1
|
Park J, Ke W, Kaage A, Feigin CY, Pritykin Y, Donia MS, Mallarino R. Marsupial immune protection is shaped by enhancer sharing and gene cluster duplication of cathelicidin antimicrobial peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605640. [PMID: 39211247 PMCID: PMC11361154 DOI: 10.1101/2024.07.29.605640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Marsupial neonates are born with immature immune systems, making them vulnerable to pathogens. While neonates receive maternal protection, they can also independently combat pathogens, though the mechanisms remain unknown. Using the sugar glider (Petaurus breviceps) as a model, we investigated immunological defense strategies of marsupial neonates. Cathelicidins, a family of antimicrobial peptides expanded in the genomes of marsupials, are highly expressed in developing neutrophils. Sugar glider cathelicidins reside in two genomic clusters and their coordinated expression is achieved by enhancer sharing within clusters and long-range physical interactions between clusters. These cathelicidins modulate immune responses and have potent antimicrobial effects, sufficient to provide protection in a mouse model of sepsis. Lastly, cathelicidins have a complex evolutionary history, where marsupials and monotremes are the only tetrapods that retained two cathelicidin clusters. Thus, cathelicidins are critical mediators of marsupial immunity, and their evolution reflects the life history-specific immunological needs of these animals.
Collapse
|
2
|
Old JM, Ong OTW, Stannard HJ. Red-tailed phascogales: A review of their biology and importance as model marsupial species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:217-227. [PMID: 33382214 DOI: 10.1002/jez.2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/09/2022]
Abstract
There are many limitations when using traditional laboratory species. Limits on variation, may result in limited outcomes, at both the species and individual level, due to different individuals/species having diverse physiological processes, or differing molecular and genetic mechanisms. By using a variety of model species, we will be able to develop creative solutions to biological problems and identify differences of which we were not previously aware. The laboratory mouse has been a suitable model species for various mammalian studies, however most are bred specifically for laboratory research with limited variability due to selective breeding. Marsupial models offer unique research opportunities compared to eutherian models. We believe that there should be an expansion in marsupial model species, and the introduction of the red-tailed phascogale (Phascogale calura), a dasyurid marsupial, should be one of them. Phascogales are easily managed in captivity, and there are now multiple studies involving their development, reproduction, nutrition, behavior and immune system, which can serve as a baseline for future studies. The addition of the phascogale as a model species will improve future mammalian studies by introducing variability and offer alternate solutions to biological problems, particularly in the areas of genetics, nutrition, immunology, the neuro-endocrine system, and ageing, due to their semelparous reproductive strategy and hence, subsequent predictive physiology. In this review, we provide information based on existing research on red-tailed phascogales to support their inclusion as a model species.
Collapse
Affiliation(s)
- Julie M Old
- School of Science, Hawkesbury Campus, Western Sydney University, Penrith, New South Wales, Australia
| | - Oselyne T W Ong
- Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Hayley J Stannard
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|
3
|
Pharo EA. Marsupial milk: a fluid source of nutrition and immune factors for the developing pouch young. Reprod Fertil Dev 2020; 31:1252-1265. [PMID: 30641029 DOI: 10.1071/rd18197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Marsupials have a very different reproductive strategy to eutherians. An Australian marsupial, the tammar wallaby (Macropus eugenii) has a very short pregnancy of about 26.5 days, with a comparatively long lactation of 300-350 days. The tammar mother gives birth to an altricial, approximately 400 mg young that spends the first 200 days postpartum (p.p.) in its mother's pouch, permanently (0-100 days p.p.; Phase 2A) and then intermittently (100-200 days p.p.; Phase 2B) attached to the teat. The beginning of Phase 3 marks the first exit from the pouch (akin to the birth of a precocious eutherian neonate) and the supplementation of milk with herbage. The marsupial mother progressively alters milk composition (proteins, fats and carbohydrates) and individual milk constituents throughout the lactation cycle to provide nutrients and immunological factors that are appropriate for the considerable physiological development and growth of her pouch young. This review explores the changes in tammar milk components that occur during the lactation cycle in conjunction with the development of the young.
