1
|
Fernandes TM, Silva MA, Morgado L, Salgueiro CA. Hemes on a string: insights on the functional mechanisms of PgcA from Geobacter sulfurreducens. J Biol Chem 2023; 299:105167. [PMID: 37595873 PMCID: PMC10570954 DOI: 10.1016/j.jbc.2023.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Microbial extracellular reduction of insoluble compounds requires soluble electron shuttles that diffuse in the environment, freely diffusing cytochromes, or direct contact with cellular conductive appendages that release or harvest electrons to assure a continuous balance between cellular requirements and environmental conditions. In this work, we produced and characterized the three cytochrome domains of PgcA, an extracellular triheme cytochrome that contributes to Fe(III) and Mn(IV) oxides reduction in Geobacter sulfurreducens. The three monoheme domains are structurally homologous, but their heme groups show variable axial coordination and reduction potential values. Electron transfer experiments monitored by NMR and visible spectroscopy show the variable extent to which the domains promiscuously exchange electrons while reducing different electron acceptors. The results suggest that PgcA is part of a new class of cytochromes - microbial heme-tethered redox strings - that use low-complexity protein stretches to bind metals and promote intra- and intermolecular electron transfer events through its cytochrome domains.
Collapse
Affiliation(s)
- Tomás M Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Marta A Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Leonor Morgado
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| | - Carlos A Salgueiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| |
Collapse
|
2
|
Unusual Cytochrome c552 from Thioalkalivibrio paradoxus: Solution NMR Structure and Interaction with Thiocyanate Dehydrogenase. Int J Mol Sci 2022; 23:ijms23179969. [PMID: 36077365 PMCID: PMC9456337 DOI: 10.3390/ijms23179969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
The search of a putative physiological electron acceptor for thiocyanate dehydrogenase (TcDH) newly discovered in the thiocyanate-oxidizing bacteria Thioalkalivibrio paradoxus revealed an unusually large, single-heme cytochrome c (CytC552), which was co-purified with TcDH from the periplasm. Recombinant CytC552, produced in Escherichia coli as a mature protein without a signal peptide, has spectral properties similar to the endogenous protein and serves as an in vitro electron acceptor in the TcDH-catalyzed reaction. The CytC552 structure determined by NMR spectroscopy reveals significant differences compared to those of the typical class I bacterial cytochromes c: a high solvent accessible surface area for the heme group and so-called “intrinsically disordered” nature of the histidine-rich N- and C-terminal regions. Comparison of the signal splitting in the heteronuclear NMR spectra of oxidized, reduced, and TcDH-bound CytC552 reveals the heme axial methionine fluxionality. The TcDH binding site on the CytC552 surface was mapped using NMR chemical shift perturbations. Putative TcDH-CytC552 complexes were reconstructed by the information-driven docking approach and used for the analysis of effective electron transfer pathways. The best pathway includes the electron hopping through His528 and Tyr164 of TcDH, and His83 of CytC552 to the heme group in accordance with pH-dependence of TcDH activity with CytC552.
Collapse
|
3
|
Morgado L, Salgueiro CA. Elucidation of complex respiratory chains: a straightforward strategy to monitor electron transfer between cytochromes. Metallomics 2022; 14:6539350. [DOI: 10.1093/mtomcs/mfac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/17/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Cytochromes are electron transfer proteins essential in various biological systems, playing crucial roles in the respiratory chains of bacteria. These proteins are particularly abundant in electrogenic microorganisms and are responsible for the efficient delivery of electrons to the cells’ exterior. The capability of sending electron outside the cells open new avenues to be explored for emerging biotechnological applications in bioremediation, microbial electrosynthesis and bioenergy fields. To develop these applications, it is critical to identify the different redox partners and elucidate the stepwise electron transfer along the respiratory paths. However, investigating direct electron transfer events between proteins with identical features in nearly all spectroscopic techniques is extremely challenging. NMR spectroscopy offers the possibility to overcome this difficulty by analysing the alterations of the spectral signatures of each protein caused by electron exchange events. The uncrowded NMR spectral regions containing the heme resonances of the cytochromes display unique and distinct signatures in the reduced and oxidized states, which can be explored to monitor electron transfer within the redox complex. In this study, we present a strategy for a fast and straightforward monitorization of electron transfer between c-type cytochromes, using as model a triheme periplasmic cytochrome (PpcA) and a membrane associated monoheme cytochrome (OmcF) from the electrogenic bacterium Geobacter sulfurreducens. The comparison between the 1D 1H NMR spectra obtained for samples containing the two cytochromes and for samples containing the individual proteins clearly demonstrated a unidirectional electron transfer within the redox complex. This strategy provides a simple and straightforward means to elucidate complex biologic respiratory electron transfer chains.
Collapse
Affiliation(s)
- Leonor Morgado
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carlos A Salgueiro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
4
|
From iron to bacterial electroconductive filaments: Exploring cytochrome diversity using Geobacter bacteria. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214284] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
5
|
Structural and functional insights of GSU0105, a unique multiheme cytochrome from G. sulfurreducens. Biophys J 2021; 120:5395-5407. [PMID: 34688593 DOI: 10.1016/j.bpj.2021.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Geobacter sulfurreducens possesses over 100 cytochromes that assure an effective electron transfer to the cell exterior. The most abundant group of cytochromes in this microorganism is the PpcA family, composed of five periplasmic triheme cytochromes with high structural homology and identical heme coordination (His-His). GSU0105 is a periplasmic triheme cytochrome synthetized by G. sulfurreducens in Fe(III)-reducing conditions but is not present in cultures grown on fumarate. This cytochrome has a low sequence identity with the PpcA family cytochromes and a different heme coordination, based on the analysis of its amino acid sequence. In this work, amino acid sequence analysis, site-directed mutagenesis, and complementary biophysical techniques, including ultraviolet-visible, circular dichroism, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopies, were used to characterize GSU0105. The cytochrome has a low percentage of secondary structural elements, with features of α-helices and β-sheets. Nuclear magnetic resonance shows that the protein contains three low-spin hemes (Fe(II), S = 0) in the reduced state. Electron paramagnetic resonance shows that, in the oxidized state, one of the hemes becomes high-spin (Fe(III), S = 5/2), whereas the two others remain low-spin (Fe(III), S = 1/2). The data obtained also indicate that the heme groups have distinct axial coordination. The apparent midpoint reduction potential of GSU0105 (-154 mV) is pH independent in the physiological range. However, the pH modulates the reduction potential of the heme that undergoes the low- to high-spin interconversion. The reduction potential values of cytochrome GSU0105 are more distinct compared to those of the PpcA family members, providing the protein with a larger functional working redox potential range. Overall, the results obtained, together with an amino acid sequence analysis of different multiheme cytochrome families, indicate that GSU0105 is a member of a new group of triheme cytochromes.
Collapse
|
6
|
Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N. Nonspecific Binding-Fundamental Concepts and Consequences for Biosensing Applications. Chem Rev 2021; 121:8095-8160. [PMID: 34105942 DOI: 10.1021/acs.chemrev.1c00044] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature achieves differentiation of specific and nonspecific binding in molecular interactions through precise control of biomolecules in space and time. Artificial systems such as biosensors that rely on distinguishing specific molecular binding events in a sea of nonspecific interactions have struggled to overcome this issue. Despite the numerous technological advancements in biosensor technologies, nonspecific binding has remained a critical bottleneck due to the lack of a fundamental understanding of the phenomenon. To date, the identity, cause, and influence of nonspecific binding remain topics of debate within the scientific community. In this review, we discuss the evolution of the concept of nonspecific binding over the past five decades based upon the thermodynamic, intermolecular, and structural perspectives to provide classification frameworks for biomolecular interactions. Further, we introduce various theoretical models that predict the expected behavior of biosensors in physiologically relevant environments to calculate the theoretical detection limit and to optimize sensor performance. We conclude by discussing existing practical approaches to tackle the nonspecific binding challenge in vitro for biosensing platforms and how we can both address and harness nonspecific interactions for in vivo systems.
