1
|
Root-Bernstein RS, Bernstein MI. 'Evolutionary poker': an agent-based model of interactome emergence and epistasis tested against Lenski's long-term E. coli experiments. J Physiol 2024; 602:2511-2535. [PMID: 37707489 DOI: 10.1113/jp284421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
A simple agent-based model is presented that produces results matching the experimental data found by Lenski's group for ≤50,000 generations of Escherichia coli bacteria under continuous selective pressure. Although various mathematical models have been devised previously to model the Lenski data, the present model has advantages in terms of overall simplicity and conceptual accessibility. The model also clearly illustrates a number of features of the evolutionary process that are otherwise not obvious, such as the roles of epistasis and historical contingency in adaptation and why evolution is time irreversible ('Dollo's law'). The reason for this irreversibility is that genomes become increasingly integrated or organized, and this organization becomes a novel selective factor itself, against which future generations must compete. Selection for integrated or synergistic networks, systems or sets of mutations or traits, not for individual mutations, confers the main adaptive advantage. The result is a punctuated form of evolution that follows a logarithmic occurrence probability, in which evolution proceeds very quickly when interactomes begin to form but which slows as interactomes become more robust and the difficulty of integrating new mutations increases. Sufficient parameters exist in the game to suggest not only how equilibrium or stasis is reached but also the conditions in which it will be punctuated, the factors governing the rate at which genomic organization occurs and novel traits appear, and how population size, genome size and gene variability affect these.
Collapse
Affiliation(s)
| | - Morton I Bernstein
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Dwyer DS. Protein Receptors Evolved from Homologous Cohesion Modules That Self-Associated and Are Encoded by Interactive Networked Genes. Life (Basel) 2021; 11:life11121335. [PMID: 34947866 PMCID: PMC8707797 DOI: 10.3390/life11121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Previously, it was proposed that protein receptors evolved from self-binding peptides that were encoded by self-interacting gene segments (inverted repeats) widely dispersed in the genome. In addition, self-association of the peptides was thought to be mediated by regions of amino acid sequence similarity. To extend these ideas, special features of receptors have been explored, such as their degree of homology to other proteins, and the arrangement of their genes for clues about their evolutionary origins and dynamics in the genome. As predicted, BLASTP searches for homologous proteins detected a greater number of unique hits for queries with receptor sequences than for sequences of randomly-selected, non-receptor proteins. This suggested that the building blocks (cohesion modules) for receptors were duplicated, dispersed, and maintained in the genome, due to structure/function relationships discussed here. Furthermore, the genes coding for a representative panel of receptors participated in a larger number of gene-gene interactions than for randomly-selected genes. This could conceivably reflect a greater evolutionary conservation of the receptor genes, with their more extensive integration into networks along with inherent properties of the genes themselves. In support of the latter possibility, some receptor genes were located in active areas of adaptive gene relocation/amalgamation to form functional blocks of related genes. It is suggested that adaptive relocation might allow for their joint regulation by common promoters and enhancers, and affect local chromatin structural domains to facilitate or repress gene expression. Speculation is included about the nature of the coordinated communication between receptors and the genes that encode them.
Collapse
Affiliation(s)
- Donard S Dwyer
- Departments of Psychiatry and Behavioral Medicine and Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
3
|
Root-Bernstein R, Churchill B. Co-Evolution of Opioid and Adrenergic Ligands and Receptors: Shared, Complementary Modules Explain Evolution of Functional Interactions and Suggest Novel Engineering Possibilities. Life (Basel) 2021; 11:life11111217. [PMID: 34833093 PMCID: PMC8623292 DOI: 10.3390/life11111217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Cross-talk between opioid and adrenergic receptors is well-characterized and involves second messenger systems, the formation of receptor heterodimers, and the presence of extracellular allosteric binding regions for the complementary ligand; however, the evolutionary origins of these interactions have not been investigated. We propose that opioid and adrenergic ligands and receptors co-evolved from a common set of modular precursors so that they share binding functions. We demonstrate the plausibility of this hypothesis through a review of experimental evidence for molecularly complementary modules and report unexpected homologies between the two receptor types. Briefly, opioids form homodimers also bind adrenergic compounds; opioids bind to conserved extracellular regions of adrenergic receptors while adrenergic compounds bind to conserved extracellular regions of opioid receptors; opioid-like modules appear in both sets of receptors within key ligand-binding regions. Transmembrane regions associated with homodimerization of each class of receptors are also highly conserved across receptor types and implicated in heterodimerization. This conservation of multiple functional modules suggests opioid–adrenergic ligand and receptor co-evolution and provides mechanisms for explaining the evolution of their crosstalk. These modules also suggest the structure of a primordial receptor, providing clues for engineering receptor functions.
