1
|
Ghosh T, Nandi S, Girigoswami A, Bhattacharyya SK, Ghosh SK, Mandal M, Ghorai UK, Banerji P, Das NC. Carbon Dots for Multiuse Platform: Intracellular pH Sensing and Complementary Intensified T1-T2 Dual Imaging Contrast Nanoprobes. ACS Biomater Sci Eng 2024; 10:1112-1127. [PMID: 38163852 DOI: 10.1021/acsbiomaterials.3c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Measurement of pH in living cells is a great and decisive factor for providing an early and accurate diagnosis factor. Along with this, the multimodal transverse and longitudinal relaxivity enhancement potentiality over single modality within a single platform in the magnetic resonance imaging (MRI) field is a very challenging issue for diagnostic purposes in the biomedical field of application. Therefore, this work aims to design a versatile platform by fabricating a novel nanoprobe through holmium- and manganese-ion doping in carbon quantum dots (Ho-Mn-CQDs), which can show nearly neutral intracellular pH sensing and MRI imaging at the same time. These manufactured Ho-Mn-CQDs acted as excellent pH sensors in the near-neutral range (4.01-8.01) with the linearity between 6.01 and 8.01, which could be useful for the intracellular pH-sensing capability. An innumerable number of carboxyl and amino groups are present on the surface of the prepared nanoprobe, making it an excellent candidate for pH sensing through fluorescence intensity quenching phenomena. Cellular uptake and cell viability experiments were also executed to affirm the intracellular accepting ability of Ho-Mn-CQDs. Furthermore, with this pH-sensing quality, these Ho-Mn-CQDs are also capable of acting as T1-T2 dual modal imaging contrast agents in comparison with pristine Ho-doped and Mn-doped CQDs. The Ho-Mn-CQDs showed an increment of r1 and r2 relaxivity values simultaneously compared with only the negative contrast agent, holmium in holmium-doped CQDs, and the positive contrast agent, manganese in manganese-doped CQDs. The above-mentioned observations elucidate that its tiny size, excitation dependence of fluorescence behavior, low cytotoxicity, and dual modal contrast imaging capability make it an ideal candidate for pH monitoring in the near-neutral range and also as a dual modal MRI imaging contrast enhancement nanoprobe at the same time.
Collapse
Affiliation(s)
- Trisita Ghosh
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suvendu Nandi
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603 103, India
| | | | - Suman Kumar Ghosh
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Uttam Kumar Ghorai
- Department of Industrial Chemistry and Applied Chemistry, Ramakrishna Mission Vidyamandira, Howrah 711202, India
| | - Pallab Banerji
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Narayan Chandra Das
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
2
|
Peng Y, Li Y, Li L, Xie M, Wang Y, Butch CJ. Coating influence on inner shell water exchange: An underinvestigated major contributor to SPIONs relaxation properties. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102713. [PMID: 37839694 DOI: 10.1016/j.nano.2023.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/15/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are heavily studied as potential MRI contrast enhancing agents. Every year, novel coatings are reported which yield large increases in relaxivity compared to similar particles. However, the reason for the increased performance is not always well understood mechanistically. In this review, we attempt to relate these advances back to fundamental models of relaxivity, developed for chelated metal ions, primarily gadolinium. We focus most closely on the three-shell model which considers the relaxation of surface-bound, entrained, and bulk water molecules as three distinct contributions to total relaxation. Because SPIONs are larger, more complex, and entrain significantly more water than gadolinium-based contrast agents, we consider how to adapt the application of classical models to SPIONs in a predictive manner. By carefully considering models and previous results, a qualitative model of entrained water interactions emerges, based primarily on the contributions of core size, coating thickness, density, and hydrophilicity.
Collapse
Affiliation(s)
- Yusong Peng
- Department of Material Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Yunlong Li
- Department of Material Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Li Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Manman Xie
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China.
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
| | - Christopher J Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Zeng Y, Liu H, Ma J, Li K, Chang P, Wang C, Li L, Chen D, Liu C, Li N, Zhan W, Zhan Y. Cobalt Ferrite-Gossypol Coordination Nanoagents with High Photothermal Conversion Efficiency Sensitizing Chemotherapy against Bcl-2 to Induce Tumor Apoptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300104. [PMID: 37186509 DOI: 10.1002/smll.202300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Gossypol is a chemotherapeutic drug that can inhibit the anti-apoptotic protein Bcl-2, but the existing gossypol-related nanocarriers cannot well solve the problem of chemotherapy resistance. Based on the observation that gossypol becomes black upon Fe3+ coordination, it is hypothesized that encasing gossypol in glyceryl monooleate (GMO) and making it coordinate cobalt ferrite will not only improve its photothermal conversion efficiency (PCE) but also help it enter tumor cells. As the drug loading content and drug encapsulation efficiency of gossypol are 10.67% (w/w) and 96.20%, the PCE of cobalt ferrite rises from 14.71% to 36.00%. The synergistic therapeutic effect finally induces tumor apoptosis with a tumor inhibition rate of 96.56%, which is 2.99 and 1.47 times higher than chemotherapy or photothermal therapy (PTT) alone. PTT generated by the GMO nanocarriers under the irradiation of 808 nm laser can weaken tumor hypoxia, thereby assisting gossypol to inhibit Bcl-2. In addition, the efficacy of nanocarriers is also evaluated through T2 -weighted magnetic resonance imaging. Observations of gossypol-induced apoptosis in tissue slices provide definitive proof of chemotherapy sensitization, indicating that such coordination nanocarriers can be used as an effective preclinical agent to enhance chemotherapy.
Collapse
Affiliation(s)
- Yun Zeng
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Huifang Liu
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Jingwen Ma
- Radiology Department, CT and MRI Room, Ninth Hospital of Xi'an, Xi'an, Shaanxi, 710054, P. R. China
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, P. R. China
| | - Peng Chang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Chenying Wang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Lei Li
- Radiology Department, CT and MRI Room, Ninth Hospital of Xi'an, Xi'an, Shaanxi, 710054, P. R. China
| | - Dan Chen
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Changhu Liu
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, P. R. China
| | - Na Li
- Radiology Department, CT and MRI Room, Ninth Hospital of Xi'an, Xi'an, Shaanxi, 710054, P. R. China
| | - Wenhua Zhan
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, P. R. China
| | - Yonghua Zhan
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| |
Collapse
|
4
|
Leon-Chaviano S, Kiseleva M, Legros P, Collin S, Lescot T, Henoumont C, Gossuin Y, Laurent S, Mayrand D, Fradette J, Bégin-Drolet A, Ruel J, Fortin MA. A Nanoparticle Ink Allowing the High Precision Visualization of Tissue Engineered Scaffolds by MRI. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206644. [PMID: 36965146 DOI: 10.1002/smll.202206644] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Hydrogels are widely used as cell scaffolds in several biomedical applications. Once implanted in vivo, cell scaffolds must often be visualized, and monitored overtime. However, cell scaffolds appear poorly contrasted in most biomedical imaging modalities such as magnetic resonance imaging (MRI). MRI is the imaging technique of choice for high-resolution visualization of low-density, water-rich tissues. Attempts to enhance hydrogel contrast in MRI are performed with "negative" contrast agents that produce several image artifacts impeding the delineation of the implant's contours. In this study, a magnetic ink based on ultra-small iron oxide nanoparticles (USPIONs; <5 nm diameter cores) is developed and integrated into biocompatible alginate hydrogel used in cell scaffolding applications. Relaxometric properties of the magnetic hydrogel are measured, as well as biocompatibility and MR-visibility (T1 -weighted mode; in vitro and in vivo). A 2-week MR follow-up study is performed in the mouse model, demonstrating no image artifacts, and the retention of "positive" contrast overtime, which allows very precise delineation of tissue grafts with MRI. Finally, a 3D-contouring procedure developed to facilitate graft delineation and geometrical conformity assessment is applied on an inverted template alginate pore network. This proof-of-concept establishes the possibility to reveal precisely engineered hydrogel structures using this USPIONs ink high-visibility approach.