Collapse
Affiliation(s)
- Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Alexander Tanno
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Stephanie Hwu
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Raphael F Tiefenauer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| |
Collapse
|
7
|
Ferreira MR, Salgueiro CA. Biomolecular Interaction Studies Between Cytochrome PpcA From Geobacter sulfurreducens and the Electron Acceptor Ferric Nitrilotriacetate (Fe-NTA). Front Microbiol 2018; 9:2741. [PMID: 30524391 PMCID: PMC6262392 DOI: 10.3389/fmicb.2018.02741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/26/2018] [Indexed: 11/17/2022] Open
Abstract
Geobacter sulfurreducens bacterium exhibits an enormous respiratory versatility, including the utilization of several toxic and radioactive metals as electron acceptors. This versatility is also replicated in the capability of the most abundant cytochrome in G. sulfurreducens, the periplasmic triheme cytochrome PpcA, to reduce uranium, chromium and other metal ions. From all possible electron transfer pathways in G. sulfurreducens, those involved in the iron reduction are the best characterized to date. Previously, we provided structural evidence for the complex interface established between PpcA and the electron acceptor Fe(III)-citrate. However, genetic studies suggested that this acceptor is mainly reduced by outer membrane cytochomes. In the present work, we used UV-visible measurements to demonstrate that PpcA is able to directly reduce the electron acceptor ferric nitrilotriacetate (Fe-NTA), a more outer membrane permeable iron chelated form. In addition, the molecular interactions between PpcA and Fe-NTA were probed by Nuclear Magnetic Resonance (NMR) spectroscopy. The NMR spectra obtained for PpcA samples in the absence and presence of Fe-NTA showed that the interaction is reversible and encompasses a positively charged surface region located in the vicinity of the heme IV. Overall, the study elucidates the formation of an electron transfer complex between PpcA and a readily outer-membrane permeable iron chelated form. The structural and functional relationships obtained explain how a single cytochrome is designed to effectively interact with a wide range of G. sulfurreducens electron acceptors, a feature that can be explored for optimal bioelectrochemical applications.
Collapse
Affiliation(s)
- Marisa R Ferreira
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Carlos A Salgueiro
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
8
|
Cohen-Khait R, Schreiber G. Selecting for Fast Protein-Protein Association As Demonstrated on a Random TEM1 Yeast Library Binding BLIP. Biochemistry 2018; 57:4644-4650. [PMID: 29671590 DOI: 10.1021/acs.biochem.8b00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-protein interactions mediate the vast majority of cellular processes. Though protein interactions obey basic chemical principles also within the cell, the in vivo physiological environment may not allow for equilibrium to be reached. Thus, in vitro measured thermodynamic affinity may not provide a complete picture of protein interactions in the biological context. Binding kinetics composed of the association and dissociation rate constants are relevant and important in the cell. Therefore, changes in protein-protein interaction kinetics have a significant impact on the in vivo activity of the proteins. The common protocol for the selection of tighter binders from a mutant library selects for protein complexes with slower dissociation rate constants. Here we describe a method to specifically select for variants with faster association rate constants by using pre-equilibrium selection, starting from a large random library. Toward this end, we refine the selection conditions of a TEM1-β-lactamase library against its natural nanomolar affinity binder β-lactamase inhibitor protein (BLIP). The optimal selection conditions depend on the ligand concentration and on the incubation time. In addition, we show that a second sort of the library helps to separate signal from noise, resulting in a higher percent of faster binders in the selected library. Fast associating protein variants are of particular interest for drug development and other biotechnological applications.
Collapse
Affiliation(s)
- Ruth Cohen-Khait
- Department of Biomolecular Sciences , Weizmann Institute of Science , 76100 Rehovot , Israel
| | - Gideon Schreiber
- Department of Biomolecular Sciences , Weizmann Institute of Science , 76100 Rehovot , Israel
| |
Collapse
|
9
|
Banci L, Camponeschi F, Ciofi-Baffoni S, Piccioli M. The NMR contribution to protein-protein networking in Fe-S protein maturation. J Biol Inorg Chem 2018; 23:665-685. [PMID: 29569085 PMCID: PMC6006191 DOI: 10.1007/s00775-018-1552-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Iron–sulfur proteins were among the first class of metalloproteins that were actively studied using NMR spectroscopy tailored to paramagnetic systems. The hyperfine shifts, their temperature dependencies and the relaxation rates of nuclei of cluster-bound residues are an efficient fingerprint of the nature and the oxidation state of the Fe–S cluster. NMR significantly contributed to the analysis of the magnetic coupling patterns and to the understanding of the electronic structure occurring in [2Fe–2S], [3Fe–4S] and [4Fe–4S] clusters bound to proteins. After the first NMR structure of a paramagnetic protein was obtained for the reduced E. halophila HiPIP I, many NMR structures were determined for several Fe–S proteins in different oxidation states. It was found that differences in chemical shifts, in patterns of unobserved residues, in internal mobility and in thermodynamic stability are suitable data to map subtle changes between the two different oxidation states of the protein. Recently, the interaction networks responsible for maturing human mitochondrial and cytosolic Fe–S proteins have been largely characterized by combining solution NMR standard experiments with those tailored to paramagnetic systems. We show here the contribution of solution NMR in providing a detailed molecular view of “Fe–S interactomics”. This contribution was particularly effective when protein–protein interactions are weak and transient, and thus difficult to be characterized at high resolution with other methodologies.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy. .,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy.
| | - Francesca Camponeschi
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy. .,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy.
| |
Collapse
|
10
|
Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of Geobacter sulfurreducens. Biochem J 2017; 474:797-808. [DOI: 10.1042/bcj20161022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 11/17/2022]
Abstract
Geobacter bacteria usually prevail among other microorganisms in soils and sediments where Fe(III) reduction has a central role. This reduction is achieved by extracellular electron transfer (EET), where the electrons are exported from the interior of the cell to the surrounding environment. Periplasmic cytochromes play an important role in establishing an interface between inner and outer membrane electron transfer components. In addition, periplasmic cytochromes, in particular nanowire cytochromes that contain at least 12 haem groups, have been proposed to play a role in electron storage in conditions of an environmental lack of electron acceptors. Up to date, no redox partners have been identified in Geobacter sulfurreducens, and concomitantly, the EET and electron storage mechanisms remain unclear. In this work, NMR chemical shift perturbation measurements were used to probe for an interaction between the most abundant periplasmic cytochrome PpcA and the dodecahaem cytochrome GSU1996, one of the proposed nanowire cytochromes in G. sulfurreducens. The perturbations on the haem methyl signals of GSU1996 and PpcA showed that the proteins form a transient redox complex in an interface that involves haem groups from two different domains located at the C-terminal of GSU1996. Overall, the present study provides for the first time a clear evidence for an interaction between periplasmic cytochromes that might be relevant for the EET and electron storage pathways in G. sulfurreducens.
Collapse
|
11
|
Ferreira MR, Dantas JM, Salgueiro CA. Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the electron acceptor Fe(iii) citrate studied by NMR. Dalton Trans 2017; 46:2350-2359. [DOI: 10.1039/c6dt04129a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular interactions betweenGeobacter sulfurreducenstriheme cytochromes and Fe(iii) citrate.
Collapse
Affiliation(s)
- Marisa R. Ferreira
- UCIBIO-Requimte
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade NOVA de Lisboa
- 2829-516 Caparica
| | - Joana M. Dantas
- UCIBIO-Requimte
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade NOVA de Lisboa
- 2829-516 Caparica
| | - Carlos A. Salgueiro
- UCIBIO-Requimte
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade NOVA de Lisboa
- 2829-516 Caparica
| |
Collapse
|
12
|
Babnigg G, Jedrzejczak R, Nocek B, Stein A, Eschenfeldt W, Stols L, Marshall N, Weger A, Wu R, Donnelly M, Joachimiak A. Gene selection and cloning approaches for co-expression and production of recombinant protein-protein complexes. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2015; 16:113-28. [PMID: 26671275 PMCID: PMC6886524 DOI: 10.1007/s10969-015-9200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
Multiprotein complexes play essential roles in all cells and X-ray crystallography can provide unparalleled insight into their structure and function. Many of these complexes are believed to be sufficiently stable for structural biology studies, but the production of protein-protein complexes using recombinant technologies is still labor-intensive. We have explored several strategies for the identification and cloning of heterodimers and heterotrimers that are compatible with the high-throughput (HTP) structural biology pipeline developed for single proteins. Two approaches are presented and compared which resulted in co-expression of paired genes from a single expression vector. Native operons encoding predicted interacting proteins were selected from a repertoire of genomes, and cloned directly to expression vector. In an alternative approach, Helicobacter pylori proteins predicted to interact strongly were cloned, each associated with translational control elements, then linked into an artificial operon. Proteins were then expressed and purified by standard HTP protocols, resulting to date in the structure determination of two H. pylori complexes.
