1
|
Shah A, Neitzel E, Panda A, Fananapazir G. The use of ferumoxytol for high-resolution vascular imaging and troubleshooting for abdominal allografts. Abdom Radiol (NY) 2024; 49:2858-2872. [PMID: 38561553 DOI: 10.1007/s00261-024-04268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
Ferumoxytol is an ultrasmall superparamagnetic iron oxide which has been used as an off-label intravenous contrast agent for MRI. Unlike gadolinium-based contrast agents, ferumoxytol remains in the intravascular space with a long half-life of 14-21 h. During the first several hours, it acts as a blood-pool agent and has minimal parenchymal enhancement. Studies have shown adequate intravascular signal for up to 72 h after initial contrast bolus. Ferumoxytol has been shown to be safe, even in patients with renal failure. Ferumoxytol has shown promise in a variety of clinical settings. The exquisite resolution enabled by the long intravascular times and lack of background parenchymal enhancement is of particular interest in the vascular imaging of solid organ allografts. Ferumoxytol magnetic resonance angiography (MRA) may identify clinically actionable findings months before ultrasound, CT angiography, or Gadolinium-enhanced MRA. Ferumoxytol MRA is of particular benefit as a troubleshooting tool in the setting of equivocal ultrasound and CT imaging. In the following review, we highlight the use of ferumoxytol for high-resolution MR vascular imaging for abdominal solid organ allografts, with representative cases.
Collapse
Affiliation(s)
- Amar Shah
- Department of Radiology, Mayo Clinic in Arizona, Phoenix, AZ, USA.
| | - Easton Neitzel
- University of Arizona School of Medicine, Phoenix, AZ, USA
| | - Anshuman Panda
- Department of Radiology, Mayo Clinic in Arizona, Phoenix, AZ, USA
- Department of Medical Physics, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - Ghaneh Fananapazir
- Department of Radiology, Mayo Clinic in Arizona, Phoenix, AZ, USA
- Department of Radiology, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
2
|
Liu M, Feng Q, Zhang H, Guo Y, Fan H. Progress in ultrasmall ferrite nanoparticles enhanced T1 magnetic resonance angiography. J Mater Chem B 2024; 12:6521-6531. [PMID: 38860874 DOI: 10.1039/d4tb00803k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Contrast-enhanced magnetic resonance angiography (CE-MRA) plays a critical role in diagnosing and monitoring various vascular diseases. Achieving high-sensitivity detection of vascular abnormalities in CE-MRA depends on the properties of contrast agents. In contrast to clinically used gadolinium-based contrast agents (GBCAs), the new generation of ultrasmall ferrite nanoparticles-based contrast agents have high relaxivity, long blood circulation time, easy surface functionalization, and high biocompatibility, hence showing promising prospects in CE-MRA. This review aims to comprehensively summarize the advancements in ultrasmall ferrite nanoparticles-enhanced MRA for detecting vascular diseases. Additionally, this review also discusses the future clinical translational potential of ultrasmall ferrite nanoparticles-based contrast agents for vascular imaging. By investigating the current status of research and clinical applications, this review attempts to outline the progress, challenges, and future directions of using ultrasmall ferrite nanoparticles to drive the field of CE-MRA into a new frontier of accuracy and diagnostic efficacy.
Collapse
Affiliation(s)
- Minrui Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 614001, China
| | - Quanqing Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China.
| | - Huan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China.
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 614001, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 614001, China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China.
- Center for Nanomedicine and Engineering, School of Medicine, Northwest University, Xi'an, Shaanxi, 710127, China.
| |
Collapse
|
3
|
Si G, Du Y, Tang P, Ma G, Jia Z, Zhou X, Mu D, Shen Y, Lu Y, Mao Y, Chen C, Li Y, Gu N. Unveiling the next generation of MRI contrast agents: current insights and perspectives on ferumoxytol-enhanced MRI. Natl Sci Rev 2024; 11:nwae057. [PMID: 38577664 PMCID: PMC10989670 DOI: 10.1093/nsr/nwae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 04/06/2024] Open
Abstract
Contrast-enhanced magnetic resonance imaging (CE-MRI) is a pivotal tool for global disease diagnosis and management. Since its clinical availability in 2009, the off-label use of ferumoxytol for ferumoxytol-enhanced MRI (FE-MRI) has significantly reshaped CE-MRI practices. Unlike MRI that is enhanced by gadolinium-based contrast agents, FE-MRI offers advantages such as reduced contrast agent dosage, extended imaging windows, no nephrotoxicity, higher MRI time efficiency and the capability for molecular imaging. As a leading superparamagnetic iron oxide contrast agent, ferumoxytol is heralded as the next generation of contrast agents. This review delineates the pivotal clinical applications and inherent technical superiority of FE-MRI, providing an avant-garde medical-engineering interdisciplinary lens, thus bridging the gap between clinical demands and engineering innovations. Concurrently, we spotlight the emerging imaging themes and new technical breakthroughs. Lastly, we share our own insights on the potential trajectory of FE-MRI, shedding light on its future within the medical imaging realm.
Collapse
Affiliation(s)
- Guangxiang Si
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yue Du
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Peng Tang
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Gao Ma
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhaochen Jia
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai 200126, China
| | - Dan Mu
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yan Shen
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Yi Lu
- School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Mao
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Chuan Chen
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Ning Gu
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
4
|
Long M, Li Y, He H, Gu N. The Story of Ferumoxytol: Synthesis Production, Current Clinical Applications, and Therapeutic Potential. Adv Healthc Mater 2024; 13:e2302773. [PMID: 37931150 DOI: 10.1002/adhm.202302773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Ferumoxytol, approved by the U.S. Food and Drug Administration in 2009, is one of the intravenous iron oxide nanoparticles authorized for the treatment of iron deficiency in chronic kidney disease and end-stage renal disease. With its exceptional magnetic properties, catalytic activity, and immune activity, as well as good biocompatibility and safety, ferumoxytol has gained significant recognition in various biomedical diagnoses and treatments. Unlike most existing reviews on this topic, this review primarily focuses on the recent clinical and preclinical advances of ferumoxytol in disease treatment, spanning anemia, cancer, infectious inflammatory diseases, regenerative medicine application, magnetic stimulation for neural modulation, etc. Additionally, the newly discovered mechanisms associated with the biological effects of ferumoxytol are discussed, including its magnetic, catalytic, and immunomodulatory properties. Finally, the summary and future prospects concerning the treatment and application of ferumoxytol-based nanotherapeutics are presented.
Collapse
Affiliation(s)
- Mengmeng Long
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Hongliang He
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- Medical School, Nanjing University, Nanjing, 210008, P. R. China
| |
Collapse
|
5
|
Oberdick SD, Jordanova KV, Lundstrom JT, Parigi G, Poorman ME, Zabow G, Keenan KE. Iron oxide nanoparticles as positive T 1 contrast agents for low-field magnetic resonance imaging at 64 mT. Sci Rep 2023; 13:11520. [PMID: 37460669 DOI: 10.1038/s41598-023-38222-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
We have investigated the efficacy of superparamagnetic iron oxide nanoparticles (SPIONs) as positive T1 contrast agents for low-field magnetic resonance imaging (MRI) at 64 millitesla (mT). Iron oxide-based agents, such as the FDA-approved ferumoxytol, were measured using a variety of techniques to evaluate T1 contrast at 64 mT. Additionally, we characterized monodispersed carboxylic acid-coated SPIONs with a range of diameters (4.9-15.7 nm) in order to understand size-dependent properties of T1 contrast at low-field. MRI contrast properties were measured using 64 mT MRI, magnetometry, and nuclear magnetic resonance dispersion (NMRD). We also measured MRI contrast at 3 T to provide comparison to a standard clinical field strength. SPIONs have the capacity to perform well as T1 contrast agents at 64 mT, with measured longitudinal relaxivity (r1) values of up to 67 L mmol-1 s-1, more than an order of magnitude higher than corresponding r1 values at 3 T. The particles exhibit size-dependent longitudinal relaxivities and outperform a commercial Gd-based agent (gadobenate dimeglumine) by more than eight-fold at physiological temperatures. Additionally, we characterize the ratio of transverse to longitudinal relaxivity, r2/r1 and find that it is ~ 1 for the SPION based agents at 64 mT, indicating a favorable balance of relaxivities for T1-weighted contrast imaging. We also correlate the magnetic and structural properties of the particles with models of nanoparticle relaxivity to understand generation of T1 contrast. These experiments show that SPIONs, at low fields being targeted for point-of-care low-field MRI systems, have a unique combination of magnetic and structural properties that produce large T1 relaxivities.
Collapse
Affiliation(s)
- Samuel D Oberdick
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA.
- National Institute of Standards and Technology, Boulder, CO, 80305, USA.
| | | | - John T Lundstrom
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
- National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | | | - Gary Zabow
- National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Kathryn E Keenan
- National Institute of Standards and Technology, Boulder, CO, 80305, USA
| |
Collapse
|
6
|
Dong Z, Si G, Zhu X, Li C, Hua R, Teng J, Zhang W, Xu L, Qian W, Liu B, Wang J, Wang T, Tang Y, Zhao Y, Gong X, Tao Z, Xu Z, Li Y, Chen B, Kong X, Xu Y, Gu N, Li C. Diagnostic Performance and Safety of a Novel Ferumoxytol-Enhanced Coronary Magnetic Resonance Angiography. Circ Cardiovasc Imaging 2023; 16:580-590. [PMID: 37463240 DOI: 10.1161/circimaging.123.015404] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Currently, noninvasive arteriography for the diagnosis of coronary artery disease is clinically limited to the computed tomography scanning, where patients have to be exposed to the radiation and risks associated with iodinated contrast. We aimed to investigate the diagnostic performance and safety of a novel ferumoxytol-enhanced coronary magnetic resonance angiography (CMRA) in patients with suspected coronary artery disease. METHODS Thirty patients, 19 males, with a median age of 63 years old, and 17 with renal insufficiency, who were scheduled for invasive coronary angiography, were enrolled. Ferumoxytol was administered intravenously with a dose of 3 mg/kg during CMRA. Images were acquired with an ECG-triggered, navigator-gated, inversion recovery-prepared 3D fast low-angle shot sequence, and the image quality was assessed by a 4-point scale. Eighteen-segment coronary artery model was adopted to evaluate the visibility of the coronary arteries, and the image quality and stenosis were evaluated in nine segments. The diagnostic performance of CMRA is described as sensitivity, specificity, positive and negative predictive values, and accuracy with the invasive coronary angiography results as reference. The patients' vital signs were monitored during CMRA, and their hepatic and renal functions were followed up for 3 months to evaluate the safety of ferumoxytol. RESULTS Two hundred fifty-two of the 270 study segments were identified by CMRA, and their quality score reached 3.6±0.7. Referring to the invasive coronary angiography results, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of ferumoxytol-enhanced CMRA reached 100.0%, 66.7%, 92.3%, 100.0%, and 93.3% respectively in patient-based analysis; 91.4%, 90.9%, 86.5%, 94.3%, and 91.1%, respectively in vessel-based analysis; and 92.3%, 96.7%, 83.7%, 98.6%, and 96.0%, respectively in segment-based analysis. No ferumoxytol-related adverse event was observed during the 3-month follow-up. CONCLUSIONS Ferumoxytol-enhanced CMRA demonstrated good diagnostic performance and excellent safety in the diagnosis of significant coronary stenosis, providing an alternative to coronary computed tomography angiography for the diagnosis of coronary artery disease. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT05032937.
Collapse
Affiliation(s)
- Zhou Dong
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Guangxiang Si
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China (G.S., N.G.)
| | - Xiaomei Zhu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Chen Li
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Rui Hua
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Jianzhen Teng
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Wenhao Zhang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Lulu Xu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Wen Qian
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Bo Liu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Jun Wang
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Tong Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Yingdan Tang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, China (Y.T., Y.Z.)