Collapse
Affiliation(s)
- Samila Leon-Chaviano
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval (CR CHUQ), Axe Médecine Régénératrice, Quebec City, Québec, G1L 3L5, Canada
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Mariia Kiseleva
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval (CR CHUQ), Axe Médecine Régénératrice, Quebec City, Québec, G1L 3L5, Canada
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Philippe Legros
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval (CR CHUQ), Axe Médecine Régénératrice, Quebec City, Québec, G1L 3L5, Canada
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Simon Collin
- Département de Génie Mécanique, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Théophraste Lescot
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval (CR CHUQ), Axe Médecine Régénératrice, Quebec City, Québec, G1L 3L5, Canada
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Céline Henoumont
- Département de Chimie Générale, Organique et Biomédicale, Université de Mons, Mons, 7000, Belgium
| | - Yves Gossuin
- Service de Physique Biomédicale, Université de Mons, Mons, 7000, Belgium
| | - Sophie Laurent
- Département de Chimie Générale, Organique et Biomédicale, Université de Mons, Mons, 7000, Belgium
| | - Dominique Mayrand
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval (CR CHUQ), Axe Médecine Régénératrice, Quebec City, Québec, G1L 3L5, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Julie Fradette
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval (CR CHUQ), Axe Médecine Régénératrice, Quebec City, Québec, G1L 3L5, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Quebec City, Québec, G1V 0A6, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, 1401, 18e rue, Quebec City, Québec, G1J 1Z4, Canada
| | - André Bégin-Drolet
- Département de Génie Mécanique, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Jean Ruel
- Département de Génie Mécanique, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Marc-André Fortin
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval (CR CHUQ), Axe Médecine Régénératrice, Quebec City, Québec, G1L 3L5, Canada
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| |
Collapse
|
5
|
Brero F, Arosio P, Albino M, Cicolari D, Porru M, Basini M, Mariani M, Innocenti C, Sangregorio C, Orsini F, Lascialfari A. 1H-NMR Relaxation of Ferrite Core-Shell Nanoparticles: Evaluation of the Coating Effect. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:804. [PMID: 36903682 PMCID: PMC10005490 DOI: 10.3390/nano13050804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
We investigated the effect of different organic coatings on the 1H-NMR relaxation properties of ultra-small iron-oxide-based magnetic nanoparticles. The first set of nanoparticles, with a magnetic core diameter ds1 = 4.4 ± 0.7 nm, was coated with polyacrylic acid (PAA) and dimercaptosuccinic acid (DMSA), while the second set, ds2 = 8.9 ± 0.9 nm, was coated with aminopropylphosphonic acid (APPA) and DMSA. At fixed core diameters but different coatings, magnetization measurements revealed a similar behavior as a function of temperature and field. On the other hand, the 1H-NMR longitudinal r1 nuclear relaxivity in the frequency range ν = 10 kHz ÷ 300 MHz displayed, for the smallest particles (diameter ds1), an intensity and a frequency behavior dependent on the kind of coating, thus indicating different electronic spin dynamics. Conversely, no differences were found in the r1 relaxivity of the biggest particles (ds2) when the coating was changed. It is concluded that, when the surface to volume ratio, i.e., the surface to bulk spins ratio, increases (smallest nanoparticles), the spin dynamics change significantly, possibly due to the contribution of surface spin dynamics/topology.
Collapse
Affiliation(s)
- Francesca Brero
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy
| | - Paolo Arosio
- Dipartimento di Fisica, Università degli Studi di Milano, and INFN, 20133 Milano, Italy
| | - Martin Albino
- Dipartimento di Chimica, Università degli Studi di Firenze and INSTM, 50019 Sesto Fiorentino, Italy
- ICCOM-CNR, 50019 Sesto Fiorentino, Italy
| | - Davide Cicolari
- Dipartimento di Fisica, Università degli Studi di Milano, and INFN, 20133 Milano, Italy
- ASST GOM Niguarda, Struttura Complessa Fisica Sanitaria, 20162 Milano, Italy
| | - Margherita Porru
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy
- Dipartimento di Fisica, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Martina Basini
- Physics Department, Stockholm University, 114201 Stockholm, Sweden
| | - Manuel Mariani
- Dipartimento di Fisica, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Claudia Innocenti
- Dipartimento di Chimica, Università degli Studi di Firenze and INSTM, 50019 Sesto Fiorentino, Italy
- ICCOM-CNR, 50019 Sesto Fiorentino, Italy
| | - Claudio Sangregorio
- Dipartimento di Chimica, Università degli Studi di Firenze and INSTM, 50019 Sesto Fiorentino, Italy
- ICCOM-CNR, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50019 Sesto Fiorentino, Italy
| | - Francesco Orsini
- Dipartimento di Fisica, Università degli Studi di Milano, and INFN, 20133 Milano, Italy
| | - Alessandro Lascialfari
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy
- Dipartimento di Fisica, Università degli Studi di Pavia, 27100 Pavia, Italy
| |
Collapse
|
6
|
Dai X, Chen Y. Computational Biomaterials: Computational Simulations for Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204798. [PMID: 35916024 DOI: 10.1002/adma.202204798] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/23/2022] [Indexed: 05/14/2023]
Abstract
With the flourishing development of material simulation methods (quantum chemistry methods, molecular dynamics, Monte Carlo, phase field, etc.), extensive adoption of computing technologies (high-throughput, artificial intelligence, machine learning, etc.), and the invention of high-performance computing equipment, computational simulation tools have sparked the fundamental mechanism-level explorations to predict the diverse physicochemical properties and biological effects of biomaterials and investigate their enormous application potential for disease prevention, diagnostics, and therapeutics. Herein, the term "computational biomaterials" is proposed and the computational methods currently used to explore the inherent properties of biomaterials, such as optical, magnetic, electronic, and acoustic properties, and the elucidation of corresponding biological behaviors/effects in the biomedical field are summarized/discussed. The theoretical calculation of the physiochemical properties/biological performance of biomaterials applied in disease diagnosis, drug delivery, disease therapeutics, and specific paradigms such as biomimetic biomaterials is discussed. Additionally, the biosafety evaluation applications of theoretical simulations of biomaterials are presented. Finally, the challenges and future prospects of such computational simulations for biomaterials development are clarified. It is anticipated that these simulations would offer various methodologies for facilitating the development and future clinical translations/utilization of versatile biomaterials.
Collapse
Affiliation(s)
- Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
7
|
de la Encarnación C, Jimenez de Aberasturi D, Liz-Marzán LM. Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Adv Drug Deliv Rev 2022; 189:114484. [PMID: 35944586 DOI: 10.1016/j.addr.2022.114484] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Multicompartment nanoparticles have raised great interest for different biomedical applications, thanks to the combined properties of different materials within a single entity. These hybrid systems have opened new avenues toward diagnosis and combination therapies, thus becoming preferred theranostic agents. When hybrid nanoparticles comprise magnetic and plasmonic components, both magnetic and optical properties can be achieved, which are potentially useful for multimodal bioimaging, hyperthermal therapies and magnetically driven selective delivery. Nanostructures comprising iron oxide and gold are usually selected for biomedical applications, as they display size-dependent properties, biocompatibility, and unique physical and chemical characteristics that can be tuned through highly precise synthetic protocols. We provide herein an overview of the most recent synthetic protocols to prepare magnetic-plasmonic nanostructures made of iron oxide and gold, to then highlight the progress made on multifunctional magnetic-plasmonic bioimaging and heating-based therapies. We discuss the advantages and limitations of the various systems in these directions.
Collapse
Affiliation(s)
- Cristina de la Encarnación
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
8
|
Formation of hydrated PEG layers on magnetic iron oxide nanoflowers shows internal magnetisation dynamics and generates high in-vivo efficacy for MRI and magnetic hyperthermia. Acta Biomater 2022; 152:393-405. [PMID: 36007780 PMCID: PMC10141539 DOI: 10.1016/j.actbio.2022.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
Multicore magnetic iron oxide nanoparticles, nanoflowers (NFs), have potential biomedical applications as efficient mediators for AC-magnetic field hyperthermia and as contrast agents for magnetic resonance imaging due to their strong magnetic responses arising from complex internal magnetic ordering. To realise these applications amenable surface chemistry must be engineered that maintain particle dispersion. Here a catechol-derived grafting approach is described to strongly bind polyethylene glycol (PEG) to NFs and provide stable hydrogen-bonded hydrated layers that ensure good long-term colloidal stability in buffers and media even at clinical MRI field strength and high concentration. The approach enables the first comprehensive study into the MRI (relaxivity) and hyperthermic (SAR) efficiencies of fully dispersed NFs. The predominant role of internal magnetisation dynamics in providing high relaxivity and SAR is confirmed, and it is shown that these properties are unaffected by PEG molecular weight or corona formation in biological environments. This result is in contrast to traditional single core nanoparticles which have significantly reduced SAR and relaxivity upon PEGylation and on corona formation, attributed to reduced Brownian contributions and weaker NP solvent interactions. The PEGylated NF suspensions described here exhibit usable blood circulation times and promising retention of relaxivity in-vivo due to the strongly anchored PEG layer. This approach to biomaterials design addresses the challenge of maintaining magnetic efficiency of magnetic nanoparticles in-vivo for applications as theragnostic agents. STATEMENT OF SIGNIFICANCE: : Application of multicore magnetic iron-oxide nanoflowers (NFs) as efficient mediators for AC-field hyperthermia and as contrast agents for MR imaging has been limited by lack of colloidal stability in complex media and biosystems. The optimized materials design presented is shown to reproducibly provide PEG grafted NF suspensions of exceptional colloidal stability in buffers and complex media, with significant hyperthermic and MRI utility which is unaffected by PEG length, anchoring group or bio-molecular adsorption. Deposition in the selected pancreatic model mirrors liposomal formulations providing a quantifiable probe of tissue-level liposome deposition and relaxivity is retained in the tumour microenvironment. Hence the biomaterials design addresses the longstanding challenges of maintaining the in vivo magnetic efficiency of nanoparticles as theragnostic agents.
