1
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
2
|
Zhang B, Adriany G, Delabarre L, Radder J, Lagore R, Rutt B, Yang QX, Ugurbil K, Lattanzi R. Effect of radiofrequency shield diameter on signal-to-noise ratio at ultra-high field MRI. Magn Reson Med 2021; 85:3522-3530. [PMID: 33464649 DOI: 10.1002/mrm.28670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/23/2020] [Accepted: 12/14/2020] [Indexed: 02/01/2023]
Abstract
PURPOSE In this work, we investigated how the position of the radiofrequency (RF) shield can affect the signal-to-noise ratio (SNR) of a receive RF coil. Our aim was to obtain physical insight for the design of a 10.5T 32-channel head coil, subject to the constraints on the diameter of the RF shield imposed by the head gradient coil geometry. METHOD We used full-wave numerical simulations to investigate how the SNR of an RF receive coil depends on the diameter of the RF shield at ultra-high magnetic field (UHF) strengths (≥7T). RESULTS Our simulations showed that there is an SNR-optimal RF shield size at UHF strength, whereas at low field the SNR monotonically increases with the shield diameter. For a 32-channel head coil at 10.5T, an optimally sized RF shield could act as a cylindrical waveguide and increase the SNR in the brain by 27% compared to moving the shield as far as possible from the coil. Our results also showed that a separate transmit array between the RF shield and the receive array could considerably reduce SNR even if they are decoupled. CONCLUSION At sufficiently high magnetic field strength, the design of local RF coils should be optimized together with the design of the RF shield to benefit from both near field and resonant modes.
Collapse
Affiliation(s)
- Bei Zhang
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Lance Delabarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Jerahmie Radder
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell Lagore
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian Rutt
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Qing X Yang
- Department of Radiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Gulyaev MV, Pavlova OS, Volkov DV, Sadykhov EG, Anisimov NV, Pirogov YA. Application of copper plates for frequency tuning of surface wired and wireless MRI coils. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106626. [PMID: 31678914 DOI: 10.1016/j.jmr.2019.106626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 05/27/2023]
Abstract
This study shows how a copper plate could be used for frequency tuning of surface wired and wireless MRI coils. For this purpose, it is proposed to place the copper plate directly on their conducting circuit. This leads to increase in the resonance frequency of coils. The effect is most perceptible if the copper plate is comparable in size to the conducting circuit of radiofrequency (RF) coil. The experimental work was performed on a 7.05 T MR scanner using surface MRI coils operating on different resonance frequencies: 1H (300 MHz), 31P (121 MHz), 23Na (79 MHz), 13C (75 MHz). Application of copper plate for frequency tuning of wireless multi-turn multi-gap transmission line resonator (MTMG-TLR) was considered for the first time. The proposed method can be claimed if the nominal variable inductance or capacitance is not enough for tuning the resonance frequency of the MRI coil to a higher frequency range.
Collapse
Affiliation(s)
| | - Olga S Pavlova
- Lomonosov Moscow State University, Moscow 119991, Russia.
| | | | - Elnur G Sadykhov
- National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | | | - Yury A Pirogov
- Lomonosov Moscow State University, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| |
Collapse
|
4
|
Rispoli JV, Wilcox MD, By S, Wright SM, McDougall MP. Effects of coplanar shielding for high field MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:6250-6253. [PMID: 28269680 DOI: 10.1109/embc.2016.7592157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This work investigates the efficacy of "coplanar shielding," in which copper shields are oriented concentric and coplanar to the RF coils rather than implemented as a full ground plane behind them. Following FDTD simulations to determine optimal shielding parameters, two coil geometries were constructed: a circular loop surface coil and a half-volume five-element receive array. Each was evaluated using bench measurements with and without coplanar shielding. Imaging, including accelerated SENSE imaging, was performed with the shielded and unshielded receive arrays on a whole-body 7T scanner. Results from modeled and fabricated coils showed good agreement with improvements in Q factors for all cases. Imaging showed substantial improvements in SNR and g-factors for the coplanar shielded array.