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, China (Y.T., Y.Z.)
| | - Xiaoxuan Gong
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Zhiwen Tao
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Zhihui Xu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Yong Li
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Bo Chen
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Xiangqing Kong
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| | - Yi Xu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (X.Z., L.X., W.Q., B.L., J.W., Y.X.)
| | - Ning Gu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
- Medical School, Nanjing University, Nanjing, Jiangsu, China (N.G.)
| | - Chunjian Li
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Z.D., C.L., R.H., J.T., W.Z., T.W., X.G., Z.T., Z.X., Y.L., B.C., X.K., C.L.)
| |
Collapse
|
7
|
Colbert CM, Ming Z, Pogosyan A, Finn JP, Nguyen KL. Comparison of Three Ultrasmall, Superparamagnetic Iron Oxide Nanoparticles for MRI at 3.0 T. J Magn Reson Imaging 2023; 57:1819-1829. [PMID: 36250695 PMCID: PMC10106532 DOI: 10.1002/jmri.28457] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The ultrasmall, superparamagnetic iron oxide (USPIO) nanoparticle ferumoxytol has unique applications in cardiac, vascular, and body magnetic resonance imaging (MRI) due to its long intravascular half-life and suitability as a blood pool agent. However, limited availability and high cost have hindered its clinical adoption. A new ferumoxytol generic, and the emergence of MoldayION as an alternative USPIO, represent opportunities to expand the use of USPIO-enhanced MRI techniques. PURPOSE To compare in vitro and in vivo MRI relaxometry and enhancement of Feraheme, generic ferumoxytol, and MoldayION. STUDY TYPE Prospective. ANIMAL MODEL Ten healthy swine and six swine with artificially induced coronary narrowing underwent cardiac MRI. FIELD STRENGTH/SEQUENCE 3.0 T; T1-weighted (4D-MUSIC, 3D-VIBE, 2D-MOLLI) and T2-weighted (2D-HASTE) sequences pre- and post-contrast. ASSESSMENT We compared the MRI relaxometry of Feraheme, generic ferumoxytol, and MoldayION using saline, plasma, and whole blood MRI phantoms with contrast concentrations from 0.26 mM to 2.10 mM. In-vivo contrast effects on T1- and T2-weighted sequences and fractional intravascular contrast distribution volume in myocardium, liver, and spleen were evaluated. STATISTICAL TESTS Analysis of variance and covariance were used for group comparisons. A P value <0.05 was considered statistically significant. RESULTS The r1 relaxivities for Feraheme, generic ferumoxytol, and MoldayION in saline (22 °C) were 7.11 ± 0.13 mM-1 s-1 , 8.30 ± 0.29 mM-1 s-1 , 8.62 ± 0.16 mM-1 s-1 , and the r2 relaxivities were 111.74 ± 3.76 mM-1 s-1 , 105.07 ± 2.20 mM-1 s-1 , and 109.68 ± 2.56 mM-1 s-1 , respectively. The relationship between contrast concentration and longitudinal (R1) and transverse (R2) relaxation rate was highly linear in saline and plasma. The three agents produced similar in vivo contrast effects on T1 and T2 relaxation time-weighted sequences. DATA CONCLUSION Relative to clinically approved ferumoxytol formulations, MoldayION demonstrates minor differences in in vitro relaxometry and comparable in vivo MRI characteristics. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Caroline M. Colbert
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Zhengyang Ming
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Arutyun Pogosyan
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
| | - J. Paul Finn
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Kim-Lien Nguyen
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| |
Collapse
|
8
|
Shabalkin ID, Komlev AS, Tsymbal SA, Burmistrov OI, Zverev VI, Krivoshapkin PV. Multifunctional tunable ZnFe 2O 4@MnFe 2O 4 nanoparticles for dual-mode MRI and combined magnetic hyperthermia with radiotherapy treatment. J Mater Chem B 2023; 11:1068-1078. [PMID: 36625200 DOI: 10.1039/d2tb02186b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
With the increase in non-communicable diseases, cancer is becoming one of the most lethal ailments of the coming decades. Significant progress has been made in the development of NPs that combine diagnostic and therapeutic properties in a single system. Multimodal NPs that sequentially perform MRI diagnostics with increased contrast and then act as synergistic agents for magnetic hyperthermia and radiotherapy can be considered as next-generation anticancer drugs. Thus, we propose a systematic study of composite theranostic ZnFe2O4@MnFe2O4 NPs for the first time. Two types of magnetic NPs with MnFe2O4 shell thicknesses of 0.5 (ZM0.5) and 1.7 nm (ZM3) were prepared via hydrothermal synthesis. Tuning the shell thickness was shown to influence the NP r2 and r1 relaxivities and allow T1-T2 dual-mode contrast agents to be obtained. A radiotherapy study demonstrated a significant dose factor enhancement (about 40%) for both NP types. The specific absorption rate of ZM3 in a 100 Oe alternating magnetic field with a frequency of 75 kHz was found to be 8 W g-1, which results in heating up to 42 °C within a few seconds. This work presents high-performance multifunctional NPs capable of combining different diagnostic and therapeutic methods for a full course of treatment using only one type of NP.
Collapse
Affiliation(s)
- Ilia D Shabalkin
- SCAMT Institute, ITMO University, 9 Lomonosova Street, Saint-Petersburg, 191002, Russian Federation.
| | - Alexey S Komlev
- Faculty of Physics, Moscow State University, 1 Kolmogorova Street, Moscow, 119991, Russian Federation
| | - Sergey A Tsymbal
- SCAMT Institute, ITMO University, 9 Lomonosova Street, Saint-Petersburg, 191002, Russian Federation.
| | - Oleg I Burmistrov
- School of Physics and Engineering, ITMO University, 9 Lomonosova Street, Saint-Petersburg, 191002, Russian Federation
| | - Vladimir I Zverev
- Faculty of Physics, Moscow State University, 1 Kolmogorova Street, Moscow, 119991, Russian Federation
| | - Pavel V Krivoshapkin
- SCAMT Institute, ITMO University, 9 Lomonosova Street, Saint-Petersburg, 191002, Russian Federation.
| |
Collapse
|
9
|
Laissy J. Editorial for “Comparison of Three Ultrasmall, Superparamagnetic Iron Oxide Nanoparticles for Magnetic Resonance Imaging at 3.0 T”. J Magn Reson Imaging 2022; 57:1830-1831. [PMID: 36269569 DOI: 10.1002/jmri.28452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jean‐Pierre Laissy
- Department of Radiology Hôpital Bichat AP‐HP Paris Cedex France
- Department of Radiology Hôpital Lariboisière APHP Paris France
- INSERM U1148 France
- DHU FIRE, University de Paris France
| |
Collapse
|
10
|
Thong PQ, Thu Huong LT, Tu ND, My Nhung HT, Khanh L, Manh DH, Nam PH, Phuc NX, Alonso J, Qiao J, Sridhar S, Thu HP, Phan MH, Kim Thanh NT. Multifunctional nanocarriers of Fe 3O 4@PLA-PEG/curcumin for MRI, magnetic hyperthermia and drug delivery. Nanomedicine (Lond) 2022; 17:1677-1693. [PMID: 36621896 DOI: 10.2217/nnm-2022-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Despite medicinal advances, cancer is still a big problem requiring better diagnostic and treatment tools. Magnetic nanoparticle (MNP)-based nanosystems for multiple-purpose applications were developed for these unmet needs. Methods: This study fabricated novel trifunctional MNPs of Fe3O4@PLA-PEG for drug release, MRI and magnetic fluid hyperthermia. Result: The MNPs provided a significant loading of curcumin (∼11%) with controllable release ability, a high specific absorption rate of 82.2 W/g and significantly increased transverse relaxivity (r2 = 364.75 mM-1 s-1). The in vivo study confirmed that the MNPs enhanced MRI contrast in tumor observation and low-field magnetic fluid hyperthermia could effectively reduce the tumor size in mice bearing sarcoma 180. Conclusion: The nanocarrier has potential for drug release, cancer treatment monitoring and therapy.
Collapse
Affiliation(s)
- Phan Quoc Thong
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,University of Khanh Hoa, 1 Nguyen Chanh, Nha Trang, 57100, Vietnam
| | - Le Thi Thu Huong
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,Faculty of Natural Resources and Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, 12400, Vietnam
| | - Nguyen Dac Tu
- Hanoi University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, 11400, Vietnam
| | - Hoang Thi My Nhung
- Hanoi University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, 11400, Vietnam
| | - Lam Khanh
- 108 Military Central Hospital, 1 Tran Hung Dao, Hanoi, 11000, Vietnam
| | - Do Hung Manh
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam
| | - Pham Hong Nam
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,Graduate University of Science & Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 12400, Vietnam
| | - Nguyen Xuan Phuc
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,Duy Tan University, 3 Quang Trung, Danang, 50300, Vietnam
| | - Javier Alonso
- Department of CITIMAC, Universidad de Cantabria, Santander, 39005, Spain.,Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Ju Qiao
- Department of Physics, Bioengineering & Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Srinivas Sridhar
- Department of Physics, Bioengineering & Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Ha Phuong Thu
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam
| | - Manh Huong Phan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT, London.,UCL Healthcare Biomagnetics & Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
11
|
Jalili MH, Yu T, Hassani C, Prosper AE, Finn JP, Bedayat A. Contrast-enhanced MR Angiography without Gadolinium-based Contrast Material: Clinical Applications Using Ferumoxytol. Radiol Cardiothorac Imaging 2022; 4:e210323. [PMID: 36059381 PMCID: PMC9434982 DOI: 10.1148/ryct.210323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 04/25/2023]
Abstract
Vascular imaging can be challenging because of the wide variability of contrast dynamics in different vascular territories and potential safety concerns in patients with renal insufficiency or allergies. Off-label diagnostic use of ferumoxytol, a superparamagnetic iron nanoparticle approved for therapy, is a promising alternative to gadolinium-based contrast agents for MR angiography (MRA). Ferumoxytol has exhibited a reassuring safety profile when used within the dose range recommended for diagnostic imaging. Because of its prolonged and stable intravascular residence, ferumoxytol can be used in its steady-state distribution for a wide variety of imaging indications, including some where conventional MRA is unreliable. In this article, authors discuss some of the major vascular applications of ferumoxytol and highlight how it may be used to provide highly diagnostic images and improve the quality, workflow, and reliability of vascular imaging. Keywords: MR Angiography, MRI Contrast Agent, Cardiac, Vascular © RSNA, 2022.
Collapse
|
12
|
Nowak-Jary J, Machnicka B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J Nanobiotechnology 2022; 20:305. [PMID: 35761279 PMCID: PMC9235206 DOI: 10.1186/s12951-022-01510-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been under intense investigation for at least the last five decades as they show enormous potential for many biomedical applications, such as biomolecule separation, MRI imaging and hyperthermia. Moreover, a large area of research on these nanostructures is concerned with their use as carriers of drugs, nucleic acids, peptides and other biologically active compounds, often leading to the development of targeted therapies. The uniqueness of MNPs is due to their nanometric size and unique magnetic properties. In addition, iron ions, which, along with oxygen, are a part of the MNPs, belong to the trace elements in the body. Therefore, after digesting MNPs in lysosomes, iron ions are incorporated into the natural circulation of this element in the body, which reduces the risk of excessive storage of nanoparticles. Still, one of the key issues for the therapeutic applications of magnetic nanoparticles is their pharmacokinetics which is reflected in the circulation time of MNPs in the bloodstream. These characteristics depend on many factors, such as the size and charge of MNPs, the nature of the polymers and any molecules attached to their surface, and other. Since the pharmacokinetics depends on the resultant of the physicochemical properties of nanoparticles, research should be carried out individually for all the nanostructures designed. Almost every year there are new reports on the results of studies on the pharmacokinetics of specific magnetic nanoparticles, thus it is very important to follow the achievements on this matter. This paper reviews the latest findings in this field. The mechanism of action of the mononuclear phagocytic system and the half-lives of a wide range of nanostructures are presented. Moreover, factors affecting clearance such as hydrodynamic and core size, core morphology and coatings molecules, surface charge and technical aspects have been described.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland.
| | - Beata Machnicka
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland
| |
Collapse
|
13
|
Tian X, Ruan L, Zhou S, Wu L, Cao J, Qi X, Zhang X, Shen S. Appropriate Size of Fe 3O 4 Nanoparticles for Cancer Therapy by Ferroptosis. ACS APPLIED BIO MATERIALS 2022; 5:1692-1699. [PMID: 35297253 DOI: 10.1021/acsabm.2c00068] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Iron oxide nanoparticles can induce cell death due to the ferroptosis mechanism, showing a great potential for cancer therapy. Here, we synthesized different-sized iron oxide nanoparticles (2-100 nm) to investigate their antitumor effect and toxicity mechanism. It was found that ultrasmall nanoparticles (< ∼5 nm) could accumulate in nucleus and were more efficient in triggering the generation of •OH than larger nanoparticles due to the quicker release of Fe2+, thus exhibiting more remarkable cytotoxicity. Nevertheless, 10 nm iron oxide nanoparticles group displayed the best antitumor effect in vivo. We studied the in vivo and intratumoral biodistribution of the nanoparticles and found that the therapeutic effects were related to both the tumoral accumulation and intratumoral distribution of nanoparticles. This work indicates the appropriate size of Fe3O4 NPs for cancer treatment and illustrates the possible factors that influence the therapeutic effect, suggesting the great potential of iron oxide in clinical application.
