1
|
Rexius-Hall ML, Madrigal MD, Kilic CY, Shen K, McCain ML. Profiling paracrine interactions between hypoxic and normoxic skeletal muscle tissue in a microphysiological system fabricated from 3D printed components. LAB ON A CHIP 2025; 25:212-224. [PMID: 39665980 PMCID: PMC11887996 DOI: 10.1039/d4lc00603h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Disrupted blood flow in conditions such as peripheral artery disease and critical limb ischemia leads to variations in oxygen supply within skeletal muscle tissue, creating regions of poorly perfused, hypoxic skeletal muscle surrounded by regions of adequately perfused, normoxic muscle tissue. These oxygen gradients may have significant implications for muscle injury or disease, as mediated by the exchange of paracrine factors between differentially oxygenated tissue. However, creating and maintaining heterogeneous oxygen landscapes within a controlled experimental setup to ensure continuous paracrine signaling is a technological challenge. Here, we engineer oxygen-controlled microphysiological systems to investigate paracrine interactions between differentially oxygenated engineered muscle tissue. We fabricated microphysiological systems with dual oxygen landscapes that also had engineered control over paracrine interactions between hypoxic and normoxic skeletal muscle tissues, which were differentiated from C2C12 myoblasts cultured on micromolded gelatin hydrogels. The microphysiological systems interfaced with a new 3D-printed oxygen control well plate insert, which we designed to distribute flow to multiple microphysiological systems and minimize evaporation for longer timepoints. With our system, we demonstrated that amphiregulin, a myokine associated with skeletal muscle injury, exhibits unique upregulation in both gene expression and secretion after 24 hours due to paracrine interactions between hypoxic and normoxic skeletal muscle tissue. Our platform can be extended to investigate other impacts of paracrine interactions between hypoxic and normoxic skeletal muscle and can more broadly be used to elucidate many forms of oxygen-dependent crosstalk in other organ systems.
Collapse
Affiliation(s)
- Megan L Rexius-Hall
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA.
| | - Malinda D Madrigal
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA.
| | - Cem Y Kilic
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA.
| | - Keyue Shen
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Megan L McCain
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA.
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Palzkill VR, Tan J, Moparthy D, Tice AL, Ferreira LF, Ryan TE. A 6-Minute Limb Function Assessment for Therapeutic Testing in Experimental Peripheral Artery Disease Models. JACC Basic Transl Sci 2025; 10:88-103. [PMID: 39906594 PMCID: PMC11788496 DOI: 10.1016/j.jacbts.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 02/06/2025]
Abstract
In this study, we present a novel 6-minute limb function test that allows for the congruent assessment of muscular performance and hemodynamics in preclinical models of peripheral artery disease. Using several experimental conditions, the results demonstrate the superior efficacy of the 6-minute limb function test to detect differences in the response to hindlimb ischemia across several interventions, including where traditional perfusion recovery, capillary density, and muscle strength measures were unable to detect interventional differences, thus allowing for more rigorous assessment of preclinical therapies before clinical translation.
Collapse
Affiliation(s)
- Victoria R. Palzkill
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
| | - Divyansha Moparthy
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
| | - Abigail L. Tice
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
| | - Leonardo F. Ferreira
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
- Center for Exercise Science, The University of Florida, Gainesville, Florida, USA
- The Myology Institute, The University of Florida, Gainesville, Florida, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, Florida, USA
- Center for Exercise Science, The University of Florida, Gainesville, Florida, USA
- The Myology Institute, The University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Fitian AI, Shieh MC, Gimnich OA, Belousova T, Taylor AA, Ballantyne CM, Bismuth J, Shah DJ, Brunner G. Contrast-Enhanced Magnetic Resonance Imaging Based T1 Mapping and Extracellular Volume Fractions Are Associated with Peripheral Artery Disease. J Cardiovasc Dev Dis 2024; 11:181. [PMID: 38921681 PMCID: PMC11203653 DOI: 10.3390/jcdd11060181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Extracellular volume fraction (ECV), measured with contrast-enhanced magnetic resonance imaging (CE-MRI), has been utilized to study myocardial fibrosis, but its role in peripheral artery disease (PAD) remains unknown. We hypothesized that T1 mapping and ECV differ between PAD patients and matched controls. METHODS AND RESULTS A total of 37 individuals (18 PAD patients and 19 matched controls) underwent 3.0T CE-MRI. Skeletal calf muscle T1 mapping was performed before and after gadolinium contrast with a motion-corrected modified look-locker inversion recovery (MOLLI) pulse sequence. T1 values were calculated with a three-parameter Levenberg-Marquardt curve fitting algorithm. ECV and T1 maps were quantified in five calf muscle compartments (anterior [AM], lateral [LM], and deep posterior [DM] muscle groups; soleus [SM] and gastrocnemius [GM] muscles). Averaged peak blood pool T1 values were obtained from the posterior and anterior tibialis and peroneal arteries. T1 values and ECV are heterogeneous across calf muscle compartments. Native peak T1 values of the AM, LM, and DM were significantly higher in PAD patients compared to controls (all p < 0.028). ECVs of the AM and SM were significantly higher in PAD patients compared to controls (AM: 26.4% (21.2, 31.6) vs. 17.3% (10.2, 25.1), p = 0.046; SM: 22.7% (19.5, 27.8) vs. 13.8% (10.2, 19.1), p = 0.020). CONCLUSIONS Native peak T1 values across all five calf muscle compartments, and ECV fractions of the anterior muscle group and the soleus muscle were significantly elevated in PAD patients compared with matched controls. Non-invasive T1 mapping and ECV quantification may be of interest for the study of PAD.
Collapse
Affiliation(s)
- Asem I. Fitian
- Penn State Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Michael C. Shieh
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olga A. Gimnich
- Penn State Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Tatiana Belousova
- Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Addison A. Taylor
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Michael E DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Christie M. Ballantyne
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean Bismuth
- Division of Vascular Surgery, University of South Florida Health Morsani School of Medicine, Tampa, FL 33620, USA
| | - Dipan J. Shah
- Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Gerd Brunner
- Penn State Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Palzkill VR, Tan J, Tice AL, Ferriera LF, Ryan TE. A 6-minute Limb Function Assessment for Therapeutic Testing in Experimental Peripheral Artery Disease Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586197. [PMID: 38585832 PMCID: PMC10996543 DOI: 10.1101/2024.03.21.586197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background The translation of promising therapies from pre-clinical models of hindlimb ischemia (HLI) to patients with peripheral artery disease (PAD) has been inadequate. While this failure is multifactorial, primary outcome measures in preclinical HLI models and clinical trials involving patients with PAD are not aligned well. For example, laser Doppler perfusion recovery measured under resting conditions is the most used outcome in HLI studies, whereas clinical trials involving patients with PAD primarily assess walking performance. Here, we sought to develop a 6-min limb function test for preclinical HLI models that assess muscular performance and hemodynamics congruently. Methods We developed an in situ 6-min limb function test that involves repeated isotonic (shortening) contractions performed against a submaximal load. Continuous measurement of muscle blood flow was performed using laser Doppler flowmetry. Quantification of muscle power, work, and perfusion are obtained across the test. To assess the efficacy of this test, we performed HLI via femoral artery ligation on several mouse strains: C57BL6J, BALBc/J, and MCK-PGC1α (muscle-specific overexpression of PGC1α). Additional experiments were performed using an exercise intervention (voluntary wheel running) following HLI. Results The 6-min limb function test was successful at detecting differences in limb function of C57BL6/J and BALBc/J mice subjected to HLI with effect sizes superior to laser Doppler perfusion recovery. C57BL6/J mice randomized to exercise therapy following HLI had smaller decline in muscle power, greater hyperemia, and performed more work across the 6-min limb function test compared to non-exercise controls with HLI. Mice with muscle-specific overexpression of PGC1α had no differences in perfusion recovery in resting conditions, but exhibited greater capillary density, increased muscle mass and absolute force levels, and performed more work across the 6-min limb function test compared to their wildtype littermates without the transgene. Conclusion These results demonstrate the efficacy of the 6-min limb function test to detect differences in the response to HLI across several interventions including where traditional perfusion recovery, capillary density, and muscle strength measures were unable to detect therapeutic differences.
Collapse
Affiliation(s)
- Victoria R. Palzkill
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | | | - Leonardo F. Ferriera
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- The Myology Institute, The University of Florida, Gainesville, FL, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- The Myology Institute, The University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Hosadurg N, Kramer CM. Magnetic Resonance Imaging Techniques in Peripheral Arterial Disease. Adv Wound Care (New Rochelle) 2023; 12:611-625. [PMID: 37058352 PMCID: PMC10468560 DOI: 10.1089/wound.2022.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/12/2023] [Indexed: 04/15/2023] Open
Abstract
Significance: Peripheral arterial disease (PAD) leads to a significant burden of morbidity and impaired quality of life globally. Diabetes is a significant risk factor accelerating the development of PAD with an associated increase in the risk of chronic wounds, tissue, and limb loss. Various magnetic resonance imaging (MRI) techniques are being increasingly acknowledged as useful methods of accurately assessing PAD. Recent Advances: Conventionally utilized MRI techniques for assessing macrovascular disease have included contrast enhanced magnetic resonance angiography (MRA), noncontrast time of flight MRA, and phase contrast MRI, but have significant limitations. In recent years, novel noncontrast MRI methods assessing skeletal muscle perfusion and metabolism such as arterial spin labeling (ASL), blood-oxygen-level dependent (BOLD) imaging, and chemical exchange saturation transfer (CEST) have emerged. Critical Issues: Conventional non-MRI (such as ankle-brachial index, arterial duplex ultrasonography, and computed tomographic angiography) and MRI based modalities image the macrovasculature. The underlying mechanisms of PAD that result in clinical manifestations are, however, complex, and imaging modalities that can assess the interaction between impaired blood flow, microvascular tissue perfusion, and muscular metabolism are necessary. Future Directions: Further development and clinical validation of noncontrast MRI methods assessing skeletal muscle perfusion and metabolism, such as ASL, BOLD, CEST, intravoxel incoherent motion microperfusion, and techniques that assess plaque composition, are advancing this field. These modalities can provide useful prognostic data and help in reliable surveillance of outcomes after interventions.
Collapse
Affiliation(s)
- Nisha Hosadurg
- Department of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher M. Kramer
- Department of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Wang SH, Shyu VBH, Chiu WK, Huang RW, Lai BR, Tsai CH. An Overview of Clinical Examinations in the Evaluation and Assessment of Arterial and Venous Insufficiency Wounds. Diagnostics (Basel) 2023; 13:2494. [PMID: 37568858 PMCID: PMC10417660 DOI: 10.3390/diagnostics13152494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Arterial and venous insufficiency are two major causes of chronic wounds with different etiology, pathophysiology, and clinical manifestations. With recent advancements in clinical examination, clinicians are able to obtain an accurate diagnosis of the underlying disease, which plays an important role in the treatment planning and management of patients. Arterial ulcers are mainly caused by peripheral artery diseases (PADs), which are traditionally examined by physical examination and non-invasive arterial Doppler studies. However, advanced imaging modalities, such as computed tomography angiography (CTA) and indocyanine green (ICG) angiography, have become important studies as part of a comprehensive diagnostic process. On the other hand, chronic wounds caused by venous insufficiency are mainly evaluated by duplex ultrasonography and venography. Several scoring systems, including Clinical-Etiology-Anatomy-Pathophysiology (CEAP) classification, the Venous Clinical Severity Score (VCSS), the Venous Disability Score, and the Venous Segmental Disease Score (VSDS) are useful in defining disease progression. In this review, we provide a comprehensive overlook of the most widely used and available clinical examinations for arterial and venous insufficiency wounds.
Collapse
Affiliation(s)
- Szu-Han Wang
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan; (S.-H.W.); (V.B.-H.S.); (B.-R.L.)