Collapse
Affiliation(s)
- György Babnigg
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, 9700 S Cass Ave., Argonne, IL, 60439, USA.
| | - Robert Jedrzejczak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, 9700 S Cass Ave., Argonne, IL, 60439, USA
| | - Boguslaw Nocek
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, 9700 S Cass Ave., Argonne, IL, 60439, USA
| | - Adam Stein
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, 9700 S Cass Ave., Argonne, IL, 60439, USA
| | - William Eschenfeldt
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, 9700 S Cass Ave., Argonne, IL, 60439, USA
| | - Lucy Stols
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, 9700 S Cass Ave., Argonne, IL, 60439, USA
| | - Norman Marshall
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, 9700 S Cass Ave., Argonne, IL, 60439, USA
| | - Alicia Weger
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, 9700 S Cass Ave., Argonne, IL, 60439, USA
| | - Ruiying Wu
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, 9700 S Cass Ave., Argonne, IL, 60439, USA
| | - Mark Donnelly
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, 9700 S Cass Ave., Argonne, IL, 60439, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, 9700 S Cass Ave., Argonne, IL, 60439, USA.
| |
Collapse
|
13
|
Dantas JM, Kokhan O, Pokkuluri PR, Salgueiro CA. Molecular interaction studies revealed the bifunctional behavior of triheme cytochrome PpcA from Geobacter sulfurreducens toward the redox active analog of humic substances. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1129-38. [DOI: 10.1016/j.bbabio.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/15/2015] [Accepted: 06/07/2015] [Indexed: 11/17/2022]
|
14
|
Dantas JM, Campelo LM, Duke NEC, Salgueiro CA, Pokkuluri PR. The structure of PccH from Geobacter sulfurreducens - a novel low reduction potential monoheme cytochrome essential for accepting electrons from an electrode. FEBS J 2015; 282:2215-31. [PMID: 25786707 DOI: 10.1111/febs.13269] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/09/2015] [Accepted: 03/13/2015] [Indexed: 11/27/2022]
Abstract
The structure of cytochrome c (GSU3274) designated as PccH from Geobacter sulfurreducens was determined at a resolution of 2.0 Å. PccH is a small (15 kDa) cytochrome containing one c-type heme, found to be essential for the growth of G. sulfurreducens with respect to accepting electrons from graphite electrodes poised at -300 mV versus standard hydrogen electrode. with fumarate as the terminal electron acceptor. The structure of PccH is unique among the monoheme cytochromes described to date. The structural fold of PccH can be described as forming two lobes with the heme sandwiched in a cleft between the two lobes. In addition, PccH has a low reduction potential of -24 mV at pH 7, which is unusual for monoheme cytochromes. Based on difference in structure, together with sequence phylogenetic analysis, we propose that PccH can be regarded as a first characterized example of a new subclass of class I monoheme cytochromes. The low reduction potential of PccH may enable the protein to be redox active at the typically negative potential ranges encountered by G. sulfurreducens. Because PccH is predicted to be located in the periplasm of this bacterium, it could not be involved in the first step of accepting electrons from the electrode but is very likely involved in the downstream electron transport events in the periplasm.
Collapse
Affiliation(s)
- Joana M Dantas
- UCIBIO - REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Luísa M Campelo
- UCIBIO - REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Norma E C Duke
- Biosciences Division, Argonne National Laboratory, Lemont, IL, USA
| | - Carlos A Salgueiro
- UCIBIO - REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - P Raj Pokkuluri
- Biosciences Division, Argonne National Laboratory, Lemont, IL, USA
| |
Collapse
|
15
|
Zhang M, Huang R, Im SC, Waskell L, Ramamoorthy A. Effects of membrane mimetics on cytochrome P450-cytochrome b5 interactions characterized by NMR spectroscopy. J Biol Chem 2015; 290:12705-18. [PMID: 25795780 DOI: 10.1074/jbc.m114.597096] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Indexed: 01/08/2023] Open
Abstract
Mammalian cytochrome P450 (P450) is a membrane-bound monooxygenase whose catalytic activities require two electrons to be sequentially delivered from its redox partners: cytochrome b5 (cytb5) and cytochrome P450 reductase, both of which are membrane proteins. Although P450 functional activities are known to be affected by lipids, experimental evidence to reveal the effect of membrane on P450-cytb5 interactions is still lacking. Here, we present evidence for the influence of phospholipid bilayers on complex formation between rabbit P450 2B4 (CYP2B4) and rabbit cytb5 at the atomic level, utilizing NMR techniques. General line broadening and modest chemical shift perturbations of cytb5 resonances characterize CYP2B4-cytb5 interactions on the intermediate time scale. More significant intensity attenuation and a more specific protein-protein binding interface are observed in bicelles as compared with lipid-free solution, highlighting the importance of the lipid bilayer in stabilizing stronger and more specific interactions between CYP2B4 and cytb5, which may lead to a more efficient electron transfer. Similar results observed for the interactions between CYP2B4 lacking the transmembrane domain (tr-CYP2B4) and cytb5 imply interactions between tr-CYP2B4 and the membrane surface, which might assist in CYP2B4-cytb5 complex formation by orienting tr-CYP2B4 for efficient contact with cytb5. Furthermore, the observation of weak and nonspecific interactions between CYP2B4 and cytb5 in micelles suggests that lipid bilayer structures and low curvature membrane surface are preferable for CYP2B4-cytb5 complex formation. Results presented in this study provide structural insights into the mechanism behind the important role that the lipid bilayer plays in the interactions between P450s and their redox partners.
Collapse
Affiliation(s)
- Meng Zhang
- From the Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055 and
| | - Rui Huang
- From the Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055 and
| | - Sang-Choul Im
- the Department of Anesthesiology, University of Michigan and Veterans Affairs Medical Center, Ann Arbor, Michigan 48105
| | - Lucy Waskell
- the Department of Anesthesiology, University of Michigan and Veterans Affairs Medical Center, Ann Arbor, Michigan 48105
| | - Ayyalusamy Ramamoorthy
- From the Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055 and
| |
Collapse
|
16
|
Piccioli M, Turano P. Transient iron coordination sites in proteins: Exploiting the dual nature of paramagnetic NMR. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Yoshida R, Kawahara M, Nagamune T. Domain structure of growth signalobodies critically affects the outcome of antibody library selection. J Biochem 2015; 157:497-506. [PMID: 25616678 DOI: 10.1093/jb/mvv008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 12/27/2014] [Indexed: 02/06/2023] Open
Abstract
Wide applications of antibodies have demanded rapid and easy methods for isolating high-affinity antibodies. We recently developed an antibody screening system in mammalian cells using a growth signalobody, which is a single-chain Fv (scFv) library/cytokine receptor chimera that can transduce a growth signal in response to a target oligomeric antigen. However, we have never investigated how the domain structure of signalobodies affects the outcome of library screening. In this study, we screened naïve scFv library-inserted signalobodies having distinct extracellular and transmembrane (TM) domains. Although the previously constructed signalobody with the extracellular D1/D2 domains of erythropoietin receptor had recovered the clones with high affinity against a target antigen and with low background cell growth, its D1/D2-deficient variant which was tested in this study recovered the clones with low affinity against a target antigen and with considerable background cell growth. In addition, mutagenesis in the TM domain lowered the level of the background cell growth. These results suggest that the D1/D2 domains increase a threshold to activate signalobodies, thereby selecting clones with high affinity against a target antigen and that the TM domain could be engineered to minimize background growth signalling.