Collapse
|
4
|
Štambuk N, Konjevoda P, Pavan J. Antisense Peptide Technology for Diagnostic Tests and Bioengineering Research. Int J Mol Sci 2021; 22:9106. [PMID: 34502016 PMCID: PMC8431130 DOI: 10.3390/ijms22179106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Antisense peptide technology (APT) is based on a useful heuristic algorithm for rational peptide design. It was deduced from empirical observations that peptides consisting of complementary (sense and antisense) amino acids interact with higher probability and affinity than the randomly selected ones. This phenomenon is closely related to the structure of the standard genetic code table, and at the same time, is unrelated to the direction of its codon sequence translation. The concept of complementary peptide interaction is discussed, and its possible applications to diagnostic tests and bioengineering research are summarized. Problems and difficulties that may arise using APT are discussed, and possible solutions are proposed. The methodology was tested on the example of SARS-CoV-2. It is shown that the CABS-dock server accurately predicts the binding of antisense peptides to the SARS-CoV-2 receptor binding domain without requiring predefinition of the binding site. It is concluded that the benefits of APT outweigh the costs of random peptide screening and could lead to considerable savings in time and resources, especially if combined with other computational and immunochemical methods.
Collapse
Affiliation(s)
- Nikola Štambuk
- Center for Nuclear Magnetic Resonance, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Paško Konjevoda
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Josip Pavan
- Department of Ophthalmology, University Hospital Dubrava, Avenija Gojka Šuška 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
5
|
Kunnev D. Origin of Life: The Point of No Return. Life (Basel) 2020; 10:life10110269. [PMID: 33153087 PMCID: PMC7693465 DOI: 10.3390/life10110269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Origin of life research is one of the greatest scientific frontiers of mankind. Many hypotheses have been proposed to explain how life began. Although different hypotheses emphasize different initial phenomena, all of them agree around one important concept: at some point, along with the chain of events toward life, Darwinian evolution emerged. There is no consensus, however, how this occurred. Frequently, the mechanism leading to Darwinian evolution is not addressed and it is assumed that this problem could be solved later, with experimental proof of the hypothesis. Here, the author first defines the minimum components required for Darwinian evolution and then from this standpoint, analyzes some of the hypotheses for the origin of life. Distinctive features of Darwinian evolution and life rooted in the interaction between information and its corresponding structure/function are then reviewed. Due to the obligatory dependency of the information and structure subject to Darwinian evolution, these components must be locked in their origin. One of the most distinctive characteristics of Darwinian evolution in comparison with all other processes is the establishment of a fundamentally new level of matter capable of evolving and adapting. Therefore, the initiation of Darwinian evolution is the "point of no return" after which life begins. In summary: a definition and a mechanism for Darwinian evolution are provided together with a critical analysis of some of the hypotheses for the origin of life.
Collapse
Affiliation(s)
- Dimiter Kunnev
- Department of Oral Biology, University at Buffalo, Buffalo, NY 14263, USA
| |
Collapse
|
6
|
Sarode AY, Jha MK, Zutshi S, Ghosh SK, Mahor H, Sarma U, Saha B. Residue-Specific Message Encoding in CD40-Ligand. iScience 2020; 23:101441. [PMID: 32827854 PMCID: PMC7452233 DOI: 10.1016/j.isci.2020.101441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 11/15/2022] Open
Abstract
CD40-Ligand (CD40L)-CD40 interaction regulates immune responses against pathogens, autoantigens, and tumor and transplantation antigens. Single amino acid mutations within the 115-155 amino acids stretch, which is responsible for CD40L functions, result in XIgM syndrome. We hypothesize that each of these amino acids of CD40L encodes specific message that, when decoded by CD40 signaling, induces a specific profile of functions. We observed that every single substitution in the XIgM-related amino acids in the 115-155 41-mer peptide in CD40L selectively altered CD40 signaling and effector functions-cytokine productions, HMGCoA reductase, ceramide synthase, inducible nitric oxide synthase and arginase expression, survival of B cells, and control of Leishmania infection and anti-leishmanial T cell response-suggesting residue-specific encoding of a distinct set of messages that collectively define CD40L pleiotropy, serve as a target for engineering the ligand to generate superagonists as immunotherapeutic, and implicate the evolutionary diversification of functions among the ligands in a protein superfamily.