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan
| | - Victor Bong-Hang Shyu
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan; (S.-H.W.); (V.B.-H.S.); (B.-R.L.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Wen-Kuan Chiu
- Division of Plastic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ren-Wen Huang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Trauma Plastic Surgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Bo-Ru Lai
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan; (S.-H.W.); (V.B.-H.S.); (B.-R.L.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chia-Hsuan Tsai
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan; (S.-H.W.); (V.B.-H.S.); (B.-R.L.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| |
Collapse
|
7
|
Sabeti S, Nayak R, McBane RD, Fatemi M, Alizad A. Contrast-free ultrasound imaging for blood flow assessment of the lower limb in patients with peripheral arterial disease: a feasibility study. Sci Rep 2023; 13:11321. [PMID: 37443250 PMCID: PMC10345143 DOI: 10.1038/s41598-023-38576-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023] Open
Abstract
While being a relatively prevalent condition particularly among aging patients, peripheral arterial disease (PAD) of lower extremities commonly goes undetected or misdiagnosed due to its symptoms being nonspecific. Additionally, progression of PAD in the absence of timely intervention can lead to dire consequences. Therefore, development of non-invasive and affordable diagnostic approaches can be highly beneficial in detection and treatment planning for PAD patients. In this study, we present a contrast-free ultrasound-based quantitative blood flow imaging technique for PAD diagnosis. The method involves monitoring the variations of blood flow in the calf muscle in response to thigh-pressure-cuff-induced occlusion. Four quantitative metrics are introduced for analysis of these variations. These metrics include post-occlusion to baseline flow intensity variation (PBFIV), total response region (TRR), Lag0 response region (L0RR), and Lag4 (and more) response region (L4 + RR). We examine the feasibility of this method through an in vivo study consisting of 14 PAD patients with abnormal ankle-brachial index (ABI) and 8 healthy volunteers. Ultrasound data acquired from 13 legs in the patient group and 13 legs in the healthy group are analyzed. Out of the four utilized metrics, three exhibited significantly different distributions between the two groups (p-value < 0.05). More specifically, p-values of 0.0015 for PBFIV, 0.0183 for TRR, and 0.0048 for L0RR were obtained. The results of this feasibility study indicate the diagnostic potential of the proposed method for the detection of PAD.
Collapse
Affiliation(s)
- Soroosh Sabeti
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Rohit Nayak
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Robert D McBane
- Department of Cardiovascular, Division of Vascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Radiology, Mayo Clinic College of Medicine and Science, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
8
|
Galanakis N, Maris TG, Kontopodis N, Tsetis K, Kehagias E, Tsetis D. Perfusion imaging techniques in lower extremity peripheral arterial disease. Br J Radiol 2022; 95:20211203. [PMID: 35522774 PMCID: PMC10996332 DOI: 10.1259/bjr.20211203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/05/2022] Open
Abstract
Lower limb peripheral arterial disease (PAD) characterizes the impairment of blood flow to extremities caused by arterial stenoses or occlusions. Evaluation of PAD is based on clinical examination, calculation of ankle-brachial index and imaging studies such as ultrasound, CT, MRI and digital subtraction angiography. These modalities provide significant information about location, extension and severity of macrovasular lesions in lower extremity arterial system. However, they can be also used to evaluate limb perfusion, using appropriate techniques and protocols. This information may be valuable for assessment of the severity of ischemia and detection of hypoperfused areas. Moreover, they can be used for planning of revascularization strategy in patients with severe PAD and evaluation of therapeutic outcome. These techniques may also determine prognosis and amputation risk in patients with PAD. This review gives a basic overview of the perfusion techniques for lower limbs provided by imaging modalities such as ultrasound, CT, MRI, digital subtraction angiography and scintigraphy and their clinical applications for evaluation of PAD and revascularization outcome.
Collapse
Affiliation(s)
- Nikolaos Galanakis
- Department of Medical Imaging, University Hospital Heraklion,
University of Crete Medical School,
Heraklion, Greece
| | - Thomas G Maris
- Department of Medical Physics, University Hospital Heraklion,
University of Crete Medical School,
Heraklion, Greece
| | - Nikolaos Kontopodis
- Vascular Surgery Unit, Department of Cardiothoracic and
Vascular Surgery, University Hospital Heraklion, University of Crete
Medical School, Heraklion,
Greece
| | - Konstantinos Tsetis
- Department of Medical Imaging, University Hospital Heraklion,
University of Crete Medical School,
Heraklion, Greece
| | - Elias Kehagias
- Department of Medical Imaging, University Hospital Heraklion,
University of Crete Medical School,
Heraklion, Greece
| | - Dimitrios Tsetis
- Department of Medical Imaging, University Hospital Heraklion,
University of Crete Medical School,
Heraklion, Greece
| |
Collapse
|
9
|
Galanakis N, Maris TG, Kalaitzakis G, Kontopodis N, Matthaiou N, Charalambous S, Tsetis K, Ioannou CV, Karantanas A, Tsetis D. Evaluation of foot hypoperfusion and estimation of percutaneous transluminal angioplasty outcome in patients with critical limb ischemia using intravoxel incoherent motion microperfusion MRI. Br J Radiol 2021; 94:20210215. [PMID: 34233490 DOI: 10.1259/bjr.20210215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To emerge hypoperfusion of lower limbs in patients with critical limb ischemia (CLI) using Intravoxel Incoherent Motion microperfusion magnetic resonance imaging (IVIM-MRI). Moreover to examine the ability of IVIM-MRI to differentiate patients with severe peripheral arterial disease (PAD) from normal subjects and evaluate the percutaneous transluminal angioplasty (PTA) results in patients with CLI. METHODS Eight patients who presented with CLI and six healthy volunteers were examined. The patients underwent IVIM-MRI of lower extremity before and following PTA. The imaging protocol included sagittal diffusion-weighted (DW) sequences. DW images were analyzed and color parametric maps of the micro-circulation of blood inside the capillary network (D*) were constructed. The studies were evaluated by two observers to define interobserver reproducibility. RESULTS Technical success was achieved in all patients (8/8). The mean ankle-brachial index increased from 0.35 ± 0.2 to 0.76 ± 0.25 (p < 0.05). Successful revascularization improved IVIM microperfusion. Mean D* increased from 279.88 ± 13.47 10-5 mm2/s to 331.51 ± 31 10-5 mm2/s, following PTA, p < 0.05. Moreover, PAD patients presented lower D* values as compared to healthy individuals (279.88 ± 13.47 10-5 mm2/s vs 332.47 ± 22.95 10-5 mm2/s, p < 0.05, respectively). Good interobserver agreement was obtained with an ICC = 0.84 (95% CI 0.64-0.93). CONCLUSIONS IVIM-MRI can detect differences in microperfusion between patients with PAD and healthy individuals. Moreover, significant restitution of IVIM microperfusion is found following successful PTA. ADVANCES IN KNOWLEDGE IVIM-MRI is a safe, reproducible and effective modality for evaluation of lower limb hypoperfusion in patients with PAD. It seems also to be a helpful tool to detect changes of tissue perfusion in patients with CLI following revascularization.
Collapse
Affiliation(s)
- Nikolaos Galanakis
- Department of Medical Imaging, University Hospital Heraklion, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Thomas G Maris
- Department of Medical Physics, University Hospital Heraklion, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Georgios Kalaitzakis
- Department of Medical Physics, University Hospital Heraklion, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Nikolaos Kontopodis
- Vascular Surgery Unit, Department of Cardiothoracic and Vascular Surgery, University Hospital Heraklion, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Nikolas Matthaiou
- Department of Medical Imaging, University Hospital Heraklion, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Stavros Charalambous
- Department of Medical Imaging, University Hospital Heraklion, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Konstantinos Tsetis
- Department of Medical Imaging, University Hospital Heraklion, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Christos V Ioannou
- Vascular Surgery Unit, Department of Cardiothoracic and Vascular Surgery, University Hospital Heraklion, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Apostolos Karantanas
- Department of Medical Imaging, University Hospital Heraklion, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Dimitrios Tsetis
- Department of Medical Imaging, University Hospital Heraklion, University of Crete Medical School, Voutes, Heraklion, Greece
| |
Collapse
|
10
|
Decreased Muscular Perfusion in Dermatomyositis: Initial Results Detected by Inflow-Based Vascular-Space-Occupancy MRI. AJR Am J Roentgenol 2021; 216:1588-1595. [PMID: 33787295 DOI: 10.2214/ajr.20.23045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. This study aimed to determine whether inflow-based vascular-space-occupancy (iVASO) MRI could reproducibly quantify skeletal muscle perfusion and differentiate patients with dermatomyositis (DM) from healthy subjects. MATERIALS AND METHODS. A total of 25 patients with DM and 22 healthy volunteers underwent iVASO MRI in a 3-T MRI scanner. Maximum and mean arteriolar muscle blood volume (MBV) values of four subgroups of muscles (normal muscles, morphologically normal-appearing muscles, edematous muscles, and atrophic or fat-infiltrated muscles) were obtained. Maximum and mean arteriolar MBV values were compared among the different subgroups, and repeat testing was performed in 20 subjects to assess reproducibility. RESULTS. Compared with normal muscles in healthy subjects, morphologically normal-appearing muscles, edematous muscles, and atrophic or fat-infiltrated muscles in patients with DM showed a significant decrease of both maximum and mean arteriolar MBV (p < .001). Both parameters were significantly lower in atrophic or fat-infiltrated muscles than in morphologically normal-appearing and edematous muscles (p < .001). ROC AUCs for discriminating patients with DM from healthy volunteers were 0.842 and 0.812 for maximum and mean arteriolar MBV values, respectively. As a measure of test-retest studies, the intraclass correlation coefficients (ICCs) were 0.990 (95% CI, 0.986-0.993) and 0.990 (95% CI, 0.987-0.993) for maximum and mean arteriolar MBV, respectively. For interobserver reproducibility, the ICCs were 0.989 (95% CI, 0.986-0.991) and 0.980 (95% CI, 0.975-0.983), respectively. CONCLUSION. iVASO MRI can reproducibly quantify arteriolar MBV in the thigh and discriminate between healthy volunteers and patients with DM.
Collapse
|
11
|
Gimnich OA, Holbrook J, Belousova T, Short CM, Taylor AA, Nambi V, Morrisett JD, Ballantyne CM, Bismuth J, Shah DJ, Brunner G. Relation of Magnetic Resonance Imaging Based Arterial Signal Enhancement to Markers of Peripheral Artery Disease. Am J Cardiol 2021; 140:140-147. [PMID: 33144163 DOI: 10.1016/j.amjcard.2020.10.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Peripheral artery disease (PAD) is associated with impaired lower extremity function. We hypothesized that contrast-enhanced magnetic resonance imaging (CE-MRI) based arterial signal enhancement (SE) measures are associated with markers of PAD. A total of 66 participants were enrolled, 10 were excluded due to incomplete data, resulting in 56 participants for the final analyses (36 PAD, 20 matched controls). MR imaging was performed postreactive hyperemia using bilateral thigh blood-pressure cuffs. First pass-perfusion images were acquired at the mid-calf region with a high-resolution saturation recovery gradient echo pulse sequence, and arterial SE was measured for the lower extremity arteries. As expected, peak walking time (PWT) was reduced in PAD patients compared with controls (282 [248 to 317] sec, vs 353 [346 to 360] sec; p = 0.002), and postexercise ankle brachial index (ABI) decreased in PAD patients but not in controls (PAD: 0.75 ± 0.2, 0.60 [0.5 to 0.7]; p <0.001; vs Controls: 1.17 ± 0.1, 1.19 [1.1 to 1.2]; p = 0.50). Intraclass correlation coefficients were excellent for inter- and intraobserver variability of arterial tracings (n = 10: 0.95 (95%-confidence interval [CI]: 0.94 to 0.96), n = 9: 1.0 (CI: 1.0 to 1.0). Minimum arterial SE was reduced in PAD patients compared with matched controls (128 [110 to 147] A.U. vs 192 [149 to 234] A.U., p = 0.003). Among PAD patients but not in controls the maximum arterial SE was associated with the estimated glomerular filtration rate (eGFR), a marker of renal function (n = 36, ß = 1.37, R2 = 0.12, p = 0.025). In conclusion, CE-MRI first-pass arterial perfusion is impaired in PAD patients compared with matched controls and associated with markers of lower extremity ischemia.