Collapse
|
4
|
Angeletti M, Hsu WLN, Majo N, Moriyama H, Moriyama EN, Zhang L. Adaptations of Interferon Regulatory Factor 3 with Transition from Terrestrial to Aquatic Life. Sci Rep 2020; 10:4508. [PMID: 32161340 PMCID: PMC7066157 DOI: 10.1038/s41598-020-61365-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/10/2020] [Indexed: 01/19/2023] Open
Abstract
Interferon regulatory factor 3 (IRF3) and IRF7 are closely related IRF members and the major factors for the induction of interferons, a key component in vertebrate innate immunity. However, there is limited knowledge regarding the evolution and adaptation of those IRFs to the environments. Two unique motifs in IRF3 and 7 were identified. One motif, GASSL, is highly conserved throughout the evolution of IRF3 and 7 and located in the signal response domain. Another motif, DPHK, is in the DNA-binding domain. The ancestral protein of IRF3 and 7 seemed to possess the DPHK motif. In the ray-finned fish lineage, while the DPHK is maintained in IRF7, the motif in IRF3 is changed to NPHK with a D → N amino acid substitution. The D → N substitution are also found in amphibian IRF3 but not in amphibian IRF7. Terrestrial animals such as reptiles and mammals predominantly use DPHK sequences in both IRF3 and 7. However, the D → N substitution in IRF3 DPHK is again found in cetaceans such as whales and dolphins as well as in marsupials. These observations suggest that the D → N substitutions in the IRF3 DPHK motif is likely to be associated with vertebrate's adaptations to aquatic environments and other environmental changes.
Collapse
Affiliation(s)
- Monica Angeletti
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| | - Wan-Ling Nicole Hsu
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Biostatistics, University of Washington, Washington, USA
| | - Nashaat Majo
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| | - Etsuko N Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA.
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA.
| | - Luwen Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA.
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583, USA.
| |
Collapse
|
5
|
dos Santos ÍGD, de Oliveira Mendes TA, Silva GAB, Reis AMS, Monteiro-Vitorello CB, Schaker PDC, Herai RH, Fabotti ABC, Coutinho LL, Jorge EC. Didelphis albiventris: an overview of unprecedented transcriptome sequencing of the white-eared opossum. BMC Genomics 2019; 20:866. [PMID: 31730444 PMCID: PMC6858782 DOI: 10.1186/s12864-019-6240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The white-eared opossum (Didelphis albiventris) is widely distributed throughout Brazil and South America. It has been used as an animal model for studying different scientific questions ranging from the restoration of degraded green areas to medical aspects of Chagas disease, leishmaniasis and resistance against snake venom. As a marsupial, D. albiventris can also contribute to the understanding of the molecular mechanisms that govern the different stages of organogenesis. Opossum joeys are born after only 13 days, and the final stages of organogenesis occur when the neonates are inside the pouch, depending on lactation. As neither the genome of this opossum species nor its transcriptome has been completely sequenced, the use of D. albiventris as an animal model is limited. In this work, we sequenced the D. albiventris transcriptome by RNA-seq to obtain the first catalogue of differentially expressed (DE) genes and gene ontology (GO) annotations during the neonatal stages of marsupial development. RESULTS The D. albiventris transcriptome was obtained from whole neonates harvested at birth (P0), at 5 days of age (P5) and at 10 days of age (P10). The de novo assembly of these transcripts generated 85,338 transcripts. Approximately 30% of these transcripts could be mapped against the amino acid sequences of M. domestica, the evolutionarily closest relative of D. albiventris to be sequenced thus far. Among the expressed transcripts, 2077 were found to be DE between P0 and P5, 13,780 between P0 and P10, and 1453 between P5 and P10. The enriched GO terms were mainly related to the immune system, blood tissue development and differentiation, vision, hearing, digestion, the CNS and limb development. CONCLUSIONS The elucidation of opossum transcriptomes provides an out-group for better understanding the distinct characteristics associated with the evolution of mammalian species. This study provides the first transcriptome sequences and catalogue of genes for a marsupial species at different neonatal stages, allowing the study of the mechanisms involved in organogenesis.