Collapse
Affiliation(s)
- Aditya Yashwant Sarode
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Mukesh Kumar Jha
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Shubhranshu Zutshi
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Soumya Kanti Ghosh
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Hima Mahor
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Uddipan Sarma
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
- Trident Academy of Creative Technology, Bhubaneswar, Orissa 751024, India
| |
Collapse
|
7
|
Dayhoff GW, Regenmortel MHV, Uversky VN. Intrinsic disorder in protein sense‐antisense recognition. J Mol Recognit 2020; 33:e2868. [DOI: 10.1002/jmr.2868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Guy W. Dayhoff
- Department of Chemistry, College of Art and SciencesUniversity of South Florida Tampa Florida USA
| | | | - Vladimir N. Uversky
- Laboratory of New Methods in BiologyInstitute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research InstituteMorsani College of Medicine, University of South Florida Tampa Florida USA
| |
Collapse
|
8
|
Determining amino acid scores of the genetic code table: Complementarity, structure, function and evolution. Biosystems 2020; 187:104026. [DOI: 10.1016/j.biosystems.2019.104026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 11/22/2022]
|
9
|
Root-Bernstein R, Churchill B, Turke M, Subhramanyam UKT, Labahn J. Mutual Enhancement of Opioid and Adrenergic Receptors by Combinations of Opioids and Adrenergic Ligands Is Reflected in Molecular Complementarity of Ligands: Drug Development Possibilities. Int J Mol Sci 2019; 20:ijms20174137. [PMID: 31450631 PMCID: PMC6747318 DOI: 10.3390/ijms20174137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022] Open
Abstract
Crosstalk between opioid and adrenergic receptors is well characterized and due to interactions between second messenger systems, formation of receptor heterodimers, and extracellular allosteric binding regions. Both classes of receptors bind both sets of ligands. We propose here that receptor crosstalk may be mirrored in ligand complementarity. We demonstrate that opioids bind to adrenergic compounds with micromolar affinities. Additionally, adrenergic compounds bind with micromolar affinities to extracellular loops of opioid receptors while opioids bind to extracellular loops of adrenergic receptors. Thus, each compound type can bind to the complementary receptor, enhancing the activity of the other compound type through an allosteric mechanism. Screening for ligand complementarity may permit the identification of other mutually-enhancing sets of compounds as well as the design of novel combination drugs or tethered compounds with improved duration and specificity of action.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, 567 Wilson Road, Room 2201 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, MI 48824, USA.
| | - Beth Churchill
- Department of Physiology, 567 Wilson Road, Room 2201 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, MI 48824, USA
| | - Miah Turke
- Department of Physiology, 567 Wilson Road, Room 2201 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, MI 48824, USA
| | - Udaya K Tiruttani Subhramanyam
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany
- Forschungszentrum Juelich GmbH, ICS-6, 52425 Juelich, Germany
| | - Joerg Labahn
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany
- Forschungszentrum Juelich GmbH, ICS-6, 52425 Juelich, Germany
| |
Collapse
|
10
|
Targeting Tumor Markers with Antisense Peptides: An Example of Human Prostate Specific Antigen. Int J Mol Sci 2019; 20:ijms20092090. [PMID: 31035335 PMCID: PMC6540241 DOI: 10.3390/ijms20092090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/05/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
The purpose of this paper was to outline the development of short peptide targeting of the human prostate specific antigen (hPSA), and to evaluate its effectiveness in staining PSA in human prostate cancer tissue. The targeting of the hPSA antigen by means of antisense peptide AVRDKVG was designed according to a three-step method involving: 1. The selection of the molecular target (hPSA epitope), 2. the modeling of an antisense peptide (paratope) based on the epitope sequence, and 3. the spectroscopic evaluation of sense–antisense peptide binding. We then modified standard hPSA immunohistochemical staining practice by using a biotinylated antisense peptide instead of the standard monoclonal antibody and compared the results of both procedures. Immunochemical testing on human tissue showed the applicability of the antisense peptide technology to human molecular targets. This methodology represents a new approach to deriving peptide ligands and potential lead compounds for the development of novel diagnostic substances, biopharmaceuticals and vaccines.
Collapse
|
11
|
Genetic coding algorithm for sense and antisense peptide interactions. Biosystems 2018; 164:199-216. [DOI: 10.1016/j.biosystems.2017.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022]
|
12
|
Rhinesmith T, Turkette T, Root-Bernstein R. Rapid Non-Enzymatic Glycation of the Insulin Receptor under Hyperglycemic Conditions Inhibits Insulin Binding In Vitro: Implications for Insulin Resistance. Int J Mol Sci 2017; 18:ijms18122602. [PMID: 29207492 PMCID: PMC5751205 DOI: 10.3390/ijms18122602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/11/2023] Open
Abstract
The causes of insulin resistance are not well-understood in either type 1 or type 2 diabetes. Insulin (INS) is known to undergo rapid non-enzymatic covalent conjugation to glucose or other sugars (glycation). Because the insulin receptor (IR) has INS-like regions associated with both glucose and INS binding, we hypothesize that hyperglycemic conditions may rapidly glycate the IR, chronically interfering with INS binding. IR peptides were synthesized spanning IR- associated INS-binding regions. Glycation rates of peptides under hyperglycemic conditions were followed over six days using matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. INS conjugated to horse-radish peroxidase was used to determine INS binding to IR peptides in glycated and non-glycated forms. Several IR peptides were glycated up to 14% within days of exposure to 20-60 mM glucose. Rates of IR-peptide glycation were comparable to those of insulin. Glycation of four IR peptides significantly inhibits INS binding to them. Glycation of intact IR also decreases INS binding by about a third, although it was not possible to confirm the glycation sites on the intact IR. Glycation of the IR may therefore provide a mechanism by which INS resistance develops in diabetes. Demonstration of glycation of intact IR in vivo is needed.