Collapse
|
5
|
Wiggins GC, Brown R, Lakshmanan K. High-performance radiofrequency coils for (23)Na MRI: brain and musculoskeletal applications. NMR IN BIOMEDICINE 2016; 29:96-106. [PMID: 26404631 PMCID: PMC4713340 DOI: 10.1002/nbm.3379] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/06/2015] [Accepted: 07/21/2015] [Indexed: 05/11/2023]
Abstract
(23)Na RF coil design for brain and MSK applications presents a number of challenges, including poor coil loading for arrays of small coils and SNR penalties associated with providing (1)H capability with the same coil. The basics of RF coil design are described, as well as a review of historical approaches to dual tuning. There follows a review of published high performance coil designs for MSK and brain imaging. Several coil designs have been demonstrated at 7T and 3T which incorporate close-fitting receive arrays and in some cases design features which provide (1)H imaging with little penalty to (23)Na sensitivity. The "nested coplanar loop" approach is examined, in which small transmit-receive (1)H elements are placed within each (23)Na loop, presenting only a small perturbation to (23)Na performance and minimizing RF shielding issues. Other designs incorporating transmit-receive arrays for (23)Na and (1)H are discussed including a 9.4 T (23)Na/(1)H brain coil. Great gains in (23)Na SNR have been made with many of these designs, but simultaneously achieving high performance for 1H remains elusive.
Collapse
Affiliation(s)
- Graham C Wiggins
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Medical Center, New York, NY, 10016, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Medical Center, New York, NY, 10016, USA
| | - Karthik Lakshmanan
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Medical Center, New York, NY, 10016, USA
| |
Collapse
|
6
|
Pang Y, Zhang X, Xie Z, Wang C, Vigneron DB. Common-mode differential-mode (CMDM) method for double-nuclear MR signal excitation and reception at ultrahigh fields. IEEE TRANSACTIONS ON MEDICAL IMAGING 2011; 30:1965-73. [PMID: 21693414 PMCID: PMC3277813 DOI: 10.1109/tmi.2011.2160192] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Double-tuned radio-frequency (RF) coils for heteronuclear mangentic resonance (MR) require sufficient electromagnetic isolation between the two resonators operating at two Larmor frequencies and independent tuning in order to attain highly efficient signal acquisition at each frequency. In this work, a novel method for double-tuned coil design at 7T based on the concept of common-mode differential-mode (CMDM) was developed and tested. Common mode (CM) and differential mode (DM) currents exist within two coupled parallel transmission lines, e.g., microstrip lines, yielding two different current distributions. The electromagnetic (EM) fields of the CM and DM are orthogonal to each other, and thus, the two modes are intrinsically EM decoupled. The modes can be tuned independently to desired frequencies, thus satisfying the requirement of dual-frequency MR applications. To demonstrate the feasibility and efficiency of the proposed CMDM technique, CMDM surface coils and volume coils using microstrip transmission line for (1)H and (13)C MRI/MRSI were designed, constructed, and tested at 7T. Bench test results showed that the isolations between the two frequency channels of the CMDM surface coil and volume coil were better than -30 and -25 dB, respectively. High quality MR phantom images were also obtained using the CMDM coils. The performance of the CMDM technique was validated through a comparison with the conventional two-pole design method at 7T. The proposed CMDM technique can be also implemented by using other coil techniques such as lumped element method, and can be applied to designing double-tuned parallel imaging coil arrays. Furthermore, if the two resonant modes of a CMDM coil were tuned to the same frequency, the CMDM coil becomes a quadrature coil due to the intrinsic orthogonal field distribution of CM and DM.
Collapse
Affiliation(s)
- Yong Pang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158 USA
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158 USA, and with UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA 94720 USA, and also with the California Institute for Quantitative Biosciences (QB3), San Francisco, CA 94158 USA
| | - Zhentian Xie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158 USA
| | - Chunsheng Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158 USA
| | - Daniel. B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158 USA, and with UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA 94720 USA, and also with the California Institute for Quantitative Biosciences (QB3), San Francisco, CA 94158 USA
| |
Collapse
|
7
|
Shajan G, Hoffmann J, Budde J, Adriany G, Ugurbil K, Pohmann R. Design and evaluation of an RF front-end for 9.4 T human MRI. Magn Reson Med 2011; 66:596-604. [DOI: 10.1002/mrm.22808] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/26/2010] [Accepted: 12/12/2010] [Indexed: 11/06/2022]
|
8
|
Lu J, Pang Y, Wang C, Wu B, Vigneron DB, Zhang X. Evaluation of Common RF Coil Setups for MR Imaging at Ultrahigh Magnetic Field: A Numerical Study. ... INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMUNICATION TECHNOLOGIES. INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMUNICATION TECHNOLOGIES 2011; 2011. [PMID: 28966929 DOI: 10.1145/2093698.2093768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This study is an evaluation of the ratio of electric field to magnetic field (E/B1), specific absorption rate (SAR) and signal-to-noise ratio (SNR) generated by three different RF transceiver coil setups: surface coil, surface coil with shielding, and microstrip using a finite discrete time domain (FDTD) simulation in the presence of a head phantom. One of our main focuses in this study is to better understand coil designs that would improve patient safety at high fields by studying a coil type that may potentially minimize SAR while examining potential changes in SNR. In the presence of a human head load, the microstrip's E/B1 ratio was on average smallest while its SAR was also on average smallest of the three setups, suggesting the microstrip may be a better RF coil choice for MRI concerning patient safety and parallel excitation applications than the other two coils. In addition, the study suggests that the microstrip also has a higher SNR compared with the other two coils demonstrating the possibility that the microstrip could lead to higher quality MRI images.