Collapse
Affiliation(s)
- Xiangrong Tian
- Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu 212001, China.,College of Pharmaceutical Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Li Ruan
- Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu 212001, China.,College of Pharmaceutical Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shengwang Zhou
- College of Pharmaceutical Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Lin Wu
- Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu 212001, China
| | - Jin Cao
- College of Pharmaceutical Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xueyong Qi
- College of Pharmaceutical Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xin Zhang
- Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu 212001, China
| | - Song Shen
- College of Pharmaceutical Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
14
|
Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. J Control Release 2022; 345:231-274. [DOI: 10.1016/j.jconrel.2022.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
|
15
|
Daldrup-Link HE, Theruvath AJ, Rashidi A, Iv M, Majzner RG, Spunt SL, Goodman S, Moseley M. How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol. Pediatr Radiol 2022; 52:354-366. [PMID: 34046709 PMCID: PMC8626538 DOI: 10.1007/s00247-021-05098-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Gadolinium chelates have been used as standard contrast agents for clinical MRI for several decades. However, several investigators recently reported that rare Earth metals such as gadolinium are deposited in the brain for months or years. This is particularly concerning for children, whose developing brain is more vulnerable to exogenous toxins compared to adults. Therefore, a search is under way for alternative MR imaging biomarkers. The United States Food and Drug Administration (FDA)-approved iron supplement ferumoxytol can solve this unmet clinical need: ferumoxytol consists of iron oxide nanoparticles that can be detected with MRI and provide significant T1- and T2-signal enhancement of vessels and soft tissues. Several investigators including our research group have started to use ferumoxytol off-label as a new contrast agent for MRI. This article reviews the existing literature on the biodistribution of ferumoxytol in children and compares the diagnostic accuracy of ferumoxytol- and gadolinium-chelate-enhanced MRI. Iron oxide nanoparticles represent a promising new class of contrast agents for pediatric MRI that can be metabolized and are not deposited in the brain.
Collapse
Affiliation(s)
- Heike E. Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University
| | - Ashok J. Theruvath
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| | - Ali Rashidi
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| | - Michael Iv
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| | - Robbie G. Majzner
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University
| | - Sheri L. Spunt
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University
| | | | - Michael Moseley
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| |
Collapse
|
16
|
Huang Y, Hsu JC, Koo H, Cormode DP. Repurposing ferumoxytol: Diagnostic and therapeutic applications of an FDA-approved nanoparticle. Am J Cancer Res 2022; 12:796-816. [PMID: 34976214 PMCID: PMC8692919 DOI: 10.7150/thno.67375] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Ferumoxytol is an intravenous iron oxide nanoparticle formulation that has been approved by the U.S. Food and Drug Administration (FDA) for treating anemia in patients with chronic kidney disease. In recent years, ferumoxytol has also been demonstrated to have potential for many additional biomedical applications due to its excellent inherent physical properties, such as superparamagnetism, biocatalytic activity, and immunomodulatory behavior. With good safety and clearance profiles, ferumoxytol has been extensively utilized in both preclinical and clinical studies. Here, we first introduce the medical needs and the value of current iron oxide nanoparticle formulations in the market. We then focus on ferumoxytol nanoparticles and their physicochemical, diagnostic, and therapeutic properties. We include examples describing their use in various biomedical applications, including magnetic resonance imaging (MRI), multimodality imaging, iron deficiency treatment, immunotherapy, microbial biofilm treatment and drug delivery. Finally, we provide a brief conclusion and offer our perspectives on the current limitations and emerging applications of ferumoxytol in biomedicine. Overall, this review provides a comprehensive summary of the developments of ferumoxytol as an agent with diagnostic, therapeutic, and theranostic functionalities.
Collapse
|
17
|
Shahrouki P, Khan SN, Yoshida T, Iskander PJ, Ghahremani S, Finn JP. High-resolution three‑dimensional contrast‑enhanced magnetic resonance venography in children: comparison of gadofosveset trisodium with ferumoxytol. Pediatr Radiol 2022; 52:501-512. [PMID: 34936018 PMCID: PMC8857136 DOI: 10.1007/s00247-021-05225-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Gadofosveset is a gadolinium-based blood pool contrast agent that was approved by the United States Food and Drug Administration in 2008. Its unanticipated withdrawal from production in 2016 created a void in the blood pool agent inventory and highlighted the need for an alternative agent with comparable imaging properties. OBJECTIVE The purpose of our study is to compare the diagnostic image quality, vascular contrast-to-noise ratio (CNR) and temporal signal characteristics of gadofosveset trisodium and ferumoxytol at similar molar doses for high-resolution, three-dimensional (3-D) magnetic resonance (MR) venography in children. MATERIALS AND METHODS The medical records and imaging data sets of patients who underwent high-resolution 3-D gadofosveset-enhanced MR venography (GE-MRV) or ferumoxytol-enhanced MR venography (FE-MRV) were retrospectively reviewed. Two groups of 20 pediatric patients (age- and weight-matched with one patient common to both groups; age range: 2 days-15 years) who underwent high-resolution 3-D GE-MRV or FE-MRV at similar molar doses were identified and analyzed. Qualitative analysis of image quality and vessel definition was performed by two blinded pediatric radiologists. Interobserver agreement was assessed with the AC1 (first-order agreement coefficient) statistic. Signal-to-noise ratio (SNR) and CNR of the inferior vena cava and aorta were measured in the steady-state venous phase. Medical records were retrospectively reviewed for any adverse reactions associated with either contrast agent. RESULTS Measured SNR and CNR of the inferior vena cava were higher for FE-MRV than GE-MRV (P = 0.034 and P < 0.001, respectively). The overall image quality score and individual vessel scores of FE-MRV were equal to or greater than GE-MRV (P = 0.084), with good interobserver agreement (AC1 = 0.657). The venous signal on FE-MRV was stable over the longest interval measured (1 h, 13 min and 46 s), whereas venous signal on GE-MRV showed more variability and earlier loss of signal. No adverse reactions were noted in any patient with either contrast agent. CONCLUSION Ferumoxytol produces more uniform and stable enhancement throughout the entire venous circulation in children than gadofosveset, offering a wider time window for optimal image acquisition. FE-MRV offers a near-ideal approach to high-resolution venography in children at all levels of anatomical complexity.
Collapse
Affiliation(s)
- Puja Shahrouki
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA
| | - Sarah N. Khan
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA
| | - Takegawa Yoshida
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA
| | - Paul J. Iskander
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA ,grid.19006.3e0000 0000 9632 6718Division of Pediatric Radiology, Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA USA ,grid.239546.f0000 0001 2153 6013Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA USA
| | - Shahnaz Ghahremani
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA ,grid.19006.3e0000 0000 9632 6718Division of Pediatric Radiology, Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA USA
| | - J. Paul Finn
- grid.19006.3e0000 0000 9632 6718Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building, Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206 USA
| |
Collapse
|
18
|
Della Camera G, Madej M, Ferretti AM, La Spina R, Li Y, Corteggio A, Heinzl T, Swartzwelter BJ, Sipos G, Gioria S, Ponti A, Boraschi D, Italiani P. Personalised Profiling of Innate Immune Memory Induced by Nano-Imaging Particles in Human Monocytes. Front Immunol 2021; 12:692165. [PMID: 34421901 PMCID: PMC8377278 DOI: 10.3389/fimmu.2021.692165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/14/2021] [Indexed: 11/25/2022] Open
Abstract
Engineered nanoparticles used for medical purposes must meet stringent safety criteria, which include immunosafety, i.e., the inability to activate possibly detrimental immune/inflammatory effects. Even medical nanomaterials devoid of direct immunotoxic or inflammatory effects may have an impact on human health if able to modify innate memory, which is the ability to “prime” future immune responses towards a different, possibly more detrimental reactivity. Although innate memory is usually protective, anomalous innate memory responses may be at the basis of immune pathologies. In this study, we have examined the ability of two nanomaterials commonly used for diagnostic imaging purposes, gold and iron oxide nanoparticles, to induce or modulate innate memory, using an in vitro model based on human primary monocytes. Monocytes were exposed in culture to nanoparticles alone or together with the bacterial agent LPS (priming phase/primary response), then rested for six days (extinction phase), and eventually challenged with LPS (memory/secondary response). The memory response to the LPS challenge was measured as changes in the production of inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra), as compared to unprimed monocytes. The results show that both types of nanoparticles can have an effect in the induction of memory, with changes observed in the cytokine production. By comparing nanomaterials of different shapes (spherical vs. rod-shaped gold particles) and different size (17 vs. 22 nm diameter spherical iron oxide particles), it was evident that innate memory could be differentially induced and modulated depending on size, shape and chemical composition. However, the main finding was that the innate memory effect of the particles was strongly donor-dependent, with monocytes from each donor showing a distinct memory profile upon priming with the same particles, thereby making impossible to draw general conclusions on the particle effects. Thus, in order to predict the effect of imaging nanoparticles on the innate memory of patients, a personalised profiling would be required, able to take in consideration the peculiarities of the individual innate immune reactivity.
Collapse
Affiliation(s)
- Giacomo Della Camera
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Mariusz Madej
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Anna Maria Ferretti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), National Research Council (CNR), Milano, Italy
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Yang Li
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Tommaso Heinzl
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Benjamin J Swartzwelter
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Gergö Sipos
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), National Research Council (CNR), Milano, Italy
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy.,Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| |
Collapse
|
19
|
Magnetothermal regulation of in vivo protein corona formation on magnetic nanoparticles for improved cancer nanotherapy. Biomaterials 2021; 276:121021. [PMID: 34274776 DOI: 10.1016/j.biomaterials.2021.121021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022]
Abstract
Engineering the protein corona (PC) on nanodrugs is emerging as an effective approach to improve their pharmacokinetics and therapeutic efficacy, but conventional in vitro pre-programmed methods have shown great limitation for regulation of the PC in the complex and dynamic in vivo physiological environment. Here, we demonstrate an magnetothermal regulation approach that allows us to in situ modulate the in vivo PC composition on iron oxide nanoparticles for improved cancer nanotherapy. Experimental results revealed that the relative levels of major opsonins and dysopsonins in the PC can be tuned quantitatively by means of heat induction mediated by the nanoparticles under an alternating magnetic field. When the PC was magnetically optimized in vivo, the nanoparticles exhibited prolonged circulation and enhanced tumor delivery efficiency in mice, 2.53-fold and 2.02-fold higher respectively than the control. This led to a superior thermotherapeutic efficacy of systemically delivered nanoparticles. In vivo magnetothermal regulation of the PC on nanodrugs will find wide applications in biomedicine.
Collapse
|
20
|
Colbert CM, Thomas MA, Yan R, Radjenovic A, Finn JP, Hu P, Nguyen KL. Estimation of fractional myocardial blood volume and water exchange using ferumoxytol-enhanced magnetic resonance imaging. J Magn Reson Imaging 2021; 53:1699-1709. [PMID: 33382176 PMCID: PMC8297410 DOI: 10.1002/jmri.27494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023] Open
Abstract
Fractional myocardial blood volume (fMBV) estimated using ferumoxytol-enhanced magnetic resonance imaging (MRI) (FE-MRI) has the potential to capture a hemodynamic response to myocardial hypoperfusion during contrast steady state without reliance on gadolinium chelates. Ferumoxytol has a long intravascular half-life and its use for steady-state MRI is off-label. The aim of this prospective study was to optimize and evaluate a two-compartment model for estimation of fMBV based on FE-MRI. Nine healthy swine and one swine with artificially induced single-vessel coronary stenosis underwent MRI on a 3.0 T clinical magnet. Myocardial longitudinal spin-lattice relaxation rate (R1) was measured using the 5(3)3(3)3 modified Look-Locker inversion recovery (MOLLI) sequence before and at contrast steady state following seven ferumoxytol infusions (0.125-4.0 mg/kg). fMBV and water exchange were estimated using a two-compartment model. Model-fitted fMBV was compared to simple fast-exchange fMBV approximation and percent change in pre- and postferumoxytol R1. Dose undersampling schemes were investigated to reduce acquisition duration. Variation in fMBV was assessed using one-way analysis of variance. Fast-exchange fMBV and ferumoxytol dose undersampling were evaluated using Bland-Altman analysis. Healthy normal swine showed a mean mid-ventricular fMBV of 7.2 ± 1.4% and water exchange rate of 11.3 ± 5.1 s-1 . There was intersubject variation in fMBV (p < 0.05) without segmental variation (p = 0.387). fMBV derived from eight-dose and four-dose sampling schemes had no significant bias (mean difference = 0.07, p = 0.541, limits of agreement -1.04% [-1.45, -0.62%] to 1.18% [0.77, 1.59%]). Pixel-wise fMBV in one swine model with coronary artery stenosis showed elevated fMBV in ischemic segments (apical anterior: 11.90 ± 4.00%, apical septum: 16.10 ± 5.71%) relative to remote segments (apical inferior: 9.59 ± 3.35%, apical lateral: 9.38 ± 2.35%). A two-compartment model based on FE-MRI using the MOLLI sequence may enable estimation of fMBV in studies of ischemic heart disease. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Caroline M. Colbert
- Physics and Biology in Medicine Graduate Program, David
Geffen School of Medicine at UCLA
| | - Michael A. Thomas
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
| | - Ran Yan
- Bioengineering Graduate Program, Henry Samueli School of
Engineering and Applied Science at UCLA
| | - Aleksandra Radjenovic
- Institute of Cardiovascular & Medical Sciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - J. Paul Finn
- Physics and Biology in Medicine Graduate Program, David
Geffen School of Medicine at UCLA
- Diagnostic Cardiovascular Imaging Laboratory, Department of
Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Peng Hu
- Physics and Biology in Medicine Graduate Program, David
Geffen School of Medicine at UCLA
- Bioengineering Graduate Program, Henry Samueli School of
Engineering and Applied Science at UCLA
- Diagnostic Cardiovascular Imaging Laboratory, Department of
Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Kim-Lien Nguyen
- Physics and Biology in Medicine Graduate Program, David
Geffen School of Medicine at UCLA
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Laboratory, Department of
Radiological Sciences, David Geffen School of Medicine at UCLA
| |
Collapse
|
21
|
Ponrartana S, Moore MM, Chan SS, Victoria T, Dillman JR, Chavhan GB. Safety issues related to intravenous contrast agent use in magnetic resonance imaging. Pediatr Radiol 2021; 51:736-747. [PMID: 33871726 DOI: 10.1007/s00247-020-04896-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/12/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) have been used to improve image quality of MRI examinations for decades and have an excellent overall safety record. However, there are well-documented risks associated with GBCAs and our understanding and management of these risks continue to evolve. The purpose of this review is to discuss the safety of GBCAs used in MRI in adult and pediatric populations. We focus particular attention on acute adverse reactions, nephrogenic systemic fibrosis and gadolinium deposition. We also discuss the non-GBCA MRI contrast agent ferumoxytol, which is increasing in use and has its own risk profile. Finally, we identify special populations at higher risk of harm from GBCA administration.