Collapse
Affiliation(s)
- Olga A Gimnich
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jonathan Holbrook
- Sections of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Tatiana Belousova
- Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Christina M Short
- Sections of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Addison A Taylor
- Sections of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas; Michael E DeBakey VA Medical Center, Houston, Texas
| | - Vijay Nambi
- Sections of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas; Michael E DeBakey VA Medical Center, Houston, Texas; Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Joel D Morrisett
- Sections of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Christie M Ballantyne
- Sections of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas; Sections of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Jean Bismuth
- Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Dipan J Shah
- Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Gerd Brunner
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Sections of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
12
|
Lindner JR. Limb Perfusion Imaging in Peripheral Artery Disease. JACC Cardiovasc Imaging 2020; 14:1625-1627. [PMID: 33221233 DOI: 10.1016/j.jcmg.2020.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Jonathan R Lindner
- Knight Cardiovascular Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
13
|
Zhang JL, Conlin CC, Li X, Layec G, Chang K, Kalpathy‐Cramer J, Lee VS. Exercise-induced calf muscle hyperemia: Rapid mapping of magnetic resonance imaging using deep learning approach. Physiol Rep 2020; 8:e14563. [PMID: 32812401 PMCID: PMC7435025 DOI: 10.14814/phy2.14563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Exercise-induced hyperemia in calf muscles was recently shown to be quantifiable with high-resolution magnetic resonance imaging (MRI). However, processing of the MRI data to obtain muscle-perfusion maps is time-consuming. This study proposes to substantially accelerate the mapping of muscle perfusion using a deep-learning method called artificial neural network (NN). Forty-eight MRI scans were acquired from 21 healthy subjects and patients with peripheral artery disease (PAD). For optimal training of NN, different training-data sets were compared, investigating the effect of data diversity and reference perfusion accuracy. Reference perfusion was estimated by tracer kinetic model fitting initialized with multiple values (multigrid model fitting). Result: The NN method was much faster than tracer kinetic model fitting. To generate a perfusion map of matrix 128 × 128 on a same computer, multigrid model fitting took about 80 min, single-grid or regular model fitting about 3 min, while the NN method took about 1 s. Compared to the reference values, NN trained with a diverse group gave estimates with mean absolute error (MAE) of 15.9 ml/min/100g and correlation coefficient (R) of 0.949, significantly more accurate than regular model fitting (MAE 22.3 ml/min/100g, R 0.889, p < .001). Conclusion: the NN method enables rapid perfusion mapping, and if properly trained, estimates perfusion with accuracy comparable to multigrid model fitting.
Collapse
Affiliation(s)
- Jeff L. Zhang
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalBostonMAUSA
| | | | - Xiaowan Li
- Department of Radiology and Imaging SciencesUniversity of UtahSalt Lake CityUTUSA
| | - Gwenael Layec
- Department of KinesiologyUniversity of MassachusettsAmherstMAUSA
- Institute for Applied Life SciencesUniversity of MassachusettsAmherstMAUSA
| | - Ken Chang
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalBostonMAUSA
| | - Jayashree Kalpathy‐Cramer
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalBostonMAUSA
- MGH and BWH Center for Clinical Data ScienceMassachusetts General HospitalBostonMAUSA
| | | |
Collapse
|
14
|
Santos-Díaz A, Noseworthy MD. Phosphorus magnetic resonance spectroscopy and imaging (31P-MRS/MRSI) as a window to brain and muscle metabolism: A review of the methods. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Poredos P. Involvement of microcirculation in critical ischemia: how to identify it? INT ANGIOL 2020; 39:492-499. [PMID: 32594670 DOI: 10.23736/s0392-9590.20.04428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Critical limb ischemia represents the most severe pattern of peripheral arterial disease (PAD) associated with the high risk of major amputation, cardiovascular events and death. The diagnosis and management of critical limb ischemia (CLI) is often challenging. Systolic ankle and toe pressure measurements are considered to be the basic techniques for the identification of PAD. However, they provide rough insight into the dependent local tissue perfusion. Furthermore, those techniques do not enable investigation of microcirculation which has crucial role in the pathogenesis of CLI. Some patients with mild deterioration of macrocirculation develop CLI if microcirculation is affected. Investigation of perfusion on macro- and local microcirculatory level enables more effective treatment: revascularization of the angiosome-related artery. The technologies capable of assessing limb tissue oxygenation or perfusion on microcirculatory level enable direct assessment of distant tissue oxygenation. Transcutaneous oxygen tension (TcPO2) measurement which was introduced in clinical practice represents one of the objective criteria for the diagnosis of CLI. Main weakness of this technique as well as laser Doppler flow measurement is low penetrance from the skin surface. Measurement of tissue blood flow on microcirculatory level can be performed with indocyanine green fluorescent imaging (ICG), contrast-enhanced magnetic resonance and vital microscopy. ICG is promising method which provides excellent informative image of tissue perfusion. However, it offers little quantitative information. Investigation of microcirculation in patients with CLI is of outmost importance because it enables insight in local tissue perfusion and oxygenation, which represents the basis of identification of most ischemic regions and provide more successful angiosome related revascularization of an affected artery.
Collapse
Affiliation(s)
- Pavel Poredos
- Department of Vascular Disease, University Medical Centre Ljubljana (UMCL), Ljubljana, Slovenia - .,Department of Advanced Cardiopulmonary Therapies and Transplantation, University of Texas Health Science Center at Houston, Houston, TX, USA -
| |
Collapse
|
16
|
Galanakis N, Maris TG, Kontopodis N, Ioannou CV, Tsetis K, Karantanas A, Tsetis D. The role of dynamic contrast-enhanced MRI in evaluation of percutaneous transluminal angioplasty outcome in patients with critical limb ischemia. Eur J Radiol 2020; 129:109081. [PMID: 32516699 DOI: 10.1016/j.ejrad.2020.109081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Imaging modalities such as CTA and MRA provide significant information about the distribution of macrovascular lesions of the limbs in patients with peripheral arterial disease but not for the local microvascular perfusion of the feet. The purpose of this study is to evaluate foot perfusion in patients with critical limb ischemia (CLI) and estimate percutaneous transluminal angioplasty (PTA) results, using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS Ten patients (6 male, median age 68 years) with CLI were examined. All patients underwent DCE-MRI of the lower limb before and within first month after PTA. Perfusion parameters such as blood flow (BF), Ktrans, Kep were analyzed and applied for statistical comparisons. The studies were also examined by a second observer to determine inter-observer reproducibility. RESULTS Revascularization was technically successful in all patients and mean ankle brachial index (ABI) increased from 0.37 ± 0.18 to 0.76 ± 0.23, p < 0.05. After PTA, mean BF increased from 6.232 ± 2.867-9.867 ± 2.965 mL/min/100 g, Ktrans increased from 0.060 ± 0.022 to 0.107 ± 0.041 min-1 and Kep increased from 0.103 ± 0.024 to 0.148 ± 0.024 min-1, p < 0.05. All measurements demonstrated very good inter-observer reliability with an ICC > 0.85 for all perfusion parameters. CONCLUSIONS DCE-MRI is a safe and reproducible modality for the diagnosis of foot hypo-perfusion. It seems also to be a promising tool for evaluation of PTA outcome, as significant restitution of perfusion parameters was observed after successful revascularization.
Collapse
Affiliation(s)
- Nikolaos Galanakis
- Department of Medical Imaging, University Hospital Heraklion, University of Crete Medical School, Voutes, 71110 Heraklion, Greece
| | - Thomas G Maris
- Department of Medical Physics, University Hospital Heraklion, University of Crete Medical School, Voutes, 71110 Heraklion, Greece
| | - Nikolaos Kontopodis
- Vascular Surgery Unit, Department of Cardiothoracic and Vascular Surgery, University Hospital Heraklion, University of Crete Medical School, Voutes, 71110 Heraklion, Greece
| | - Christos V Ioannou
- Vascular Surgery Unit, Department of Cardiothoracic and Vascular Surgery, University Hospital Heraklion, University of Crete Medical School, Voutes, 71110 Heraklion, Greece
| | - Konstantinos Tsetis
- Department of Medical Imaging, University Hospital Heraklion, University of Crete Medical School, Voutes, 71110 Heraklion, Greece
| | - Apostolos Karantanas
- Department of Medical Imaging, University Hospital Heraklion, University of Crete Medical School, Voutes, 71110 Heraklion, Greece
| | - Dimitrios Tsetis
- Department of Medical Imaging, University Hospital Heraklion, University of Crete Medical School, Voutes, 71110 Heraklion, Greece.
| |
Collapse
|
17
|
Englund EK, Langham MC. Quantitative and Dynamic MRI Measures of Peripheral Vascular Function. Front Physiol 2020; 11:120. [PMID: 32184733 PMCID: PMC7058683 DOI: 10.3389/fphys.2020.00120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
The endothelium regulates and mediates vascular homeostasis, allowing for dynamic changes of blood flow in response to mechanical and chemical stimuli. Endothelial dysfunction underlies many diseases and is purported to be the earliest pathologic change in the progression of atherosclerotic disease. Peripheral vascular function can be interrogated by measuring the response kinetics following induced ischemia or exercise. In the presence of endothelial dysfunction, there is a blunting and delay of the hyperemic response, which can be measured non-invasively using a variety of quantitative magnetic resonance imaging (MRI) methods. In this review, we summarize recent developments in non-contrast, proton MRI for dynamic quantification of blood flow and oxygenation. Methodologic description is provided for: blood oxygenation-level dependent (BOLD) signal that reflect combined effect of blood flow and capillary bed oxygen content; arterial spin labeling (ASL) for quantification of regional perfusion; phase contrast (PC) to quantify arterial flow waveforms and macrovascular blood flow velocity and rate; high-resolution MRI for luminal flow-mediated dilation; and dynamic MR oximetry to quantify oxygen saturation. Overall, results suggest that these dynamic and quantitative MRI methods can detect endothelial dysfunction both in the presence of overt cardiovascular disease (such as in patients with peripheral artery disease), as well as in sub-clinical settings (i.e., in chronic smokers, non-smokers exposed to e-cigarette aerosol, and as a function of age). Thus far, these tools have been relegated to the realm of research, used as biomarkers of disease progression and therapeutic response. With proper validation, MRI-measures of vascular function may ultimately be used to complement the standard clinical workup, providing additional insight into the optimal treatment strategy and evaluation of treatment efficacy.
Collapse
Affiliation(s)
- Erin K Englund
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Michael C Langham
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
Misra S, Shishehbor MH, Takahashi EA, Aronow HD, Brewster LP, Bunte MC, Kim ESH, Lindner JR, Rich K. Perfusion Assessment in Critical Limb Ischemia: Principles for Understanding and the Development of Evidence and Evaluation of Devices: A Scientific Statement From the American Heart Association. Circulation 2019; 140:e657-e672. [PMID: 31401843 PMCID: PMC7372288 DOI: 10.1161/cir.0000000000000708] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There are >12 million patients with peripheral artery disease in the United States. The most severe form of peripheral artery disease is critical limb ischemia (CLI). The diagnosis and management of CLI is often challenging. Ethnic differences in comorbidities and presentation of CLI exist. Compared with white patients, black and Hispanic patients have higher prevalence rates of diabetes mellitus and chronic renal disease and are more likely to present with gangrene, whereas white patients are more likely to present with ulcers and rest pain. A thorough evaluation of limb perfusion is important in the diagnosis of CLI because it can not only enable timely diagnosis but also reduce unnecessary invasive procedures in patients with adequate blood flow or among those with other causes for ulcers, including venous, neuropathic, or pressure changes. This scientific statement discusses the current tests and technologies for noninvasive assessment of limb perfusion, including the ankle-brachial index, toe-brachial index, and other perfusion technologies. In addition, limitations of the current technologies along with opportunities for improvement, research, and reducing disparities in health care for patients with CLI are discussed.