Collapse
Affiliation(s)
- Íria Gabriela Dias dos Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | | | - Gerluza Aparecida Borges Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Amanda Maria Sena Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | | | - Patricia Dayane Carvalho Schaker
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo Brazil
| | - Roberto Hirochi Herai
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | | | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo Brazil
| | - Erika Cristina Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| |
Collapse
|
6
|
Schraven AL, Stannard HJ, Ong OTW, Old JM. Immunogenetics of marsupial B-cells. Mol Immunol 2019; 117:1-11. [PMID: 31726269 DOI: 10.1016/j.molimm.2019.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 11/19/2022]
Abstract
Marsupials and eutherians are mammals that differ in their physiological traits, predominately their reproductive and developmental strategies; eutherians give birth to well-developed young, while marsupials are born highly altricial after a much shorter gestation. These developmental traits also result in differences in the development of the immune system of eutherian and marsupial species. In eutherians, B-cells are the key to humoral immunity as they are found in multiple lymphoid organs and have the unique ability to mediate the production of antigen-specific antibodies in the presence of extracellular pathogens. The development of B-cells in marsupials has been reported and hypothesised to be similar to that of eutherians, except that haematopoiesis occurs in the liver, postpartum, until the bone marrow fully matures. In eutherians, specific genes are linked to specific stages in B-cell development, maturation, and differentiation processes, and have been identified including immunoglobulins (heavy and light chains), cluster of differentiation markers (CD10, 19, 34 and CD79α/β), signal transduction molecules (BTK, Lyn and Syk) and transcriptional regulators (EBF1, E2A, and Pax5). This review aims to discuss the known similarities and differences between marsupial and eutherian B-cells, in regards to their genetic presence, homology, and developmental stages, as well as to highlight the areas requiring further investigation. By enhancing our understanding of the genes that are involved with B-cells in the marsupial lineage, it will, in turn, aid our understanding of the marsupial immune system and support the development of specific immunological reagents for research and wildlife conservation purposes.
Collapse
Affiliation(s)
- Andrea L Schraven
- School of Science and Health, Hawkesbury Campus, Western Sydney University, Locked bag 1797, Penrith, NSW 2751, Australia
| | - Hayley J Stannard
- Charles Sturt University, School of Animal and Veterinary Sciences, Wagga Wagga, NSW 2678, Australia
| | - Oselyne T W Ong
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Julie M Old
- School of Science and Health, Hawkesbury Campus, Western Sydney University, Locked bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
7
|
Borthwick CR, Young LJ, Old JM. An Examination of the Development and Localization of Key Immune Cells in Developing Pouch Young of the Red‐Tailed Phascogale (
Phascogale calura
). Anat Rec (Hoboken) 2019; 302:1985-2002. [DOI: 10.1002/ar.24176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Casey R. Borthwick
- School of Science and HealthUniversity of Western Sydney Hawkesbury New South Wales Australia
| | - Lauren J. Young
- School of Science and HealthUniversity of Western Sydney Hawkesbury New South Wales Australia
| | - Julie M. Old
- School of Science and HealthUniversity of Western Sydney Hawkesbury New South Wales Australia
| |
Collapse
|
8
|
Smith KK, Keyte AL. Adaptations of the Marsupial Newborn: Birth as an Extreme Environment. Anat Rec (Hoboken) 2019; 303:235-249. [DOI: 10.1002/ar.24049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/07/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Anna L. Keyte
- Laboratory of Neurogenetics of LanguageRockefeller University New York New York
| |
Collapse
|
9
|
Molecular identification and gene expression profiles of the T cell receptors and co-receptors in developing red-tailed phascogale (Phascogale calura) pouch young. Mol Immunol 2018; 101:268-275. [DOI: 10.1016/j.molimm.2018.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/16/2018] [Accepted: 07/02/2018] [Indexed: 11/23/2022]
|
10
|
Madden D, Whaite A, Jones E, Belov K, Timms P, Polkinghorne A. Koala immunology and infectious diseases: How much can the koala bear? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:177-185. [PMID: 29382557 DOI: 10.1016/j.dci.2018.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 06/07/2023]