Collapse
Affiliation(s)
- Rie Yoshida
- Department of Bioengineering and Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahiro Kawahara
- Department of Bioengineering and Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Teruyuki Nagamune
- Department of Bioengineering and Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Department of Bioengineering and Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
18
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part II. {[Fe2S2](SγCys)4} proteins. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Dantas JM, Morgado L, Catarino T, Kokhan O, Pokkuluri PR, Salgueiro CA. Evidence for interaction between the triheme cytochrome PpcA from Geobacter sulfurreducens and anthrahydroquinone-2,6-disulfonate, an analog of the redox active components of humic substances. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:750-60. [PMID: 24530867 DOI: 10.1016/j.bbabio.2014.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 11/25/2022]
Abstract
The bacterium Geobacter sulfurreducens displays an extraordinary respiratory versatility underpinning the diversity of electron donors and acceptors that can be used to sustain anaerobic growth. Remarkably, G. sulfurreducens can also use as electron donors the reduced forms of some acceptors, such as the humic substance analog anthraquinone-2,6-disulfonate (AQDS), a feature that confers environmentally competitive advantages to the organism. Using UV-visible and stopped-flow kinetic measurements we demonstrate that there is electron exchange between the triheme cytochrome PpcA from Gs and AQDS. 2D-(1)H-(15)N HSQC NMR spectra were recorded for (15)N-enriched PpcA samples, in the absence and presence of AQDS. Chemical shift perturbation measurements, at increasing concentration of AQDS, were used to probe the interaction region and to measure the binding affinity of the PpcA-AQDS complex. The perturbations on the NMR signals corresponding to the PpcA backbone NH and heme substituents showed that the region around heme IV interacts with AQDS through the formation of a complex with a definite life time in the NMR time scale. The comparison of the NMR data obtained for PpcA in the presence and absence of AQDS showed that the interaction is reversible. Overall, this study provides for the first time a clear illustration of the formation of an electron transfer complex between AQDS and a G. sulfurreducens triheme cytochrome, shedding light on the electron transfer pathways underlying the microbial oxidation of humics.
Collapse
Affiliation(s)
- Joana M Dantas
- Requimte-CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Leonor Morgado
- Requimte-CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Teresa Catarino
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Oleksandr Kokhan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 USA
| | - P Raj Pokkuluri
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Carlos A Salgueiro
- Requimte-CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
20
|
Cationic polymerization of isobutylene by FeCl3/ether complexes in hexanes: An investigation of the steric and electronic effects of ethers. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Ahuja S, Jahr N, Im SC, Vivekanandan S, Popovych N, Le Clair SV, Huang R, Soong R, Xu J, Yamamoto K, Nanga RP, Bridges A, Waskell L, Ramamoorthy A. A model of the membrane-bound cytochrome b5-cytochrome P450 complex from NMR and mutagenesis data. J Biol Chem 2013; 288:22080-95. [PMID: 23709268 DOI: 10.1074/jbc.m112.448225] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microsomal cytochrome b5 (cytb5) is a membrane-bound protein that modulates the catalytic activity of its redox partner, cytochrome P4502B4 (cytP450). Here, we report the first structure of full-length rabbit ferric microsomal cytb5 (16 kDa), incorporated in two different membrane mimetics (detergent micelles and lipid bicelles). Differential line broadening of the cytb5 NMR resonances and site-directed mutagenesis data were used to characterize the cytb5 interaction epitope recognized by ferric microsomal cytP450 (56 kDa). Subsequently, a data-driven docking algorithm, HADDOCK (high ambiguity driven biomolecular docking), was used to generate the structure of the complex between cytP4502B4 and cytb5 using experimentally derived restraints from NMR, mutagenesis, and the double mutant cycle data obtained on the full-length proteins. Our docking and experimental results point to the formation of a dynamic electron transfer complex between the acidic convex surface of cytb5 and the concave basic proximal surface of cytP4502B4. The majority of the binding energy for the complex is provided by interactions between residues on the C-helix and β-bulge of cytP450 and residues at the end of helix α4 of cytb5. The structure of the complex allows us to propose an interprotein electron transfer pathway involving the highly conserved Arg-125 on cytP450 serving as a salt bridge between the heme propionates of cytP450 and cytb5. We have also shown that the addition of a substrate to cytP450 likely strengthens the cytb5-cytP450 interaction. This study paves the way to obtaining valuable structural, functional, and dynamic information on membrane-bound complexes.
Collapse
Affiliation(s)
- Shivani Ahuja
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lian LY. NMR studies of weak protein-protein interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 71:59-72. [PMID: 23611315 DOI: 10.1016/j.pnmrs.2012.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/22/2012] [Indexed: 06/02/2023]
Affiliation(s)
- Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
23
|
Santiveri CM, Sborgi L, de Alba E. Nuclear magnetic resonance study of protein-protein interactions involving apoptosis regulator Diva (Boo) and the BH3 domain of proapoptotic Bcl-2 members. J Mol Recognit 2013. [PMID: 23192964 DOI: 10.1002/jmr.2240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
According to biochemical assays, the Bcl-2 protein Diva from mouse regulates programmed cell death by heterodimerizing with other members of the family and by interacting with the apoptotic protease-activating factor Apaf-1. In typical Bcl-2 heterodimers, peptide fragments comprising the Bcl-2 homology domain 3 (BH3 domain) of proapoptotic members are capable of forming functional complexes with prosurvival proteins. High-resolution structural studies have revealed that the BH3 peptide forms an α-helix positioned in a canonical hydrophobic cleft of the antiapoptotic protein. Because Diva shows mutations in conserved residues within this area, it has been proposed to have a different interacting surface. However, we showed previously that Diva binds through the canonical groove the BH3 peptide of the human Bcl-2 killing member Harakiri. To further test Diva's binding capabilities, here we show Nuclear Magnetic Resonance (NMR) data, indicating that Diva binds peptides derived from the BH3 domain of several other proapoptotic Bcl-2 proteins, including mouse Harakiri, Bid, Bak and Bmf. We have measured the binding affinities of the heterodimers, which show significant variability. Structural models of the protein-peptide complexes based on NMR chemical shift perturbation data indicate that the binding surface is analogous. These models do not rely on NMR NOE (Nuclear Overhauser Effect) data, and thus our results can only suggest that the complexes share similar intermolecular interactions. However, the observed affinity differences correlate with the α-helical population of the BH3-peptides obtained from circular dichroism experiments, which highlights a role of conformational selection in the binding mechanism. Altogether, our results shed light on important factors governing Diva-BH3 peptide molecular recognition mode.
Collapse
Affiliation(s)
- Clara M Santiveri
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, Madrid, 28040, Spain
| | | | | |
Collapse
|
24
|
Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1. Biochem J 2012; 449:101-8. [DOI: 10.1042/bj20121467] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular electron transfer is the key metabolic trait that enables some bacteria to play a significant role in the biogeochemical cycling of metals and in bioelectrochemical devices such as microbial fuel cells. In Shewanella oneidensis MR-1, electrons generated in the cytoplasm by catabolic processes must cross the periplasmic space to reach terminal oxidoreductases found at the cell surface. Lack of knowledge on how these electrons flow across the periplasmic space is one of the unresolved issues related with extracellular electron transfer. Using NMR to probe protein–protein interactions, kinetic measurements of electron transfer and electrostatic calculations, we were able to identify protein partners and their docking sites, and determine the dissociation constants. The results showed that both STC (small tetrahaem cytochrome c) and FccA (flavocytochrome c) interact with their redox partners, CymA and MtrA, through a single haem, avoiding the establishment of stable redox complexes capable of spanning the periplasmic space. Furthermore, we verified that the most abundant periplasmic cytochromes STC, FccA and ScyA (monohaem cytochrome c5) do not interact with each other and this is likely to be the consequence of negative surface charges in these proteins. This reveals the co-existence of two non-mixing redox pathways that lead to extracellular electron transfer in S. oneidensis MR-1 established through transient protein interactions.