Collapse
Affiliation(s)
- Tyler Rhinesmith
- Department of Physiology, Michigan State University, 567 Wilson Road, Room 2201, East Lansing, MI 48824, USA.
| | - Thomas Turkette
- Department of Physiology, Michigan State University, 567 Wilson Road, Room 2201, East Lansing, MI 48824, USA.
| | - Robert Root-Bernstein
- Department of Physiology, Michigan State University, 567 Wilson Road, Room 2201, East Lansing, MI 48824, USA.
| |
Collapse
|
13
|
Root-Bernstein R. An Insulin-Like Modular Basis for the Evolution of Glucose Transporters (GLUT) with Implications for Diabetes. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glucose transporters (GLUT) are twelve-transmembrane spanning proteins that contain two pores capable of transporting glucose and dehydroascorbate in and out of cells. The mechanism by which transport is effected is unknown. An evolutionarily-based hypothesis for the mechanism of glucose transport is presented here based on reports that insulin has multiple binding sites for glucose. It is proposed that insulin-like peptides were incorporated as modular elements into transmembrane proteins during evolution, resulting in glucose transporting capacity. Homology searching reveals that all GLUT contain multiple copies of insulin-like regions. These regions map onto a model of GLUT in positions that define the glucose transport cores. This observation provides a mechanism for glucose transport involving the diffusion of glucose from one insulin-like glucose-binding region to another. It also suggests a mechanism by which glucose disregulation may occur in both type 1 and type 2 diabetes: insulin rapidly self-glycates under hyperglycemic conditions. Insulin-like regions of GLUT may also self-glycate rapidly, thereby interfering with transport of glucose into cells and disabling GLUT sensing of blood glucose levels. All aspects of the hypothesis are experimentally testable.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, 2174 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, MI 48824 U.S.A
| |
Collapse
|
14
|
Abstract
Multiple models have been advanced for the evolution of cloverleaf tRNA. Here, the conserved archaeal tRNA core (75-nt) is posited to have evolved from ligation of three proto-tRNA minihelices (31-nt) and two-symmetrical 9-nt deletions within joined acceptor stems (93 – 18 = 75-nt). The primary evidence for this conclusion is that the 5-nt stem 7-nt anticodon loop and the 5-nt stem 7-nt T loop are structurally homologous and related by coding sequence. We posit that the D loop was generated from a third minihelix (31-nt) in which the stem and loop became rearranged after 9-nt acceptor stem deletions and cloverleaf folding. The most 3´-5-nt segment of the D loop and the 5-nt V loop are apparent remnants of the joined acceptor stems (14 – 9 = 5-nt). Before refolding in the tRNA cloverleaf, we posit that the 3′-5-nt segment of the D loop and the 5-nt V loop were paired, and, in the tRNA cloverleaf, frequent pairing of positions 29 (D loop) and 47 (V loop) remains (numbered on a 75-nt tRNA cloverleaf core). Amazingly, after >3.5 billion years of evolutionary pressure on the tRNA cloverleaf structure, a model can be constructed that convincingly describes the genesis of 75/75-nt conserved archaeal tRNA core positions. Judging from the tRNA structure, cloverleaf tRNA appears to represent at least a second-generation scheme (and possibly a third-generation scheme) that replaced a robust 31-nt minihelix protein-coding system, evidence for which is preserved in the cloverleaf structure. Understanding tRNA evolution provides insights into ribosome and rRNA evolution.