Abstract
Infectious diseases are contributing to the decline of the iconic Australian marsupial, the koala (Phascolarctos cinereus). Infections with the obligate intracellular bacteria, Chlamydia pecorum, cause debilitating ocular and urogenital-tract disease while the koala-retrovirus (KoRV) has been implicated in host immunosuppression and exacerbation of chlamydial pathogenesis. Although histological studies have provided insight into the basic architecture of koala immune tissues, our understanding of the koala immune response to infectious disease has been limited, until recently, by a lack of species-specific immune reagents. Recent advances in the characterisation of key immune genes have focused on advancing our understanding of the immune response to Chlamydia infection, revealing commonalities in disease pathologies and immunity between koalas and other hosts and paving the way for the development of a koala Chlamydia vaccine. This review summarises these recent findings and highlights key aspects of the koala immune system requiring further attention with particular regard to their most prominent infectious diseases.
Collapse
Affiliation(s)
- Danielle Madden
- Animal Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, Australia.
| | - Alessandra Whaite
- Animal Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, Australia.
| | - Elizabeth Jones
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW 2006, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW 2006, Australia.
| | - Peter Timms
- Animal Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, Australia.
| | - Adam Polkinghorne
- Animal Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, Australia.
| |
Collapse
|
11
|
Ferner K, Schultz JA, Zeller U. Comparative anatomy of neonates of the three major mammalian groups (monotremes, marsupials, placentals) and implications for the ancestral mammalian neonate morphotype. J Anat 2017; 231:798-822. [PMID: 28960296 PMCID: PMC5696127 DOI: 10.1111/joa.12689] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2017] [Indexed: 12/16/2022] Open
Abstract
The existing different modes of reproduction in monotremes, marsupials and placentals are the main source for our current understanding of the origin and evolution of the mammalian reproduction. The reproductive strategies and, in particular, the maturity states of the neonates differ remarkably between the three groups. Monotremes, for example, are the only extant mammals that lay eggs and incubate them for the last third of their embryonic development. In contrast, marsupials and placentals are viviparous and rely on intra-uterine development of the neonates via choriovitelline (mainly marsupials) and chorioallantoic (mainly placentals) placentae. The maturity of a newborn is closely linked to the parental care strategy once the neonate is born. The varying developmental degrees of neonates are the main focus of this study. Monotremes and marsupials produce highly altricial and nearly embryonic offspring. Placental mammals always give birth to more developed newborns with the widest range from altricial to precocial. The ability of a newborn to survive and grow in the environment it was born in depends highly on the degree of maturation of vital organs at the time of birth. Here, the anatomy of four neonates of the three major extant mammalian groups is compared. The basis for this study is histological and ultrastructural serial sections of a hatchling of Ornithorhynchus anatinus (Monotremata), and neonates of Monodelphis domestica (Marsupialia), Mesocricetus auratus (altricial Placentalia) and Macroscelides proboscideus (precocial Placentalia). Special attention was given to the developmental stages of the organs skin, lung, liver and kidney, which are considered crucial for the maintenance of vital functions. The state of the organs of newborn monotremes and marsupials are found to be able to support a minimum of vital functions outside the uterus. They are sufficient to survive, but without capacities for additional energetic challenges. The organs of the altricial placental neonate are further developed, able to support the maintenance of vital functions and short-term metabolic increase. The precocial placental newborn shows the most advanced state of organ development, to allow the maintenance of vital functions, stable thermoregulation and high energetic performance. The ancestral condition of a mammalian neonate is interpreted to be similar to the state of organ development found in the newborns of marsupials and monotremes. In comparison, the newborns of altricial and precocial placentals are derived from the ancestral state to a more mature developmental degree associated with advanced organ systems.