Collapse
|
25
|
Volkov AN, van Nuland NAJ. Electron transfer interactome of cytochrome C. PLoS Comput Biol 2012; 8:e1002807. [PMID: 23236271 PMCID: PMC3516563 DOI: 10.1371/journal.pcbi.1002807] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/12/2012] [Indexed: 01/31/2023] Open
Abstract
Lying at the heart of many vital cellular processes such as photosynthesis and respiration, biological electron transfer (ET) is mediated by transient interactions among proteins that recognize multiple binding partners. Accurate description of the ET complexes – necessary for a comprehensive understanding of the cellular signaling and metabolism – is compounded by their short lifetimes and pronounced binding promiscuity. Here, we used a computational approach relying solely on the steric properties of the individual proteins to predict the ET properties of protein complexes constituting the functional interactome of the eukaryotic cytochrome c (Cc). Cc is a small, soluble, highly-conserved electron carrier protein that coordinates the electron flow among different redox partners. In eukaryotes, Cc is a key component of the mitochondrial respiratory chain, where it shuttles electrons between its reductase and oxidase, and an essential electron donor or acceptor in a number of other redox systems. Starting from the structures of individual proteins, we performed extensive conformational sampling of the ET-competent binding geometries, which allowed mapping out functional epitopes in the Cc complexes, estimating the upper limit of the ET rate in a given system, assessing ET properties of different binding stoichiometries, and gauging the effect of domain mobility on the intermolecular ET. The resulting picture of the Cc interactome 1) reveals that most ET-competent binding geometries are located in electrostatically favorable regions, 2) indicates that the ET can take place from more than one protein-protein orientation, and 3) suggests that protein dynamics within redox complexes, and not the electron tunneling event itself, is the rate-limiting step in the intermolecular ET. Further, we show that the functional epitope size correlates with the extent of dynamics in the Cc complexes and thus can be used as a diagnostic tool for protein mobility. A number of vital cellular processes such as respiration, photosynthesis, and multifarious metabolic conversions rely on a long-range electron transfer (ET) among protein molecules. Full understanding of the biological ET requires accurate description of the redox protein complexes, which is hampered by their pronounced mobility and short lifetimes. Here we used a simple computational approach to predict the ET properties of the physiological protein complexes of cytochrome c (Cc) – a small electron carrier that coordinates the electron flow among different redox partners. By performing extensive conformational sampling of the possible binding geometries, we mapped out functional epitopes in the Cc complexes and assessed their ET properties. Our study suggests that protein dynamics within redox complexes is the rate-limiting step in the intermolecular ET and indicates that the functional epitope size correlates with the extent of dynamics in the Cc complexes. We believe that the latter finding can be used as a diagnostic tool for protein mobility and expect that this work will engender future studies of the intermolecular ET in biological networks.
Collapse
Affiliation(s)
- Alexander N Volkov
- Jean Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussel, Belgium.
| | | |
Collapse
|
26
|
Lin TY, Werther T, Jeoung JH, Dobbek H. Suppression of electron transfer to dioxygen by charge transfer and electron transfer complexes in the FAD-dependent reductase component of toluene dioxygenase. J Biol Chem 2012; 287:38338-46. [PMID: 22992736 DOI: 10.1074/jbc.m112.374918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-component toluene dioxygenase system consists of an FAD-containing reductase, a Rieske-type [2Fe-2S] ferredoxin, and a Rieske-type dioxygenase. The task of the FAD-containing reductase is to shuttle electrons from NADH to the ferredoxin, a reaction the enzyme has to catalyze in the presence of dioxygen. We investigated the kinetics of the reductase in the reductive and oxidative half-reaction and detected a stable charge transfer complex between the reduced reductase and NAD(+) at the end of the reductive half-reaction, which is substantially less reactive toward dioxygen than the reduced reductase in the absence of NAD(+). A plausible reason for the low reactivity toward dioxygen is revealed by the crystal structure of the complex between NAD(+) and reduced reductase, which shows that the nicotinamide ring and the protein matrix shield the reactive C4a position of the isoalloxazine ring and force the tricycle into an atypical planar conformation, both factors disfavoring the reaction of the reduced flavin with dioxygen. A rapid electron transfer from the charge transfer complex to electron acceptors further reduces the risk of unwanted side reactions, and the crystal structure of a complex between the reductase and its cognate ferredoxin shows a short distance between the electron-donating and -accepting cofactors. Attraction between the two proteins is likely mediated by opposite charges at one large patch of the complex interface. The stability, specificity, and reactivity of the observed charge transfer and electron transfer complexes are thought to prevent the reaction of reductase(TOL) with dioxygen and thus present a solution toward conflicting requirements.
Collapse
Affiliation(s)
- Tzong-Yuan Lin
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
27
|
Titushin MS, Feng Y, Lee J, Vysotski ES, Liu ZJ. Protein-protein complexation in bioluminescence. Protein Cell 2012; 2:957-72. [PMID: 22231355 DOI: 10.1007/s13238-011-1118-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 11/07/2011] [Indexed: 12/01/2022] Open
Abstract
In this review we summarize the progress made towards understanding the role of protein-protein interactions in the function of various bioluminescence systems of marine organisms, including bacteria, jellyfish and soft corals, with particular focus on methodology used to detect and characterize these interactions. In some bioluminescence systems, protein-protein interactions involve an "accessory protein" whereby a stored substrate is efficiently delivered to the bioluminescent enzyme luciferase. Other types of complexation mediate energy transfer to an "antenna protein" altering the color and quantum yield of a bioluminescence reaction. Spatial structures of the complexes reveal an important role of electrostatic forces in governing the corresponding weak interactions and define the nature of the interaction surfaces. The most reliable structural model is available for the protein-protein complex of the Ca(2+)-regulated photoprotein clytin and green-fluorescent protein (GFP) from the jellyfish Clytia gregaria, solved by means of Xray crystallography, NMR mapping and molecular docking. This provides an example of the potential strategies in studying the transient complexes involved in bioluminescence. It is emphasized that structural studies such as these can provide valuable insight into the detailed mechanism of bioluminescence.
Collapse
Affiliation(s)
- Maxim S Titushin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | |
Collapse
|
28
|
Cytochrome c signalosome in mitochondria. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1301-15. [DOI: 10.1007/s00249-011-0774-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/12/2011] [Accepted: 10/21/2011] [Indexed: 10/15/2022]
|
29
|
Meschi F, Wiertz F, Klauss L, Blok A, Ludwig B, Merli A, Heering HA, Rossi GL, Ubbink M. Efficient Electron Transfer in a Protein Network Lacking Specific Interactions. J Am Chem Soc 2011; 133:16861-7. [DOI: 10.1021/ja205043f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesca Meschi
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | - Frank Wiertz
- Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Linda Klauss
- Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Anneloes Blok
- Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Bernd Ludwig
- Institute of Biochemistry, Molecular Genetics Group, and Cluster of Excellence Macromolecular Complexes, Goethe University, D-60438 Frankfurt, Germany
| | - Angelo Merli
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | - Hendrik A. Heering
- Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gian Luigi Rossi
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | - Marcellus Ubbink
- Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
30
|
Dell'acqua S, Moura I, Moura JJG, Pauleta SR. The electron transfer complex between nitrous oxide reductase and its electron donors. J Biol Inorg Chem 2011; 16:1241-54. [PMID: 21739254 DOI: 10.1007/s00775-011-0812-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/20/2011] [Indexed: 11/25/2022]
Abstract
Identifying redox partners and the interaction surfaces is crucial for fully understanding electron flow in a respiratory chain. In this study, we focused on the interaction of nitrous oxide reductase (N(2)OR), which catalyzes the final step in bacterial denitrification, with its physiological electron donor, either a c-type cytochrome or a type 1 copper protein. The comparison between the interaction of N(2)OR from three different microorganisms, Pseudomonas nautica, Paracoccus denitrificans, and Achromobacter cycloclastes, with their physiological electron donors was performed through the analysis of the primary sequence alignment, electrostatic surface, and molecular docking simulations, using the bimolecular complex generation with global evaluation and ranking algorithm. The docking results were analyzed taking into account the experimental data, since the interaction is suggested to have either a hydrophobic nature, in the case of P. nautica N(2)OR, or an electrostatic nature, in the case of P. denitrificans N(2)OR and A. cycloclastes N(2)OR. A set of well-conserved residues on the N(2)OR surface were identified as being part of the electron transfer pathway from the redox partner to N(2)OR (Ala495, Asp519, Val524, His566 and Leu568 numbered according to the P. nautica N(2)OR sequence). Moreover, we built a model for Wolinella succinogenes N(2)OR, an enzyme that has an additional c-type-heme-containing domain. The structures of the N(2)OR domain and the c-type-heme-containing domain were modeled and the full-length structure was obtained by molecular docking simulation of these two domains. The orientation of the c-type-heme-containing domain relative to the N(2)OR domain is similar to that found in the other electron transfer complexes.