Collapse
Affiliation(s)
- Jonathan Lu
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF)
| | - Yong Pang
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF)
| | - Chunsheng Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF)
| | - Bing Wu
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF)
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF).,UCB/UCSF Joint Graduate Group in Bioengineering, University of California- San Francisco, San Francisco, CA, USA
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF).,UCB/UCSF Joint Graduate Group in Bioengineering, University of California- San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
van Elderen SGC, van Elderen SGC, Versluis MJ, Webb AG, Westenberg JJM, Doornbos J, Smith NB, de Roos A, Stuber M. Initial results on in vivo human coronary MR angiography at 7 T. Magn Reson Med 2010; 62:1379-84. [PMID: 19859918 DOI: 10.1002/mrm.22168] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Seven tesla (T) MR imaging is potentially promising for the morphologic evaluation of coronary arteries because of the increased signal-to-noise ratio compared to lower field strengths, in turn allowing improved spatial resolution, improved temporal resolution, or reduced scanning times. However, there are a large number of technical challenges, including the commercial 7 T systems not being equipped with homogeneous body radiofrequency coils, conservative specific absorption rate constraints, and magnified sample-induced amplitude of radiofrequency field inhomogeneity. In the present study, an initial attempt was made to address these challenges and to implement coronary MR angiography at 7 T. A single-element radiofrequency transmit and receive coil was designed and a 7 T specific imaging protocol was implemented, including significant changes in scout scanning, contrast generation, and navigator geometry compared to current protocols at 3 T. With this methodology, the first human coronary MR images were successfully obtained at 7 T, with both qualitative and quantitative findings being presented.
Collapse
|
10
|
Peshkovsky A, Kennan RP, Nagel RL, Avdievich NI. Sensitivity enhancement and compensation of RF penetration artifact with planar actively detunable quadrature surface coil. Magn Reson Imaging 2006; 24:81-7. [PMID: 16410182 DOI: 10.1016/j.mri.2004.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 08/27/2004] [Accepted: 08/27/2004] [Indexed: 11/21/2022]
Abstract
An actively detunable planar quadrature surface coil for human body imaging at 4 T has been constructed and compared with a conventional linear surface coil. The coil could be used as a transmit/receive or a receive-only device in combination with a volume transmit coil. Transmission, reception profiles and the corresponding images acquired with each coil, as well as with both individual modes of the quadrature coil, are presented. Data collected using a tissue equivalent loaded phantom recorded with the linear surface coil demonstrated significant intensity distortions due to RF penetration artifact. The quadrature surface coil, on the other hand, provided compensation of the artifact, separately in its transmission and reception profiles as well as in the resultant images. Substantial sensitivity gain was also observed for the quadrature coil compared to the linear device. Significant advantages of using the quadrature surface coil over the linear device at 4 T have, therefore, been demonstrated.
Collapse
Affiliation(s)
- Alexey Peshkovsky
- Division of Hematology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
11
|
Adriany G, Van de Moortele PF, Wiesinger F, Moeller S, Strupp JP, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan T, Uğurbil K. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 2005; 53:434-45. [PMID: 15678527 DOI: 10.1002/mrm.20321] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transceive array coils, capable of RF transmission and independent signal reception, were developed for parallel, 1H imaging applications in the human head at 7 T (300 MHz). The coils combine the advantages of high-frequency properties of transmission lines with classic MR coil design. Because of the short wavelength at the 1H frequency at 300 MHz, these coils were straightforward to build and decouple. The sensitivity profiles of individual coils were highly asymmetric, as expected at this high frequency; however, the summed images from all coils were relatively uniform over the whole brain. Data were obtained with four- and eight-channel transceive arrays built using a loop configuration and compared to arrays built from straight stripline transmission lines. With both the four- and the eight-channel arrays, parallel imaging with sensitivity encoding with high reduction numbers was feasible at 7 T in the human head. A one-dimensional reduction factor of 4 was robustly achieved with an average g value of 1.25 with the eight-channel transmit/receive coils.