Collapse
|
9
|
Zhao Z, Li M, Zeng J, Huo L, Liu K, Wei R, Ni K, Gao J. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioact Mater 2022; 12:214-245. [PMID: 35310380 PMCID: PMC8897217 DOI: 10.1016/j.bioactmat.2021.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 02/09/2023] Open
Abstract
Iron oxide nanoparticle (IONP) with unique magnetic property and high biocompatibility have been widely used as magnetic resonance imaging (MRI) contrast agent (CA) for long time. However, a review which comprehensively summarizes the recent development of IONP as traditional T2 CA and its new application for different modality of MRI, such as T1 imaging, simultaneous T2/T1 or MRI/other imaging modality, and as environment responsive CA is rare. This review starts with an investigation of direction on the development of high-performance MRI CA in both T2 and T1 modal based on quantum mechanical outer sphere and Solomon–Bloembergen–Morgan (SBM) theory. Recent rational attempts to increase the MRI contrast of IONP by adjusting the key parameters, including magnetization, size, effective radius, inhomogeneity of surrounding generated magnetic field, crystal phase, coordination number of water, electronic relaxation time, and surface modification are summarized. Besides the strategies to improve r2 or r1 values, strategies to increase the in vivo contrast efficiency of IONP have been reviewed from three different aspects, those are introducing second imaging modality to increase the imaging accuracy, endowing IONP with environment response capacity to elevate the signal difference between lesion and normal tissue, and optimizing the interface structure to improve the accumulation amount of IONP in lesion. This detailed review provides a deep understanding of recent researches on the development of high-performance IONP based MRI CAs. It is hoped to trigger deep thinking for design of next generation MRI CAs for early and accurate diagnosis. T2 contrast capacity of iron oxide nanoparticles (IONPs) could be improved based on quantum mechanical outer sphere theory. IONPs could be expand to be used as effective T1 CAs by improving q value, extending τs, and optimizing interface structure. Environment responsive MRI CAs have been developed to improve the diagnosis accuracy. Introducing other imaging contrast moiety into IONPs could increase the contrast efficiency. Optimizing in vivo behavior of IONPs have been proved to enlarge the signal difference between normal tissue and lesion.
Collapse
|
10
|
Karahaliloğlu Z, Kilicay E, Hazer B. Herceptin-conjugated magnetic polystyrene-Agsbox nanoparticles as a theranostic agent for breast cancer. J Biomater Appl 2022; 36:1599-1616. [PMID: 35043697 DOI: 10.1177/08853282211065085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Breast cancer is a malignant tumor, which has derived from cells of the breast. Further, a relatively rapid metastasis, and resistance development against all the conventional drug combinations are major clinical issues in breast cancer patients as well as limitations like toxicity, genetic mutation, and metastasis make difficult the use of conventional therapy methods such as chemotherapy, radiotherapy, and local surgery. Therefore, considering the urgent needs, and high death rate in breast cancer cases, the development of new diagnosis and treatment regimens which diagnosed at the early stage and protected normal tissues required for clinical applications. Recently, the combination of tumor diagnosis and treatment within a single platform is a novel perspective, and magnetic nanoparticles are potential candidate owing to their low toxic effect, biocompatibility, biological degradability, superior magnetic properties, and targeting ability to overcome the problems of conventional diagnosis and therapy techniques. Considering these restrictions and requirements, the goal of this research was to investigate the potential of an innovative theranostic agent, which is soybean oil-based polystyrene (PS)-g-soybean oil graft copolymer containing AgNPs (PS-Agsbox) for treatment and MRI-based diagnosis of cancer. Herein, we designed targeted magnetic PS-Agsbox nanoparticles carrying thymoquinone (TQ) that is known for its anticancer potential against breast cancer, and herceptin (HER), which is to bind to the HER2 receptor protein on the surface of HER2-positive tumor cells, and acts by blocking the effects of it. We have successfully demonstrated selective binding, effective uptake of HER-conjugated magnetic PS-Agsbox nanoparticles into MDA-MB-231 (human breast carcinoma cells, a HER2-underexpressing cell line) and SKBR-3 (human breast cancer cells, a HER2-overexpressing breast cancer cell line) cell lines while no effect against L929 (mouse fibroblast cell line). Moreover, the magnetic resonance (MRI) properties of HER-conjugated magnetic PS-Agsbox nanoparticles were also confirmed.
Collapse
Affiliation(s)
- Zeynep Karahaliloğlu
- Department of Biology, Faculty of Science, 175169Aksaray University, Aksaray, Turkey
| | - Ebru Kilicay
- Vocational High School of Eldivan Health Care Services, 175171Karatekin University, Cankiri, Turkey
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, 518002Kapadokya University, Nevsehir, Turkey.,Department of Chemistry, 518002Bülent Ecevit University, Zonguldak, Turkey.,Department of Nanotechnology Engineering, 518002Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
11
|
Asialoglycoprotein receptor targeted optical and magnetic resonance imaging and therapy of liver fibrosis using pullulan stabilized multi-functional iron oxide nanoprobe. Sci Rep 2021; 11:18324. [PMID: 34526590 PMCID: PMC8443657 DOI: 10.1038/s41598-021-97808-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022] Open
Abstract
Early diagnosis and therapy of liver fibrosis is of utmost importance, especially considering the increased incidence of alcoholic and non-alcoholic liver syndromes. In this work, a systematic study is reported to develop a dual function and biocompatible nanoprobe for liver specific diagnostic and therapeutic applications. A polysaccharide polymer, pullulan stabilized iron oxide nanoparticle (P-SPIONs) enabled high liver specificity via asialogycoprotein receptor mediation. Longitudinal and transverse magnetic relaxation rates of 2.15 and 146.91 mM−1 s−1 respectively and a size of 12 nm, confirmed the T2 weighted magnetic resonance imaging (MRI) efficacy of P-SPIONs. A current of 400A on 5 mg/ml of P-SPIONs raised the temperature above 50 °C, to facilitate effective hyperthermia. Finally, a NIR dye conjugation facilitated targeted dual imaging in liver fibrosis models, in vivo, with favourable histopathological results and recommends its use in early stage diagnosis using MRI and optical imaging, and subsequent therapy using hyperthermia.
Collapse
|
12
|
Kumar A, Nandwana V, Ryoo SR, Ravishankar S, Sharma B, Pervushin K, Dravid VP, Lim S. Magnetoferritin enhances T 2 contrast in magnetic resonance imaging of macrophages. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112282. [PMID: 34474835 DOI: 10.1016/j.msec.2021.112282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 01/15/2023]
Abstract
Imaging of immune cells has wide implications in understanding disease progression and staging. While optical imaging is limited in penetration depth due to light properties, magnetic resonance (MR) imaging provides a more powerful tool for the imaging of deep tissues where immune cells reside. Due to poor MR signal to noise ratio, tracking of such cells typically requires contrast agents. This report presents an in-depth physical characterization and application of archaeal magnetoferritin for MR imaging of macrophages - an important component of the innate immune system that is the first line of defense and first responder in acute inflammation. Magnetoferritin is synthesized by loading iron in apoferritin in anaerobic condition at 65 °C. The loading method results in one order of magnitude enhancement of r1 and r2 relaxivities compared to standard ferritin synthesized by aerobic loading of iron at room temperature. Detailed characterizations of the magnetoferritin revealed a crystalline core structure that is distinct from previously reported ones indicating magnetite form. The magnetite core is more stable in the presence of reducing agents and has higher peroxidase-like activities compared to the core in standard loading. Co-incubation of macrophage cells with magnetoferritin in-vitro shows significantly higher enhancement in T2-MRI contrast of the immune cells compared to standard ferritin.
Collapse
Affiliation(s)
- Ambrish Kumar
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Dr., Block N1.3, Singapore 637457, Singapore; NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637553
| | - Vikas Nandwana
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA; International Institute for Nanotechnology (IIN), Evanston, IL 60208, USA
| | - Soo-Ryoon Ryoo
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA; International Institute for Nanotechnology (IIN), Evanston, IL 60208, USA
| | - Samyukta Ravishankar
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Dr., Block N1.3, Singapore 637457, Singapore
| | - Bhargy Sharma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551
| | - Konstantin Pervushin
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637553; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551
| | - Vinayak P Dravid
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA; International Institute for Nanotechnology (IIN), Evanston, IL 60208, USA; Applied Physics Program, Norhtwestern University, Evanston, IL 60208, USA
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Dr., Block N1.3, Singapore 637457, Singapore; NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637553.
| |
Collapse
|
13
|
Baki A, Remmo A, Löwa N, Wiekhorst F, Bleul R. Albumin-Coated Single-Core Iron Oxide Nanoparticles for Enhanced Molecular Magnetic Imaging (MRI/MPI). Int J Mol Sci 2021; 22:6235. [PMID: 34207769 PMCID: PMC8229057 DOI: 10.3390/ijms22126235] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/20/2022] Open
Abstract
Colloidal stability of magnetic iron oxide nanoparticles (MNP) in physiological environments is crucial for their (bio)medical application. MNP are potential contrast agents for different imaging modalities such as magnetic resonance imaging (MRI) and magnetic particle imaging (MPI). Applied as a hybrid method (MRI/MPI), these are valuable tools for molecular imaging. Continuously synthesized and in-situ stabilized single-core MNP were further modified by albumin coating. Synthesizing and coating of MNP were carried out in aqueous media without using any organic solvent in a simple procedure. The additional steric stabilization with the biocompatible protein, namely bovine serum albumin (BSA), led to potential contrast agents suitable for multimodal (MRI/MPI) imaging. The colloidal stability of BSA-coated MNP was investigated in different sodium chloride concentrations (50 to 150 mM) in short- and long-term incubation (from two hours to one week) using physiochemical characterization techniques such as transmission electron microscopy (TEM) for core size and differential centrifugal sedimentation (DCS) for hydrodynamic size. Magnetic characterization such as magnetic particle spectroscopy (MPS) and nuclear magnetic resonance (NMR) measurements confirmed the successful surface modification as well as exceptional colloidal stability of the relatively large single-core MNP. For comparison, two commercially available MNP systems were investigated, MNP-clusters, the former liver contrast agent (Resovist), and single-core MNP (SHP-30) manufactured by thermal decomposition. The tailored core size, colloidal stability in a physiological environment, and magnetic performance of our MNP indicate their ability to be used as molecular magnetic contrast agents for MPI and MRI.