Collapse
Affiliation(s)
- Kirsten Ferner
- Leibniz‐Institut für Evolutions‐ und BiodiversitätsforschungMuseum für NaturkundeBerlinGermany
| | - Julia A. Schultz
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoILUSA
| | - Ulrich Zeller
- Lebenswissenschaftliche FakultätFG Spezielle ZoologieAlbrecht Daniel Thaer‐Institut für Agrar‐ und GartenbauwissenschaftenHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
12
|
Antimicrobial activity of red-tailed phascogale ( Phascogale calura ) serum. Comp Immunol Microbiol Infect Dis 2017; 51:41-48. [DOI: 10.1016/j.cimid.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/08/2017] [Accepted: 03/09/2017] [Indexed: 11/24/2022]
|
13
|
Hansen VL, Miller RD. On the prenatal initiation of T cell development in the opossum Monodelphis domestica. J Anat 2017; 230:596-600. [PMID: 28052333 PMCID: PMC5345628 DOI: 10.1111/joa.12587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 11/28/2022] Open
Abstract
Thymus-dependent lymphocytes (T cells) are a critical cell lineage in the adaptive immune system of all jawed vertebrates. In eutherian mammals the initiation of T cell development takes place prenatally and the offspring of many species are born relatively immuno-competent. Marsupials, in contrast, are born in a comparatively altricial state and with a less well developed immune system. As such, marsupials are valuable models for studying the peri- and postnatal initiation of immune system development in mammals. Previous results supported a lack of prenatal T cell development in a variety of marsupial species. In the gray short-tailed opossum, Monodelphis domestica, however, there was evidence that αβT cells were present on postnatal day 1 and likely initiated development prenatally. Demonstrated here is the presence of CD3ε+ lymphocytes in late-stage embryos at a site in the upper thoracic cavity, the site of an early developing thymus. CD3ε+ cells were evident as early as 48 h prior to parturition. In day 14 embryos, where there is clear organogenesis, CD3ε+ cells were only found at the site of the early thymus, consistent with no extra-thymic sites of T cell development in the opossum. These observations are the first evidence of prenatal T cell lineage commitment in any marsupial.
Collapse
Affiliation(s)
- Victoria L. Hansen
- Department of BiologyCenter for Evolutionary and Theoretical ImmunologyUniversity of New MexicoAlbuquerqueNMUSA
| | - Robert D. Miller
- Department of BiologyCenter for Evolutionary and Theoretical ImmunologyUniversity of New MexicoAlbuquerqueNMUSA
- National Science FoundationArlingtonVAUSA
| |
Collapse
|
14
|
Borthwick CR, Young LJ, McAllan BM, Old JM. Identification of the mRNA encoding interleukin-6 and its receptor, interleukin-6 receptor α, in five marsupial species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:211-217. [PMID: 27431929 DOI: 10.1016/j.dci.2016.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Expressed coding sequences for interleukin-6 (IL-6) and interleukin-6 receptor α (IL-6R) were examined in five marsupial species. Full length expressed coding sequences for IL-6 and IL-6R were identified and characterized in the gray short-tailed opossum (Monodelphis domestica). For IL-6, ∼225 bp fragments of the mRNA sequence were identified in the red-tailed phascogale (Phascogale calura), kultarr (Antechinomys laniger), and stripe-faced dunnart (Sminthopsis macroura), while ∼563 bp fragments of mRNA encoding IL-6R were identified in the red-tailed phascogale, kultarr, stripe-face dunnart and fat-tailed dunnart (Sminthopsis crassicaudata). Relative expression levels of IL-6 and IL-6R were examined in the heart, muscle, lung, liver, spleen and kidney of adult red-tailed phascogales, and IL-6 gene expression was found to be significantly higher in the lung and spleen than the other tissues examined, while the expression of IL-6R was significantly higher in the liver, lung and spleen. These results now serve as a reference point for examining the role and levels of IL-6 and IL-6R in the health and disease of these marsupial species. The pro-tumorigenic nature of IL-6 is of particular interest, and the identification of these IL-6 and IL-6R coding sequences provides a platform for further work to evaluate the potential role of IL-6 in marsupial cancers.