Collapse
Affiliation(s)
| | | | | | - Zachary F Burton
- c Department of Biochemistry and Molecular Biology , Michigan State University , E. Lansing , MI , USA
| |
Collapse
|
15
|
Štambuk N, Manojlović Z, Turčić P, Martinić R, Konjevoda P, Weitner T, Wardega P, Gabričević M. A simple three-step method for design and affinity testing of new antisense peptides: an example of erythropoietin. Int J Mol Sci 2014; 15:9209-23. [PMID: 24865486 PMCID: PMC4100090 DOI: 10.3390/ijms15069209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 11/16/2022] Open
Abstract
Antisense peptide technology is a valuable tool for deriving new biologically active molecules and performing peptide-receptor modulation. It is based on the fact that peptides specified by the complementary (antisense) nucleotide sequences often bind to each other with a higher specificity and efficacy. We tested the validity of this concept on the example of human erythropoietin, a well-characterized and pharmacologically relevant hematopoietic growth factor. The purpose of the work was to present and test simple and efficient three-step procedure for the design of an antisense peptide targeting receptor-binding site of human erythropoietin. Firstly, we selected the carboxyl-terminal receptor binding region of the molecule (epitope) as a template for the antisense peptide modeling; Secondly, we designed an antisense peptide using mRNA transcription of the epitope sequence in the 3'→5' direction and computational screening of potential paratope structures with BLAST; Thirdly, we evaluated sense-antisense (epitope-paratope) peptide binding and affinity by means of fluorescence spectroscopy and microscale thermophoresis. Both methods showed similar Kd values of 850 and 816 µM, respectively. The advantages of the methods were: fast screening with a small quantity of the sample needed, and measurements done within the range of physicochemical parameters resembling physiological conditions. Antisense peptides targeting specific erythropoietin region(s) could be used for the development of new immunochemical methods. Selected antisense peptides with optimal affinity are potential lead compounds for the development of novel diagnostic substances, biopharmaceuticals and vaccines.
Collapse
Affiliation(s)
- Nikola Štambuk
- Center for Nuclear Magnetic Resonance, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia.
| | - Zoran Manojlović
- Croatian Institute for Toxicology and Antidoping, Borongajska 83 g, 10000 Zagreb, Croatia.
| | - Petra Turčić
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, 10000 Zagreb, Croatia.
| | - Roko Martinić
- Department for Clinical Pathophysiology, Clinical Hospital Centre Split, Šoltanska 1, 21000 Split, Croatia.
| | - Paško Konjevoda
- Center for Nuclear Magnetic Resonance, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia.
| | - Tin Weitner
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Piotr Wardega
- NanoTemper Technologies GmbH, Flößergasse 4, 81369 Munich, Germany.
| | - Mario Gabričević
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
16
|
Root-Bernstein R, Podufaly A, Dillon PF. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro. Front Endocrinol (Lausanne) 2014; 5:118. [PMID: 25101056 PMCID: PMC4104309 DOI: 10.3389/fendo.2014.00118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
RATIONALE Insulin (INS) resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome, and obesity. The mechanism by which INS and estrogen interact is unknown. We hypothesize that estrogen binds directly to INS and the insulin receptor (IR) producing INS resistance. OBJECTIVES To determine the binding constants of steroid hormones to INS, the IR, and INS-like peptides derived from the IR; and to investigate the effect of estrogens on the binding of INS to its receptor. METHODS Ultraviolet spectroscopy, capillary electrophoresis, and NMR demonstrated estrogen binding to INS and its receptor. Horse-radish peroxidase-linked INS was used in an ELISA-like procedure to measure the effect of estradiol on binding of INS to its receptor. MEASUREMENTS Binding constants for estrogens to INS and the IR were determined by concentration-dependent spectral shifts. The effect of estradiol on INS binding to its receptor was determined by shifts in the INS binding curve. MAIN RESULTS Estradiol bound to INS with a K d of 12 × 10(-9) M and to the IR with a K d of 24 × 10(-9) M, while other hormones had significantly less affinity. Twenty-two nanomolars of estradiol shifted the binding curve of INS to its receptor 0.8 log units to the right. CONCLUSION Estradiol concentrations in hyperestrogenemic syndromes may interfere with INS binding to its receptor producing significant INS resistance.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, Michigan State University, East Lansing, MI, USA
- *Correspondence: Robert Root-Bernstein, Department of Physiology, Michigan State University, 2174 Biomedical and Physical Science Building, East Lansing, MI 48824, USA e-mail:
| | - Abigail Podufaly
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Patrick F. Dillon
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
17
|