Collapse
Affiliation(s)
- Abdulkader Baki
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| | - Amani Remmo
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (A.R.); (N.L.); (F.W.)
| | - Norbert Löwa
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (A.R.); (N.L.); (F.W.)
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (A.R.); (N.L.); (F.W.)
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| |
Collapse
|
14
|
Jeon M, Halbert MV, Stephen ZR, Zhang M. Iron Oxide Nanoparticles as T 1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1906539. [PMID: 32495404 PMCID: PMC8022883 DOI: 10.1002/adma.201906539] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 05/23/2023]
Abstract
Gadolinium-based chelates are a mainstay of contrast agents for magnetic resonance imaging (MRI) in the clinic. However, their toxicity elicits severe side effects and the Food and Drug Administration has issued many warnings about their potential retention in patients' bodies, which causes safety concerns. Iron oxide nanoparticles (IONPs) are a potentially attractive alternative, because of their nontoxic and biodegradable nature. Studies in developing IONPs as T1 contrast agents have generated promising results, but the complex, interrelated parameters influencing contrast enhancement make the development difficult, and IONPs suitable for T1 contrast enhancement have yet to make their way to clinical use. Here, the fundamental principles of MRI contrast agents are discussed, and the current status of MRI contrast agents is reviewed with a focus on the advantages and limitations of current T1 contrast agents and the potential of IONPs to serve as safe and improved alternative to gadolinium-based chelates. The past advances and current challenges in developing IONPs as a T1 contrast agent from a materials science perspective are presented, and how each of the key material properties and environment variables affects the performance of IONPs is assessed. Finally, some potential approaches to develop high-performance and clinically relevant T1 contrast agents are discussed.
Collapse
Affiliation(s)
- Mike Jeon
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Mackenzie V Halbert
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Zachary R Stephen
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
15
|
Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. J Control Release 2021; 333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
|
16
|
Cheah P, Brown P, Qu J, Tian B, Patton DL, Zhao Y. Versatile Surface Functionalization of Water-Dispersible Iron Oxide Nanoparticles with Precisely Controlled Sizes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1279-1287. [PMID: 33434432 DOI: 10.1021/acs.langmuir.0c03314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The synthesis of highly water-dispersible iron oxide nanoparticles with surface functional groups and precisely controlled sizes is essential for biomedical application. In this paper, we report a one-pot strategy for versatile surface functionalization. The iron oxide nanoparticles are first synthesized by thermal decomposition of iron(III) acetylacetonate (Fe(acac)3) in diethylene glycol (DEG), and their surfaces are modified by adding the surface ligands at the end of the reaction. The size of iron oxide nanoparticles can be precisely controlled in nanometer scale by continuous growth. This facile synthesis method enables the surface modification with different coating materials such as dopamine (DOPA), polyethylene glycol with thiol end group (thiol-PEG), and poly(acrylic acid) (PAA) onto the iron oxide nanoparticles, introducing new surface functionalities for future biomedical application. From transmission electron microscopy (TEM) and X-ray diffraction (XRD), the morphology and crystal structure are not changed during surface functionalization. The attachment of surface ligands is studied by Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). The surface functional groups are confirmed by X-ray Photoelectron Spectroscopy (XPS). In correlation with the change of hydrodynamic size, PAA coated nanoparticles are found to exhibit outstanding stability in aqueous solution. Furthermore, we demonstrate that the functional groups are available for conjugating with other molecules such as fluorescent dye, showing potential biological applications. Lastly, the magnetic resonance phantom studies demonstrate that iron oxide nanoparticles with PAA coating can be used as T1 and T2 dual-modality contrast agents. Both r1 and r2 relaxivities significantly increase after surface functionalization with PAA, indicating improved sensitivity.
Collapse
Affiliation(s)
- Pohlee Cheah
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, Mississippi 39217, United States
| | - Paul Brown
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, Mississippi 39217, United States
| | - Jing Qu
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, Mississippi 39217, United States
| | - Bin Tian
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, Mississippi 39217, United States
| | - Derek L Patton
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Yongfeng Zhao
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
17
|
Influence of Dextran Molecular Weight on the Physical Properties of Magnetic Nanoparticles for Hyperthermia and MRI Applications. NANOMATERIALS 2020; 10:nano10122468. [PMID: 33317168 PMCID: PMC7763203 DOI: 10.3390/nano10122468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Dextran-coated magnetic nanoparticles are promising biocompatible agents in various biomedical applications, including hyperthermia and magnetic resonance imaging (MRI). However, the influence of dextran molecular weight on the physical properties of dextran-coated magnetic nanoparticles has not been described sufficiently. We synthesise magnetite nanoparticles with a dextran coating using a co-precipitation method and study their physical properties as a function of dextran molecular weight. Several different methods are used to determine the size distribution of the particles, including microscopy, dynamic light scattering, differential centrifugal sedimentation and magnetic measurements. The size of the dextran-coated particles increases with increasing dextran molecular weight. We find that the molecular weight of dextran has a significant effect on the particle size, efficiency, magnetic properties and specific absorption rate. Magnetic hyperthermia measurements show that heating is faster for dextran-coated particles with higher molecular weight. The different molecular weights of the coating also significantly affected its MRI relaxation properties, especially the transversal relaxivity r2. Linear regression analysis reveals a statistically significant dependence of r2 on the differential centrifugal sedimentation diameter. This allows the targeted preparation of dextran-coated magnetic nanoparticles with the desired MRI properties. These results will aid the development of functionalised magnetic nanoparticles for hyperthermia and MRI applications.
Collapse
|
18
|
Huang Y, Jiang K, Zhang X, Chung EJ. The effect of size, charge, and peptide ligand length on kidney targeting by small, organic nanoparticles. Bioeng Transl Med 2020; 5:e10173. [PMID: 33005739 PMCID: PMC7510478 DOI: 10.1002/btm2.10173] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) affects 15% of the US adult population. However, most clinically available drugs for CKD show low bioavailability to the kidneys and non-specific uptake by other organs which results in adverse side effects. Hence, a targeted, drug delivery strategy to enhance kidney drug delivery is highly desired. Recently, our group developed small, organic nanoparticles called peptide amphiphile micelles (PAM) functionalized with the zwitterionic peptide ligand, (KKEEE)3K, that passage through the glomerular filtration barrier for kidney accumulation. Despite high bioavailability to the kidneys, these micelles also accumulated in the liver to a similar extent. To further optimize the physicochemical properties and develop design rules for kidney-targeting micelles, we synthesized a library of PAMs of varying size, charge, and peptide repeats. Specifically, variations of the original (KKEEE)3K peptide including (KKEEE)2K, (KKEEE)K, (EEKKK)3E, (EEKKK)2E, (EEKKK)E, KKKKK, and EEEEE were functionalized onto nanoparticles, and peptide surface density and PEG linker molecular weight were altered. After characterization with transmission electron microscopy (TEM) and dynamic light scattering (DLS), nanoparticles were intravenously administered into wildtype mice, and biodistribution was assessed through ex vivo imaging. All micelles localized to the kidneys, but nanoparticles that are positively-charged, close to the renal filtration size cut-off, and consisted of additional zwitterionic peptide sequences generally showed higher renal accumulation. Upon immunohistochemistry, micelles were confirmed to bind to the multiligand receptor, megalin, and histological analyses showed no tissue damage. Our study provides insight into the design of micelle carriers for kidney targeting and their potential for future therapeutic application.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kairui Jiang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xuting Zhang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Eun Ji Chung
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Medicine, Division of Nephrology and HypertensionUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, Division of Vascular Surgery and Endovascular TherapyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
19
|
Hou Z, Liu Y, Xu J, Zhu J. Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. NANOSCALE 2020; 12:14957-14975. [PMID: 32648868 DOI: 10.1039/d0nr03346d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) have wide applications in magnetic resonance imaging (MRI), biomedicine, drug delivery, hyperthermia therapy, catalysis, magnetic separation, and others. However, these applications are usually limited by irreversible agglomeration of IONPs in aqueous media because of their dipole-dipole interactions, and their poor stability. A protecting polymeric shell provides IONPs with not only enhanced long-term stability, but also the functionality of polymer shells. Therefore, polymer-grafted IONPs have recently attracted much attention of scientists. In this tutorial review, we will present the current strategies for grafting polymers onto the surface of IONPs, basically including "grafting from" and "grafting to" methods. Available functional groups and chemical reactions, which could be employed to bind polymers onto the IONP surface, are comprehensively summarized. Moreover, the applications of polymer-grafted IONPs will be briefly discussed. Finally, future challenges and perspectives in the synthesis and application of polymer-grafted IONPs will also be discussed.