Collapse
Affiliation(s)
- Skorn Ponrartana
- Department of Radiology, Children's Hospital Los Angeles, 4650 Sunset Blvd., MS# 81, Los Angeles, CA, 90064, USA. .,Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Michael M Moore
- Department of Radiology, Penn State Children's Hospital, Penn State Health, Hershey, PA, USA
| | - Sherwin S Chan
- Department of Radiology, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA.,Department of Radiology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Teresa Victoria
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan R Dillman
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Govind B Chavhan
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Wen J, Chen H, Ren Z, Zhang P, Chen J, Jiang S. Ultrasmall iron oxide nanoparticles induced ferroptosis via Beclin1/ATG5-dependent autophagy pathway. NANO CONVERGENCE 2021; 8:10. [PMID: 33796911 PMCID: PMC8017028 DOI: 10.1186/s40580-021-00260-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/08/2021] [Indexed: 05/05/2023]
Abstract
Iron-based nanoparticles, which could elicit ferroptosis, is becoming a promising new way to inhibit tumor cell growth. Notably, ultrasmall iron oxide nanoparticles (USIONPs) have been found to upregulate the autophagy process in glioblastoma (GBM) cells. Whether USIONPs could also elicit ferroptosis and the relationship between the USIONPs-induced autophagy and ferroptosis need to be explored. In the current study, our synthesized USIONPs with good water solubility could significantly upregulate the ferroptosis markers in GBM cells, and downregulate the expression of anti-ferroptosis genes. Interestingly,ferrostatin-1 could reverse USIONPs- induced ferroptosis, but inhibitors of apoptosis, pyroptosis, or necrosis could not. Meanwhile, autophagy inhibitor 3-methyladenine could also reverse the USIONPs-induced ferroptosis. In addition, shRNA silencing of upstream genes Beclin1/ATG5 of autophagy process could significantly reverse USIONPs-induced ferroptosis, whereas overexpression of Beclin1/ATG5 of autophagy process could remarkably promote USIONPs-induced ferroptosis. Furthermore, lysosome inhibitors could significantly reverse the USIONPs-induced ferroptosis. Collectively, these facts suggest that USIONPs-induced ferroptosis is regulated via Beclin1/ATG5-dependent autophagy pathway.
Collapse
Affiliation(s)
- Jian Wen
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin Medical 26, University, 15 Lequn road, Guilin, 541000, People's Republic of China.
| | - Hanren Chen
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin Medical 26, University, 15 Lequn road, Guilin, 541000, People's Republic of China
| | - Zhongyu Ren
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin Medical 26, University, 15 Lequn road, Guilin, 541000, People's Republic of China
| | - Peng Zhang
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin Medical 26, University, 15 Lequn road, Guilin, 541000, People's Republic of China
| | - Jianjiao Chen
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin Medical 26, University, 15 Lequn road, Guilin, 541000, People's Republic of China
| | - Shulian Jiang
- Nanjing Second Hospital, 1 Zhongfu road, Nanjing, 210003, People's Republic of China.
| |
Collapse
|
23
|
Wilson S, Culp WTN, Wisner ER, Cissell DD, Finn JP, Zwingenberger AL. Ferumoxytol-enhanced magnetic resonance angiography provides comparable vascular conspicuity to CT angiography in dogs with intrahepatic portosystemic shunts. Vet Radiol Ultrasound 2021; 62:463-470. [PMID: 33634935 DOI: 10.1111/vru.12963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 11/26/2022] Open
Abstract
Computed tomography angiography (CTA) is currently the gold standard imaging modality for anatomically characterizing canine hepatic vascular anomalies; with conventional, gadolinium-enhanced MR angiography being less frequently utilized. However, both imaging modalities are limited by a brief, first pass peak of contrast medium in the vasculature that necessitates precisely timed image acquisition. A long-acting purely intravascular magnetic resonance imaging (MRI) contrast agent, ferumoxytol, offers the potential to reduce complexity of magnetic resonance angiography (MRA) protocol planning by ensuring diagnostic contrast medium concentration in all the vessels that are targeted for imaging. Aims of this prospective, pilot, methods comparison study were to develop an optimized MRA protocol using ferumoxytol in dogs with hepatic vascular anomalies, perform a dose escalation trial to compare image quality with four-dose regimens of ferumoxytol, and compare accuracy of vascular anatomic depiction based on the gold standard of CTA. Six dogs (10.7-36.1 kg) with portosystemic shunts (four intrahepatic left divisional shunts and two intrahepatic right divisional shunts) were recruited for inclusion in the study. A dose-escalation trial was performed to compare image quality at four incremental dose levels of ferumoxytol (1, 2, 3, and 4 mg/kg) and to compare the accuracy of vascular anatomic detection to CTA. Ferumoxytol contrast-enhanced MRA (CE-MRA) at 4 mg/kg provided similar conspicuity of normal and abnormal vasculature compared to CTA with a minimal decrease in spatial resolution. Findings indicated that ferumoxytol holds promise for comprehensive, single breath hold CE-MRA of all abdominal vessels in dogs with portosystemic shunts. Background information provided in this study can be used to support development of other future applications such as intracranial and cardiac MRA, real-time imaging, flow quantification, and potentially sedated MRI imaging.
Collapse
Affiliation(s)
- Sabrina Wilson
- Department of Surgical and Radiological Sciences, University of California Davis, School of Veterinary Medicine, Davis, California, USA
| | - William T N Culp
- Department of Surgical and Radiological Sciences, University of California Davis, School of Veterinary Medicine, Davis, California, USA
| | - Erik R Wisner
- Department of Surgical and Radiological Sciences, University of California Davis, School of Veterinary Medicine, Davis, California, USA
| | - Derek D Cissell
- Department of Surgical and Radiological Sciences, University of California Davis, School of Veterinary Medicine, Davis, California, USA
| | - J Paul Finn
- Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, School of Medicine, Davis, California, USA
| | - Allison L Zwingenberger
- Department of Surgical and Radiological Sciences, University of California Davis, School of Veterinary Medicine, Davis, California, USA
| |
Collapse
|
24
|
Stoumpos S, Tan A, Hall Barrientos P, Stevenson K, Thomson PC, Kasthuri R, Radjenovic A, Kingsmore DB, Roditi G, Mark PB. Ferumoxytol MR Angiography versus Duplex US for Vascular Mapping before Arteriovenous Fistula Surgery for Hemodialysis. Radiology 2020; 297:214-222. [PMID: 32692301 DOI: 10.1148/radiol.2020200069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Duplex US is performed routinely for vascular mapping prior to arteriovenous fistula (AVF) creation for hemodialysis but cannot demonstrate the central vasculature. Ferumoxytol, an iron oxide nanoparticle, provides an alternative to gadolinium contrast material for MR angiography for safe use in chronic kidney disease (CKD). Purpose To assess the clinical utility of ferumoxytol-enhanced MR angiography compared with duplex US for vascular mapping before upper limb AVF creation in participants with CKD. Materials and Methods In a prospective comparative study (ClinicalTrials.gov: NCT02997046) from December 2016 to August 2018, participants with CKD underwent ferumoxytol-enhanced MR angiography and duplex US. Two independent readers evaluated vessels for diameter, stenosis or occlusion, arterial disease, and central stenosis. Intraclass correlation coefficients (ICCs) and Bland-Altman plots were used to assess intra- and interreader variability. On the basis of accepted standards for AVF creation, an algorithm was developed to predict AVF outcome based on imaging findings. Multivariable regression models used AVF success as the dependent variable and age, sex, and duplex US or ferumoxytol-enhanced MR angiography findings as independent variables. Results Fifty-nine participants with CKD (mean age, 59 years ± 13 [standard deviation]; 30 women) were evaluated. A total of 51 fistulas were created, of which 24 (47%) were successful. Ferumoxytol-enhanced MR angiography showed excellent inter- and intrareader repeatability (ICC, 0.84-0.99) for all variables assessed. In addition to revealing 15 central vasculature stenoses, ferumoxytol-enhanced MR angiography resulted in characterization of 88 of 236 (37%) of the arterial sections examined as unsuitable for AVF creation compared with 61 of 236 (26%) sections with duplex US (P = .01). Ferumoxytol-enhanced MR angiography independently predicted AVF success in models including (odds ratio, 6.5; 95% confidence interval: 1.7, 25; P = .006) and those excluding (odds ratio, 4.6; 95% confidence interval: 1.3, 17; P = .02) the central vasculature. Conclusion In addition to enabling identification of central vessel pathologic features, ferumoxytol-enhanced MR angiography revealed peripheral arterial disease not recognized with duplex US and was more predictive than duplex US of the outcome of arteriovenous fistula surgery. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Finn in this issue.
Collapse
Affiliation(s)
- Sokratis Stoumpos
- From the Renal and Transplant Unit (S.S., K.S., P.C.T., D.B.K., P.B.M.) and Department of Radiology (A.T., P.H.B., R.K., G.R.), Queen Elizabeth University Hospital, Glasgow, Scotland; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TD, Scotland (S.S., A.R., P.B.M.)
| | - Alfred Tan
- From the Renal and Transplant Unit (S.S., K.S., P.C.T., D.B.K., P.B.M.) and Department of Radiology (A.T., P.H.B., R.K., G.R.), Queen Elizabeth University Hospital, Glasgow, Scotland; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TD, Scotland (S.S., A.R., P.B.M.)
| | - Pauline Hall Barrientos
- From the Renal and Transplant Unit (S.S., K.S., P.C.T., D.B.K., P.B.M.) and Department of Radiology (A.T., P.H.B., R.K., G.R.), Queen Elizabeth University Hospital, Glasgow, Scotland; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TD, Scotland (S.S., A.R., P.B.M.)
| | - Karen Stevenson
- From the Renal and Transplant Unit (S.S., K.S., P.C.T., D.B.K., P.B.M.) and Department of Radiology (A.T., P.H.B., R.K., G.R.), Queen Elizabeth University Hospital, Glasgow, Scotland; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TD, Scotland (S.S., A.R., P.B.M.)
| | - Peter C Thomson
- From the Renal and Transplant Unit (S.S., K.S., P.C.T., D.B.K., P.B.M.) and Department of Radiology (A.T., P.H.B., R.K., G.R.), Queen Elizabeth University Hospital, Glasgow, Scotland; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TD, Scotland (S.S., A.R., P.B.M.)
| | - Ram Kasthuri
- From the Renal and Transplant Unit (S.S., K.S., P.C.T., D.B.K., P.B.M.) and Department of Radiology (A.T., P.H.B., R.K., G.R.), Queen Elizabeth University Hospital, Glasgow, Scotland; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TD, Scotland (S.S., A.R., P.B.M.)
| | - Aleksandra Radjenovic
- From the Renal and Transplant Unit (S.S., K.S., P.C.T., D.B.K., P.B.M.) and Department of Radiology (A.T., P.H.B., R.K., G.R.), Queen Elizabeth University Hospital, Glasgow, Scotland; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TD, Scotland (S.S., A.R., P.B.M.)