Wang W, Huang Y, Jin Y, Liu G, Chen Y, Ma H, Zhao R. A tetra-layer microfluidic system for peptide affinity screening through integrated sample injection. Analyst 2013; 138:2890-6. [DOI: 10.1039/c3an00463e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Root-Bernstein R. A modular hierarchy-based theory of the chemical origins of life based on molecular complementarity. Acc Chem Res 2012; 45:2169-77. [PMID: 22369101 DOI: 10.1021/ar200209k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Albert Szent-Gyorgyi once defined discovery as seeing what everyone else sees and thinking what no one else thinks. I often find that phenomena that are obvious to other people are not obvious to me. Molecular complementarity is one of these phenomena: while rare among any random set of compounds, it is ubiquitous in living systems. Because every molecule in a living system binds more or less specifically to several others, we now speak of "interactomes". What explains the ubiquity of molecular complementarity in living systems? What might such an explanation reveal about the chemical origins of life and the principles that have governed its evolution? Beyond this, what might complementarity tell us about the optimization of integrated systems in general? My research combines theoretical and experimental approaches to molecular complementarity relating to evolution from prebiotic chemical systems to superorganismal interactions. Experimentally, I have characterized complementarity involving specific binding between small molecules and explored how these small-molecule modules have been incorporated into macromolecular systems such as receptors and transporters. Several general principles have emerged from this research. Molecules that bind to each other almost always alter each other's physiological effects; and conversely, molecules that have antagonistic or synergistic physiological effects almost always bind to each other. This principle suggests a chemical link between biological structure and function. Secondly, modern biological systems contain an embedded molecular paleontology based on complementarity that can reveal their chemical origins. This molecular paleontology is often manifested through modules involving small, molecularly complementary subunits that are built into modern macromolecular structures such as receptors and transporters. A third principle is that complementary modules are conserved and repurposed at every stage of evolution. Molecular complementarity plays critical roles in the evolution of chemical systems and resolves a significant number of outstanding problems in the emergence of complex systems. All physical and mathematical models of organization within complex systems rely upon nonrandom linkage between components. Molecular complementarity provides a naturally occurring nonrandom linker. More importantly, the formation of hierarchically organized stable modules vastly improves the probability of achieving self-organization, and molecular complementarity provides a mechanism by which hierarchically organized stable modules can form. Finally, modularity based on molecular complementarity produces a means for storing and replicating information. Linear replicating molecules such as DNA or RNA are not required to transmit information from one generation of compounds to the next: compositional replication is as ubiquitous in living systems as genetic replication and is equally important to its functions. Chemical systems composed of complementary modules mediate this compositional replication and gave rise to linear replication schemes. In sum, I propose that molecular complementarity is ubiquitous in living systems because it provides the physicochemical basis for modular, hierarchical ordering and replication necessary for the evolution of the chemical systems upon which life is based. I conjecture that complementarity more generally is an essential agent that mediates evolution at every level of organization.
Collapse
|
19
|
Evolutionary Characteristics of Bacterial Two-Component Systems. EVOLUTIONARY SYSTEMS BIOLOGY 2012; 751:121-37. [DOI: 10.1007/978-1-4614-3567-9_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Maksay G. Allostery in pharmacology: Thermodynamics, evolution and design. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:463-73. [DOI: 10.1016/j.pbiomolbio.2011.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/13/2022]
|
21
|
Interaction of α-melanocortin and its pentapeptide antisense LVKAT: effects on hepatoprotection in male CBA mice. Molecules 2011; 16:7331-43. [PMID: 21873934 PMCID: PMC6264190 DOI: 10.3390/molecules16097331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 11/17/2022] Open
Abstract
The genetic code defines nucleotide patterns that code for individual amino acids and their complementary, i.e., antisense, pairs. Peptides specified by the complementary mRNAs often bind to each other with a higher specificity and efficacy. Applications of this genetic code property in biomedicine are related to the modulation of peptide and hormone biological function, selective immunomodulation, modeling of discontinuous and linear epitopes, modeling of mimotopes, paratopes and antibody mimetics, peptide vaccine development, peptidomimetic and drug design. We have investigated sense-antisense peptide interactions and related modulation of the peptide function by modulating the effects of α-MSH on hepatoprotection with its antisense peptide LVKAT. First, transcription of complementary mRNA sequence of α-MSH in 3’→5’ direction was used to design antisense peptide to the central motif that serves as α-MSH pharmacophore for melanocortin receptors. Second, tryptophan spectrofluorometric titration was applied to evaluate the binding of α-MSH and its central pharmacophore motif to the antisense peptide, and it was concluded that this procedure represents a simple and efficient method to evaluate sense-antisense peptide interaction in vitro. Third, we showed that antisense peptide LVKAT abolished potent hepatoprotective effects of α-MSH in vivo.