Collapse
|
19
|
Takahashi EA, Kinsman KA, Neidert NB, Young PM. Guiding peripheral arterial disease management with magnetic resonance imaging. VASA 2019; 48:217-222. [PMID: 30251924 DOI: 10.1024/0301-1526/a000742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Peripheral arterial disease (PAD) management is exceptionally challenging. Despite advances in diagnostic and therapeutic technologies, long-term vessel patency and limb salvage rates are limited. Patients with PAD frequently require extensive workup with noninvasive tests and imaging to delineate their disease and help guide appropriate management. Ultrasound and computed tomography are commonly ordered in the workup of PAD. Magnetic resonance imaging (MRI), on the other hand, is less often acknowledged as a useful tool in this disease. Nevertheless, MRI is an important test that can effectively characterize atherosclerotic plaque, assess vessel patency in highly calcified disease, and measure lower extremity perfusion.
Collapse
|
20
|
Conlin CC, Layec G, Hanrahan CJ, Hu N, Mueller MT, Lee VS, Zhang JL. Exercise-stimulated arterial transit time in calf muscles measured by dynamic contrast-enhanced magnetic resonance imaging. Physiol Rep 2019; 7:e13978. [PMID: 30648355 PMCID: PMC6333626 DOI: 10.14814/phy2.13978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
The primary goal of this study was to evaluate arterial transit time (ATT) in exercise-stimulated calf muscles as a promising indicator of muscle function. Following plantar flexion, ATT was measured by dynamic contrast-enhanced (DCE) MRI in young and elderly healthy subjects and patients with peripheral artery disease (PAD). In the young healthy subjects, gastrocnemius ATT decreased significantly (P < 0.01) from 4.3 ± 1.5 to 2.4 ± 0.4 sec when exercise load increased from 4 lbs to 16 lbs. For the same load of 4 lbs, gastrocnemius ATT was lower in the elderly healthy subjects (3.2 ± 1.1 sec; P = 0.08) and in the PAD patients (2.4 ± 1.2 sec; P = 0.02) than in the young healthy subjects. While the sensitivity of the exercise-stimulated ATT is diagnostically useful, it poses a challenge for arterial spin labeling (ASL), a noncontrast MRI method for measuring muscle perfusion. As a secondary goal of this study, we assessed the impact of ATT on ASL-measured perfusion with ASL data of multiple post labeling delays (PLDs) acquired from a healthy subject. Perfusion varied substantially with PLD in the activated gastrocnemius, which can be attributed to the ATT variability as verified by a simulation. In conclusion, muscle ATT is sensitive to exercise intensity, and it potentially reflects the functional impact of aging and PAD on calf muscles. For precise measurement of exercise-stimulated muscle perfusion, it is recommended that ATT be considered when quantifying muscle ASL data.
Collapse
Affiliation(s)
| | - Gwenael Layec
- School of Public Health and Health SciencesUniversity of Massachusetts AmherstAmherstMassachusetts
| | | | - Nan Hu
- Division of BiostatisticsDepartment of Internal MedicineUniversity of UtahSalt Lake CityUtah
| | - Michelle T. Mueller
- Division of Vascular SurgeryDepartment of Internal MedicineUniversity of UtahSalt Lake CityUtah
| | | | - Jeff L. Zhang
- Department of Radiology and Imaging SciencesUniversity of UtahSalt Lake CityUtah
| |
Collapse
|
21
|
Li X, Conlin CC, Decker ST, Hu N, Mueller M, Khor L, Hanrahan C, Layec G, Lee VS, Zhang JL. Sampling arterial input function (AIF) from peripheral arteries: Comparison of a temporospatial-feature based method against conventional manual method. Magn Reson Imaging 2018; 57:118-123. [PMID: 30471329 DOI: 10.1016/j.mri.2018.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 02/02/2023]
Abstract
It is often difficult to accurately localize small arteries in images of peripheral organs, and even more so with vascular abnormality vasculatures, including collateral arteries, in peripheral artery disease (PAD). This poses a challenge for manually sampling arterial input function (AIF) in quantifying dynamic contrast-enhanced (DCE) MRI data of peripheral organs. In this study, we designed a multi-step screening approach that utilizes both the temporal and spatial information of the dynamic images, and is presumably suitable for localizing small and unpredictable peripheral arteries. In 41 DCE MRI datasets acquired from human calf muscles, the proposed method took <5 s on average for sampling AIF for each case, much more efficient than the manual sampling method; AIFs by the two methods were comparable, with Pearson's correlation coefficient of 0.983 ± 0.004 (p-value < 0.01) and relative difference of 2.4% ± 2.6%. In conclusion, the proposed temporospatial-feature based method enables efficient and accurate sampling of AIF from peripheral arteries, and would improve measurement precision and inter-observer consistency for quantitative DCE MRI of peripheral tissues.
Collapse
Affiliation(s)
- Xiaowan Li
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT, United States
| | - Christopher C Conlin
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT, United States
| | - Stephen T Decker
- School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Nan Hu
- Division of Epidemiology, University of Utah, 295 Chipeta Way, Salt Lake City, UT, United States
| | - Michelle Mueller
- Division of Vascular Surgery, University of Utah, 30 N 1900 E, Salt Lake City, UT, United States
| | - Lillian Khor
- Division of Cardiovascular Medicine, University of Utah, 30 N 1900 E, Salt Lake City, UT, United States
| | - Christopher Hanrahan
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT, United States
| | - Gwenael Layec
- School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Vivian S Lee
- Verily Life Sciences, 355 Main St, Cambridge, MA, United States
| | - Jeff L Zhang
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT, United States.
| |
Collapse
|
22
|
Zhang JL, Layec G, Hanrahan C, Conlin CC, Hart C, Hu N, Khor L, Mueller M, Lee VS. Exercise-induced calf muscle hyperemia: quantitative mapping with low-dose dynamic contrast enhanced magnetic resonance imaging. Am J Physiol Heart Circ Physiol 2018; 316:H201-H211. [PMID: 30388024 DOI: 10.1152/ajpheart.00537.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) in the lower extremities often leads to intermittent claudication. In the present study, we proposed a low-dose DCE MRI protocol for quantifying calf muscle perfusion stimulated with plantar flexion and multiple new metrics for interpreting perfusion maps, including the ratio of gastrocnemius over soleus perfusion (G/S; for assessing the vascular redistribution between the two muscles) and muscle perfusion normalized by whole body perfusion (for quantifying the muscle's active hyperemia). Twenty-eight human subjects participated in this Institutional Review Board-approved study, with 10 healthy subjects ( group A) for assessing interday reproducibility and 8 healthy subjects ( group B) for exploring the relationship between plantar-flexion load and induced muscle perfusion. In a pilot group of five elderly healthy subjects and five patients with PAD ( group C), we proposed a protocol that measured perfusion for a low-intensity exercise and for an exhaustion exercise in a single MRI session. In group A, perfusion estimates for calf muscles were highly reproducible, with correlation coefficients of 0.90-0.93. In group B, gastrocnemius perfusion increased linearly with the exercise workload ( P < 0.05). With the low-intensity exercise, patients with PAD in group C showed substantially lower gastrocnemius perfusion compared with elderly healthy subjects [43.4 (SD 23.5) vs. 106.7 (SD 73.2) ml·min-1·100 g-1]. With exhaustion exercise, G/S [1.0 (SD 0.4)] for patients with PAD was lower than both its low-intensity level [1.9 (SD 1.3)] and the level in elderly healthy subjects [2.7 (SD 2.1)]. In conclusion, the proposed MRI protocol and the new metrics are feasible for quantifying exercise-induced muscle hyperemia, a promising functional test of PAD. NEW & NOTEWORTHY To quantitatively map exercise-induced hyperemia in calf muscles, we proposed a high-resolution MRI method shown to be highly reproducible and sensitive to exercise load. With the use of low contrast, it is feasible to measure calf muscle hyperemia for both low-intensity and exhaustion exercises in a single MRI session. The newly proposed metrics for interpreting perfusion maps are promising for quantifying intermuscle vascular redistribution or a muscle's active hyperemia.
Collapse
Affiliation(s)
- Jeff L Zhang
- Department of Radiology and Imaging Sciences, University of Utah , Salt Lake City, Utah
| | - Gwenael Layec
- Division of Geriatrics, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Christopher Hanrahan
- Department of Radiology and Imaging Sciences, University of Utah , Salt Lake City, Utah
| | - Christopher C Conlin
- Department of Radiology and Imaging Sciences, University of Utah , Salt Lake City, Utah
| | - Corey Hart
- Division of Endocrinology, Diabetes, Nutrition and Metabolism, Mayo Clinic , Rochester, Minnesota
| | - Nan Hu
- Division of Epidemiology, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Lillian Khor
- Division of Cardiology, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Michelle Mueller
- Division of Vascular Surgery, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | | |
Collapse
|
23
|
Mathew RC, Kramer CM. Recent advances in magnetic resonance imaging for peripheral artery disease. Vasc Med 2018; 23:143-152. [PMID: 29633922 DOI: 10.1177/1358863x18754694] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The global burden of peripheral artery disease (PAD) is significant. This has led to numerous recent advances in magnetic resonance imaging (MRI) techniques in PAD. Older techniques such as time of flight MRI or phase contrast MRI are burdened by long acquisition times and significant issues with artifacts. In addition, the most used MRI modality, contrast-enhanced MR angiography (CE-MRA) is limited by the use of gadolinium contrast and its potential toxicity. Novel MRI techniques such as arterial spin labeling (ASL), blood-oxygen-level dependent imaging (BOLD), and first-pass perfusion gadolinium enhancement are advancing the field by providing skeletal muscle perfusion/oxygenation data while maintaining excellent spatial and temporal resolution. Perfusion data can be critical to providing objective clinical data of a visualized stenosis. In addition, there are a number of new MRI sequences assessing plaque composition and lesion severity in the absence of contrast. These approaches used in combination can provide useful clinical and prognostic data and provide critical endpoints in PAD research.
Collapse
Affiliation(s)
- Roshin C Mathew
- Departments of Medicine (Cardiology) and Radiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Christopher M Kramer
- Departments of Medicine (Cardiology) and Radiology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
24
|
Manevska N, Stojanoski S, Pop Gjorceva D, Todorovska L, Vavlukis M, Majstorov V. Tissue-muscle perfusion assessed by one day 99m Tc-MIBI rest-dipyridamol scintigraphy in non-diabetic and diabetic patients. Rev Esp Med Nucl Imagen Mol 2018. [DOI: 10.1016/j.remnie.2017.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Manevska N, Stojanoski S, Pop Gjorceva D, Todorovska L, Vavlukis M, Majstorov V. Tissue-muscle perfusion assessed by one day 99mTc-MIBI rest-dipyridamol scintigraphy in non-diabetic and diabetic patients. Rev Esp Med Nucl Imagen Mol 2018; 37:141-145. [PMID: 29605629 DOI: 10.1016/j.remn.2017.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 11/16/2022]
Abstract
AIM To determine the perfusion reserve of the lower limbs using the method 99mTc-MIBI (rest-dipyridamole) perfusion scintigraphy (one-day protocol) in the diagnostic evaluation of peripheral artery disease (PAD) in patients with and without diabetes mellitus (DM). MATERIAL AND METHODS We performed tissue-muscle perfusion scintigraphy (TMPS) of the lower limbs, through one-day rest-dipyridamole protocol with 99mTc-MIBI in 24 patients, divided in two groups according to the presence of diabetes - patients with DM (Dp) 13/24 (54%), 2 males and 9 female patients, age 63±13 years and patients without DM (NDp) 11/24 (46%), 3 males and 10 females, age 61±14 years. RESULTS In the dynamic phase of the rest study, the time of maximum activity (Tmax), in the early arterial phase, of the calf region was significantly prolonged in Dp compared to NDp, with lower accumulation of the radiotracer in the 1st minute (85%/87% in Dp vs. 89%/90% in NDp, ns). 4/11 of NDp (36.4%) and 7/13 of Dp (53.8%) registered pathological value of the inter-extremity index of the calves in the stress study. Perfusion reserve (PR) of the thighs (LT, RT) and calves (LC, RC) calculated with the formula "(ROI stress-ROI rest)×100%/ROI rest", was significantly lower in Dp: LT: 28±19% vs. 43±24% in NDp, p<0.05; RT: 27±17% vs. 40±25% in NDp, p<0.05; LC: 22±15% vs. 36±15% in NDp, p<0.01; RC: 25±15% vs. 38±14% in NDp, p<0.01. CONCLUSION This one-day protocol (rest-dipyridamole with 99mTc-MIBI) of perfusion scintigraphy of lower limbs is considered as a useful procedure in PAD assessment, especially the asymptomatic form. TMPS of the lower limbs in our study indicated that perfusion reserve in patients with DM was significantly lower, compared to the patients without diabetes.