| | - David B Kingsmore
- From the Renal and Transplant Unit (S.S., K.S., P.C.T., D.B.K., P.B.M.) and Department of Radiology (A.T., P.H.B., R.K., G.R.), Queen Elizabeth University Hospital, Glasgow, Scotland; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TD, Scotland (S.S., A.R., P.B.M.)
| | - Giles Roditi
- From the Renal and Transplant Unit (S.S., K.S., P.C.T., D.B.K., P.B.M.) and Department of Radiology (A.T., P.H.B., R.K., G.R.), Queen Elizabeth University Hospital, Glasgow, Scotland; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TD, Scotland (S.S., A.R., P.B.M.)
| | - Patrick B Mark
- From the Renal and Transplant Unit (S.S., K.S., P.C.T., D.B.K., P.B.M.) and Department of Radiology (A.T., P.H.B., R.K., G.R.), Queen Elizabeth University Hospital, Glasgow, Scotland; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TD, Scotland (S.S., A.R., P.B.M.)
| |
Collapse
|
25
|
Strategies to Reduce the Use of Gadolinium-Based Contrast Agents for Abdominal MRI in Children. AJR Am J Roentgenol 2020; 214:1054-1064. [DOI: 10.2214/ajr.19.22232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Wang H, Jiang Q, Shen Y, Zhang L, Haacke EM, Ge Y, Qi S, Hu J. The capability of detecting small vessels beyond the conventional MRI sensitivity using iron-based contrast agent enhanced susceptibility weighted imaging. NMR IN BIOMEDICINE 2020; 33:e4256. [PMID: 32045957 DOI: 10.1002/nbm.4256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 11/19/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Imaging brain microvasculature is important in cerebrovascular diseases. However, there is still a lack of non-invasive, non-radiation, and whole-body imaging techniques to investigate them. The aim of this study is to develop an ultra-small superparamagnetic iron oxide (USPIO) enhanced susceptibility weighted imaging (SWI) method for imaging micro-vasculature in both animal (~10 μm in rat) and human brain. We hypothesized that the USPIO-SWI technique could improve the detection sensitivity of the diameter of small subpixel vessels 10-fold compared with conventional MRI methods. Computer simulations were first performed with a double-cylinder digital model to investigate the theoretical basis for this hypothesis. The theoretical results were verified using in vitro phantom studies and in vivo rat MRI studies (n = 6) with corresponding ex vivo histological examinations. Additionally, in vivo human studies (n = 3) were carried out to demonstrate the translational power of the USPIO-SWI method. By directly comparing the small vessel diameters of an in vivo rat using USPIO-SWI with the small vessel diameters of the corresponding histological slide using laser scanning confocal microscopy, 13.3-fold and 19.9-fold increases in SWI apparent diameter were obtained with 5.6 mg Fe/kg and 16.8 mg Fe/kg ferumoxytol, respectively. The USPIO-SWI method exhibited its excellent ability to detect small vessels down to about 10 μm diameter in rat brain. The in vivo human study unveiled hidden arterioles and venules and demonstrated its potential in clinical practice. Theoretical modeling simulations and in vitro phantom studies also confirmed a more than 10-fold increase in the USPIO-SWI apparent diameter compared with the actual small vessel diameter size. It is feasible to use SWI blooming effects induced by USPIO to detect small vessels (down to 10 μm in diameter for rat brain), well beyond the spatial resolution limit of conventional MRI methods. The USPIO-SWI method demonstrates higher potential in cerebrovascular disease investigations.
Collapse
Affiliation(s)
- Haoyu Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Yimin Shen
- Department of Radiology, Wayne State University, Detroit, Michigan
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, Michigan
| | - Yulin Ge
- Department of Radiology, New York University, New York, New York
| | - Shouliang Qi
- The Sino-Dutch Biomedical and Information Engineering School of Northeastern University, Shenyang, China
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan
| |
Collapse
|
27
|
Khan SN, McWilliams JP, Bista BB, Kee S, Finn JP. Comparison of Ferumoxytol-enhanced MR Angiography and CT Angiography for the Detection of Pulmonary Arteriovenous Malformations in Hereditary Hemorrhagic Telangiectasia: Initial Results. Radiol Cardiothorac Imaging 2020; 2:e190077. [PMID: 33778550 PMCID: PMC7978029 DOI: 10.1148/ryct.2020190077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 05/09/2023]
Abstract
PURPOSE To perform a preliminary comparison of the sensitivity and positive predictive value of ferumoxytol-enhanced MR angiography with those of CT angiography for detection of pulmonary arteriovenous malformations (AVMs) in hereditary hemorrhagic telangiectasia (HHT). MATERIALS AND METHODS Institutional review board approval and informed patient consent were obtained. Ten patients with pulmonary AVMs who had undergone CT of the chest within 12 months underwent MRI of the chest and abdomen with ferumoxytol at 3.0 T at a dose of 4 mg per kilogram of body weight. Consensus review of MR and CT images assessed the presence and characteristics of pulmonary AVMs, image quality, vessel visibility, and artifact grade. RESULTS Forty-three AVMs were detected, 13 native and 30 recanalized. Twenty-one AVMs had a feeding artery diameter of greater than 2 mm, of which detection occurred in 19 (at MRI and CT), in two (at MRI only), and zero (at CT only). Twenty-two AVMs had a feeding artery diameter of less than or equal to 2 mm, of which detection occurred in 16 (at MRI and CT), six (at CT only), and zero (at MRI only). For the entire cohort, the sensitivity of ferumoxytol-enhanced MRI using CT as the reference standard was 85.4% (35 of 41), and the positive predictive value was 100% (35 of 35). No significant difference was found between CT and MRI in AVM size, feeding artery and draining vein diameter, and artifact score (P >.05 for all). CONCLUSION Initial results suggest that ferumoxytol-enhanced MRI is a feasible alternative to CT for detection of pulmonary AVM in HHT, while avoiding repeated exposure to radiation, nephrotoxic contrast material, or gadolinium-based contrast agent.© RSNA, 2020.
Collapse
Affiliation(s)
- Sarah N. Khan
- From the Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206
| | - Justin P. McWilliams
- From the Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206
| | - Biraj B. Bista
- From the Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206
| | - Stephen Kee
- From the Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206
| | - J. Paul Finn
- From the Department of Radiological Sciences, University of California at Los Angeles, Peter V. Ueberroth Building Suite 3371, 10945 Le Conte Ave, Los Angeles, CA 90095-7206
| |
Collapse
|
28
|
Pan Z, Huang Y, Qian H, Du X, Qin W, Liu T. Superparamagnetic iron oxide nanoparticles drive miR-485-5p inhibition in glioma stem cells by silencing Tie1 expression. Int J Biol Sci 2020; 16:1274-1287. [PMID: 32174801 PMCID: PMC7053326 DOI: 10.7150/ijbs.42887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023] Open
Abstract
Gliomas are highly malignant nervous system tumours. Studies shown that cancer stem cells are one of the main reasons underlying recurrence, metastasis, and poor prognosis in glioma cases. Our previous studies have found that superparamagnetic iron oxide nanoparticles (SPIONs) can act as nucleic acid carriers to drive intracellular overexpression of these nucleic acids. In this study, CD44+/CD133+ glioma stem cells (HuGSCs) were first isolated from surgically resected tissues from patients. qPCR and western blot results showed that Tie1 expression in HuGSCs was significantly higher thanexpression in CD44-/CD133- glioma cells. Bioinformatic analysis and luciferase reporter assays showed that miR-485-5p binds to specific loci on the 3′-UTR of Tie1 mRNA to inhibit Tie1 expression. Subsequently, miR-485-5p/miR-mut and SPION complexes were transfected into HuGSCs. Transmission electron microscopy showed that a highly dense metallic electron cloud is present in HuGSCs. At the same time, in vivo and in vitro studies showed that miR-485-5p@SPIONs can significantly inhibit HuGSC proliferation, invasion, tumourigenicity, and angiogenesis. In-depth analysis showed that Tie1 interacts with neuronal growth factors such as FGF2, BDNF, GDNF, and GFAP. qPCR and western blot results showed that in miR-485-5p@SPIONs-HuGSCs, the expression levels of Tie1 and stem cell markers (Oct4, Sox2, Nanog, CD44, and CD133), and even FGF2, BDNF, GDNF, and GFAP were significantly lower than thelevels in the control group (miR-mut@SPIONs-HuGSCs). Therefore, this study showedthat Tie1 is an important factor that maintains glioma stem cell activity. SPIONs drive miR-485-5p overexpression in cells and inhibit endogenous Tie1 expression to downregulate the protein expression levels of Fgf2/GDNF/GFAP/BDNF and significantly weaken the in vivo and in vitro viability of gliomas.
Collapse
Affiliation(s)
- Zhiguang Pan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yongyi Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haiyang Qian
- Department of Imaging, Dahua Hospital, Xuhui District, Shanghai 200237, China
| | - Xiling Du
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Wenxing Qin
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China.,Department of medical oncology, Shanghai Changzheng hospital, Second Military Medical University, Shanghai 200003, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| |
Collapse
|
29
|
Siedek F, Muehe AM, Theruvath AJ, Avedian R, Pribnow A, Spunt SL, Liang T, Farrell C, Daldrup-Link HE. Comparison of ferumoxytol- and gadolinium chelate-enhanced MRI for assessment of sarcomas in children and adolescents. Eur Radiol 2019; 30:1790-1803. [PMID: 31844962 DOI: 10.1007/s00330-019-06569-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/12/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES We compared the value of ferumoxytol (FMX)- and gadolinium (Gd)-enhanced MRI for assessment of sarcomas in paediatric/adolescent patients and hypothesised that tumour size and morphological features can be equally well assessed with both protocols. METHODS We conducted a retrospective study of paediatric/adolescent patients with newly diagnosed bone or soft tissue sarcomas and both pre-treatment FMX- and Gd-MRI scans, which were maximal 4 weeks apart. Both protocols included T1- and T2-weighted sequences. One reader assessed tumour volumes, signal-to-noise ratios (SNR) of the primary tumour and adjacent tissues and contrast-to-noise ratios (CNR) of FMX- and Gd-MRI scans. Additionally, four readers scored FMX- and Gd-MRI scans according to 15 diagnostic parameters, using a Likert scale. The results were pooled across readers and compared between FMX- and Gd-MRI scans. Statistical methods included multivariate analyses with different models. RESULTS Twenty-two patients met inclusion criteria (16 males, 6 females; mean age 15.3 ± 5.0). Tumour volume was not significantly different on T1-LAVA (p = 0.721), T1-SE (p = 0.290) and T2-FSE (p = 0.609) sequences. Compared to Gd-MRI, FMX-MRI demonstrated significantly lower tumour SNR on T1-LAVA (p < 0.001), equal tumour SNR on T1-SE (p = 0.104) and T2-FSE (p = 0.305), significantly higher tumour-to-marrow CNR (p < 0.001) on T2-FSE as well as significantly higher tumour-to-liver (p = 0.021) and tumour-to-vessel (p = 0.003) CNR on T1-LAVA images. Peritumoural and marrow oedema enhanced significantly more on Gd-MRI compared to FMX-MRI (p < 0.001/p = 0.002, respectively). Tumour thrombi and neurovascular bundle involvement were assessed with a significantly higher confidence on FMX-MRI (both p < 0.001). CONCLUSIONS FMX-MRI provides equal assessment of the extent of bone and soft tissue sarcomas compared to Gd-MRI with improved tumour delineation and improved evaluation of neurovascular involvement and tumour thrombi. Therefore, FMX-MRI is a possible alternative to Gd-MRI for tumour staging in paediatric/adolescent sarcoma patients. KEY POINTS • Ferumoxytol can be used as an alterative to gadolinium chelates for MRI staging ofpaediatric sarcomas. • Ferumoxytol-enhanced MRI provides equal assessment of tumour size and other diagnostic parameters compared to gadolinium chelate-enhanced MRI. • Ferumoxytol-enhanced MRI provides improved delineation of sarcomas from bone marrow, liver and vessels compared to gadolinium chelate-enhanced MRI.
Collapse
Affiliation(s)
- Florian Siedek
- Department of Radiology, Pediatric Molecular Imaging Program at Stanford (PedsMIPS), Stanford University, Stanford, CA, USA
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anne M Muehe
- Department of Radiology, Pediatric Molecular Imaging Program at Stanford (PedsMIPS), Stanford University, Stanford, CA, USA
| | - Ashok J Theruvath
- Department of Radiology, Pediatric Molecular Imaging Program at Stanford (PedsMIPS), Stanford University, Stanford, CA, USA
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany
| | - Raffi Avedian
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Allison Pribnow
- Department of Pediatrics, Hematology and Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Sheri L Spunt
- Department of Pediatrics, Hematology and Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Tie Liang
- Department of Radiology, Pediatric Molecular Imaging Program at Stanford (PedsMIPS), Stanford University, Stanford, CA, USA
| | - Crystal Farrell
- Department of Radiology, Pediatric Molecular Imaging Program at Stanford (PedsMIPS), Stanford University, Stanford, CA, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Pediatric Molecular Imaging Program at Stanford (PedsMIPS), Stanford University, Stanford, CA, USA.