Collapse
|
22
|
Root-Bernstein R, Vonck J. Glucose binds to the insulin receptor affecting the mutual affinity of insulin and its receptor. Cell Mol Life Sci 2009; 66:2721-32. [PMID: 19554259 PMCID: PMC11115712 DOI: 10.1007/s00018-009-0065-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/01/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
Abstract
Insulin activity is sensitive to glucose concentration but the mechanisms are still unclear. An unexamined possibility is that the insulin receptor (IR) is sensitive to glucose concentration. We demonstrate here that insulin-like peptides derived from the IR bind glucose at low millimolar, and cytochalasin B at low micromolar, concentrations; several insulin-like IR peptides bind insulin at nanomolar Kd; and this binding is antagonized by increasing glucose concentrations. In addition, glucose and cytochalasin B bind to IR isolated from rat liver and increasing glucose decreases insulin binding to this IR preparation. The presence of GLUT 1 in our IR preparation suggests the possibility of additional glucose-mediated allosteric control. We propose a model in which glucose binds to insulin, the IR, and GLUT; insulin binds to the IR; and the IR binds to GLUT. This set of interactions produces an integrated system of insulin-dependent interactions that is highly sensitive to glucose concentration.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, Michigan State University, 2174 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA.
| | | |
Collapse
|
23
|
Root-Bernstein R. Autoreactive T-cell receptor (Vbeta/D/Jbeta) sequences in diabetes are homologous to insulin, glucagon, the insulin receptor, and the glucagon receptor. J Mol Recognit 2009; 22:177-87. [PMID: 19051206 DOI: 10.1002/jmr.930] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hypervariable (Vbeta/D/Jbeta) regions of T-cell receptors (TCR) have been sequenced in a variety of autoimmune diseases by various investigators. An analysis of some of these sequences shows that TCR from both human diabetics and NOD mice mimic insulin, glucagon, the insulin receptor, and the glucagon receptor. Such similarities are not found in the TCR produced in other human autoimmune diseases. These data may explain how insulin, glucagon, and their receptors are targets of autoimmunity in diabetes and also suggest that TCR mimicking insulin and its receptor may be targets of anti-insulin autoantibodies. Such intra-systemic mimicry of self-proteins also raises complex questions about how "self" and "nonself" are regulated during TCR production, especially in light of the complementarity of insulin for its receptor and glucagon for its receptor. The data presented here suggest that some TCR may be complementary to other TCR in autoimmune diseases, a possibility that is experimentally testable. Such complementarity, if it exists, could either serve to down-regulate the clones bearing such TCR or, alternatively, trigger an intra-immune system civil war between them.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, 2174 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
24
|
Norris V, Root-Bernstein R. The eukaryotic cell originated in the integration and redistribution of hyperstructures from communities of prokaryotic cells based on molecular complementarity. Int J Mol Sci 2009; 10:2611-2632. [PMID: 19582221 PMCID: PMC2705508 DOI: 10.3390/ijms10062611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/25/2009] [Accepted: 06/03/2009] [Indexed: 11/16/2022] Open
Abstract
In the "ecosystems-first" approach to the origins of life, networks of non-covalent assemblies of molecules (composomes), rather than individual protocells, evolved under the constraints of molecular complementarity. Composomes evolved into the hyperstructures of modern bacteria. We extend the ecosystems-first approach to explain the origin of eukaryotic cells through the integration of mixed populations of bacteria. We suggest that mutualism and symbiosis resulted in cellular mergers entailing the loss of redundant hyperstructures, the uncoupling of transcription and translation, and the emergence of introns and multiple chromosomes. Molecular complementarity also facilitated integration of bacterial hyperstructures to perform cytoskeletal and movement functions.
Collapse
Affiliation(s)
- Vic Norris
- AMMIS Laboratory, EA 3829, University of Rouen, Mont Saint Aignan, 76821 France; E-Mail:
(V.N.)
| | - Robert Root-Bernstein
- Department of Physiology, 2174 BPS, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
25
|
Root-Bernstein R. Antigenic complementarity in the induction of autoimmunity: A general theory and review. Autoimmun Rev 2007; 6:272-7. [PMID: 17412297 DOI: 10.1016/j.autrev.2006.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism by which tolerance is broken in the induction of autoimmunity is unknown. Simple, well-characterized antigens suggest that molecular complementarity may play a key role in breaking tolerance. Experimental allergic encephalomyelitis can be induced using myelin basic protein combined with muramyl dipeptide. These molecules bind specifically to each other. Insulin antibodies can be induced when insulin is combined with glucagon, to which it binds. These cases suggest that molecular complementarity may alter the processing of "self" proteins. Antigenic complementary yields molecularly complementary immune responses (i.e., idiotypic-anti-idiotypic), undermining immune system regulation. In addition, complementarity insures that the antibodies (or T cells) directed against one antigen will molecularly mimic the other antigen, and vice versa, so that "self" and "nonself" will be confused. If at least one complementary antigen mimics a "self" protein, then an unregulated, self-sustaining immune response against tissue results. This testable theory of antigenic complementarity in autoimmunity is reviewed.
