consistent with their divergent cranial morphology. Morphological differences found in nature are maintained under common garden conditions, indicating that trophic specialization in S. typhle is a heritable trait subject to selection. Our data highlight the potential for ecological specialization in response to spatially variable selection pressures in broadly distributed marine species.
Collapse
Affiliation(s)
- Anthony B Wilson
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland.,Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, 11210.,The Graduate Center, City University of New York, New York, New York, 10016
| | - Alexandra Wegmann
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
| | - Ingrid Ahnesjö
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, SE-75236, Uppsala, Sweden
| | - Jorge M S Gonçalves
- Centro de Ciencias do Mar (CCMAR), Coastal Fisheries Research Group, Universidade do Algarve, 8005-139, Faro, Portugal
| |
Collapse
|
6
|
Bard JBL. Tinkering and the Origins of Heritable Anatomical Variation in Vertebrates. BIOLOGY 2018; 7:E20. [PMID: 29495378 PMCID: PMC5872046 DOI: 10.3390/biology7010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 11/16/2022]
Abstract
Evolutionary change comes from natural and other forms of selection acting on existing anatomical and physiological variants. While much is known about selection, little is known about the details of how genetic mutation leads to the range of heritable anatomical variants that are present within any population. This paper takes a systems-based view to explore how genomic mutation in vertebrate genomes works its way upwards, though changes to proteins, protein networks, and cell phenotypes to produce variants in anatomical detail. The evidence used in this approach mainly derives from analysing anatomical change in adult vertebrates and the protein networks that drive tissue formation in embryos. The former indicate which processes drive variation-these are mainly patterning, timing, and growth-and the latter their molecular basis. The paper then examines the effects of mutation and genetic drift on these processes, the nature of the resulting heritable phenotypic variation within a population, and the experimental evidence on the speed with which new variants can appear under selection. The discussion considers whether this speed is adequate to explain the observed rate of evolutionary change or whether other non-canonical, adaptive mechanisms of heritable mutation are needed. The evidence to hand suggests that they are not, for vertebrate evolution at least.
Collapse
Affiliation(s)
- Jonathan B L Bard
- Department of Anatomy, Physiology & Genetics, University of Oxford, Oxford OX313QX, UK.
| |
Collapse
|
7
|
Tsuboi M, Lim ACO, Ooi BL, Yip MY, Chong VC, Ahnesjö I, Kolm N. Brain size evolution in pipefishes and seahorses: the role of feeding ecology, life history and sexual selection. J Evol Biol 2016; 30:150-160. [PMID: 27748990 DOI: 10.1111/jeb.12995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 09/15/2016] [Accepted: 10/14/2016] [Indexed: 01/25/2023]
Abstract
Brain size varies greatly at all taxonomic levels. Feeding ecology, life history and sexual selection have been proposed as key components in generating contemporary diversity in brain size across vertebrates. Analyses of brain size evolution have, however, been limited to lineages where males predominantly compete for mating and females choose mates. Here, we present the first original data set of brain sizes in pipefishes and seahorses (Syngnathidae) a group in which intense female mating competition occurs in many species. After controlling for the effect of shared ancestry and overall body size, brain size was positively correlated with relative snout length. Moreover, we found that females, on average, had 4.3% heavier brains than males and that polyandrous species demonstrated more pronounced (11.7%) female-biased brain size dimorphism. Our results suggest that adaptations for feeding on mobile prey items and sexual selection in females are important factors in brain size evolution of pipefishes and seahorses. Most importantly, our study supports the idea that sexual selection plays a major role in brain size evolution, regardless of on which sex sexual selection acts stronger.
Collapse
Affiliation(s)
- M Tsuboi
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
| | - A C O Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Save Our Seahorses Malaysia, Petaling Jaya, Selangor, Malaysia
| | - B L Ooi
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Save Our Seahorses Malaysia, Petaling Jaya, Selangor, Malaysia
| | - M Y Yip
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Save Our Seahorses Malaysia, Petaling Jaya, Selangor, Malaysia
| | - V C Chong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - I Ahnesjö
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
| | - N Kolm
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Fogelson SB, Yanong RPE, Kane A, Teal CN, Berzins IK, Smith SA, Brown C, Camus A. Gross, histological and ultrastructural morphology of the aglomerular kidney in the lined seahorse Hippocampus erectus. JOURNAL OF FISH BIOLOGY 2015; 87:805-813. [PMID: 26333141 DOI: 10.1111/jfb.12751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 06/20/2015] [Indexed: 06/05/2023]
Abstract
Histologic evaluation of the renal system in the lined seahorse Hippocampus erectus reveals a cranial kidney with low to moderate cellularity, composed of a central dorsal aorta, endothelial lined capillary sinusoids, haematopoietic tissue, fine fibrovascular stroma, ganglia and no nephrons. In comparison, the caudal kidney is moderately to highly cellular with numerous highly convoluted epithelial lined tubules separated by interlacing haematopoietic tissue, no glomeruli, fine fibrovascular stroma, numerous capillary sinusoids, corpuscles of Stannius and clusters of endocrine cells adjacent to large calibre vessels. Ultrastructural evaluation of the renal tubules reveals minimal variability of the tubule epithelium throughout the length of the nephron and the majority of tubules are characterized by epithelial cells with few apical microvilli, elaborate basal membrane infolding, rare electron dense granules and abundant supporting collagenous matrix.