- Department of Pediatrics, Hematology and Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA.
| |
Collapse
|
30
|
Ardelean IL, Ficai D, Sonmez M, Oprea O, Nechifor G, Andronescu E, Ficai A, Titu MA. Hybrid Magnetic Nanostructures For Cancer Diagnosis And Therapy. Anticancer Agents Med Chem 2019; 19:6-16. [PMID: 30411694 DOI: 10.2174/1871520618666181109112655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 03/17/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022]
Abstract
Cancer is the second disease in the world from the point of view of mortality. The conventional routes of treatment were found to be not sufficient and thus alternative ways are imposed. The use of hybrid, magnetic nanostructures is a promising way for simultaneous targeted diagnosis and treatment of various types of cancer. For this reason, the development of core@shell structures was found to be an efficient way to develop stable, biocompatible, non-toxic carriers with shell-dependent internalization capacity in cancer cells. So, the multicomponent approach can be the most suitable way to assure the multifunctionality of these nanostructures to achieve the desired/necessary properties. The in vivo stability is mostly assured by the coating of the magnetic core with various polymers (including polyethylene glycol, silica etc.), while the targeting capacity is mostly assured by the decoration of these nanostructures with folic acid. Unfortunately, there are also some limitations related to the multilayered approach. For instance, the increasing of the thickness of layers leads to a decrease the magnetic properties, (hyperthermia and guiding ability in the magnetic field, for instance), the outer shell should contain the targeting molecules (as well as the agents helping the internalization into the cancer cells), etc.
Collapse
Affiliation(s)
- Ioana L Ardelean
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Denisa Ficai
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Maria Sonmez
- Leather and Footwear Research Institute, Department of Rubber, 93 Ion Minulescu street, 031215, Bucharest, Romania
| | - Ovidiu Oprea
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Gheorghe Nechifor
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Ecaterina Andronescu
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Anton Ficai
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Mihail A Titu
- "Lucian Blaga" University of Sibiu, Faculty of Engineering, Industrial Engineering and Management Departament, Sibiu, Romania
| |
Collapse
|
31
|
Robinson AA, Chow K, Salerno M. Myocardial T1 and ECV Measurement: Underlying Concepts and Technical Considerations. JACC Cardiovasc Imaging 2019; 12:2332-2344. [PMID: 31542529 PMCID: PMC7008718 DOI: 10.1016/j.jcmg.2019.06.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/31/2019] [Accepted: 06/28/2019] [Indexed: 12/25/2022]
Abstract
Myocardial native T1 and extracellular volume fraction (ECV) mapping have emerged as cardiac magnetic resonance biomarkers providing unique insight into cardiac pathophysiology. Single breath-hold acquisition techniques, available on clinical scanners across multiple vendor platforms, have made clinical T1 and ECV mapping a reality. Although the relationship between changes in native T1 and alterations in cardiac microstructure is complex, an understanding of how edema, blood volume, myocyte and interstitial expansion, lipids, and paramagnetic substances affect T1 and ECV can provide insight into how and why these parameters change in various cardiac pathologies. The goals of this state-of-the-art review will be to review factors influencing native T1 and ECV, to describe how native T1 and ECV are measured, to discuss potential challenges and pitfalls in clinical practice, and to describe new T1 mapping techniques on the horizon.
Collapse
Affiliation(s)
- Austin A Robinson
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia
| | - Kelvin Chow
- Siemens Medical Solutions USA, Inc., Chicago, Illinois
| | - Michael Salerno
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia; Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia; Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
32
|
Delavari B, Bigdeli B, Mamashli F, Gholami M, Bazri B, Khoobi M, Ghasemi A, Baharifar H, Dehghani S, Gholibegloo E, Amani A, Riahi-Alam N, Ahmadian S, Goliaei B, Asli NS, Rezayan AH, Saboury AA, Varamini P. Theranostic α-Lactalbumin-Polymer-Based Nanocomposite as a Drug Delivery Carrier for Cancer Therapy. ACS Biomater Sci Eng 2019; 5:5189-5208. [DOI: 10.1021/acsbiomaterials.9b01236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Behdad Delavari
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1417466191, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
- School of Pharmacy, Faculty of Medicine and health, University of Sydney, Sydney NSW 2016, Australia
| | - Bahareh Bigdeli
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
- School of Pharmacy, Faculty of Medicine and health, University of Sydney, Sydney NSW 2016, Australia
| | - Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Behrouz Bazri
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, 1591634311 Tehran, Iran
| | - Mehdi Khoobi
- Biomaterials group, The Institute of Pharmaceutical Sciences Research Center (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Hadi Baharifar
- Department of medical nanotechnology, Applied biophotonics research center, Science and Research branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Sadegh Dehghani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Keshavarz blvd, 16 Azar St., Tehran 14145, Iran
| | - Elham Gholibegloo
- Department of Chemistry, Faculty of Science, University of Zanjan, 45371-38791 Zanjan, Iran
| | | | - Nader Riahi-Alam
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Keshavarz blvd, 16 Azar St., Tehran 14145, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | | | - Ali Hossein Rezayan
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1417466191, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Pegah Varamini
- School of Pharmacy, Faculty of Medicine and health, University of Sydney, Sydney NSW 2016, Australia
| |
Collapse
|
33
|
Knobloch G, Colgan T, Schiebler ML, Johnson KM, Li G, Schubert T, Reeder SB, Nagle SK. Comparison of gadolinium-enhanced and ferumoxytol-enhanced conventional and UTE-MRA for the depiction of the pulmonary vasculature. Magn Reson Med 2019; 82:1660-1670. [PMID: 31228293 DOI: 10.1002/mrm.27853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/01/2019] [Accepted: 05/20/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To evaluate the feasibility of ferumoxytol (FE)-enhanced UTE-MRA for depiction of the pulmonary vascular and nonvascular structures. METHODS Twenty healthy volunteers underwent contrast-enhanced pulmonary MRA at 3 T during 2 visits, separated by at least 4 weeks. Visit 1: The MRA started with a conventional multiphase 3D T1 -weighted breath-held spoiled gradient-echo MRA before and after the injection of 0.1 mmol/kg gadobenate dimeglumine (GD). Subsequently, free-breathing GD-UTE-MRA was acquired as a series of 3 flip angles (FAs) (6°, 12°, 18°) to optimize T1 weighting. Visit 2: After the injection of 4 mg/kg FE, MRA was performed during the steady state, starting with a conventional 3D T1 -weighted breath-held spoiled gradient-echo MRA and followed by free-breathing FE-UTE-MRA, both at 4 different FAs (6°, 12°, 18°, 24°). The optimal FA for best T1 contrast was evaluated. Image quality at the optimal FA was compared between methods on a 4-point ordinal scale, using multiphase GD conventional pulmonary MRA (cMRA) as standard of reference. RESULTS Flip angle in the range of 18°-24° resulted in best T1 contrast for FE cMRA and both UTE-MRA techniques (p > .05). At optimized FA, image quality of the vasculature was good/excellent with both FE-UTE-MRA and GD cMRA (98% versus 97%; p = .51). Both UTE techniques provided superior depiction of nonvascular structures compared with either GD-enhanced or FE-enhanced cMRA (p < .001). However, GD-UTE-MRA showed the lowest image quality of the angiogram due to low image contrast. CONCLUSION Free-breathing UTE-MRA using FE is feasible for simultaneous assessment of the pulmonary vasculature and nonvascular structures. Patient studies should investigate the clinical utility of free-breathing UTE-MRA for assessment of pulmonary emboli.
Collapse
Affiliation(s)
- Gesine Knobloch
- Department of Radiology, University of Wisconsin-School of Medicine and Public Health, Madison, Wisconsin.,Department of Radiology, Charité University Hospital, Berlin, Germany
| | - Timothy Colgan
- Department of Radiology, University of Wisconsin-School of Medicine and Public Health, Madison, Wisconsin
| | - Mark L Schiebler
- Department of Radiology, University of Wisconsin-School of Medicine and Public Health, Madison, Wisconsin
| | - Kevin M Johnson
- Department of Radiology, University of Wisconsin-School of Medicine and Public Health, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin-School of Medicine and Public Health, Madison, Wisconsin
| | - Geng Li
- Department of Biostatistics and Medical Informatics, University of Wisconsin-School of Medicine and Public Health, Madison, Wisconsin
| | - Tilman Schubert
- Department of Radiology, University of Wisconsin-School of Medicine and Public Health, Madison, Wisconsin.,Department of Neuroradiology, Zurich University Hospital, Zurich, Switzerland
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin-School of Medicine and Public Health, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin-School of Medicine and Public Health, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin-School of Medicine and Public Health, Madison, Wisconsin.,Department of Medicine, University of Wisconsin-School of Medicine and Public Health, Madison, Wisconsin.,Department of Emergency Medicine, University of Wisconsin-School of Medicine and Public Health, Madison, Wisconsin
| | - Scott K Nagle
- Department of Radiology, University of Wisconsin-School of Medicine and Public Health, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin-School of Medicine and Public Health, Madison, Wisconsin.,Department of Pediatrics, University of Wisconsin-School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
34
|
Abstract
OBJECTIVES The aim of this study was to determine the relaxation properties of ferumoxytol, an off-label alternative to gadolinium-based contrast agents, under physiological conditions at 1.5 T and 3.0 T. MATERIALS AND METHODS Ferumoxytol was diluted in gradually increasing concentrations (0.26-4.2 mM) in saline, human plasma, and human whole blood. Magnetic resonance relaxometry was performed at 37°C at 1.5 T and 3.0 T. Longitudinal and transverse relaxation rate constants (R1, R2, R2*) were measured as a function of ferumoxytol concentration, and relaxivities (r1, r2, r2*) were calculated. RESULTS A linear dependence of R1, R2, and R2* on ferumoxytol concentration was found in saline and plasma with lower R1 values at 3.0 T and similar R2 and R2* values at 1.5 T and 3.0 T (1.5 T: r1saline = 19.9 ± 2.3 smM; r1plasma = 19.0 ± 1.7 smM; r2saline = 60.8 ± 3.8 smM; r2plasma = 64.9 ± 1.8 smM; r2*saline = 60.4 ± 4.7 smM; r2*plasma = 64.4 ± 2.5 smM; 3.0 T: r1saline = 10.0 ± 0.3 smM; r1plasma = 9.5 ± 0.2 smM; r2saline = 62.3 ± 3.7 smM; r2plasma = 65.2 ± 1.8 smM; r2*saline = 57.0 ± 4.7 smM; r2*plasma = 55.7 ± 4.4 smM). The dependence of relaxation rates on concentration in blood was nonlinear. Formulas from second-order polynomial fittings of the relaxation rates were calculated to characterize the relationship between R1blood and R2 blood with ferumoxytol. CONCLUSIONS Ferumoxytol demonstrates strong longitudinal and transverse relaxivities. Awareness of the nonlinear relaxation behavior of ferumoxytol in blood is important for ferumoxytol-enhanced magnetic resonance imaging applications and for protocol optimization.
Collapse
|
35
|
Edelman RR, Koktzoglou I. Noncontrast MR angiography: An update. J Magn Reson Imaging 2019; 49:355-373. [PMID: 30566270 PMCID: PMC6330154 DOI: 10.1002/jmri.26288] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Both computed tomography (CT) angiography (CTA) and contrast-enhanced MR angiography (CEMRA) have proven to be useful and accurate cross-sectional imaging modalities over a wide range of vascular territories and vascular disorders. A key advantage of MRA is that, unlike CTA, it can be performed without the administration of a contrast agent. In this review article we consider the motivations for using noncontrast MRA, potential contrast mechanisms, imaging techniques, advantages, and drawbacks with respect to CTA and CEMRA, and the level of evidence for using the various MRA techniques. In addition, we explore new developments that promise to expand the reliability and range of clinical applications for noncontrast MRA, along with functional MRA capabilities not available with CTA or CEMRA. Level of Evidence: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:355-373.