Collapse
Affiliation(s)
- Zaiyan Hou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Yijing Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
20
|
Martínez-Banderas AI, Aires A, Plaza-García S, Colás L, Moreno JA, Ravasi T, Merzaban JS, Ramos-Cabrer P, Cortajarena AL, Kosel J. Magnetic core-shell nanowires as MRI contrast agents for cell tracking. J Nanobiotechnology 2020; 18:42. [PMID: 32164746 PMCID: PMC7069006 DOI: 10.1186/s12951-020-00597-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Identifying the precise location of cells and their migration dynamics is of utmost importance for achieving the therapeutic potential of cells after implantation into a host. Magnetic resonance imaging is a suitable, non-invasive technique for cell monitoring when used in combination with contrast agents. RESULTS This work shows that nanowires with an iron core and an iron oxide shell are excellent materials for this application, due to their customizable magnetic properties and biocompatibility. The longitudinal and transverse magnetic relaxivities of the core-shell nanowires were evaluated at 1.5 T, revealing a high performance as T2 contrast agents. Different levels of oxidation and various surface coatings were tested at 7 T. Their effects on the T2 contrast were reflected in the tailored transverse relaxivities. Finally, the detection of nanowire-labeled breast cancer cells was demonstrated in T2-weighted images of cells implanted in both, in vitro in tissue-mimicking phantoms and in vivo in mouse brain. Labeling the cells with a nanowire concentration of 0.8 μg of Fe/mL allowed the detection of 25 cells/µL in vitro, diminishing the possibility of side effects. This performance enabled an efficient labelling for high-resolution cell detection after in vivo implantation (~ 10 nanowire-labeled cells) over a minimum of 40 days. CONCLUSIONS Iron-iron oxide core-shell nanowires enabled the efficient and longitudinal cellular detection through magnetic resonance imaging acting as T2 contrast agents. Combined with the possibility of magnetic guidance as well as triggering of cellular responses, for instance by the recently discovered strong photothermal response, opens the door to new horizons in cell therapy and make iron-iron oxide core-shell nanowires a promising theranostic platform.
Collapse
Affiliation(s)
- Aldo Isaac Martínez-Banderas
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Antonio Aires
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Sandra Plaza-García
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Lorena Colás
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Julián A Moreno
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Timothy Ravasi
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Jasmeen S Merzaban
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Pedro Ramos-Cabrer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Mª Díaz de Haro 3, 48013, Bilbao, Spain.
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Mª Díaz de Haro 3, 48013, Bilbao, Spain.
- IMDEA Nanociencia and Nanobiotechnology Unit Associated to Centro Nacional de Biotecnología (CNB-CSIC), Campus Universitario de Cantoblanco, 28049, Madrid, Spain.
| | - Jürgen Kosel
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia.
| |
Collapse
|
21
|
Magnetic Materials and Systems: Domain Structure Visualization and Other Characterization Techniques for the Application in the Materials Science and Biomedicine. INORGANICS 2020. [DOI: 10.3390/inorganics8010006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Magnetic structures have attracted a great interest due to their multiple applications, from physics to biomedicine. Several techniques are currently employed to investigate magnetic characteristics and other physicochemical properties of magnetic structures. The major objective of this review is to summarize the current knowledge on the usage, advances, advantages, and disadvantages of a large number of techniques that are currently available to characterize magnetic systems. The present review, aiming at helping in the choice of the most suitable method as appropriate, is divided into three sections dedicated to characterization techniques. Firstly, the magnetism and magnetization (hysteresis) techniques are introduced. Secondly, the visualization methods of the domain structures by means of different probes are illustrated. Lastly, the characterization of magnetic nanosystems in view of possible biomedical applications is discussed, including the exploitation of magnetism in imaging for cell tracking/visualization of pathological alterations in living systems (mainly by magnetic resonance imaging, MRI).
Collapse
|
22
|
Lahooti A, Shanehsazzadeh S, Laurent S. Preliminary studies of 68Ga-NODA-USPION-BBN as a dual-modality contrast agent for use in positron emission tomography/magnetic resonance imaging. NANOTECHNOLOGY 2020; 31:015102. [PMID: 31519003 DOI: 10.1088/1361-6528/ab4446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aim of this study was to propose a new dual-modality nanoprobe for positron emission tomography/magnetic resonance imaging (PET/MRI) for the early diagnosis of breast cancer. For synthesis of the nanoprobe, polyethylene glycol-coated ultra-small superparamagnetic iron-oxide nanoparticles (USPION) armed with NODA-GA chelate and grafted with bombesin (BBN) were radiolabeled with 68Ga. After characterization, in vitro studies to evaluate the cell binding affinity of the nanoprobe were done by performing Perl's Prussian blue cell staining and MRI imaging. Finally, for in vivo studies, magnetic resonance images were taken in SCID mice bearing breast cancer tumor pre- and post-injection, and a multimodal nanoScan PET/computed tomography was used to perform preclinical imaging of the radiolabeled nanoparticles. Afterwards, a biodistribution study was done on sacrificed mice. The results showed that the highest r1 and r2 values were measured for USPIONs at 20 and 60 MHz, respectively. From the in vitro studies, the optical density of the cells after incubation increased with the increase of the iron concentration and the duration of incubation. However, the T2 values decreased when the iron concentration increased. Furthermore, from in vivo studies, the T2 and signal intensity decreased during the elapsed time post-injection in the tumor area. In this study, the in vitro studies showed that the affinity of cancer cells to nanoprobe increases meaningfully after conjugation with BBN, and also by increasing the duration of incubation and the iron concentration. Meanwhile, the in vivo results confirmed that the blood clearance of the nanoprobe happened during the first 120 min post-injection of the radiolabeled nanoprobe and also confirmed the targeting ability of that to a gastrin-releasing peptide receptor positive tumor.
Collapse
Affiliation(s)
- Afsaneh Lahooti
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 23 Place du Parc, B-7000, Mons, Belgium
| | | | | |
Collapse
|
23
|
Ha PT, Le TTH, Ung TDT, Do HD, Doan BT, Mai TTT, Pham HN, Hoang TMN, Phan KS, Bui TQ. Properties and bioeffects of magneto–near infrared nanoparticles on cancer diagnosis and treatment. NEW J CHEM 2020. [DOI: 10.1039/d0nj02848g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The developed nanosystem could be an effective cancer drug deliverer, MRI contrast enhancer and near infrared fluorescent probe.
Collapse
Affiliation(s)
- Phuong Thu Ha
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | - Thi Thu Huong Le
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
- Faculty of Environment, Vietnam National University of Agriculture
| | - Thi Dieu Thuy Ung
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | - Hai Doan Do
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
- The Unit for Chemical and Biological Technologies for Health (UTCBS) - University Paris Descartes
| | - Bich Thuy Doan
- The Unit for Chemical and Biological Technologies for Health (UTCBS) - University Paris Descartes
- Chimie ParisTech
- INSERM U1022
- CNRS UMR8258
- Paris
| | - Thi Thu Trang Mai
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | - Hong Nam Pham
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | | | - Ke Son Phan
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | | |
Collapse
|
24
|
Radiolabeled PET/MRI Nanoparticles for Tumor Imaging. J Clin Med 2019; 9:jcm9010089. [PMID: 31905769 PMCID: PMC7019574 DOI: 10.3390/jcm9010089] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
The development of integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) scanners opened a new scenario for cancer diagnosis, treatment, and follow-up. Multimodal imaging combines functional and morphological information from different modalities, which, singularly, cannot provide a comprehensive pathophysiological overview. Molecular imaging exploits multimodal imaging in order to obtain information at a biological and cellular level; in this way, it is possible to track biological pathways and discover many typical tumoral features. In this context, nanoparticle-based contrast agents (CAs) can improve probe biocompatibility and biodistribution, prolonging blood half-life to achieve specific target accumulation and non-toxicity. In addition, CAs can be simultaneously delivered with drugs or, in general, therapeutic agents gathering a dual diagnostic and therapeutic effect in order to perform cancer diagnosis and treatment simultaneous. The way for personalized medicine is not so far. Herein, we report principles, characteristics, applications, and concerns of nanoparticle (NP)-based PET/MRI CAs.
Collapse
|
25
|
Tong S, Zhu H, Bao G. Magnetic Iron Oxide Nanoparticles for Disease Detection and Therapy. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2019; 31:86-99. [PMID: 32831620 PMCID: PMC7441585 DOI: 10.1016/j.mattod.2019.06.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetic iron oxide nanoparticles (MIONs) are among the first generation of nanomaterials that have advanced to clinic use. A broad range of biomedical techniques has been developed by combining the versatile nanomagnetism of MIONs with various forms of applied magnetic fields. MIONs can generate imaging contrast and provide mechanical/thermal energy in vivo in response to an external magnetic field, a special feature that distinguishes MIONs from other nanomaterials. These properties offer unique opportunities for nanomaterials engineering in biomedical research and clinical interventions. The past few decades have witnessed the evolution of the applications of MIONs from conventional drug delivery and hyperthermia to the regulation of molecular and cellular processes in the body. Here we review the most recent development in this field, including clinical studies of MIONs and the emerging techniques that may contribute to future innovation in medicine.