Collapse
Affiliation(s)
- N Manevska
- Institute of Pathophysiology and Nuclear Medicine, Medical Faculty, University of «Ss. Cyril and Methodius», Skopje, Macedonia.
| | - S Stojanoski
- Institute of Pathophysiology and Nuclear Medicine, Medical Faculty, University of «Ss. Cyril and Methodius», Skopje, Macedonia
| | - D Pop Gjorceva
- Institute of Pathophysiology and Nuclear Medicine, Medical Faculty, University of «Ss. Cyril and Methodius», Skopje, Macedonia
| | - L Todorovska
- Institute of Medical Physiology and Antropology, Medical Faculty, University of «Ss. Cyril and Methodius», Skopje, Macedonia
| | - M Vavlukis
- Clinic of Cardiology, Medical Faculty, University of «Ss. Cyril and Methodius», Skopje, Macedonia
| | - V Majstorov
- Institute of Pathophysiology and Nuclear Medicine, Medical Faculty, University of «Ss. Cyril and Methodius», Skopje, Macedonia
| |
Collapse
|
26
|
Time-Resolved Three-Dimensional Contrast-Enhanced Magnetic Resonance Angiography in Patients with Chronic Expanding and Stable Aortic Dissections. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2017:5428914. [PMID: 29317855 PMCID: PMC5727560 DOI: 10.1155/2017/5428914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/08/2017] [Indexed: 11/18/2022]
Abstract
Objective To prospectively evaluate our hypothesis that three-dimensional time-resolved contrast-enhanced magnetic resonance angiography (TR-MRA) is able to detect hemodynamic alterations in patients with chronic expanding aortic dissection compared to stable aortic dissections. Materials and Methods 20 patients with chronic or residual aortic dissection in the descending aorta and patent false lumen underwent TR-MRA of the aorta at 1.5 T and repeated follow-up imaging (mean follow-up 5.4 years). 7 patients showed chronic aortic expansion and 13 patients had stable aortic diameters. Regions of interest were placed in the nondissected ascending aorta and the false lumen of the descending aorta at the level of the diaphragm (FL-diaphragm level) resulting in respective time-intensity curves. Results For the FL-diaphragm level, time-to-peak intensity and full width at half maximum were significantly shorter in the expansion group compared to the stable group (p = 0.027 and p = 0.003), and upward and downward slopes of time-intensity curves were significantly steeper (p = 0.015 and p = 0.005). The delay of peak intensity in the FL-diaphragm level compared to the nondissected ascending aorta was significantly shorter in the expansion group compared to the stable group (p = 0.01). Conclusions 3D TR-MRA detects significant alterations of hemodynamics within the patent false lumen of chronic expanding aortic dissections compared to stable aortic dissections.
Collapse
|
27
|
White CJ, Patel RAJ. Hemodynamic Threshold for Wound Healing in Critical Limb Ischemia. JACC Cardiovasc Interv 2017; 10:2458-2460. [PMID: 29153496 DOI: 10.1016/j.jcin.2017.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 11/19/2022]
Affiliation(s)
- Christopher J White
- Ochsner Clinical School of the University of Queensland, Brisbane, Australia; Department of Cardiology of the Ochsner Medical Center, New Orleans, Louisiana.
| | - Rajan A J Patel
- Ochsner Clinical School of the University of Queensland, Brisbane, Australia; Department of Cardiology of the Ochsner Medical Center, New Orleans, Louisiana
| |
Collapse
|
28
|
Chen HJ, Roy TL, Wright GA. Perfusion measures for symptom severity and differential outcome of revascularization in limb ischemia: Preliminary results with arterial spin labeling reactive hyperemia. J Magn Reson Imaging 2017; 47:1578-1588. [PMID: 29193492 DOI: 10.1002/jmri.25910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/13/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Previously, a theoretical model based on microvascular physiology was established to facilitate the interpretation of calf perfusion dynamics recorded by arterial spin labeling (ASL). PURPOSE To investigate the clinical relevance of novel perfusion indices by comparing them to the symptoms, response to revascularization, and short-term functional outcome in patients with peripheral arterial disease (PAD). STUDY TYPE Prospective cohort study. POPULATION Nineteen patients with PAD. FIELD STRENGTH/SEQUENCE Pulsed ASL at 3T. ASSESSMENT The mid-calf reactive hyperemia induced by 2 minutes of arterial occlusion was recorded in PAD patients. The perfusion responses were characterized by the peak, time-to-peak, and physiological model-derived indices including the baseline perfusion fr , arterial resistance Ra , and compliance Ca , and sensitivity gATP and response time τATP of downstream microvasculature to metabolic stress. These indices were compared to the disease severity and outcome within 6 months after revascularization assessed by self-reported symptoms and the ankle-brachial index. Disease severity was categorized as asymptomatic, claudication, or critical limb ischemia. The outcome was categorized as symptom resolved or limited improvement. STATISTICAL TESTS Severity and outcome groups were compared using Mann-Whitney and Kruskal-Wallis tests with Holm-Sidak adjustments. RESULTS The peak perfusion decreased and model arterial resistance increased progressively with increasing severity of limb ischemia (P = 0.0402 and 0.0413, respectively). Eleven patients had a successful endovascular procedure, including six patients who had symptoms resolved, four patients who had remaining leg pain, and one patient lost to follow-up. The subjects with limited improvement had significantly lower preintervention microvascular sensitivity gATP than those with symptoms resolved (8.72 ± 1.46 vs. 4.93 ± 0.91, P = 0.0466). DATA CONCLUSION ASL reactive hyperemia reflects multiple aspects of the pathophysiology. Measures of macrovascular arterial disease are related to the manifested symptom severity, whereas preintervention gATP associated with microvascular dysfunction is related to prognosis following revascularization. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018;47:1578-1588.
Collapse
Affiliation(s)
- Hou-Jen Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Trisha L Roy
- Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Vascular Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Graham A Wright
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Luck JC, Miller AJ, Aziz F, Radtka JF, Proctor DN, Leuenberger UA, Sinoway LI, Muller MD. Blood pressure and calf muscle oxygen extraction during plantar flexion exercise in peripheral artery disease. J Appl Physiol (1985) 2017; 123:2-10. [PMID: 28385920 DOI: 10.1152/japplphysiol.01110.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/14/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022] Open
Abstract
Peripheral artery disease (PAD) is an atherosclerotic vascular disease that affects 200 million people worldwide. Although PAD primarily affects large arteries, it is also associated with microvascular dysfunction, an exaggerated blood pressure (BP) response to exercise, and high cardiovascular mortality. We hypothesized that fatiguing plantar flexion exercise that evokes claudication elicits a greater reduction in skeletal muscle oxygenation (SmO2) and a higher rise in BP in PAD compared with age-matched healthy subjects, but low-intensity steady-state plantar flexion elicits similar responses between groups. In the first experiment, eight patients with PAD and eight healthy controls performed fatiguing plantar flexion exercise (from 0.5 to 7 kg for up to 14 min). In the second experiment, seven patients with PAD and seven healthy controls performed low-intensity plantar flexion exercise (2.0 kg for 14 min). BP, heart rate (HR), and SmO2 were measured continuously using near-infrared spectroscopy (NIRS). SmO2 is the ratio of oxygenated hemoglobin to total hemoglobin, expressed as a percent. At fatigue, patients with PAD had a greater increase in mean arterial BP (18 ± 2 vs. vs. 10 ± 2 mmHg, P = 0.029) and HR (14 ± 2 vs. 6 ± 2 beats/min, P = 0.033) and a greater reduction in SmO2 (-54 ± 10 vs. -12 ± 4%, P = 0.001). However, both groups had similar physiological responses to low-intensity, nonpainful plantar flexion exercise. These data suggest that patients with PAD have altered oxygen uptake and/or utilization during fatiguing exercise coincident with an augmented BP response.NEW & NOTEWORTHY In this laboratory study, patients with peripheral artery disease performed plantar flexion exercise in the supine posture until symptoms of claudication occurred. Relative to age- and sex-matched healthy subjects we found that patients had a higher blood pressure response, a higher heart rate response, and a greater reduction in skeletal muscle oxygenation as determined by near-infrared spectroscopy. Our data suggest that muscle ischemia contributes to the augmented exercise pressor reflex in peripheral artery disease.
Collapse
Affiliation(s)
- J Carter Luck
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - Amanda J Miller
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - Faisal Aziz
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - John F Radtka
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - David N Proctor
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, Hershey, Pennsylvania
| | - Urs A Leuenberger
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| | - Matthew D Muller
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey Pennsylvania; and
| |
Collapse
|
30
|
Valkovič L, Chmelík M, Krššák M. In-vivo 31P-MRS of skeletal muscle and liver: A way for non-invasive assessment of their metabolism. Anal Biochem 2017; 529:193-215. [PMID: 28119063 PMCID: PMC5478074 DOI: 10.1016/j.ab.2017.01.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 01/18/2023]
Abstract
In addition to direct assessment of high energy phosphorus containing metabolite content within tissues, phosphorus magnetic resonance spectroscopy (31P-MRS) provides options to measure phospholipid metabolites and cellular pH, as well as the kinetics of chemical reactions of energy metabolism in vivo. Even though the great potential of 31P-MR was recognized over 30 years ago, modern MR systems, as well as new, dedicated hardware and measurement techniques provide further opportunities for research of human biochemistry. This paper presents a methodological overview of the 31P-MR techniques that can be used for basic, physiological, or clinical research of human skeletal muscle and liver in vivo. Practical issues of 31P-MRS experiments and examples of potential applications are also provided. As signal localization is essential for liver 31P-MRS and is important for dynamic muscle examinations as well, typical localization strategies for 31P-MR are also described.
Collapse
Affiliation(s)
- Ladislav Valkovič
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Marek Chmelík
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Martin Krššák
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Nguyen A, Ledoux JB, Omoumi P, Becce F, Forget J, Federau C. Selective microvascular muscle perfusion imaging in the shoulder with intravoxel incoherent motion (IVIM). Magn Reson Imaging 2017; 35:91-97. [DOI: 10.1016/j.mri.2016.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/24/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
|
32
|
Muller MD, Li Z, Sica CT, Luck JC, Gao Z, Blaha CA, Cauffman AE, Ross AJ, Winkler NJR, Herr MD, Brandt K, Wang J, Gallagher DC, Karunanayaka P, Vesek J, Leuenberger UA, Yang QX, Sinoway LI. Muscle oxygenation during dynamic plantar flexion exercise: combining BOLD MRI with traditional physiological measurements. Physiol Rep 2016; 4:4/20/e13004. [PMID: 27798357 PMCID: PMC5099966 DOI: 10.14814/phy2.13004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 11/24/2022] Open
Abstract
Blood-oxygen-level-dependent magnetic resonance imaging (BOLD MRI) has the potential to quantify skeletal muscle oxygenation with high temporal and high spatial resolution. The purpose of this study was to characterize skeletal muscle BOLD responses during steady-state plantar flexion exercise (i.e., during the brief rest periods between muscle contraction). We used three different imaging modalities (ultrasound of the popliteal artery, BOLD MRI, and near-infrared spectroscopy [NIRS]) and two different exercise intensities (2 and 6 kg). Six healthy men underwent three separate protocols of dynamic plantar flexion exercise on separate days and acute physiological responses were measured. Ultrasound studies showed the percent change in popliteal velocity from baseline to the end of exercise was 151 ± 24% during 2 kg and 589 ± 145% during 6 kg. MRI studies showed an abrupt decrease in BOLD signal intensity at the onset of 2 kg exercise, indicating deoxygenation. The BOLD signal was further reduced during 6 kg exercise (compared to 2 kg) at 1 min (-4.3 ± 0.7 vs. -1.2 ± 0.4%, P < 0.001). Similarly, the change in the NIRS muscle oxygen saturation in the medial gastrocnemius was -11 ± 4% at 2 kg and -38 ± 11% with 6 kg (P = 0.041). In conclusion, we demonstrate that BOLD signal intensity decreases during plantar flexion and this effect is augmented at higher exercise workloads.