Collapse
Affiliation(s)
- Robert R. Edelman
- Radiology, Northshore University HealthSystem, Evanston, IL
- Radiology, Northwestern Memorial Hospital, Chicago, IL
| | - Ioannis Koktzoglou
- Radiology, Northshore University HealthSystem, Evanston, IL
- Radiology, University of Chicago Pritzker School of Medicine, Chicago, IL
| |
Collapse
|
36
|
Amirav L, Berlin S, Olszakier S, Pahari SK, Kahn I. Multi-Modal Nano Particle Labeling of Neurons. Front Neurosci 2019; 13:12. [PMID: 30778281 PMCID: PMC6369355 DOI: 10.3389/fnins.2019.00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 01/08/2019] [Indexed: 01/06/2023] Open
Abstract
The development of imaging methodologies for single cell measurements over extended timescales of up to weeks, in the intact animal, will depend on signal strength, stability, validity and specificity of labeling. Whereas light-microscopy can achieve these with genetically-encoded probes or dyes, this modality does not allow mesoscale imaging of entire intact tissues. Non-invasive imaging techniques, such as magnetic resonance imaging (MRI), outperform light microscopy in field of view and depth of imaging, but do not offer cellular resolution and specificity, suffer from low signal-to-noise ratio and, in some instances, low temporal resolution. In addition, the origins of the signals measured by MRI are either indirect to the process of interest or hard to validate. It is therefore highly warranted to find means to enhance MRI signals to allow increases in resolution and cellular-specificity. To this end, cell-selective bi-functional magneto-fluorescent contrast agents can provide an elegant solution. Fluorescence provides means for identification of labeled cells and particles location after MRI acquisition, and it can be used to facilitate the design of cell-selective labeling of defined targets. Here we briefly review recent available designs of magneto-fluorescent markers and elaborate on key differences between them with respect to durability and relevant cellular highlighting approaches. We further focus on the potential of intracellular labeling and basic functional sensing MRI, with assays that enable imaging cells at microscopic and mesoscopic scales. Finally, we illustrate the qualities and limitations of the available imaging markers and discuss prospects for in vivo neural imaging and large-scale brain mapping.
Collapse
Affiliation(s)
- Lilac Amirav
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shunit Olszakier
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sandip K Pahari
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Itamar Kahn
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
37
|
Frey A, Ramaker K, Röckendorf N, Wollenberg B, Lautenschläger I, Gébel G, Giemsa A, Heine M, Bargheer D, Nielsen P. Fate and Translocation of (Nano)Particulate Matter in the Gastrointestinal Tract. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
Efremova MV, Nalench YA, Myrovali E, Garanina AS, Grebennikov IS, Gifer PK, Abakumov MA, Spasova M, Angelakeris M, Savchenko AG, Farle M, Klyachko NL, Majouga AG, Wiedwald U. Size-selected Fe 3O 4-Au hybrid nanoparticles for improved magnetism-based theranostics. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2684-2699. [PMID: 30416920 PMCID: PMC6204820 DOI: 10.3762/bjnano.9.251] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/17/2018] [Indexed: 05/24/2023]
Abstract
Size-selected Fe3O4-Au hybrid nanoparticles with diameters of 6-44 nm (Fe3O4) and 3-11 nm (Au) were prepared by high temperature, wet chemical synthesis. High-quality Fe3O4 nanocrystals with bulk-like magnetic behavior were obtained as confirmed by the presence of the Verwey transition. The 25 nm diameter Fe3O4-Au hybrid nanomaterial sample (in aqueous and agarose phantom systems) showed the best characteristics for application as contrast agents in magnetic resonance imaging and for local heating using magnetic particle hyperthermia. Due to the octahedral shape and the large saturation magnetization of the magnetite particles, we obtained an extraordinarily high r 2-relaxivity of 495 mM-1·s-1 along with a specific loss power of 617 W·gFe -1 and 327 W·gFe -1 for hyperthermia in aqueous and agarose systems, respectively. The functional in vitro hyperthermia test for the 4T1 mouse breast cancer cell line demonstrated 80% and 100% cell death for immediate exposure and after precultivation of the cells for 6 h with 25 nm Fe3O4-Au hybrid nanomaterials, respectively. This confirms that the improved magnetic properties of the bifunctional particles present a next step in magnetic-particle-based theranostics.
Collapse
Affiliation(s)
- Maria V Efremova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Yulia A Nalench
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Eirini Myrovali
- Physics Department, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Anastasiia S Garanina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Ivan S Grebennikov
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Polina K Gifer
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Maxim A Abakumov
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
- Department of Medical Nanobiotechnology, Russian National Research Medical University, Moscow, 117997, Russia
| | - Marina Spasova
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen (CENIDE), Duisburg, 47057, Germany
| | - Makis Angelakeris
- Physics Department, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | | | - Michael Farle
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen (CENIDE), Duisburg, 47057, Germany
| | - Natalia L Klyachko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Alexander G Majouga
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
- D. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Ulf Wiedwald
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen (CENIDE), Duisburg, 47057, Germany
| |
Collapse
|
39
|
Abedin MR, Umapathi S, Mahendrakar H, Laemthong T, Coleman H, Muchangi D, Santra S, Nath M, Barua S. Polymer coated gold-ferric oxide superparamagnetic nanoparticles for theranostic applications. J Nanobiotechnology 2018; 16:80. [PMID: 30316298 PMCID: PMC6186064 DOI: 10.1186/s12951-018-0405-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 09/28/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Engineered inorganic nanoparticles (NPs) are essential components in the development of nanotechnologies. For applications in nanomedicine, particles need to be functionalized to ensure a good dispersibility in biological fluids. In many cases however, functionalization is not sufficient: the particles become either coated by a corona of serum proteins or precipitate out of the solvent. We show that by changing the coating of magnetic iron oxide NPs using poly-L-lysine (PLL) polymer the colloidal stability of the dispersion is improved in aqueous solutions including water, phosphate buffered saline (PBS), PBS with 10% fetal bovine serum (FBS) and cell culture medium, and the internalization of the NPs toward living mammalian cells is profoundly affected. METHODS A multifunctional magnetic NP is designed to perform a near-infrared (NIR)-responsive remote control photothermal ablation for the treatment of breast cancer. In contrast to the previously reported studies of gold (Au) magnetic (Fe3O4) core-shell NPs, a Janus-like nanostructure is synthesized with Fe3O4 NPs decorated with Au resulting in an approximate size of 60 nm mean diameter. The surface of trisoctahedral Au-Fe3O4 NPs was coated with a positively charged polymer, PLL to deliver the NPs inside cells. The PLL-Au-Fe3O4 NPs were characterized by transmission electron microscopy (TEM), XRD, FT-IR and dynamic light scattering (DLS). The unique properties of both Au surface plasmon resonance and superparamagnetic moment result in a multimodal platform for use as a nanothermal ablator and also as a magnetic resonance imaging (MRI) contrast agent, respectively. Taking advantage of the photothermal therapy, PLL-Au-Fe3O4 NPs were incubated with BT-474 and MDA-MB-231 breast cancer cells, investigated for the cytotoxicity and intracellular uptake, and remotely triggered by a NIR laser of ~ 808 nm (1 W/cm2 for 10 min). RESULTS The PLL coating increased the colloidal stability and robustness of Au-Fe3O4 NPs (PLL-Au-Fe3O4) in biological media including cell culture medium, PBS and PBS with 10% fetal bovine serum. It is revealed that no significant (< 10%) cytotoxicity was induced by PLL-Au-Fe3O4 NPs itself in BT-474 and MDA-MB-231 cells at concentrations up to 100 μg/ml. Brightfield microscopy, fluorescence microscopy and TEM showed significant uptake of PLL-Au-Fe3O4 NPs by BT-474 and MDA-MB-231 cells. The cells exhibited 40 and 60% inhibition in BT-474 and MDA-MB-231 cell growth, respectively following the internalized NPs were triggered by a photothermal laser using 100 μg/ml PLL-Au-Fe3O4 NPs. The control cells treated with NPs but without laser showed < 10% cell death compared to no laser treatment control CONCLUSION: Combined together, the results demonstrate a new polymer gold superparamagnetic nanostructure that integrates both diagnostics function and photothermal ablation of tumors into a single multimodal nanoplatform exhibiting a significant cancer cell death.
Collapse
Affiliation(s)
- Muhammad Raisul Abedin
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO 65409-1230 USA
| | - Siddesh Umapathi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 USA
| | - Harika Mahendrakar
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO 65409-1230 USA
| | - Tunyaboon Laemthong
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO 65409-1230 USA
| | - Holly Coleman
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 USA
| | - Denise Muchangi
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762 USA
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762 USA
| | - Manashi Nath
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 USA
| | - Sutapa Barua
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO 65409-1230 USA
| |
Collapse
|
40
|
Norris MD, Seidel K, Kirschning A. Externally Induced Drug Release Systems with Magnetic Nanoparticle Carriers: An Emerging Field in Nanomedicine. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800092] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew D. Norris
- Institut für Organische Chemie and Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Germany
| | - Katja Seidel
- Institut für Organische Chemie and Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Germany
| | - Andreas Kirschning
- Institut für Organische Chemie and Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Germany
| |
Collapse
|
41
|
Bohórquez AC, Unni M, Belsare S, Chiu-Lam A, Rice L, Pampo C, Siemann D, Rinaldi C. Stability and Mobility of Magnetic Nanoparticles in Biological Environments Determined from Dynamic Magnetic Susceptibility Measurements. Bioconjug Chem 2018; 29:2793-2805. [PMID: 30011185 DOI: 10.1021/acs.bioconjchem.8b00419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low tumor accumulation following systemic delivery remains a key challenge for advancing many cancer nanomedicines. One obstacle in engineering nanoparticles for high tumor accumulation is a lack of techniques to monitor their stability and mobility in situ. One way to monitor the stability and mobility of magnetic nanoparticles biological fluids in situ is through dynamic magnetic susceptibility measurements (DMS), which under certain conditions provide a measure of the particle's rotational diffusivity. For magnetic nanoparticles modified to have commonly used biomedical surface coatings, we describe a systematic comparison of DMS measurements in whole blood and tumor tissue explants. DMS measurements clearly demonstrated that stability and mobility changed over time and from one medium to another for each different coating. It was found that nanoparticles coated with covalently grafted, dense layers of PEG were the only ones to show good stability and mobility in all settings tested. These studies illustrate the utility of DMS measurements to estimate the stability and mobility of nanoparticles in situ, and which can provide insights that lead to engineering better nanoparticles for in vivo use.
Collapse
Affiliation(s)
- Ana C Bohórquez
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building, Gainesville , Florida 32611 , United States
| | - Mythreyi Unni
- Department of Chemical Engineering , University of Florida , 1030 Center Drive , Gainesville , Florida 32611 , United States
| | - Sayali Belsare
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building, Gainesville , Florida 32611 , United States
| | - Andreina Chiu-Lam
- Department of Chemical Engineering , University of Florida , 1030 Center Drive , Gainesville , Florida 32611 , United States
| | - Lori Rice
- Department of Radiation Oncology , University of Florida , Gainesville , Florida 32610 , United States
| | - Christine Pampo
- Department of Radiation Oncology , University of Florida , Gainesville , Florida 32610 , United States
| | - Dietmar Siemann
- Department of Radiation Oncology , University of Florida , Gainesville , Florida 32610 , United States
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , 1275 Center Drive , Biomedical Sciences Building, Gainesville , Florida 32611 , United States.,Department of Chemical Engineering , University of Florida , 1030 Center Drive , Gainesville , Florida 32611 , United States
| |
Collapse
|
42
|
Zhou Z, Han F, Yoshida T, Nguyen KL, Finn JP, Hu P. Improved 4D cardiac functional assessment for pediatric patients using motion-weighted image reconstruction. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:747-756. [PMID: 30043124 DOI: 10.1007/s10334-018-0694-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Our aim was to develop and evaluate a motion-weighted reconstruction technique for improved cardiac function assessment in 4D magnetic resonance imaging (MRI). MATERIALS AND METHODS A flat-topped, two-sided Gaussian kernel was used to weigh k-space data in each target cardiac phase and adjacent two temporal phases during the proposed phase-by-phase reconstruction algorithm. The proposed method (Strategy 3) was used to reconstruct 18 cardiac phases based on data acquired using a previously proposed technique [4D multiphase steady-state imaging with contrast enhancement (MUSIC) technique and its self-gated extension using rotating Cartesian k-space (ROCK-MUSIC) from 12 pediatric patients. As a comparison, the same data set was reconstructed into nine phases using a phase-by-phase method (Strategy 1), 18 phases using view sharing (Strategy 4), and 18 phases using a temporal regularized method (Strategy 2). Regional image sharpness and left ventricle volumetric measurements were used to compare the four reconstructions quantitatively. RESULTS Strategies 1 and 4 generated significantly sharper images of static structures (P ≤ 0.018) than Strategies 2 and 3 but significantly more blurry (P ≤ 0.021) images of the heart. Left ventricular volumetric measurements from the nine-phase reconstruction (Strategy 1) correlated moderately (r < 0.8) with the 2D cine, whereas the remaining three techniques had a higher correlation (r > 0.9). The computational burden of Strategy 2 was six times that of Strategy 3. CONCLUSION The proposed method of motion-weighted reconstruction improves temporal resolution in 4D cardiac imaging with a clinically practical workflow.