Collapse
Affiliation(s)
- Gregor Adriany
- Center for Magnetic Resonance Research, Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ludwig R, Bodgdanov G, King J, Allard A, Ferris CF. A dual RF resonator system for high-field functional magnetic resonance imaging of small animals. J Neurosci Methods 2004; 132:125-35. [PMID: 14706710 DOI: 10.1016/j.jneumeth.2003.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new apparatus has been developed that integrates an animal restrainer arrangement for small animals with an actively tunable/detunable dual radio-frequency (RF) coil system for in vivo anatomical and functional magnetic resonance imaging of small animals at 4.7 T. The radio-frequency coil features an eight-element microstrip line configuration that, in conjunction with a segmented outer copper shield, forms a transversal electromagnetic (TEM) resonator structure. Matching and active tuning/detuning is achieved through fixed/variable capacitors and a PIN diode for each resonator element. These components along with radio-frequency chokes (RFCs) and blocking capacitors are placed on two printed circuit boards (PCBs) whose copper coated ground planes form the front and back of the volume coil and are therefore an integral part of the resonator structure. The magnetic resonance signal response is received with a dome-shaped single-loop surface coil that can be height-adjustable with respect to the animal's head. The conscious animal is immobilized through a mechanical arrangement that consists of a Plexiglas body tube and a head restrainer. This restrainer has a cylindrical holder with a mouthpiece and position screws to receive and restrain the head of the animal. The apparatus is intended to perform anatomical and functional magnetic resonance imaging in conscious animals such as mice, rats, hamsters, and marmosets. Cranial images acquired from fully conscious rats in a 4.7 T Bruker 40 cm bore animal scanner underscore the feasibility of this approach and bode well to extend this system to the imaging of other animals.
Collapse
Affiliation(s)
- R Ludwig
- Center for Comparative Neuroimaging, Bioengineering Institute and Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| | | | | | | | | |
Collapse
|
13
|
Zhang X, Ugurbil K, Chen W. Microstrip RF surface coil design for extremely high-field MRI and spectroscopy. Magn Reson Med 2001; 46:443-50. [PMID: 11550234 DOI: 10.1002/mrm.1212] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A new type of high-frequency RF surface coil was developed for in vivo proton or other nuclei NMR applications at 7T. This is a purely distributed-element and transmission line design. The coil consists of a thin strip conductor (copper or silver) and a ground plane separated by a low-loss dielectric material with a thickness (H). Due to its specific semi-open transmission line structure, substantial electromagnetic energy is stored in the dielectric material between the thin conductor and the ground plane, which results in a reduced radiation loss and a reduced perturbation of sample loading to the RF coil compared to conventional surface coils. The coil is characterized by a high Q factor, no RF shielding, small physical coil size, lower cost, and easy fabrication. A brief theoretical description of the microstrip RF coil is given that can be used to guide the coil designs. A set of gradient-recalled echo images were acquired by using the single- and two-turn microstrip RF surface coils from both phantom and human brain at 7T, which show good penetration and sensitivity. The two-turn coil design significantly improves the B1 symmetry as predicted by the microstrip theory. The optimum H for microstrip surface coils is approximately 7 mm. This coil geometry yields a B1 penetration similar to that of conventional surface coils. SNR comparison was made between the microstrip coil and conventional surface coils with and without RF shielding. The results reveal that the novel surface coil design based on the microstrip concept makes very high-field MRI/MRS more convenient and efficient in research and future clinics.
Collapse
Affiliation(s)
- X Zhang
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota School of Medicine, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
14
|
Abstract
The design and construction of an RF coil system for use in MR breast imaging is described. The two-ring, tuned Helmholtz coil, with its axis perpendicular to the chest, surrounds a single pendant breast and is coupled both internally and to the MRI transmitter/receiver by mutual induction. The addition of two symmetrical RF shields minimizes losses in the chest and significantly improves performance. Images obtained from eight healthy volunteers showed that the coil permitted imaging of breasts of diverse size with an in-plane resolution of 0.27 x 0.27 mm and a slice thickness of less than 2 mm at a field strength of 3 T as well as 1.5 T. The use of shields with surface coils in general is advocated as a method for improving signal-to-noise ratio. Magn Reson Med 43:917-920, 2000.
Collapse
Affiliation(s)
- B Tomanek
- Institute for Biodiagnostics, National Research Council, Winnipeg, Canada.
| | | | | | | |
Collapse
|
15
|
|