Collapse
Affiliation(s)
- Matthew D Muller
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Zhijun Li
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Christopher T Sica
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - J Carter Luck
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Zhaohui Gao
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Cheryl A Blaha
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Aimee E Cauffman
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Amanda J Ross
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Nathan J R Winkler
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Michael D Herr
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Kristen Brandt
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jianli Wang
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - David C Gallagher
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Prasanna Karunanayaka
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jeffrey Vesek
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Urs A Leuenberger
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Qing X Yang
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
33
|
Manevska N, Gjorceva DP, Ahmeti I, Todorovska L, Stojanoski S, Kocovska MZ. Tissue-Muscle Perfusion Scintigraphy of the Lower Limbs in a Patient with Type 2 Diabetes Mellitus and Peripheral Arterial Disease. Mol Imaging Radionucl Ther 2016; 25:42-6. [PMID: 27299288 PMCID: PMC4807349 DOI: 10.4274/mirt.73792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The estimation of tissue perfusion as a hemodynamic consequence of peripheral arterial disease (PAD) in diabetic patients is of great importance in the management of these patients.We present a noninvasive, functional method of 99mTc-MIBI (methoxy-isobutyl-isonitrile) tissue-muscle perfusion scintigraphy (TMPS) of the lower limbs, which assesses tissue perfusion in basal conditions (“rest” study) and exercise conditions (“stress” study). Emphasis is given on perfusion reserve (PR) as an important indicator of preservation of microcirculation and its local autoregulatory mechanisms in PAD. We present a case of a 71-year-old male diabetic patient with skin ulcers of the right foot and an ankle-brachial index >1.2 (0.9-1.1). Dynamic phase TMPS of the lower limbs showed decreased and late arterial vascularization of the right calf (RC) with lower percentage of radioactivity in the 1st minute: RC 66%, left calf (LC) 84%. PR was borderline with a value of 57% for LC and decreased for RC (42%). Functional assessment of hemodynamic consequences of PAD is important in evaluating both advanced and early PAD, especially the asymptomatic form. The method used to determine the TMPS of the lower limbs, can differentiate subtle changes in microcirculation and tissue perfusion.
Collapse
Affiliation(s)
- Nevena Manevska
- University of Ss. Cyril and Methodius, Faculty of Medicine, Institute of Pathophysiology and Nuclear Medicine, Skopje, Macedonia Phone: 38970398042 E-mail:
| | | | | | | | | | | |
Collapse
|
34
|
Shin T, Qin Q, Park JY, Crawford RS, Rajagopalan S. Identification and reduction of image artifacts in non-contrast-enhanced velocity-selective peripheral angiography at 3T. Magn Reson Med 2016; 76:466-77. [PMID: 26308243 PMCID: PMC4769124 DOI: 10.1002/mrm.25870] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 01/13/2023]
Abstract
PURPOSE To identify and reduce image artifacts in non-contrast-enhanced velocity-selective (VS) magnetization-prepared peripheral MR angiography (MRA) at 3T. METHODS To avoid signal loss in the arteries, double and quadruple refocused VS excitation pulse sequences were designed that were robust to a wide range of B0 and B1 offset. To suppress stripe artifact and background signal variation, we successively applied two VS preparations with excitation profiles shifted by half the period of the stripes. VS-MRA using single, double, and quadruple refocused VS preparations was tested in healthy subjects and a patient. RESULTS In the regions of large B0 and B1 offsets, arterial signal loss was yielded by single refocused VS preparation, but was avoided with double or quadruple refocused preparations. Compared with single VS preparation, the two consecutive preparations with shifted excitation profiles substantially reduced the stripe artifact and background signal variation, as demonstrated by increased mean and decreased standard deviation of relative contrast-to-noise ratio. The proposed VS-MRA identified multilevel disease in the femoral arteries of the patient, as validated by digital subtraction angiography. CONCLUSION Two multiple refocused VS magnetization preparations with shifted excitation profiles yield artifact-free peripheral angiograms at 3T. Magn Reson Med 76:466-477, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Taehoon Shin
- Department of Diagnostic Radiology and Nuclear Medicine, University
of Maryland, Baltimore, Maryland
| | - Qin Qin
- Department of Radiology, Johns Hopkins University, Baltimore,
Maryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy
Krieger Institute, Baltimore, Maryland
| | - Jang-Yeon Park
- Center for Neuroscience Imaging Research, Institute for Basic
Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University,
Suwon, South Korea
| | - Robert S. Crawford
- Division of Vascular and Endovascular Surgery, University of
Maryland, Baltimore, Maryland
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, University of Maryland,
Baltimore, Maryland
| |
Collapse
|
35
|
Bajwa A, Wesolowski R, Patel A, Saha P, Ludwinski F, Ikram M, Albayati M, Smith A, Nagel E, Modarai B. Blood Oxygenation Level-Dependent CMR-Derived Measures in Critical Limb Ischemia and Changes With Revascularization. J Am Coll Cardiol 2016; 67:420-431. [PMID: 26821631 PMCID: PMC4728170 DOI: 10.1016/j.jacc.2015.10.085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 01/16/2023]
Abstract
Background Use of blood oxygenation level-dependent cardiovascular magnetic resonance (BOLD-CMR) to assess perfusion in the lower limb has been hampered by poor reproducibility and a failure to reliably detect post-revascularization improvements in patients with critical limb ischemia (CLI). Objectives This study sought to develop BOLD-CMR as an objective, reliable clinical tool for measuring calf muscle perfusion in patients with CLI. Methods The calf was imaged at 3-T in young healthy control subjects (n = 12), age-matched control subjects (n = 10), and patients with CLI (n = 34). Signal intensity time curves were generated for each muscle group and curve parameters, including signal reduction during ischemia (SRi) and gradient during reactive hyperemia (Grad). BOLD-CMR was used to assess changes in perfusion following revascularization in 12 CLI patients. Muscle biopsies (n = 28), obtained at the level of BOLD-CMR measurement and from healthy proximal muscle of patients undergoing lower limb amputation (n = 3), were analyzed for capillary-fiber ratio. Results There was good interuser and interscan reproducibility for Grad and SRi (all p < 0.0001). The ischemic limb had lower Grad and SRi compared with the contralateral asymptomatic limb, age-matched control subjects, and young control subjects (p < 0.001 for all comparisons). Successful revascularization resulted in improvement in Grad (p < 0.0001) and SRi (p < 0.0005). There was a significant correlation between capillary-fiber ratio (p < 0.01) in muscle biopsies from amputated limbs and Grad measured pre-operatively at the corresponding level. Conclusions BOLD-CMR showed promise as a reliable tool for assessing perfusion in the lower limb musculature and merits further investigation in a clinical trial.
Collapse
Affiliation(s)
- Adnan Bajwa
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Roman Wesolowski
- Department of Cardiovascular Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Ashish Patel
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Prakash Saha
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Francesca Ludwinski
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Mohammed Ikram
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Mostafa Albayati
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Alberto Smith
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Eike Nagel
- Department of Cardiovascular Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at King's Health Partners, St. Thomas' Hospital, London, United Kingdom; Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Bijan Modarai
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St. Thomas' Hospital, London, United Kingdom.
| |
Collapse
|
36
|
Liu S, Wang M, Ai T, Wang Q, Wang R, Chen W, Pan C, Zhu W. In vivo morphological and functional evaluation of the lateral pterygoid muscle: a diffusion tensor imaging study. Br J Radiol 2016; 89:20160041. [PMID: 27222273 DOI: 10.1259/bjr.20160041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE: To explore the feasibility of morphological and functional evaluation of the lateral pterygoid muscle (LPM) by diffusion tensor imaging (DTI) in vivo. METHODS: 30 healthy volunteers underwent DTI with the jaw in the rest position, opening and clenching. Diffusion parameters of the superior head of the LPM (SHLP) and the inferior head of the LPM (IHLP) at different jaw positions were calculated. RESULTS: When the jaw was in the rest position, λ3 of the SHLP was significantly lower than that of the IHLP; fractional anisotropy (FA) value of the SHLP was significant higher than that of the IHLP. There was no significant difference in λ1, λ2 and apparent diffusion coefficient (ADC) value. During jaw opening, there was significant increase of all three eigenvalues and ADC value, and significant decrease of FA value both at the SHLP and IHLP. Clenching caused a significant increase in the ADC and all three eigenvalues, and caused a significant decrease of FA at the SHLP. However, at the IHLP, the variations of all diffusion parameters by clenching in the intercuspal position showed no significance when compared with those at rest. CONCLUSION: The morphological and functional changes of LPM fibres caused by jaw movements could be sensitively detected by DTI which may serve as a new and non-invasive method for simultaneously investigating the functional and morphological features of the LPM during jaw movement. ADVANCES IN KNOWLEDGE: A new application of DTI is proposed for the morphological and functional evaluation of the LPMs. The results show that the significant change of three eigenvalues indicates the activity of the LPM in a specific jaw movement, a finding that shows the potential value of DTI serving as a new and non-invasive method for investigation of the LPM.
Collapse
Affiliation(s)
- Simin Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuxia Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renfa Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chu Pan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Calf muscle perfusion as measured with magnetic resonance imaging to assess peripheral arterial disease. Med Biol Eng Comput 2016; 54:1667-1681. [PMID: 26906279 DOI: 10.1007/s11517-016-1457-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
We hypothesized that skeletal muscle perfusion is impaired in peripheral arterial disease (PAD) patients compared to healthy controls and that perfusion patterns exhibit marked differences across five leg muscle compartments including the anterior muscle group (AM), lateral muscle group (LM), deep posterior muscle group (DM), soleus (SM), and the gastrocnemius muscle (GM). A total of 40 individuals (26 PAD patients and 14 healthy controls) underwent contrast-enhanced magnetic resonance imaging (CE-MRI) utilizing a reactive hyperemia protocol. Muscle perfusion maps were developed for AM, LM, DM, SM, and GM. Perfusion maps were analyzed over the course of 2 min, starting at local pre-contrast arrival, to study early-to-intermediate gadolinium enhancement. PAD patients had a higher fraction of hypointense voxels at pre-contrast arrival for all five muscle compartments compared with healthy controls (p < 0.0005). Among PAD patients, the fraction of hypointense voxels of the AM, LM, and GM were inversely correlated with the estimated glomerular filtration rate (eGFR; r = -0.509, p = 0.008; r = -0.441, p = 0.024; and r = -0.431, p = 0.028, respectively). CE-MRI-based skeletal leg muscle perfusion is markedly reduced in PAD patients compared with healthy controls and shows heterogeneous patterns across calf muscle compartments.
Collapse
|
38
|
Simple and effective exercise design for assessing in vivo mitochondrial function in clinical applications using (31)P magnetic resonance spectroscopy. Sci Rep 2016; 6:19057. [PMID: 26751849 PMCID: PMC4707472 DOI: 10.1038/srep19057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/02/2015] [Indexed: 02/02/2023] Open
Abstract
The growing recognition of diseases associated with dysfunction of mitochondria poses an urgent need for simple measures of mitochondrial function. Assessment of the kinetics of replenishment of the phosphocreatine pool after exercise using (31)P magnetic resonance spectroscopy can provide an in vivo measure of mitochondrial function; however, the wider application of this technique appears limited by complex or expensive MR-compatible exercise equipment and protocols not easily tolerated by frail participants or those with reduced mental capacity. Here we describe a novel in-scanner exercise method which is patient-focused, inexpensive, remarkably simple and highly portable. The device exploits an MR-compatible high-density material (BaSO4) to form a weight which is attached directly to the ankle, and a one-minute dynamic knee extension protocol produced highly reproducible measurements of post-exercise PCr recovery kinetics in both healthy subjects and patients. As sophisticated exercise equipment is unnecessary for this measurement, our extremely simple design provides an effective and easy-to-implement apparatus that is readily translatable across sites. Its design, being tailored to the needs of the patient, makes it particularly well suited to clinical applications, and we argue the potential of this method for investigating in vivo mitochondrial function in new cohorts of growing clinical interest.