Collapse
Affiliation(s)
- Ziwu Zhou
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Fei Han
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Takegawa Yoshida
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Division of Cardiology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - John Paul Finn
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, CA, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, CA, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA, 90095, USA.
| |
Collapse
|
43
|
Impulse response timing differences in BOLD and CBV weighted fMRI. Neuroimage 2018; 181:292-300. [PMID: 29981905 DOI: 10.1016/j.neuroimage.2018.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/23/2022] Open
Abstract
Recent advances in BOLD fMRI scan techniques have substantially improved spatial and temporal resolution, currently reaching to sub-millimeter and sub-second levels respectively. Unfortunately, there remain physiological barriers that prevent achieving this resolution in practice. BOLD contrast relies on the hemodynamic response to neuronal activity, whose associated cerebral blood oxygenation (CBO) changes may spread over several millimeters and last several seconds. Recent reports have suggested that significant improvements may be possible with cerebral blood volume (CBV)-weighted fMRI, which highlights the CBV changes rather than the BOLD changes associated with the hemodynamic response. Nevertheless, quantitative comparisons between CBV and BOLD are sparse, in particular regarding their temporal characteristics in human brain. To address this, we studied a cohort of subjects that received injection of ferumoxytol, an intravascular iron-oxide based contrast agent that introduces strong CBV contrast. An event-related visual stimulus paradigm was used to compare the impulse response (IR) for CBV and BOLD contrast, obtained with and without ferumoxytol, respectively. Experiments performed at 7 T (n = 5) at 1.2-1.5 mm spatial and 1 s temporal resolution showed that the onset time and time-to-peak of the CBV IR averaged 0.8 and 3.5 s respectively, both 0.6 s shorter than the BOLD IR. While significant, these improvements are relatively small and not expected to lead to practical advantages for the extraction of temporal information about neural activity. Nonlinearities in the observed IR were also compared and found to be similar between the CBV and BOLD, indicating that these are likely not caused by a 'ceiling' effect in the CBO response, but rather support a previously proposed model of vascular compliance, in which changes in vascular tone elicited by a preceding stimulus affect the IR.
Collapse
|
44
|
Abstract
BACKGROUND Ferumoxytol, an "off-label" contrast agent, allows for better cardiac MRI quality as compared with gadolinium-based contrast agents. However, hypotension has been reported with the use of ferumoxytol for indications other than cardiac MRI. The purpose of our investigation was to evaluate the safety of ferumoxytol in children undergoing general anaesthesia for cardiac MRI. METHODS Medical records of children undergoing general anaesthesia for cardiac MRI were reviewed. Baseline demographic and medical characteristics, as well as imaging and anaesthetic duration and technique, were collected. The incidence of hypotension or other adverse events', need for vasoactive support, or airway intervention throughout the anaesthetic, was recorded. RESULTS A total of 95 patients were identified, 61 received ferumoxytol and 34 received gadolinium. There were no significant differences between groups with respect to age, weight, or baseline blood pressure. The incidence of low blood pressure - systolic or mean - after contrast administration did not differ between groups, and there was no difference in sustained hypotension or use of vasopressors between groups. One patient who received ferumoxytol had possible anaphylaxis. The image acquisition time (45 versus 68 min, p=0.002) and anaesthesia duration (100 versus 132 min, p=0.02) were shorter in the ferumoxytol group. CONCLUSION Transient low blood pressure was common in children undergoing cardiac MRI with anaesthesia, but the incidence of hypotension did not differ between ferumoxytol and gadolinium groups. The use of ferumoxytol was associated with significantly shorter scan time and anaesthesia duration, as well as a decreased need for airway intervention.
Collapse
|
45
|
Ugga L, Romeo V, Tedeschi E, Brunetti A, Quarantelli M. Superparamagnetic iron oxide nanocolloids in MRI studies of neuroinflammation. J Neurosci Methods 2018; 310:12-23. [PMID: 29913184 DOI: 10.1016/j.jneumeth.2018.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Iron oxide (IO) nanocolloids are being increasingly used to image cellular contribution to neuroinflammation using MRI, as these particles are capable of labeling circulating cells with phagocytic activity, allowing to assess cell trafficking from the blood to neuroinflammation sites. The use of IOs relies on the natural phagocytic properties of immune cells, allowing their labeling either in vitro or directly in vivo, following intravenous injection. Despite concerns on the specificity of the latter approach, the widespread availability and relatively low cost of these techniques, coupled to a sensitivity that allows to reach single cell detection, have promoted their use in several preclinical and clinical studies. In this review, we discuss the results of currently available preclinical and clinical IO-enhanced MRI studies of immune cell trafficking in neuroinflammation, examining the specificity of the existing findings, in view of the different possible mechanisms underlying IO accumulation in the brain. From this standpoint, we assess the implications of the temporal and spatial differences in the enhancement pattern of IOs, compared to gadolinium-based contrast agents, a clinically established MRI marker blood-brain barrier breakdown. While concerns on the specificity of cell labeling obtained using the in-vivo labeling approach still need to be fully addressed, these techniques have indeed proved able to provide additional information on neuroinflammatory phenomena, as compared to conventional Gadolinium-enhanced MRI.
Collapse
Affiliation(s)
- Lorenzo Ugga
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Enrico Tedeschi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy.
| |
Collapse
|
46
|
|
47
|
Ferumoxytol-enhanced MRI in the peripheral vasculature. Clin Radiol 2018; 74:37-50. [PMID: 29731126 DOI: 10.1016/j.crad.2018.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Ferumoxytol is a promising non-gadolinium-based contrast agent with numerous varied magnetic resonance imaging applications. Previous reviews of vascular applications have focused primarily on cardiac and aortic applications. After considering safety concerns and technical issues, the objective of this paper is to explore peripheral applications for ferumoxytol-enhanced magnetic resonance angiography (MRA) and venography (MRV) in the upper and lower extremities. Separate searches for each of the following keywords were performed in pubmed: "ferumoxytol," "ultrasmall superparamagnetic iron oxide," and "USPIO." All studies pertaining to MRA or MRV in humans are included in this review. Case-based examples of various peripheral applications are used to supplement a relatively scant literature in this space. Ferumoxytol's unique properties including high T1 relaxivity and prolonged intravascular half-life make it the optimal vascular imaging contrast agent on the market and one whose vast potential has only begun to be tapped.
Collapse
|
48
|
Neumaier CE, Baio G, Ferrini S, Corte G, Daga A. MR and Iron Magnetic Nanoparticles. Imaging Opportunities in Preclinical and Translational Research. TUMORI JOURNAL 2018; 94:226-33. [DOI: 10.1177/030089160809400215] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ultrasmall superparamagnetic iron oxide nanoparticles and magnetic resonance imaging provide a non-invasive method to detect and label tumor cells. These nanoparticles exhibit unique properties of superparamagnetism and can be utilized as excellent probes for magnetic resonance imaging. Most work has been performed using a magnetic resonance scanner with high field strength up to 7 T. Ultrasmall superparamagnetic iron oxide nanoparticles may represent a suitable tool for labeling molecular probes that target specific tumor-associated markers for in vitro and in vivo detection by magnetic resonance imaging. In our study, we demonstrated that magnetic resonance imaging at 1.5 T allows the detection of ultrasmall superparamagnetic iron oxide nanoparticle conjugated antibody specifically bound to human tumor cells in vitro and in vivo, and that the magnetic resonance signal intensity correlates with the concentration of ultrasmall superparamagnetic iron oxide nanoparticle antibody used and with the antigen density at the cell surface. The experiments were performed using two different means of targeting: direct and indirect magnetic tumor targeting. The imaging of tumor antigens using immunospecific contrast agents is a rapidly evolving field, which can potentially aid in early disease detection, monitoring of treatment efficacy, and drug development. Cell labeling by iron oxide nanoparticles has emerged as a potentially powerful tool to monitor trafficking of a large number of cells in the cell therapy field. We also studied the labeling of natural killer cells with iron nanoparticles to a level that would allow the detection of their signal intensity with a clinical magnetic resonance scanner at 1.5 T. Magnetic resonance imaging and iron magnetic nanoparticles are able to increase the accuracy and the specificity of imaging and represent new imaging opportunities in preclinical and translational research.
Collapse
Affiliation(s)
- Carlo Emanuele Neumaier
- Department of Diagnostic Imaging, Istituto Nazionale per la Ricerca sul Cancro, IST, Genoa, Italy
| | - Gabriella Baio
- Department of Diagnostic Imaging, Istituto Nazionale per la Ricerca sul Cancro, IST, Genoa, Italy
| | - Silvano Ferrini
- Laboratory of Immunological Therapy, Istituto Nazionale per la Ricerca sul Cancro, IST, Genoa, Italy
| | - Giorgio Corte
- Translational Oncology, Istituto Nazionale per la Ricerca sul Cancro, IST, Genoa, Italy
| | - Antonio Daga
- Translational Oncology, Istituto Nazionale per la Ricerca sul Cancro, IST, Genoa, Italy
| |
Collapse
|
49
|
Rivera-Rivera LA, Schubert T, Knobloch G, Turski PA, Wieben O, Reeder SB, Johnson KM. Comparison of ferumoxytol-based cerebral blood volume estimates using quantitative R 1 and R2* relaxometry. Magn Reson Med 2017; 79:3072-3081. [PMID: 29096054 DOI: 10.1002/mrm.26975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/24/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Cerebral perfusion is commonly assessed clinically with dynamic susceptibility contrast MRI using a bolus injection of gadolinium-based contrast agents, resulting in semi-quantitative values of cerebral blood volume (CBV). Steady-state imaging with ferumoxytol allows estimation of CBV with the potential for higher precision and accuracy. Prior CBV studies have focused on the signal disrupting T2* effects, but ferumoxytol also has high signal-enhancing T1 relaxivity. The purpose of this study was to investigate and compare CBV estimation using T1 and T2*, with the goal of understanding the contrast mechanisms and quantitative differences. METHODS Changes in R1 (1/T1 ) and R2* (1/ T2*) were measured after the administration of ferumoxytol using high-resolution quantitative approaches. Images were acquired at 3.0T and R1 was estimated from an ultrashort echo time variable flip angle approach, while R2* was estimated from a multiple gradient echo sequence. Twenty healthy volunteers were imaged at two doses. CBV was derived and compared from relaxometry in gray and white matter using different approaches. RESULTS R1 measurements showed a linear dependence of blood R1 with respect to dose in large vessels, in contrast to the nonlinear dose-dependence of blood R2* estimates. In the brain parenchyma, R2* showed linear dose-dependency whereas R1 showed nonlinearity. CBV calculations based on R2* changes in tissue and ferumoxytol blood concentration estimates based on R1 relaxivity showed the lowest variability in our cohort. CONCLUSIONS CBV measurements were successfully derived using a combined approach of R1 and R2* relaxometry. Magn Reson Med 79:3072-3081, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tilman Schubert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland
| | - Gesine Knobloch
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Departments of Biomedical Engineering, Medicine and Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Patrick A Turski
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Scott B Reeder
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Departments of Biomedical Engineering, Medicine and Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
50
|
Cao Q, Yan X, Chen K, Huang Q, Melancon MP, Lopez G, Cheng Z, Li C. Macrophages as a potential tumor-microenvironment target for noninvasive imaging of early response to anticancer therapy. Biomaterials 2017; 152:63-76. [PMID: 29111494 DOI: 10.1016/j.biomaterials.2017.10.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/30/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
As a result of therapy-induced apoptosis, peripheral blood monocytes are recruited to tumors, where they become tumor-associated macrophages (TAMs). To date, few studies have investigated noninvasive molecular imaging for assessment of macrophage infiltration in response to therapy-induced apoptosis. Here, noninvasive assessment of changes in tumor accumulation of TAMs was proposed as a new way to measure early tumor response to anticancer therapy. Three different nanoparticles, QD710-Dendron quantum dots (QD710-D), Ferumoxytol, and PG-Gd-NIR813, were used for near-infrared fluorescence imaging, T2-weighted magnetic resonance imaging, and dual optical/T1-weighted MR imaging, respectively, in the MDA-MB-435 tumor model. Treatment with Abraxane induced tumor apoptosis and infiltrating macrophages. In spite of markedly different physicochemical properties among the nanoparticles, in vivo imaging revealed increased uptake of all three nanoparticles in Abraxane-treated tumors compared with untreated tumors. Moreover, imaging visualized increased uptake of QD710-D in MDA-MB-435 tumors but not in drug-resistant MDA-MB-435R tumors grown in the mice treated with Abraxane. Our results suggest that infiltration of macrophages due to chemotherapy-induced apoptosis was partially responsible for increased nanoparticle uptake in treated tumors. Noninvasive imaging techniques in conjunction with systemic administration of imageable nanoparticles that are taken up by macrophages are a potentially useful tool for assessing early treatment response.
Collapse
Affiliation(s)
- Qizhen Cao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Xinrui Yan
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Kai Chen
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Qian Huang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marites P Melancon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gabriel Lopez
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, United States.
| | - Chun Li
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Experimental Therapeutics Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, United States.
| |
Collapse
|