Collapse
Affiliation(s)
- Sheng Tong
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Haibao Zhu
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| |
Collapse
|
26
|
Xiao S, Yu X, Zhang L, Zhang Y, Fan W, Sun T, Zhou C, Liu Y, Liu Y, Gong M, Zhang D. Synthesis Of PEG-Coated, Ultrasmall, Manganese-Doped Iron Oxide Nanoparticles With High Relaxivity For T 1/T 2 Dual-Contrast Magnetic Resonance Imaging. Int J Nanomedicine 2019; 14:8499-8507. [PMID: 31695377 PMCID: PMC6817351 DOI: 10.2147/ijn.s219749] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/30/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Beyond magnetic resonance imaging (MRI), which has been widely used clinically, molecular MRI (mMRI) can further provide qualitative and quantitative information at the cellular and molecular levels. However, the diagnostic accuracy may not be satisfactory via single-contrast mMRI due to some interferences in vivo. T1/T2 dual-contrast MRI using the same contrast agent (CA) could significantly improve the detection accuracy. Therefore, in this study, we fabricated poly(ethylene glycol) (PEG)-coated, manganese-doped iron oxide nanocomposites (Mn-IONPs@PEG) as T1/T2 dual-contrast CA, and evaluated its feasibility of T1/T2 dual-contrast MRI in vitro and in vivo. METHODS Mn-IONPs were prepared by the thermal decomposition of iron-eruciate and manganese-oleate complexes and were coated with 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy[polyethylene glycol]-2000) (DSPE-PEG 2000). The physicochemical properties and cytotoxicity of the Mn-IONPs were fully characterized, followed by MRI in vitro and in vivo. RESULTS Ultrasmall 3 nm-sized nanoparticles were successfully prepared and were identified using transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction. After coating with DSPE-PEG, the Mn-IONPs@PEG displayed excellent hydrophilicity and good biocompatibility. Due to the manganese-doping and PEG coating, the Mn-IONPs@PEG showed good relaxivity in vitro. Especially, the Mn-IONPs@PEG coated with DSPE-PEG following a mass ratio to Mn-IONPs of 1:20 showed harmonious longitudinal relaxivity (r 1 = 7.1 mM-1s-1) and transversal relaxivity (r 2 = 120.9 mM-1s-1), making it a better candidate for T1/T2 dual-contrast mMRI. After administrated via a caudal vein, the Mn-IONPs@PEG can induce significant enhancement in both T1-weighted and T2-weighted MR images and the time at 10 mins after injection was regarded as a suitable time for imaging because both the T1 and T2 enhancement were optimum at that time. CONCLUSION The obtained Mn-IONPs@PEG exhibited good r 1 and r 2 and was a reasonable candidate for T1/T2 dual-contrast mMRI.
Collapse
Affiliation(s)
- Shilin Xiao
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xian Yu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ya Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Weijie Fan
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Tao Sun
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Chunyu Zhou
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Yun Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Yiding Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Mingfu Gong
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
27
|
Xie M, Liu S, Butch CJ, Liu S, Wang Z, Wang J, Zhang X, Nie S, Lu Q, Wang Y. Succinylated heparin monolayer coating vastly increases superparamagnetic iron oxide nanoparticle T 2 proton relaxivity. NANOSCALE 2019; 11:12905-12914. [PMID: 31250871 DOI: 10.1039/c9nr03965a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have a history of clinical use as contrast agents in T2 weighted MRI, though relatively low T2 relaxivity has caused them to fall out of favor as new faster MRI techniques have gained prominence. We demonstrate that SPIONs coated with a monolayer of succinylated heparin (Su-HP-SPIONs) exhibit over four-fold increased T2 relaxivity (460 mM-1 s-1) as compared to the clinically approved SPION-based contrast agent Feridex (98.3 mM-1 s-1) due to greatly increased water interaction from increased hydrophilicity and thinner coating as supported by our proposed parametric model. In vivo, the performance increase of the Su-HP-SPIONs in T2 MRI imaging of xenograft tumors is ten-fold that of our in-house synthesized Feridex analogue, due to better tumor localization from the smaller size imparted by the thinner coating. In addition to these significantly improved magnetic properties, the succinylated heparin coating also exhibits favorable synthetic reproducibility, solution stability, and biocompatibility. These findings demonstrate the untapped potential of SPIONs as possible high performance clinical T2 contrast agents.
Collapse
Affiliation(s)
- Manman Xie
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Shijia Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China. and Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Christopher J Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Shaowei Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Ziyang Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Jianquan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Xudong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Shuming Nie
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China. and Department of Biomedical Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qian Lu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
28
|
Ruiz A, Alpízar A, Beola L, Rubio C, Gavilán H, Marciello M, Rodríguez-Ramiro I, Ciordia S, Morris CJ, Morales MDP. Understanding the Influence of a Bifunctional Polyethylene Glycol Derivative in Protein Corona Formation around Iron Oxide Nanoparticles. MATERIALS 2019; 12:ma12142218. [PMID: 31295825 PMCID: PMC6678275 DOI: 10.3390/ma12142218] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
Superparamagnetic iron oxide nanoparticles are one of the most prominent agents used in theranostic applications, with MRI imaging the main application assessed. The biomolecular interface formed on the surface of a nanoparticle in a biological medium determines its behaviour in vitro and in vivo. In this study, we have compared the formation of the protein corona on highly monodisperse iron oxide nanoparticles with two different coatings, dimercaptosuccinic acid (DMSA), and after conjugation, with a bifunctional polyethylene glycol (PEG)-derived molecule (2000 Da) in the presence of Wistar rat plasma. The protein fingerprints around the nanoparticles were analysed in an extensive proteomic study. The results presented in this work indicate that the composition of the protein corona is very difficult to predict. Proteins from different functional categories—cell components, lipoproteins, complement, coagulation, immunoglobulins, enzymes and transport proteins—were identified in all samples with very small variability. Although both types of nanoparticles have similar amounts of bonded proteins, very slight differences in the composition of the corona might explain the variation observed in the uptake and biotransformation of these nanoparticles in Caco-2 and RAW 264.7 cells. Cytotoxicity was also studied using a standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Controlling nanoparticles’ reactivity to the biological environment by deciding on its surface functionalization may suggest new routes in the control of the biodistribution, biodegradation and clearance of multifunctional nanomedicines.
Collapse
Affiliation(s)
- Amalia Ruiz
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Adán Alpízar
- Centro Nacional de Biotecnología (CNB)/CSIC, Darwin, 3, 28049 Madrid, Spain
| | - Lilianne Beola
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC/Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Carmen Rubio
- Centro de Biología Molecular "Severo Ochoa" (CBMSO)/UAM-CSIC, Nicolás Cabrera, 1, 28049 Madrid, Spain
| | - Helena Gavilán
- Instituto de Ciencia de Materiales de Madrid (ICMM)/CSIC, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Marzia Marciello
- Instituto de Ciencia de Materiales de Madrid (ICMM)/CSIC, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
- Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | | | - Sergio Ciordia
- Centro Nacional de Biotecnología (CNB)/CSIC, Darwin, 3, 28049 Madrid, Spain
| | - Christopher J Morris
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - María Del Puerto Morales
- Instituto de Ciencia de Materiales de Madrid (ICMM)/CSIC, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
29
|
Klein T, Parkin J, Jongh PAJM, Esser L, Sepehrizadeh T, Zheng G, Veer M, Alt K, Hagemeyer CE, Haddleton DM, Davis TP, Thelakkat M, Kempe K. Functional Brush Poly(2‐ethyl‐2‐oxazine)s: Synthesis by CROP and RAFT, Thermoresponsiveness and Grafting onto Iron Oxide Nanoparticles. Macromol Rapid Commun 2019; 40:e1800911. [DOI: 10.1002/marc.201800911] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/29/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Tobias Klein
- ARC Centre of Excellence in Convergent Bio‐Nano Science & Technology Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Applied Functional Polymers Macromolecular Chemistry I University of Bayreuth 95440 Bayreuth Germany
| | - Joshua Parkin
- ARC Centre of Excellence in Convergent Bio‐Nano Science & Technology Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Chemistry Department University of Warwick Coventry CV4 7AL UK
| | | | - Lars Esser
- ARC Centre of Excellence in Convergent Bio‐Nano Science & Technology Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| | - Tara Sepehrizadeh
- Monash Biomedical Imaging Monash University Wellington Road Clayton VIC 3168 Australia
| | - Gang Zheng
- Monash Biomedical Imaging Monash University Wellington Road Clayton VIC 3168 Australia
| | - Michael Veer
- Monash Biomedical Imaging Monash University Wellington Road Clayton VIC 3168 Australia
| | - Karen Alt
- Australian Centre for Blood Diseases Monash University Melbourne VIC 3004 Australia
| | | | | | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio‐Nano Science & Technology Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| | - Mukundan Thelakkat
- Applied Functional Polymers Macromolecular Chemistry I University of Bayreuth 95440 Bayreuth Germany
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio‐Nano Science & Technology Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| |
Collapse
|
30
|
Zhou Z, Yang L, Gao J, Chen X. Structure-Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804567. [PMID: 30600553 PMCID: PMC6392011 DOI: 10.1002/adma.201804567] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/17/2018] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon-Bloembergen-Morgan and the outer-sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. Recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales is reviewed, namely, the structure-relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. A special emphasis is placed on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, it is hoped that this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields.