Collapse
|
39
|
Kramer CM. Novel magnetic resonance imaging end points for physiologic studies in peripheral arterial disease: elegance versus practicality. Circ Cardiovasc Imaging 2015; 8:CIRCIMAGING.115.003360. [PMID: 25873725 DOI: 10.1161/circimaging.115.003360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Christopher M Kramer
- From the Departments of Medicine and Radiology, University of Virginia Health System, Charlottesville.
| |
Collapse
|
40
|
Seol SH, Davidson BP, Belcik JT, Mott BH, Goodman RM, Ammi A, Lindner JR. Real-time contrast ultrasound muscle perfusion imaging with intermediate-power imaging coupled with acoustically durable microbubbles. J Am Soc Echocardiogr 2015; 28:718-26.e2. [PMID: 25769666 DOI: 10.1016/j.echo.2015.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Indexed: 10/23/2022]
Abstract
BACKGROUND There is growing interest in limb contrast-enhanced ultrasound (CEU) perfusion imaging for the evaluation of peripheral artery disease. Because of low resting microvascular blood flow in skeletal muscle, signal enhancement during limb CEU is prohibitively low for real-time imaging. The aim of this study was to test the hypothesis that this obstacle can be overcome by intermediate- rather than low-power CEU when performed with an acoustically resilient microbubble agent. METHODS Viscoelastic properties of Definity and Sonazoid were assessed by measuring bulk modulus during incremental increases in ambient pressure to 200 mm Hg. Comparison of in vivo microbubble destruction and signal enhancement at a mechanical index (MI) of 0.1 to 0.4 was performed by sequential reduction in pulsing interval from 10 to 0.05 sec during limb CEU at 7 MHz in mice and 1.8 MHz in dogs. Destruction was also assessed by broadband signal generation during passive cavitation detection. Real-time CEU perfusion imaging with destruction-replenishment was then performed at 1.8 MHz in dogs using an MI of 0.1, 0.2, or 0.3. RESULTS Sonazoid had a higher bulk modulus than Definity (66 ± 12 vs 29 ± 2 kPa, P = .02) and exhibited less inertial cavitation (destruction) at MIs ≥ 0.2. On in vivo CEU, maximal signal intensity increased incrementally with MI for both agents and was equivalent between agents except at an MI of 0.1 (60% and 85% lower for Sonazoid at 7 and 1.8 MHz, respectively, P < .05). However, on progressive shortening of the pulsing interval, Definity was nearly completely destroyed at MIs ≥ 0.2 at 1.8 and 7 MHz, whereas Sonazoid was destroyed only at 1.8 MHz at MIs ≥ 0.3. As a result, real-time CEU perfusion imaging demonstrated approximately fourfold greater enhancement for Sonazoid at an MI of 0.3 to 0.4. CONCLUSIONS Robust signal enhancement during real-time CEU perfusion imaging of the limb is possible when using intermediate-power imaging coupled with a durable microbubble contrast agent.
Collapse
Affiliation(s)
- Sang-Hoon Seol
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Division of Cardiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Division of Cardiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Division of Cardiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Brian H Mott
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Division of Cardiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Reid M Goodman
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Division of Cardiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Azzdine Ammi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Division of Cardiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Division of Cardiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea.
| |
Collapse
|
41
|
Kalayci TO, Çakir V, Kestelli M, Apaydin M. Measure the Vascular Flow Volume rather than Vascular Stenosis and Pressure Gradient. Heart Lung Circ 2015; 24:617-20. [PMID: 25697384 DOI: 10.1016/j.hlc.2014.12.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
We aimed to investigate the extent to which measurements of flow volume (FV) with colour flow duplex ultrasonography (CDU) could predict tissue perfusion. A 68 year-old male patient was admitted to our clinic complaining of intermittent claudication in the right leg. Digital subtraction angiography showed total occlusion of the right femoral artery. The right popliteal artery (PA) was filling by collaterals. CDU showed that the FV in the right PA was higher than in the left. Arterial-venous FV measurement with CDU should be performed rather than the detection of arterial stenosis to assess whether intervention is necessary.
Collapse
Affiliation(s)
- Tugce Ozlem Kalayci
- Department of Radiology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey.
| | - Volkan Çakir
- Department of Radiology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Mert Kestelli
- Department of Cardiovascular Surgery, Izmir Katip Celebi University Ataturk Training and Research Hospital, İzmir, Turkey
| | - Melda Apaydin
- Department of Radiology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
42
|
Lopez D, Pollak AW, Meyer CH, Epstein FH, Zhao L, Pesch AJ, Jiji R, Kay JR, DiMaria JM, Christopher JM, Kramer CM. Arterial spin labeling perfusion cardiovascular magnetic resonance of the calf in peripheral arterial disease: cuff occlusion hyperemia vs exercise. J Cardiovasc Magn Reson 2015; 17:23. [PMID: 25890198 PMCID: PMC4336689 DOI: 10.1186/s12968-015-0128-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/27/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Assessment of calf muscle perfusion requires a physiological challenge. Exercise and cuff-occlusion hyperemia are commonly used methods, but it has been unclear if one is superior to the other. We hypothesized that post-occlusion calf muscle perfusion (Cuff) with pulsed arterial spin labeling (PASL) cardiovascular magnetic resonance (CMR) at 3 Tesla (T) would yield greater perfusion and improved reproducibility compared to exercise hyperemia in studies of peripheral arterial disease (PAD). METHODS Exercise and Cuff cohorts were independently recruited. PAD patients had an ankle brachial index (ABI) between 0.4-0.9. Controls (NL) had no risk factors and ABI 0.9-1.4. Subjects exercised until exhaustion (15 NL-Ex, 15 PAD-Ex) or had a thigh cuff inflated for 5 minutes (12 NL-Cuff, 11 PAD-Cuff). Peak exercise and average cuff (Cuff mean ) perfusion were compared. Six participants underwent both cuff and exercise testing. Reproducibility was tested in 8 Cuff subjects (5 NL, 3 PAD). RESULTS Controls had greater perfusion than PAD independent of stressor (NL-Ex 74 ± 21 vs. PAD-Ex 43 ± 10, p = 0.01; NL-Cuff mean 109 ± 39 vs. PAD-Cuff mean 34 ± 17 ml/min-100 g, p < 0.001). However, there was no difference between exercise and Cuff mean perfusion within groups (p > 0.6). Results were similar when the same subjects had the 2 stressors performed. Cuff mean had superior reproducibility (Cuff mean ICC 0.98 vs. Exercise ICC 0.87) and area under the receiver operating characteristic curve (Cuff mean 0.992 vs. Exercise 0.905). CONCLUSIONS Cuff hyperemia differentiates PAD patients from controls, as does exercise stress. Cuff mean and exercise calf perfusion values are similar. Cuff occlusion hyperemia has superior reproducibility and thus may be the preferred stressor.
Collapse
Affiliation(s)
- David Lopez
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Amy W Pollak
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Craig H Meyer
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Frederick H Epstein
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Li Zhao
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Arthur J Pesch
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Ronny Jiji
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Jennifer R Kay
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Joseph M DiMaria
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - John M Christopher
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Christopher M Kramer
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
43
|
Fulford J, Vanhatalo A. Reliability of arterial spin labelling measurements of perfusion within the quadriceps during steady-state exercise. Eur J Sport Sci 2015; 16:80-7. [PMID: 25587883 DOI: 10.1080/17461391.2014.997801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Arterial spin labelling (ASL) provides a potential method to non-invasively determine muscle blood flow and examine the impact of interventions such as supplementation and training. However, it's a method with intrinsically low signal, leading to limitations in accuracy and temporal resolution. To examine these limitations, the current study measured perfusion via ASL on three occasions in the rectus femoris of 10 healthy adults, during light and moderate exercise, over three different exercise durations. For data sampled over 9 min, light intensity exercise gave an average perfusion of 35.0 ± 5.1 ml/min.100g(-1) with a coefficient of variation (COV) of 16% and single intraclass correlation coefficient (ICC) of 0.67. For the moderate bout, perfusion was 51.3 ± 5.6 ml/min.100g(-1) (COV 10%, ICC 0.82). When the same data were analyzed over 5 min 24 s, perfusion was 37.8 ± 11.13 (COV 30%, ICC 0.13) during light and 49.5 ± 8.8 ml/min.100g(-1) (COV 18%, ICC 0.52) during moderate exercise. When sampling was reduced to 1 min 48 s, perfusion was 41.2 ± 13.7 (COV 33%, ICC 0.26) during light and 49.5 ± 13.6 ml/min.100g(-1) (COV 28%, ICC 0.04) during moderate exercise. For 9 min a significant perfusion difference was found between the exercise intensities; however, this was not the case for sampling over 5 min 24 s or 1 min 48 s. Such findings illustrate the potential of ASL to non-invasively monitor muscle perfusion under steady-state conditions, but highlight that extended exercise protocols are necessary in order to generate date of sufficient reliability to be able to discriminate intervention dependent perfusion differences.
Collapse
Affiliation(s)
- Jonathan Fulford
- a Exeter NIHR Clinical Research Facility, MRI Unit , University of Exeter Medical School, University of Exeter , Exeter , UK
| | - Anni Vanhatalo
- b Sport and Health Sciences, College of Life and Environmental Sciences , University of Exeter , Exeter , UK
| |
Collapse
|
44
|
Bajwa A, Wesolowski R, Patel A, Saha P, Ludwinski F, Smith A, Nagel E, Modarai B. Assessment of tissue perfusion in the lower limb: current methods and techniques under development. Circ Cardiovasc Imaging 2014; 7:836-43. [PMID: 25227236 DOI: 10.1161/circimaging.114.002123] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Adnan Bajwa
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.)
| | - Roman Wesolowski
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.)
| | - Ashish Patel
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.)
| | - Prakash Saha
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.)
| | - Francesca Ludwinski
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.)
| | - Alberto Smith
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.)
| | - Eike Nagel
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.)
| | - Bijan Modarai
- From the Cardiovascular Division, Academic Department of Surgery, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas' Hospital, London, United Kingdom (A.B., A.P., P.S., F.L., A.S., B.M.); and Division of Imaging Sciences and Biomedical Engineering. Department of Cardiovascular Imaging, Kings College London, BHF Centre of Research Excellence, Wellcome Trust-EPSRC Medical Engineering Centre & NIHR Biomedical Research Centre at Kings Health Partners, St. Thomas' Hospital, London, United Kingdom (R.W., E.N.).
| |
Collapse
|
45
|
Gordon Y, Partovi S, Müller-Eschner M, Amarteifio E, Bäuerle T, Weber MA, Kauczor HU, Rengier F. Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion. Cardiovasc Diagn Ther 2014; 4:147-64. [PMID: 24834412 DOI: 10.3978/j.issn.2223-3652.2014.03.01] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/08/2014] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The ability to ascertain information pertaining to peripheral perfusion through the analysis of tissues' temporal reaction to the inflow of contrast agent (CA) was first recognized in the early 1990's. Similar to other functional magnetic resonance imaging (MRI) techniques such as arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) MRI, dynamic contrast-enhanced MRI (DCE-MRI) was at first restricted to studies of the brain. Over the last two decades the spectrum of ailments, which have been studied with DCE-MRI, has been extensively broadened and has come to include pathologies of the heart notably infarction, stroke and further cerebral afflictions, a wide range of neoplasms with an emphasis on antiangiogenic treatment and early detection, as well as investigations of the peripheral vascular and musculoskeletal systems. APPLICATIONS TO PERIPHERAL PERFUSION DCE-MRI possesses an unparalleled capacity to quantitatively measure not only perfusion but also other diverse microvascular parameters such as vessel permeability and fluid volume fractions. More over the method is capable of not only assessing blood flowing through an organ, but in contrast to other noninvasive methods, the actual tissue perfusion. These unique features have recently found growing application in the study of the peripheral vascular system and most notably in the diagnosis and treatment of peripheral arterial occlusive disease (PAOD). REVIEW OUTLINE The first part of this review will elucidate the fundamentals of data acquisition and interpretation of DCE-MRI, two areas that often remain baffling to the clinical and investigating physician because of their complexity. The second part will discuss developments and exciting perspectives of DCE-MRI regarding the assessment of perfusion in the extremities. Emerging clinical applications of DCE-MRI will be reviewed with a special focus on investigation of physiology and pathophysiology of the microvascular and vascular systems of the extremities.