Collapse
Affiliation(s)
- S B Fogelson
- University of Georgia College of Veterinary Medicine, Department of Pathology and Athens Veterinary Diagnostic Laboratory, 501 DW Brooks Drive, Athens, GA 30602, U.S.A
| | - R P E Yanong
- University of Florida School of Forest Resources & Conservation, Program in Fisheries and Aquatic Sciences Tropical Aquaculture Laboratory, 1408 24th St Southeast, Ruskin, FL 33570, U.S.A
| | - A Kane
- University of Florida, Aquatic Pathobiology Laboratory, 1379 Mowry Rd, Gainesville, FL 32608, U.S.A
| | - C N Teal
- University of Florida, Aquatic Pathobiology Laboratory, 1379 Mowry Rd, Gainesville, FL 32608, U.S.A
| | - I K Berzins
- One Water, One Health, LLC, 8214 Golden Valley Rd, Golden Valley, MN 55427, U.S.A
| | - S A Smith
- Department of Biomedical Sciences & Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Duck Pond Drive, Blacksburg, VA 24061, U.S.A
| | - C Brown
- University of Georgia College of Veterinary Medicine, Department of Pathology and Athens Veterinary Diagnostic Laboratory, 501 DW Brooks Drive, Athens, GA 30602, U.S.A
| | - A Camus
- University of Georgia College of Veterinary Medicine, Department of Pathology and Athens Veterinary Diagnostic Laboratory, 501 DW Brooks Drive, Athens, GA 30602, U.S.A
| |
Collapse
|
9
|
Van Wassenbergh S, Dries B, Herrel A. New insights into muscle function during pivot feeding in seahorses. PLoS One 2014; 9:e109068. [PMID: 25271759 PMCID: PMC4185880 DOI: 10.1371/journal.pone.0109068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 09/08/2014] [Indexed: 11/24/2022] Open
Abstract
Seahorses, pipefish and their syngnathiform relatives are considered unique amongst fishes in using elastic recoil of post-cranial tendons to pivot the head extremely quickly towards small crustacean prey. It is known that pipefish activate the epaxial muscles for a considerable time before striking, at which rotations of the head and the hyoid are temporarily prevented to allow energy storage in the epaxial tendons. Here, we studied the motor control of this system in seahorses using electromyographic recordings of the epaxial muscles and the sternohyoideus-hypaxial muscles with simultaneous high-speed video recordings of prey capture. In addition we present the results from a stimulation experiment including the muscle hypothesised to be responsible for the locking and triggering of pivot feeding in seahorses (m. adductor arcus palatini). Our data confirmed that the epaxial pre-activation pattern observed previously for pipefish also occurs in seahorses. Similar to the epaxials, the sternohyoideus-hypaxial muscle complex shows prolonged anticipatory activity. Although a considerable variation in displacements of the mouth via head rotation could be observed, it could not be demonstrated that seahorses have control over strike distance. In addition, we could not identify the source of the kinematic variability in the activation patterns of the associated muscles. Finally, the stimulation experiment supported the previously hypothesized role of the m. adductor arcus palatini as the trigger in this elastic recoil system. Our results show that pre-stressing of both the head elevators and the hyoid retractors is taking place. As pre-activation of the main muscles involved in pivot feeding has now been demonstrated for both seahorses and pipefish, this is probably a generalized trait of Syngnathidae.
Collapse
Affiliation(s)
- Sam Van Wassenbergh
- Department of Biology, Universiteit Antwerpen, Antwerpen, Belgium
- Department of Biology, Ghent University, Gent, Belgium
- * E-mail:
| | - Billy Dries
- Department of Biology, Universiteit Antwerpen, Antwerpen, Belgium
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Ghent University, Merelbeke, Belgium
| | - Anthony Herrel
- Department of Biology, Universiteit Antwerpen, Antwerpen, Belgium
- Department of Biology, Ghent University, Gent, Belgium
- Département d’Ecologie et de Gestion de la Biodiversité, Centre National de la Recherche Scientifique/Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
10
|
Franz-Odendaal TA, Adriaens D. Comparative developmental osteology of the seahorse skeleton reveals heterochrony amongst Hippocampus sp. and progressive caudal fin loss. EvoDevo 2014; 5:45. [PMID: 25908960 PMCID: PMC4407769 DOI: 10.1186/2041-9139-5-45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/12/2014] [Indexed: 12/30/2022] Open
Abstract
Background Seahorses are well known for their highly derived head shape, prehensile tail and armoured body. They belong to the family of teleosts known as Syngnathidae, which also includes the pipefishes, pipehorses and seadragons. Very few studies have investigated the development of the skeleton of seahorses because larvae are extremely difficult to obtain in the wild and breeding in captivity is rarely successful. Here we compare the developmental osteology of Hippocampus reidi over an ontogenetic series spanning the first 93 days after release from the brood pouch to that of a smaller series of Hippocampus; namely H. subelongatus. Results We compare the osteology in these two species over growth to the published description of the dwarf species, H. zosterae. We show that ossification onset in H. subelongatus is earlier than in H. reidi, despite similar sizes at parturition. Interestingly, the timing of development of the bony skeleton in H. zosterae is similar to that of the larger species, H. subelongatus. Furthermore, we show that the growth rate of all three species is similar up until about 30 days post pouch release. From this stage onwards in the life history, the size of the dwarf species H. zosterae remains relatively constant whilst the other two species continue growing with an accelerated growth phase. Conclusion This data together with a phylogenetic assessment suggests that there has been a heterochronic shift (a delay) in the timing of ossification in H. reidi and accelerated bonedevelopment in H. zosterae. That is, H. zosterae is not a developmentally truncated dwarf species but rather a smaller version of its larger ancestor, “a proportioned dwarf” species. Furthermore, we show that caudal fin loss is incomplete in Hippocampus seahorses. This study shows that these three species of Hippocampus seahorses have evolved (either directly or indirectly) different osteogenic strategies over the last 20–30 million years of seahorse evolution.
Collapse
|