Collapse
Affiliation(s)
- Simone Dell'acqua
- REQUIMTE/CQFB, Departamento de Química, Universidade Nova de Lisboa, Caparica, Portugal
| | | | | | | |
Collapse
|
31
|
Lederer F. Another look at the interaction between mitochondrial cytochrome c and flavocytochrome b (2). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1283-99. [PMID: 21503671 DOI: 10.1007/s00249-011-0697-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/28/2011] [Accepted: 03/16/2011] [Indexed: 11/29/2022]
Abstract
Yeast flavocytochrome b (2) tranfers reducing equivalents from lactate to oxygen via cytochrome c and cytochrome c oxidase. The enzyme catalytic cycle includes FMN reduction by lactate and reoxidation by intramolecular electron transfer to heme b (2). Each subunit of the soluble tetrameric enzyme consists of an N terminal b (5)-like heme-binding domain and a C terminal flavodehydrogenase. In the crystal structure, FMN and heme are face to face, and appear to be in a suitable orientation and at a suitable distance for exchanging electrons. But in one subunit out of two, the heme domain is disordered and invisible. This raises a central question: is this mobility required for interaction with the physiological acceptor cytochrome c, which only receives electrons from the heme and not from the FMN? The present review summarizes the results of the variety of methods used over the years that shed light on the interactions between the flavin and heme domains and between the enzyme and cytochrome c. The conclusion is that one should consider the interaction between the flavin and heme domains as a transient one, and that the cytochrome c and the flavin domain docking areas on the heme b (2) domain must overlap at least in part. The heme domain mobility is an essential component of the flavocytochrome b (2) functioning. In this respect, the enzyme bears similarity to a variety of redox enzyme systems, in particular those in which a cytochrome b (5)-like domain is fused to proteins carrying other redox functions.
Collapse
Affiliation(s)
- Florence Lederer
- Laboratoire de Chimie Physique, Université Paris-Sud, Orsay Cedex, France.
| |
Collapse
|
32
|
Ly HK, Sezer M, Wisitruangsakul N, Feng JJ, Kranich A, Millo D, Weidinger IM, Zebger I, Murgida DH, Hildebrandt P. Surface-enhanced vibrational spectroscopy for probing transient interactions of proteins with biomimetic interfaces: electric field effects on structure, dynamics and function of cytochrome c. FEBS J 2011; 278:1382-90. [PMID: 21352495 DOI: 10.1111/j.1742-4658.2011.08064.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most of the biochemical and biophysical processes of proteins take place at membranes, and are thus under the influence of strong local electric fields, which are likely to affect the structure as well as the reaction mechanism and dynamics. To analyse such electric field effects, biomimetic interfaces may be employed that consist of membrane models deposited on nanostructured metal electrodes. For such devices, surface-enhanced resonance Raman and IR absorption spectroscopy are powerful techniques to disentangle the complex interfacial processes of proteins in terms of rotational diffusion, electron transfer, and protein and cofactor structural changes. The present article reviews the results obtained for the haem protein cytochrome c, which is widely used as a model protein for studying the various reaction steps of interfacial redox processes in general. In addition, it is shown that electric field effects may be functional for the natural redox processes of cytochrome c in the respiratory chain, as well as for the switch from the redox to the peroxidase function, one of the key events preceding apoptosis.
Collapse
Affiliation(s)
- Hong Khoa Ly
- Technische Universität Berlin, Institut für Chemie, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Martínez-Fábregas J, Rubio S, Díaz-Quintana A, Díaz-Moreno I, De la Rosa MÁ. Proteomic tools for the analysis of transient interactions between metalloproteins. FEBS J 2011; 278:1401-10. [PMID: 21352492 DOI: 10.1111/j.1742-4658.2011.08061.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metalloproteins play major roles in cell metabolism and signalling pathways. In many cases, they show moonlighting behaviour, acting in different processes, depending on the physiological state of the cell. To understand these multitasking proteins, we need to discover the partners with which they carry out such novel functions. Although many technological and methodological tools have recently been reported for the detection of protein interactions, specific approaches to studying the interactions involving metalloproteins are not yet well developed. The task is even more challenging for metalloproteins, because they often form short-lived complexes that are difficult to detect. In this review, we gather the different proteomic techniques and biointeractomic tools reported in the literature. All of them have shown their applicability to the study of transient and weak protein-protein interactions, and are therefore suitable for metalloprotein interactions.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Centro de Investigaciones Científicas Isla de la Cartuja, Sevilla, Spain
| | | | | | | | | |
Collapse
|
34
|
Vinogradova O, Qin J. NMR as a unique tool in assessment and complex determination of weak protein-protein interactions. Top Curr Chem (Cham) 2011; 326:35-45. [PMID: 21809187 DOI: 10.1007/128_2011_216] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-protein interactions are crucial for a wide variety of biological processes. These interactions range from high affinity (K (d)<nM) to very low affinity (K (d)>mM). While much is known about the nature of high affinity protein complexes, our knowledge about structural characteristics of weak protein-protein interactions (wPPIs) remains limited: in addition to the technical difficulties associated with their investigation, historically wPPIs used to be considered physiologically irrelevant. However, emerging evidence suggests that wPPIs, either in the form of intact protein complexes or as part of large molecular machineries, are fundamentally important for promoting rapid on/off switches of signal transduction, reversible cell-cell contacts, transient assembly/disassembly of signaling complexes, and enzyme-substrate recognition. Therefore an atomic-level elucidation of wPPIs is vital to understanding a cornucopia of diverse cellular events. Nuclear magnetic resonance (NMR) is famous for its unique abilities to study wPPIs and, by utilization of the new technical developments combined with sparse data based computational analysis, it now allows rapid identification and structural characterization of wPPIs. Here we present our perspective on the NMR methods employed.
Collapse
Affiliation(s)
- Olga Vinogradova
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA.
| | | |
Collapse
|
35
|
Xiong P, Nocek JM, Vura-Weis J, Lockard JV, Wasielewski MR, Hoffman BM. Faster interprotein electron transfer in a [myoglobin, b⁵] complex with a redesigned interface. Science 2010; 330:1075-8. [PMID: 21097931 DOI: 10.1126/science.1197054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Direct measurements of electron transfer (ET) within a protein-protein complex with a redesigned interface formed by physiological partner proteins myoglobin (Mb) and cytochrome b(5) (b(5)) reveal interprotein ET rates comparable to those observed within the photosynthetic reaction center. Brownian dynamics simulations show that Mb in which three surface acid residues are mutated to lysine binds b(5) in an ensemble of configurations distributed around a reactive most-probable structure. Correspondingly, charge-separation ET from a photoexcited singlet zinc porphyrin incorporated within Mb to the heme of b(5) and the follow-up charge-recombination exhibit distributed kinetics, with median rate constants, k(f)(s) = 2.1 × 10(9) second(-1) and k(b)(s) = 4.3 × 10(10) second(-1), respectively. The latter approaches that for the initial step in photosynthetic charge separation, k = 3.3 × 10(11) second(-1).
Collapse
Affiliation(s)
- Peng Xiong
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | | | | | | | | | | |
Collapse
|
36
|
Titushin MS, Feng Y, Stepanyuk GA, Li Y, Markova SV, Golz S, Wang BC, Lee J, Wang J, Vysotski ES, Liu ZJ. NMR-derived topology of a GFP-photoprotein energy transfer complex. J Biol Chem 2010; 285:40891-900. [PMID: 20926380 DOI: 10.1074/jbc.m110.133843] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Förster resonance energy transfer within a protein-protein complex has previously been invoked to explain emission spectral modulation observed in several bioluminescence systems. Here we present a spatial structure of a complex of the Ca(2+)-regulated photoprotein clytin with its green-fluorescent protein (cgGFP) from the jellyfish Clytia gregaria, and show that it accounts for the bioluminescence properties of this system in vitro. We adopted an indirect approach of combining x-ray crystallography determined structures of the separate proteins, NMR spectroscopy, computational docking, and mutagenesis. Heteronuclear NMR spectroscopy using variously (15)N,(13)C,(2)H-enriched proteins enabled assignment of backbone resonances of more than 94% of the residues of both proteins. In a mixture of the two proteins at millimolar concentrations, complexation was inferred from perturbations of certain (1)H-(15)N HSQC-resonances, which could be mapped to those residues involved at the interaction site. A docking computation using HADDOCK was employed constrained by the sites of interaction, to deduce an overall spatial structure of the complex. Contacts within the clytin-cgGFP complex and electrostatic complementarity of interaction surfaces argued for a weak protein-protein complex. A weak affinity was also observed by isothermal titration calorimetry (K(D) = 0.9 mM). Mutation of clytin residues located at the interaction site reduced the degree of protein-protein association concomitant with a loss of effectiveness of cgGFP in color-shifting the bioluminescence. It is suggested that this clytin-cgGFP structure corresponds to the transient complex previously postulated to account for the energy transfer effect of GFP in the bioluminescence of aequorin or Renilla luciferase.