Collapse
Affiliation(s)
- Casey R Borthwick
- School of Science and Health, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Lauren J Young
- School of Science and Health, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Bronwyn M McAllan
- School of Medical Sciences and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney, NSW 2006, Australia
| | - Julie M Old
- School of Science and Health, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
15
|
Ong OTW, Young LJ, Old JM. Evaluation of reference genes for gene expression in red-tailed phascogale ( Phascogale calura) liver, lung, small intestine and spleen. PeerJ 2016; 4:e2552. [PMID: 27761339 PMCID: PMC5068414 DOI: 10.7717/peerj.2552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/12/2016] [Indexed: 11/20/2022] Open
Abstract
Background Reference genes serve an important role as an endogenous control/standard for data normalisation in gene expression studies. Although reference genes have recently been suggested for marsupials, independent analysis of reference genes on different immune tissues is yet to be tested. Therefore, an assessment of reference genes is needed for the selection of stable, expressed genes across different marsupial tissues. Methods The study was conducted on red-tailed phascogales (Phascogale calura) using five juvenile and five adult males. The stability of five reference genes (glyceraldehyde-3-phosphate dehydrogenase, GAPDH; β-actin, ACTB; 18S rRNA, 18S; 28S rRNA, 28S; and ribosomal protein L13A, RPL13A) was investigated using SYBR Green and analysed with the geNorm application available in qBasePLUS software. Results Gene stability for juvenile and adult tissue samples combined show that GAPDH was most stable in liver and lung tissue, and 18S in small intestine and spleen. While all reference genes were suitable for small intestine and spleen tissues, all reference genes except 28S were stable for lung and only 18S and 28S were stable for liver tissue. Separating the two age groups, we found that two different reference genes were considered stable in juveniles (ACTB and GAPDH) and adults (18S and 28S), and RPL13A was not stable for juvenile small intestine tissue. Except for 28S, all reference genes were stable in juvenile and adult lungs, and all five reference genes were stable in spleen tissue. Discussion Based on expression stability, ACTB and GAPDH are suitable for all tissues when studying the expression of marsupials in two age groups, except for adult liver tissues. The expression stability between juvenile and adult liver tissue was most unstable, as the stable reference genes for juveniles and adults were different. Juvenile and adult lung, small intestine and spleen share similar stable reference genes, except for small intestine tissues where all reference genes were stable in adults but RPL13A was not suitable in juveniles.
Collapse
Affiliation(s)
- Oselyne T W Ong
- School of Science and Health, Western Sydney University , Richmond , New South Wales , Australia
| | - Lauren J Young
- School of Science and Health, Western Sydney University , Richmond , New South Wales , Australia
| | - Julie M Old
- School of Science and Health, Western Sydney University , Richmond , New South Wales , Australia
| |
Collapse
|
16
|
Old JM. Haematopoiesis in Marsupials. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:40-46. [PMID: 26592963 DOI: 10.1016/j.dci.2015.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Marsupials are a group of mammals that give birth to immature young lacking mature immune tissues at birth, and are unable to mount their own specific immune defence. Their immune tissues develop in a non-sterile ex-utero environment unlike that of eutherian mammals such as ourselves. Marsupials are therefore ideal models for studying the development of immune tissues, in particular haematopoiesis, yet relatively little has been investigated. Most studies have been restricted to histological or immunohistological studies, however some factors likely to be involved, based on eutherian studies in haematopoiesis, have been isolated and characterised, including a few key markers, and some cell signaling and regulation molecules, mostly involved in lymphocytopoiesis. However the role of many molecules in haematopoiesis is largely presumed. We currently lack much of the rudimentary information regarding time of appearance and expression levels of these molecules, and no functional studies have been conducted. This paper reviews our knowledge of marsupial haematopoiesis to date, and highlights the need for future research in marsupials to gain further insights into the evolution of haematopoiesis.