Collapse
Affiliation(s)
- Zijian Zhou
- † State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- ‡ Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijiao Yang
- † State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- † State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoyuan Chen
- ‡ Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
One-pot embedding of iron oxides and Gd(III) complexes into silica nanoparticles—Morphology and aggregation effects on MRI dual contrasting ability. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Poon C, Gallo J, Joo J, Chang T, Bañobre-López M, Chung EJ. Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis. J Nanobiotechnology 2018; 16:92. [PMID: 30442135 PMCID: PMC6238287 DOI: 10.1186/s12951-018-0420-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/07/2018] [Indexed: 01/17/2023] Open
Abstract
Background Atherosclerosis, a major source of cardiovascular disease, is asymptomatic for decades until the activation of thrombosis and the rupture of enlarged plaques, resulting in acute coronary syndromes and sudden cardiac arrest. Magnetic resonance imaging (MRI) is a noninvasive nuclear imaging technique to assess the degree of atherosclerotic plaque with high spatial resolution and excellent soft tissue contrast. However, MRI lacks sensitivity for preventive medicine, which limits the ability to observe the onset of vulnerable plaques. In this study, we engineered hybrid metal oxide-peptide amphiphile micelles (HMO-Ms) that combine an inorganic, magnetic iron oxide or manganese oxide inner core with organic, fibrin-targeting peptide amphiphiles, consisting of the sequence CREKA, for potential MRI imaging of thrombosis on atherosclerotic plaques. Results Hybrid metal oxide-peptide amphiphile micelles, consisting of an iron oxide (Fe-Ms) or manganese oxide (Mn-Ms) core with CREKA peptides, were self-assembled into 20–30 nm spherical nanoparticles, as confirmed by dynamic light scattering and transmission electron microscopy. These hybrid nanoparticles were found to be biocompatible with human aortic endothelial cells in vitro, and HMO-Ms bound to human clots three to five times more efficiently than its non-targeted counterparts. Relaxivity studies showed ultra-high r2 value of 457 mM−1 s−1 and r1 value of 0.48 mM−1 s−1 for Fe-Ms and Mn-Ms, respectively. In vitro, MR imaging studies demonstrated the targeting capability of CREKA-functionalized hybrid nanoparticles with twofold enhancement of MR signals. Conclusion This novel hybrid class of MR agents has potential as a non-invasive imaging method that specifically detects thrombosis during the pathogenesis of atherosclerosis. Electronic supplementary material The online version of this article (10.1186/s12951-018-0420-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher Poon
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab, Department of Life Sciences, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga, Portugal
| | - Johan Joo
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA
| | - Timothy Chang
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Department of Life Sciences, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga, Portugal.
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA. .,Department of Materials Science and Chemical Engineering, University of Southern California, 925 Bloom Walk, Los Angeles, CA, 90089, USA. .,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. .,Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. .,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Fresnais J, Ma Q, Thai L, Porion P, Levitz P, Rollet AL. NMR relaxivity of coated and non-coated size-sorted maghemite nanoparticles. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1527410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jérôme Fresnais
- CNRS, Laboratoire de Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), Sorbonne Université, Paris, France
| | - QianQian Ma
- CNRS, Laboratoire de Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), Sorbonne Université, Paris, France
| | - Linda Thai
- CNRS, Laboratoire de Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), Sorbonne Université, Paris, France
| | - Patrice Porion
- CNRS, Laboratoire Interfaces, Confinement, Matériaux et Nanostructures (ICMN), Université d’Orléans, Orléans, France
| | - Pierre Levitz
- CNRS, Laboratoire de Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), Sorbonne Université, Paris, France
| | - Anne-Laure Rollet
- CNRS, Laboratoire de Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), Sorbonne Université, Paris, France
| |
Collapse
|
34
|
Meisel CL, Bainbridge P, Mitsouras D, Wong JY. Targeted Nanoparticle Binding to Hydroxyapatite in a High Serum Environment for Early Detection of Heart Disease. ACS APPLIED NANO MATERIALS 2018; 1:4927-4939. [PMID: 31867573 PMCID: PMC6924636 DOI: 10.1021/acsanm.8b01099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The impact of the protein-rich in vivo environment on targeted binding of functionalized nanoparticles has been an active field of research over the past several years. Current research aims at better understanding the nature of the protein corona and how it may be possible for targeted binding to occur even in the presence of serum. Much of the current research focuses on nanoparticles targeted to particular cell receptors or features with the aim of cellular uptake. However, similar research has not been performed on nanoparticles that are targeted to non-protein disease features, such as hydroxyapatite (HA). HA is a crystalline calcium-phosphate mineral that is present in large quantities in bone, and in smaller quantities in diseased cardiovascular tissue in cases of atherosclerosis or various stenoses. Our work aims to gain a better understanding of the behavior of PEGylated, peptide-coated superparamagnetic iron oxide nanoparticles (SPIONs) in a biologically-relevant high-protein environment (50% serum). We first determined that specific binding to HA occurs at significantly higher rates than non-specific binding in the absence of serum protein. We then examined nanoparticle interactions with serum proteins, including determination of the relative quantities of protein in the hard vs. soft protein corona. Finally, we examined specific and non-specific binding of targeted SPIONs in 50% serum, and determined that targeted binding may still occur with significant (p < 0.05) selectivity. We hypothesize that this may be because the nature of the binding interactions between the peptides and the HA are, by definition, less specific than the protein-protein interactions required for nanoparticles to bind to specific cells or cell features. These results suggest that these targeted SPIONs may be further developed for use in early detection of heart diseases such as atherosclerosis and aortic stenosis.
Collapse
Affiliation(s)
- Cari L. Meisel
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Polly Bainbridge
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Dimitrios Mitsouras
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215
- Department of Biochemistry Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, 501 Smyth Rd., Ottowa, ON K1H 3L7 Canada
| | - Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| |
Collapse
|
35
|
Yoo E, Liu Y, Nwasike CA, Freeman SR, DiPaolo BC, Cordovez B, Doiron AL. Surface characterization of nanoparticles using near-field light scattering. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1228-1238. [PMID: 29765800 PMCID: PMC5942383 DOI: 10.3762/bjnano.9.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
The effect of nanoparticle surface coating characteristics on colloidal stability in solution is a critical parameter in understanding the potential applications of nanoparticles, especially in biomedicine. Here we explored the modification of the surface of poly(ethylene glycol)-coated superparamagnetic iron oxide nanoparticles (PEG-SPIOs) with the synthetic pseudotannin polygallol via interpolymer complexation (IPC). Changes in particle size and zeta potential were indirectly assessed via differences between PEG-SPIOs and IPC-SPIOs in particle velocity and scattering intensity using near-field light scattering. The local scattering intensity is correlated with the distance between the particle and waveguide, which is affected by the size of the particle (coating thickness) as well as the interactions between the particle and waveguide (related to the zeta potential of the coating). Therefore, we report here the use of near-field light scattering using nanophotonic force microscopy (using a NanoTweezerTM instrument, Halo Labs) to determine the changes that occurred in hydrated particle characteristics, which is accompanied by an analytical model. Furthermore, we found that altering the salt concentration of the suspension solution affected the velocity of particles due to the change of dielectric constant and viscosity of the solution. These findings suggest that this technique is suitable for studying particle surface changes and perhaps can be used to dynamically study reaction kinetics at the particle surface.
Collapse
Affiliation(s)
- Eunsoo Yoo
- Department of Biomedical Engineering, Binghamton University (SUNY), P.O. Box 6000 Binghamton, NY 13902, USA
| | - Yizhong Liu
- Department of Biomedical Engineering, Binghamton University (SUNY), P.O. Box 6000 Binghamton, NY 13902, USA
| | - Chukwuazam A Nwasike
- Department of Biomedical Engineering, Binghamton University (SUNY), P.O. Box 6000 Binghamton, NY 13902, USA
| | - Sebastian R Freeman
- Department of Biomedical Engineering, Binghamton University (SUNY), P.O. Box 6000 Binghamton, NY 13902, USA
| | - Brian C DiPaolo
- Optofluidics, Inc., 3711 Market St. Philadelphia, PA 19104, USA
| | | | - Amber L Doiron
- Department of Biomedical Engineering, Binghamton University (SUNY), P.O. Box 6000 Binghamton, NY 13902, USA
| |
Collapse
|
36
|
Zhang W, Liu L, Chen H, Hu K, Delahunty I, Gao S, Xie J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018; 8:2521-2548. [PMID: 29721097 PMCID: PMC5928907 DOI: 10.7150/thno.23789] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022] Open
Abstract
Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact.
Collapse
Affiliation(s)
- Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Lin Liu
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Hongmin Chen
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ian Delahunty
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
37
|
Boitard C, Rollet AL, Ménager C, Griffete N. Surface-initiated synthesis of bulk-imprinted magnetic polymers for protein recognition. Chem Commun (Camb) 2018; 53:8846-8849. [PMID: 28736780 DOI: 10.1039/c7cc04284a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bulk imprinting of proteins was used combined with a grafting approach onto maghemite nanoparticles to develop a faster and simpler polymerization method for the synthesis of magnetic protein imprinted polymers with very high adsorption capacities and very strong affinity constants.