Collapse
Affiliation(s)
- Maxim S Titushin
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Salverda J, Patil A, Mizzon G, Kuznetsova S, Zauner G, Akkilic N, Canters G, Davis J, Heering H, Aartsma T. Fluorescent Cyclic Voltammetry of Immobilized Azurin: Direct Observation of Thermodynamic and Kinetic Heterogeneity. Angew Chem Int Ed Engl 2010; 49:5776-9. [DOI: 10.1002/anie.201001298] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Salverda J, Patil A, Mizzon G, Kuznetsova S, Zauner G, Akkilic N, Canters G, Davis J, Heering H, Aartsma T. Fluorescent Cyclic Voltammetry of Immobilized Azurin: Direct Observation of Thermodynamic and Kinetic Heterogeneity. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Yang W, Bell SG, Wang H, Zhou W, Hoskins N, Dale A, Bartlam M, Wong LL, Rao Z. Molecular characterization of a class I P450 electron transfer system from Novosphingobium aromaticivorans DSM12444. J Biol Chem 2010; 285:27372-27384. [PMID: 20576606 DOI: 10.1074/jbc.m110.118349] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes of the CYP101 and CYP111 families from the oligotrophic bacterium Novosphingobium aromaticivorans DSM12444 are heme monooxygenases that receive electrons from NADH via Arx, a [2Fe-2S] ferredoxin, and ArR, a ferredoxin reductase. These systems show fast NADH turnovers (k(cat) = 39-91 s(-1)) that are efficiently coupled to product formation. The three-dimensional structures of ArR, Arx, and CYP101D1, which form a physiological class I P450 electron transfer chain, have been resolved by x-ray crystallography. The general structural features of these proteins are similar to their counterparts in other class I systems such as putidaredoxin reductase (PdR), putidaredoxin (Pdx), and CYP101A1 of the camphor hydroxylase system from Pseudomonas putida, and adrenodoxin (Adx) of the mitochondrial steroidogenic CYP11 and CYP24A1 systems. However, significant differences in the proposed protein-protein interaction surfaces of the ferredoxin reductase, ferredoxin, and P450 enzyme are found. There are regions of positive charge on the likely interaction face of ArR and CYP101D1 and a corresponding negatively charged area on the surface of Arx. The [2Fe-2S] cluster binding loop in Arx also has a neutral, hydrophobic patch on the surface. These surface characteristics are more in common with those of Adx than Pdx. The observed structural features are consistent with the ionic strength dependence of the activity.
Collapse
Affiliation(s)
- Wen Yang
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Stephen G Bell
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.
| | - Hui Wang
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Weihong Zhou
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nicola Hoskins
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alison Dale
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Mark Bartlam
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China; Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.
| | - Luet-Lok Wong
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Zihe Rao
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China; Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Ewen KM, Kleser M, Bernhardt R. Adrenodoxin: the archetype of vertebrate-type [2Fe-2S] cluster ferredoxins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:111-25. [PMID: 20538075 DOI: 10.1016/j.bbapap.2010.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/28/2010] [Accepted: 06/01/2010] [Indexed: 11/15/2022]
Abstract
Adrenodoxin is probably the best characterized member of the vertebrate-type [2Fe-2S]-cluster ferredoxins. It has been in the spotlight of scientific interest for many years due to its essential role in mammalian steroid hormone biosynthesis, where it acts as electron mediator between the NADPH-dependent adrenodoxin reductase and several mitochondrial cytochromes P450. In this review we will focus on the present knowledge about protein-protein recognition in the mitochondrial cytochrome P450 system and the modulation of the electron transfer between Adx and its redox partners, AdR and CYP(s). We also intend to point out the potential biotechnological applications of Adx as a versatile electron donor to different cytochromes P450, both in vitro and in vivo. Finally we will address the comparison between the mammalian cytochrome P450-associated adrenodoxin and ferredoxins involved in iron-sulfur-cluster biosynthesis. Despite their different functions, these proteins display an amazing similarity regarding their primary sequence, tertiary structure and biophysical features.
Collapse
Affiliation(s)
- Kerstin Maria Ewen
- Department of Biochemistry, Saarland University, D-66041 Saarbrücken, Germany
| | | | | |
Collapse
|
41
|
Structural evidence for the functional importance of the heme domain mobility in flavocytochrome b2. J Mol Biol 2010; 400:518-30. [PMID: 20546754 DOI: 10.1016/j.jmb.2010.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 11/24/2022]
Abstract
Yeast flavocytochrome b(2) (Fcb2) is an L-lactate:cytochrome c oxidoreductase in the mitochondrial intermembrane space participating in cellular respiration. Each enzyme subunit consists of a cytochrome b(5)-like heme domain and a flavodehydrogenase (FDH) domain. In the Fcb2 crystal structure, the heme domain is mobile relative to the tetrameric FDH core in one out of two subunits. The monoclonal antibody B2B4, elicited against the holoenzyme, recognizes only the native heme domain in the holoenzyme. When bound, it suppresses the intramolecular electron transfer from flavin to heme b(2), hence cytochrome c reduction. We report here the crystal structure of the heme domain in complex with the Fab at 2.7 A resolution. The Fab epitope on the heme domain includes the two exposed propionate groups of the heme, which are hidden in the interface between the domains in the complete subunit. The structure discloses an unexpected plasticity of Fcb2 in the neighborhood of the heme cavity, in which the heme has rotated. The epitope overlaps with the docking area of the FDH domain onto the heme domain, indicating that the antibody displaces the heme domain in a movement of large amplitude. We suggest that the binding sites on the heme domain of cytochrome c and of the FDH domain also overlap and therefore that cytochrome c binding also requires the heme domain to move away from the FDH domain, so as to allow electron transfer between the two hemes. Based on this hypothesis, we propose a possible model of the Fcb2.cytochrome c complex. Interestingly, this model shares similarity with that of the cytochrome b(5) x cytochrome c complex, in which cytochrome c binds to the surface around the exposed heme edge of cytochrome b(5). The present results therefore support the idea that the heme domain mobility is an inherent component of the Fcb2 functioning.
Collapse
|
42
|
Nocek JM, Knutson AK, Xiong P, Co NP, Hoffman BM. Photoinitiated singlet and triplet electron transfer across a redesigned [myoglobin, cytochrome b5] interface. J Am Chem Soc 2010; 132:6165-75. [PMID: 20392066 PMCID: PMC2868514 DOI: 10.1021/ja100499j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a strategy by which reactive binding of a weakly bound, 'dynamically docked (DD)' complex without a known structure can be strengthened electrostatically through optimized placement of surface charges, and discuss its use in modulating complex formation between myoglobin (Mb) and cytochrome b(5) (b(5)). The strategy employs paired Brownian dynamics (BD) simulations, one which monitors overall binding, the other reactive binding, to examine [X --> K] mutations on the surface of the partners, with a focus on single and multiple [D/E --> K] charge reversal mutations. This procedure has been applied to the [Mb, b(5)] complex, indicating mutations of Mb residues D44, D60, and E85 to be the most promising, with combinations of these showing a nonlinear enhancement of reactive binding. A novel method of displaying BD profiles shows that the 'hits' of b(5) on the surfaces of Mb(WT), Mb(D44K/D60K), and Mb(D44K/D60K/E85K) progressively coalesce into two 'clusters': a 'diffuse' cluster of hits that are distributed over the Mb surface and have negligible electrostatic binding energy and a 'reactive' cluster of hits with considerable stability that are localized near its heme edge, with short Fe-Fe distances favorable to electron transfer (ET). Thus, binding and reactivity progressively become correlated by the mutations. This finding relates to recent proposals that complex formation is a two-step process, proceeding through the formation of a weakly bound encounter complex to a well-defined bound complex. The design procedure has been tested through measurements of photoinitiated ET between the Zn-substituted forms of Mb(WT), Mb(D44K/D60K), and Mb(D44K/D60K/E85K) and Fe(3+)b(5). Both mutants convert the complex from the DD regime exhibited by Mb(WT), in which the transient complex is in fast kinetic exchange with its partners, k(off) >> k(et), to the slow-exchange regime, k(et) >> k(off), and both mutants exhibit rapid intracomplex ET from the triplet excited state to Fe(3+)b(5) (rate constant, k(et) approximately 10(6) s(-1)). The affinity constants of the mutant Mbs cannot be derived through conventional analysis procedures because intracomplex singlet ET quenching causes the triplet-ground absorbance difference to progressively decrease during a titration, but this effect has been incorporated into a new procedure for computing binding constants. Most importantly, these measurements reveal the presence of fast photoinduced singlet ET across the protein-protein interface, (1)k(et) approximately 2 x 10(8) s(-1).