Collapse
Affiliation(s)
- Julie M Old
- Water and Wildlife Ecology, School of Science and Health, University of Western Sydney, Hawkesbury, Locked Bag 1797, Penrith, N.S.W, 2751 Australia.
| |
Collapse
|
17
|
Ong OTW, Young LJ, Old JM. Preliminary genomic survey and sequence analysis of the complement system in non-eutherian mammals. AUSTRALIAN MAMMALOGY 2016. [DOI: 10.1071/am15036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The complement system is a major mediator of the vertebrate immune system, which functions in both innate and specific immune responses. It comprises more than 30 proteins working to remove foreign cells by way of anaphylatoxins, opsonins or the membrane attack complex. Over the last few years, whole genome sequences of non-eutherian mammals (marsupials and a monotreme), the gray short-tailed opossum (Monodelphis domestica), tammar wallaby (Macropus eugenii), Tasmanian devil (Sarcophilus harrisii), koala (Phascolarctos cinereus) and platypus (Ornithorhynchus anatinus), have become publicly available. Using these sequences, we have identified an array of complement components in non-eutherians using online search tools and algorithms. Of 57 complement and complement-related genes investigated, we identified 46 in the gray short-tailed opossum genome, 27 in the tammar wallaby genome, 44 in the Tasmanian devil genome, 47 in the koala genome and 40 in the platypus genome. The results of this study confirm the presence of key complement components in the immune repertoire of non-eutherian mammals and provide a platform for future studies on immune protection in young marsupials.
Collapse
|
18
|
Borthwick CR, Old JM. Histological Development of the Immune Tissues of a Marsupial, the Red-Tailed Phascogale (Phascogale calura). Anat Rec (Hoboken) 2015; 299:207-19. [DOI: 10.1002/ar.23297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Casey R. Borthwick
- Water and Wildlife Ecology, School of Science and Health, Hawkesbury Campus, Western Sydney University; Penrith New South Wales Australia
| | - Julie M. Old
- Water and Wildlife Ecology, School of Science and Health, Hawkesbury Campus, Western Sydney University; Penrith New South Wales Australia
| |
Collapse
|
19
|
Old JM. Immunological Insights into the Life and Times of the Extinct Tasmanian Tiger (Thylacinus cynocephalus). PLoS One 2015; 10:e0144091. [PMID: 26655868 PMCID: PMC4684372 DOI: 10.1371/journal.pone.0144091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/12/2015] [Indexed: 11/19/2022] Open
Abstract
The thylacine (Thylacinus cynocephalus) was Australia’s largest marsupial carnivore until its extinction within the last century. There remains considerable interest and debate regarding the biology of this species. Studies of thylacine biology are now limited to preserved specimens, and parts thereof, as well as written historical accounts of its biology. This study describes the development of the immune tissues of a pouch young thylacine, one of only eleven in existence, and the only specimen to be histologically sectioned. The appearance of the immune tissue of the developing pouch young thylacine is compared to the immune tissues of extant marsupials, providing insights into the immunity, biology and ecology of the extinct thylacine.
Collapse
Affiliation(s)
- Julie M. Old
- Water and Wildlife Ecology, School of Science and Health, Hawkesbury, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- * E-mail:
| |
Collapse
|