Collapse
|
26
|
Root-Bernstein R, Couturier J. Antigenic complementarity in the origins of autoimmunity: a general theory illustrated with a case study of idiopathic thrombocytopenia purpura. Clin Dev Immunol 2006; 13:49-65. [PMID: 16603444 PMCID: PMC2270743 DOI: 10.1080/17402520600578731] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We describe a novel, testable theory of autoimmunity, outline novel predictions made by the theory, and illustrate its application to unravelling the possible causes of idiopathic thrombocytopenia purpura (ITP). Pairs of stereochemically complementary antigens induce complementary immune responses (antibody or T-cell) that create loss of regulation and civil war within the immune system itself. Antibodies attack antibodies creating circulating immune complexes; T-cells attack T-cells creating perivascular cuffing. This immunological civil war abrogates the self-nonself distinction. If at least one of the complementary antigens mimics a self antigen, then this unregulated immune response will target host tissues as well. Data demonstrating that complementary antigens are found in some animal models of autoimmunity and may be present in various human diseases, especially ITP, are reviewed. Specific mechanisms for preventing autoimmunity or suppressing existing autoimmunity are derived from the theory, and critical tests proposed. Finally, we argue that Koch's postulates are inadequate for establishing disease causation for multiple-antigen diseases and discuss the possibility that current research has failed to elucidate the causes of human autoimmune diseases because we are using the wrong criteria.
Collapse
|
27
|
Hunding A, Kepes F, Lancet D, Minsky A, Norris V, Raine D, Sriram K, Root-Bernstein R. Compositional complementarity and prebiotic ecology in the origin of life. Bioessays 2006; 28:399-412. [PMID: 16547956 DOI: 10.1002/bies.20389] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We hypothesize that life began not with the first self-reproducing molecule or metabolic network, but as a prebiotic ecology of co-evolving populations of macromolecular aggregates (composomes). Each composome species had a particular molecular composition resulting from molecular complementarity among environmentally available prebiotic compounds. Natural selection acted on composomal species that varied in properties and functions such as stability, catalysis, fission, fusion and selective accumulation of molecules from solution. Fission permitted molecular replication based on composition rather than linear structure, while fusion created composomal variability. Catalytic functions provided additional chemical novelty resulting eventually in autocatalytic and mutually catalytic networks within composomal species. Composomal autocatalysis and interdependence allowed the Darwinian co-evolution of content and control (metabolism). The existence of chemical interfaces within complex composomes created linear templates upon which self-reproducing molecules (such as RNA) could be synthesized, permitting the evolution of informational replication by molecular templating. Mathematical and experimental tests are proposed.
Collapse
Affiliation(s)
- Axel Hunding
- Department of Chemistry, H. C. Orsted Institute C116, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Preston GA, Pendergraft WF, Falk RJ. New insights that link microbes with the generation of antineutrophil cytoplasmic autoantibodies: the theory of autoantigen complementarity. Curr Opin Nephrol Hypertens 2005; 14:217-22. [PMID: 15821413 DOI: 10.1097/01.mnh.0000165886.93427.b1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Reviewed are recent discoveries that provide insights into novel mechanisms involved in the aetiology and pathology of anti-neutrophil cytoplasmic autoantibodies (ANCA) disease. RECENT FINDINGS Gene expression profiles of circulating leukocytes from anti-neutrophil cytoplasmic autoantibody immunogenesis patients revealed high levels of proteinase 3 (PR3) and myeloperoxidase (MPO) mRNA. Combined with reports of increased expression of these proteins, it appears that increased antigen availability is a pathologic component of anti-neutrophil cytoplasmic autoantibody immunogenesis disease, which might be equally as important as the presence of anti-MPO or anti-PR3 autoantibodies. Genetic predisposition to develop anti-neutrophil cytoplasmic autoantibody immunogenesis disease may include a polymorphism in the promoter region of the PR3 gene. Signalling pathways affected by anti-neutrophil cytoplasmic autoantibody immunogenesis binding to neutrophils involve the p21 pathway. Lastly, a topic discussed at length in this review is the seminal observation that PR3-ANCA patients harbour antibodies reactive with a protein produced from PR3-antisense RNA, whose amino acid sequence has homologies with proteins from many microbes and viruses. Delineated in the Theory of Autoantigen Complementarity, it is proposed that the initiator of an autoimmune response is not the autoantigen, but instead is a protein that is 'antisense' or complementary to the autoantigen (e.g. from bacteria or PR3). SUMMARY The progress in research efforts in the past year, including the identification of complementary proteins as a potential cause of anti-neutrophil cytoplasmic autoantibody immunogenesis, should highly impact future approaches therapeutic intervention.
Collapse
Affiliation(s)
- Gloria A Preston
- University of North Carolina Kidney Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7155, USA.
| | | | | |
Collapse
|