Collapse
|
43
|
Bizzarri AR, Cannistraro S. The application of atomic force spectroscopy to the study of biological complexes undergoing a biorecognition process. Chem Soc Rev 2010; 39:734-49. [DOI: 10.1039/b811426a] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
44
|
Almeida RM, Pauleta SR, Moura I, Moura JJG. Rubredoxin as a paramagnetic relaxation-inducing probe. J Inorg Biochem 2009; 103:1245-53. [PMID: 19651443 DOI: 10.1016/j.jinorgbio.2009.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 06/29/2009] [Accepted: 07/06/2009] [Indexed: 11/15/2022]
Abstract
The paramagnetic effect due to the presence of a metal center with unpaired electrons is no longer considered a hindrance in protein NMR spectroscopy. In the present work, the paramagnetic effect due to the presence of a metal center with unpaired electrons was used to map the interface of an electron transfer complex. Desulfovibrio gigas cytochrome c(3) was chosen as target to study the effect of the paramagnetic probe, Fe-rubredoxin, which produced specific line broadening in the heme IV methyl resonances M2(1) and M18(1). The rubredoxin binding surface in the complex with cytochrome c(3) was identified in a heteronuclear 2D NMR titration. The identified heme methyls on cytochrome c(3) are involved in the binding interface of the complex, a result that is in agreement with the predicted complexes obtained by restrained molecular docking, which shows a cluster of possible solutions near heme IV. The use of a paramagnetic probe in (1)HNMR titration and the mapping of the complex interface, in combination with a molecular simulation algorithm proved to be a valuable strategy to study electron transfer complexes involving non-heme iron proteins and cytochromes.
Collapse
Affiliation(s)
- Rui M Almeida
- REQUIMTE/CQFB, Departamento de Química, Universidade Nova de Lisboa, Caparica, Portugal
| | | | | | | |
Collapse
|
45
|
Díaz-Moreno I, Muñoz-López FJ, Frutos-Beltrán E, De la Rosa MA, Díaz-Quintana A. Electrostatic strain and concerted motions in the transient complex between plastocyanin and cytochrome f from the cyanobacterium Phormidium laminosum. Bioelectrochemistry 2009; 77:43-52. [PMID: 19616485 DOI: 10.1016/j.bioelechem.2009.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 06/04/2009] [Accepted: 06/04/2009] [Indexed: 11/15/2022]
Abstract
Many fleeting macromolecular interactions, like those being involved in electron transport, are essential in biology. However, little is known about the behaviour of the partners and their dynamics within their short-lived complex. To tackle such issue, we have performed molecular dynamics simulations on an electron transfer complex formed by plastocyanin and cytochrome f from the cyanobacterium Phormidium laminosum. Besides simulations of the isolated partners, two independent trajectories of the complex were calculated, starting from the two different conformations in the NMR ensemble. The first one leads to a more stable ensemble with a shorter distance between the metal sites of the two partners. The second experiences a significant drift of the complex conformation. Analyses of the distinct calculations show that the conformation of cytochrome f is strained upon binding of its partner, and relaxes upon its release. Interestingly, the principal component analysis of the trajectories indicates that plastocyanin displays a concerted motion with the small domain of cytochrome f that can be attributed to electrostatic interactions between the two proteins.
Collapse
Affiliation(s)
- Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla and C.S.I.C.), Spain
| | | | | | | | | |
Collapse
|
46
|
Fantuzzi A, Meharenna YT, Briscoe PB, Guerlesquin F, Sadeghi SJ, Gilardi G. Characterisation of the electron transfer and complex formation between flavodoxin from D. vulgaris and the haem domain of cytochrome P450 BM3 from B. megaterium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:234-41. [PMID: 19366612 DOI: 10.1016/j.bbabio.2009.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 01/09/2009] [Accepted: 01/13/2009] [Indexed: 11/16/2022]
Abstract
Investigation of the complex formation and electron transfer kinetics between P450 BMP and flavodoxin was carried out following the suggested involvement of flavodoxin in modulating the electron transfer to BMP in artificial redox chains bound to an electrode surface. While electron transfer measurements show the formation of a tightly bound complex, the NMR data indicate the formation of shortly lived complexes. The measured k(obs) ranged from 24.2 s(-1) to 44.1 s(-1) with k(on) ranging from 0.07 x 10(6) to 1.1 x 10(6) s(-1) M(-1) and K(d) ranging from 300 microM to 24 microM in buffers of different ionic strength. This apparent contradiction is due to the existence of two events in the complex formation prior to electron transfer. A stable complex is initially formed. Within such tightly bound complex, flavodoxin rocks rapidly between different positions. The rocking of the bound flavodoxin between several different orientations gives rise to the transient complexes in fast exchange as observed in the NMR experiments. Docking simulations with two different approaches support the theory that there is no highly specific orientation in the complex, but instead one side of the flavodoxin binds the P450 with high overall affinity but with a number of different orientations. The level of functionality of each orientation is dependent on the distance between cofactors, which can vary between 8 and 25 A, with some of the transient complexes showing distances compatible with the measured electron transfer rate constants.
Collapse
Affiliation(s)
- Andrea Fantuzzi
- Division of Biomolecular Sciences, Imperial College London, SW7 2AZ London, UK
| | | | | | | | | | | |
Collapse
|
47
|
Preparation and Characterization of Bacterial Protein Complexes for Structural Analysis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2009. [DOI: 10.1016/s1876-1623(08)76001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
48
|
Volkov AN, Bashir Q, Worrall JAR, Ubbink M. Binding hot spot in the weak protein complex of physiological redox partners yeast cytochrome C and cytochrome C peroxidase. J Mol Biol 2008; 385:1003-13. [PMID: 19026661 DOI: 10.1016/j.jmb.2008.10.091] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/16/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
Abstract
Transient protein interactions mediate many vital cellular processes such as signal transduction or intermolecular electron transfer. However, due to difficulties associated with their structural characterization, little is known about the principles governing recognition and binding in weak transient protein complexes. In particular, it has not been well established whether binding hot spots, which are frequently found in strong static complexes, also govern transient protein interactions. To address this issue, we have investigated an electron transfer complex of physiological partners from yeast: yeast iso-1-cytochrome c (Cc) and yeast cytochrome c peroxidase (CcP). Using isothermal titration calorimetry and NMR spectroscopy, we show that Cc R13 is a hot-spot residue, as R13A mutation has a strong destabilizing effect on binding. Furthermore, we employ a double-mutant cycle to illustrate that Cc R13 interacts with CcP Y39. The present results, in combination with those of earlier mutational studies, have enabled us to outline the extent of the energetically important Cc-CcP binding region. Based on our analysis, we propose that binding energy hot spots, which are prevalent in static protein complexes, could also govern transient protein interactions.
Collapse
Affiliation(s)
- Alexander N Volkov
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
49
|
Hart SE, Howe CJ, Mizuguchi K, Fernandez-Recio J. Docking of cytochrome c6 and plastocyanin to the aa3-type cytochrome c oxidase in the cyanobacterium Phormidium laminosum. Protein Eng Des Sel 2008; 21:689-98. [DOI: 10.1093/protein/gzn051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
50
|
Dadak V, Holik M. Electrostatic attraction between cytochrome bc 1 and cytochrome c affects kinetics of cytochrome c reduction. BIOCHEMISTRY (MOSCOW) 2008; 73:870-80. [DOI: 10.1134/s000629790808004x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|