Collapse
Affiliation(s)
- Yaron Gordon
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Sasan Partovi
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Matthias Müller-Eschner
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Erick Amarteifio
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Marc-André Weber
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Hans-Ulrich Kauczor
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Fabian Rengier
- 1 Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany ; 2 Radiology and Nuclear Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA ; 3 Radiology (E010), German Cancer Research Center (dkfz), Heidelberg, Germany ; 4 Radiology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
46
|
Ohana M, El Ghannudi S, Girsowicz E, Lejay A, Georg Y, Thaveau F, Chakfe N, Roy C. Detailed cross-sectional study of 60 superficial femoral artery occlusions: morphological quantitative analysis can lead to a new classification. Cardiovasc Diagn Ther 2014; 4:71-9. [PMID: 24834405 DOI: 10.3978/j.issn.2223-3652.2014.01.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/30/2013] [Indexed: 11/14/2022]
Abstract
OBJECTIVE Current clinical classification of superficial femoral artery (SFA) occlusions as defined by TASC II guidelines is limited to length and calcifications analysis on 2D angiograms, while state-of-the-art cross-sectional imaging like computed tomography angiography (CTA) and magnetic resonance angiography (MRA) provides much more detailed anatomical information than traditional invasive angiography: quantitative morphological analysis of these advanced imaging techniques could therefore be the basis of a refined classification. METHODS AND RESULTS Forty-six patients (65% men, 68±11.6 years) that underwent lower limb CTA were retrospectively included, totalizing 60 SFA occlusions. Lesions were classified as TASC II stage A in 3% of cases, stage B in 20%, stage C in 2% and stage D in 75%. For each pathological artery, curved multiplanar reconstructions following the occluded SFA course were used to measure the total length and the mean diameter of the occluded segment. Color-coded map provided an accurate estimation of calcifications' volume. Thirty-nine percent of the occlusions were total. Mean occluded segment length was 219±107 mm (range, 14-530 mm); mean occluded segment diameter was 6.1±1.6 mm (range, 3.4-10 mm); mean calcifications' volume in the occluded segment was 1,265±1,893 mm(3) (range, 0-8,815 mm(3)), corresponding to a percentage of 17.4%±20% (range, 0-88.7%). Shrinked occluded occlusions were defined by a mean diameter under 5 mm and heavily calcified occlusions by a mean percentage of calcifications above 4%. Use of these thresholds allowed the distinction of four groups of patients: heavily calcified occlusions with preserved caliber (56%), non-calcified occlusions with preserved caliber (19%), non-calcified occlusions with small caliber (15%) and heavily calcified occlusions with small caliber (10%). CONCLUSIONS SFA OCCLUSIONS ARE DISPARATE: this simple morphological study points out TASC II classification weaknesses for SFA occlusions, as quantitative cross-sectional imaging analysis with measurement of mean occluded diameter and percentage of calcifications can refine it. This could be particularly useful in the management of TASC II type D lesions, for which new endovascular revascularization techniques are arising, and where a CTA or MRA-based morphological classification could provide support in choosing between them. KEYWORDS Computer-assisted image processing; femoral artery; multidetector computed tomography; magnetic resonance angiography (MRA); peripheral arterial disease.
Collapse
Affiliation(s)
- Mickaël Ohana
- 1 Radiology Department, 2 Vascular Surgery Department, Nouvel Hôpital Civil-Strasbourg University Hospital, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Soraya El Ghannudi
- 1 Radiology Department, 2 Vascular Surgery Department, Nouvel Hôpital Civil-Strasbourg University Hospital, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Elie Girsowicz
- 1 Radiology Department, 2 Vascular Surgery Department, Nouvel Hôpital Civil-Strasbourg University Hospital, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Anne Lejay
- 1 Radiology Department, 2 Vascular Surgery Department, Nouvel Hôpital Civil-Strasbourg University Hospital, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Yannick Georg
- 1 Radiology Department, 2 Vascular Surgery Department, Nouvel Hôpital Civil-Strasbourg University Hospital, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Fabien Thaveau
- 1 Radiology Department, 2 Vascular Surgery Department, Nouvel Hôpital Civil-Strasbourg University Hospital, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Nabil Chakfe
- 1 Radiology Department, 2 Vascular Surgery Department, Nouvel Hôpital Civil-Strasbourg University Hospital, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Catherine Roy
- 1 Radiology Department, 2 Vascular Surgery Department, Nouvel Hôpital Civil-Strasbourg University Hospital, 1 place de l'Hôpital, 67000 Strasbourg, France
| |
Collapse
|
47
|
Abstract
Peripheral vascular disease (PVD) is an atherosclerotic disease affecting the lower extremities, resulting in skeletal muscle ischemia, intermittent claudication, and, in more severe stages of disease, limb amputation and death. The evaluation of therapy in this patient population can be challenging, as the standard clinical indices are insensitive to assessment of regional alterations in skeletal muscle physiology. Radiotracer imaging of the lower extremities with techniques such as PET and SPECT can provide a noninvasive quantitative technique for the evaluation of the pathophysiology associated with PVD and may complement clinical indices and other imaging approaches. This review discusses the progress in radiotracer-based evaluation of PVD and highlights recent advancements in molecular imaging with potential for clinical application.
Collapse
Affiliation(s)
- Mitchel R. Stacy
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Wunan Zhou
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Albert J. Sinusas
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
48
|
Stacy MR, Yu DY, Maxfield MW, Jaba IM, Jozwik BP, Zhuang ZW, Lin BA, Hawley CL, Caracciolo CM, Pal P, Tirziu D, Sampath S, Sinusas AJ. Multimodality imaging approach for serial assessment of regional changes in lower extremity arteriogenesis and tissue perfusion in a porcine model of peripheral arterial disease. Circ Cardiovasc Imaging 2013; 7:92-9. [PMID: 24170237 DOI: 10.1161/circimaging.113.000884] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND A standard quantitative imaging approach to evaluate peripheral arterial disease does not exist. Quantitative tools for evaluating arteriogenesis in vivo are not readily available, and the feasibility of monitoring serial regional changes in lower extremity perfusion has not been examined. METHODS AND RESULTS Serial changes in lower extremity arteriogenesis and muscle perfusion were evaluated after femoral artery occlusion in a porcine model using single photon emission tomography (SPECT)/CT imaging with postmortem validation of in vivo findings using gamma counting, postmortem imaging, and histological analysis. Hybrid 201Tl SPECT/CT imaging was performed in pigs (n=8) at baseline, immediately postocclusion, and at 1 and 4 weeks postocclusion. CT imaging was used to identify muscle regions of interest in the ischemic and nonischemic hindlimbs for quantification of regional changes in CT-defined arteriogenesis and quantification of 201Tl perfusion. Four weeks postocclusion, postmortem tissue 201Tl activity was measured by gamma counting, and immunohistochemistry was performed to assess capillary density. Relative 201Tl retention (ischemic/nonischemic) was reduced immediately postocclusion in distal and proximal muscles and remained lower in calf and gluteus muscles 4 weeks later. Analysis of CT angiography revealed collateralization at 4 weeks within proximal muscles (P<0.05). SPECT perfusion correlated with tissue gamma counting at 4 weeks (P=0.01). Increased capillary density was seen within the ischemic calf at 4 weeks (P=0.004). CONCLUSIONS 201Tl SPECT/CT imaging permits serial, regional quantification of arteriogenesis and resting tissue perfusion after limb ischemia. This approach may be effective for detection of disease and monitoring therapy in peripheral arterial disease.
Collapse
Affiliation(s)
- Mitchel R Stacy
- Departments of Internal Medicine, Biomedical Engineering, Surgery, and Diagnostic Radiology, Yale University School of Medicine, New Haven, CT
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pollak AW, Meyer CH, Epstein FH, Jiji RS, Hunter JR, Dimaria JM, Christopher JM, Kramer CM. Arterial spin labeling MR imaging reproducibly measures peak-exercise calf muscle perfusion: a study in patients with peripheral arterial disease and healthy volunteers. JACC Cardiovasc Imaging 2013; 5:1224-30. [PMID: 23236972 DOI: 10.1016/j.jcmg.2012.03.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 02/22/2012] [Accepted: 03/07/2012] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study hypothesized that arterial spin labeling (ASL) magnetic resonance (MR) imaging at 3-T would be a reliable noncontrast technique for measuring peak exercise calf muscle blood flow in both healthy volunteers and patients with peripheral arterial disease (PAD) and will discriminate between these groups. BACKGROUND Prior work demonstrated the utility of first-pass gadolinium-enhanced calf muscle perfusion MR imaging in patients with PAD. However, patients with PAD often have advanced renal disease and cannot receive gadolinium. METHODS PAD patients had claudication and an ankle brachial index of 0.4 to 0.9. Age-matched normal subjects (NL) had no PAD risk factors and were symptom-free with exercise. All performed supine plantar flexion exercise in a 3-T MR imaging scanner using a pedal ergometer until exhaustion or limiting symptoms and were imaged at peak exercise with 15 averaged ASL images. Peak perfusion was measured from ASL blood flow images by placing a region of interest in the calf muscle region with the greatest signal intensity. Perfusion was compared between PAD patients and NL and repeat testing was performed in 12 subjects (5 NL, 7 PAD) for assessment of reproducibility. RESULTS Peak exercise calf perfusion of 15 NL (age: 54 ± 9 years) was higher than in 15 PAD patients (age: 64 ± 5 years, ankle brachial index: 0.70 ± 0.14) (80 ± 23 ml/min - 100 g vs. 49 ± 16 ml/min/100 g, p < 0.001). Five NL performed exercise matched to PAD patients and again demonstrated higher perfusion (84 ± 25 ml/min - 100 g, p < 0.002). As a measure of reproducibility, intraclass correlation coefficient between repeated studies was 0.87 (95% confidence interval [CI]: 0.61 to 0.96). Interobserver reproducibility was 0.96 (95% CI: 0.84 to 0.99). CONCLUSIONS ASL is a reproducible noncontrast technique for quantifying peak exercise blood flow in calf muscle. Independent of exercise time, ASL discriminates between NL and PAD patients. This technique may prove useful for clinical trials of therapies for improving muscle perfusion, especially in patients unable to receive gadolinium.
Collapse
Affiliation(s)
- Amy W Pollak
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zheng J, An H, Coggan AR, Zhang X, Bashir A, Muccigrosso D, Peterson LR, Gropler RJ. Noncontrast skeletal muscle oximetry. Magn Reson Med 2013; 71:318-25. [PMID: 23424006 DOI: 10.1002/mrm.24669] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/04/2012] [Accepted: 01/09/2013] [Indexed: 11/09/2022]
Abstract
PURPOSE The objective of this study was to develop a new noncontrast method to directly quantify regional skeletal muscle oxygenation. METHODS The feasibility of the method was examined in five healthy volunteers using a 3 T clinical MRI scanner, at rest and during a sustained isometric contraction. The perfusion of skeletal muscle of the calf was measured using an arterial spin labeling method, whereas the oxygen extraction fraction of the muscle was measured using a susceptibility-based MRI technique. RESULTS In all volunteers, the perfusion in soleus muscle increased significantly from 6.5 ± 2.0 mL (100 g min)(-1) at rest to 47.9 ± 7.7 mL (100 g min)(-1) during exercise (P < 0.05). Although the corresponding oxygen extraction fraction did not change significantly, the rate of oxygen consumption increased from 0.43 ± 0.13 to 4.2 ± 1.5 mL (100 g min)(-1) (P < 0.05). Similar results were observed in gastrocnemius muscle but with greater oxygen extraction fraction increase than the soleus muscle. CONCLUSION This is the first MR oximetry developed for quantification of regional skeletal muscle oxygenation. A broad range of medical conditions could benefit from these techniques, including cardiology, gerontology, kinesiology, and physical therapy.
Collapse
Affiliation(s)
- Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|