Collapse
Affiliation(s)
- Charlotte Boitard
- UMR 8234, Laboratoire Physico-chimie des Electrolytes, Nanosystèmes InterfaciauX (PHENIX), UPMC Univ Paris 06, Sorbonne Universités, 4 place Jussieu - case 51, 75252 Paris cedex 05, France
| | | | | | | |
Collapse
|
38
|
Herman K, Lang ME, Pich A. Tunable clustering of magnetic nanoparticles in microgels: enhanced magnetic relaxivity by modulation of network architecture. NANOSCALE 2018; 10:3884-3892. [PMID: 29419839 DOI: 10.1039/c7nr07539a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present work we used microgels as colloidal containers for the loading of hydrophobic magnetic nanoparticles using the solvent exchange method. We varied systematically two parameters: (i) the crosslinking degree of microgels (1-4.5 mol% crosslinker) and (ii) loading of hydrophobic magnetite nanoparticles (d = 7 nm) in microgels (2-10 wt%). The experimental data show that the interplay between these two parameters provides efficient control over the clustering of magnetic nanoparticles in the microgel structure. Transverse magnetization relaxation measurements indicate that the formation of nanoparticle clusters in microgels induces non-linear enhancement of the relaxivity with the increase of nanoparticle loading in microgels. The results suggest that the modulation of the microgel network architecture can be efficiently applied to trigger self-assembly processes inside microgels and design hybrid colloids with unusual morphologies and properties.
Collapse
Affiliation(s)
- K Herman
- DWI Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, Aachen, 52074, Germany
| | | | | |
Collapse
|
39
|
Bonvin D, Bastiaansen JAM, Stuber M, Hofmann H, Mionić Ebersold M. ATP and NADPH coated iron oxide nanoparticles for targeting of highly metabolic tumor cells. J Mater Chem B 2017; 5:8353-8365. [PMID: 32264504 DOI: 10.1039/c7tb01935a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metabolic activity of tumor cells is known to be higher as compared to that of normal cells, which has been previously exploited to deliver nanomedicines to highly metabolic tumor cells. Unfortunately, current strategies, which are mostly based on complex energy sources, such as sugars, showed insufficient accumulation at the target sites. We here report the coating of IONPs with two essential units of cellular metabolism: adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). ATP and NADPH were directly bound to the IONPs' surface using a simple aqueous method. Both molecules were used as coatings, i.e. as stabilizing agents, but also simultaneously as targeting molecules to deliver IONPs to highly metabolic tumor cells. Indeed, we found that the uptake of ATP-IONPs and NADPH-IONPs is correlated with the metabolic activity of tumor cells, especially regarding their cellular ATP levels and NADPH consumption. We also measured one of the highest MRI r2 relaxivities for both ATP-IONPs and NADPH-IONPs. With the direct coating of IONPs with ATP and NADPH, we therefore provide an optimal platform to stabilize IONPs and at the same time promising properties for the targeting and detection of highly metabolic tumor cells.
Collapse
Affiliation(s)
- D Bonvin
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Preiss MR, Cournoyer E, Paquin KL, Vuono EA, Belanger K, Walsh E, Howlett NG, Bothun GD. Tuning the Multifunctionality of Iron Oxide Nanoparticles Using Self-Assembled Mixed Lipid Layers. Bioconjug Chem 2017; 28:2729-2736. [PMID: 29035511 DOI: 10.1021/acs.bioconjchem.7b00483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We present an approach to tuning the multifunctionality of iron oxide nanoparticles (IONs) using mixed self-assembled monolayers of cationic lipid and anionic polyethylene glycol (PEG) lipid. By forming stable, monodispersed lipid-coated IONs (L-IONs) through a solvent-exchange technique, we were able to demonstrate the relationship between surface charge, the magnetic transverse relaxivity (r2 from T2-weighted images), and the binding capacity of small interfering ribonucleic acids (siRNAs) as a function of the cationic-to-anionic (PEG) lipid ratio. These properties were controlled by the cationic charge and the PEG conformation; relaxivity and siRNA binding could be varied in the mushroom and brush regimes but not at high brush densities. In vitro results combining cell viability, uptake, and transfection efficiency using HeLa cells suggest that the functional physicochemical and biological properties of L-IONs may be best achieved using catanionic lipid coatings near equimolar ratios of cationic to anionic PEG-lipids.
Collapse
Affiliation(s)
- Matthew R Preiss
- Department of Chemical Engineering, University of Rhode Island , 51 Lower College Road, Kingston, Rhode Island 02881, United States
| | - Eily Cournoyer
- Department of Chemical Engineering, University of Rhode Island , 51 Lower College Road, Kingston, Rhode Island 02881, United States
| | - Karissa L Paquin
- Department of Cell and Molecular Biology, University of Rhode Island , 379 CBLS, 120 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Elizabeth A Vuono
- Department of Cell and Molecular Biology, University of Rhode Island , 379 CBLS, 120 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Kayla Belanger
- Department of Chemical Engineering, University of Rhode Island , 51 Lower College Road, Kingston, Rhode Island 02881, United States
| | - Edward Walsh
- Department of Neuroscience, Department of Diagnostic Imaging, Institute for Brain Science, Institute for Molecular and Nanoscale Innovation, Associate Director for MRI Physics, Brown University , Sidney E. Frank Hall, 185 Meeting Street, Providence, Rhode Island 02912, United States
| | - Niall G Howlett
- Department of Cell and Molecular Biology, University of Rhode Island , 379 CBLS, 120 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Geoffrey D Bothun
- Department of Chemical Engineering, University of Rhode Island , 51 Lower College Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
41
|
Pellico J, Ruiz-Cabello J, Fernández-Barahona I, Gutiérrez L, Lechuga-Vieco AV, Enríquez JA, Morales MP, Herranz F. One-Step Fast Synthesis of Nanoparticles for MRI: Coating Chemistry as the Key Variable Determining Positive or Negative Contrast. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10239-10247. [PMID: 28882034 DOI: 10.1021/acs.langmuir.7b01759] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Iron oxide nanomaterial is a typical example of a magnetic resonance imaging probe for negative contrast. It has also been shown how this nanomaterial can be synthesized for positive contrast by modification of the composition and size of the core. However, the role of the organic coating in the relaxometric properties is largely unexplored. Here, maghemite nanoparticles with either excellent positive or very good negative contrast performance are obtained by modifying coating thickness while the core is kept unchanged. Different nanoparticles with tailored features as contrast agent according to the coating layer thickness have been obtained in a single-step microwave-driven synthesis by heating at different temperatures. A comprehensive analysis is conducted of how the composition and structure of the coating affects the final magnetic, relaxometric, and imaging performance. These results show how the organic coating plays a fundamental role in the intrinsic relaxometric parameters of iron oxide-based contrast media.
Collapse
Affiliation(s)
- Juan Pellico
- Advanced Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBER Enfermedades Respiratorias (CIBERES) , Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Jesús Ruiz-Cabello
- Advanced Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBER Enfermedades Respiratorias (CIBERES) , Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBER Enfermedades Respiratorias (CIBERES) , Melchor Fernández-Almagro 3, 28029 Madrid, Spain
| | - Irene Fernández-Barahona
- Advanced Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBER Enfermedades Respiratorias (CIBERES) , Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Lucía Gutiérrez
- Departamento de Biomateriales y Materiales Bioinspirados, Instituto de Ciencia de Materiales de Madrid, CSIC , Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
- Departamento de Química Analítica, Instituto de Nanociencia de Aragón, Universidad de Zaragoza , Mariano Esquillor, s/n, 50018. Zaragoza, Spain
| | - Ana V Lechuga-Vieco
- Advanced Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBER Enfermedades Respiratorias (CIBERES) , Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Jose A Enríquez
- Advanced Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBER Enfermedades Respiratorias (CIBERES) , Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - M Puerto Morales
- Departamento de Biomateriales y Materiales Bioinspirados, Instituto de Ciencia de Materiales de Madrid, CSIC , Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Fernando Herranz
- Advanced Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBER Enfermedades Respiratorias (CIBERES) , Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
42
|
Azria D, Blanquer S, Verdier JM, Belamie E. Nanoparticles as contrast agents for brain nuclear magnetic resonance imaging in Alzheimer's disease diagnosis. J Mater Chem B 2017; 5:7216-7237. [PMID: 32264173 DOI: 10.1039/c7tb01599b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nuclear Magnetic Resonance Imaging (MRI) of amyloid plaques is a powerful non-invasive approach for the early and accurate diagnosis of Alzheimer's disease (AD) along with clinical observations of behavioral changes and cognitive impairment. The present article aims at giving a critical and comprehensive review of recent advances in the development of nanoparticle-based contrast agents for brain MRI. Nanoparticles considered for the MRI of AD must comply with a highly stringent set of requirements including low toxicity and the ability to cross the blood-brain-barrier. In addition, to reach an optimal signal-to-noise ratio, they must exhibit a specific ability to target amyloid plaques, which can be achieved by grafting antibodies, peptides or small molecules. Finally, we propose to consider new directions for the future of MRI in the context of Alzheimer's disease, in particular by enhancing the performances of contrast agents and by including therapeutic functionalities following a theranostic strategy.
Collapse
Affiliation(s)
- David Azria
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Equipe Matériaux Avancés pour la Catalyse et la Santé, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
43
|
Gallo J, Harriss BI, Hernández-Gil J, Bañobre-López M, Long NJ. Probing T 1-T 2 interactions and their imaging implications through a thermally responsive nanoprobe. NANOSCALE 2017; 9:11318-11326. [PMID: 28762407 DOI: 10.1039/c7nr01733b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The complex and specialised diagnostic process through magnetic resonance imaging (MRI) could be simplified with the implementation of dual T1-T2 contrast agents. T1- and T2-weighted MR are compatible modalities, and co-acquisition of contrast enhanced images in both T1 and T2 will drastically reduce artefacts and provide double-checked results. To date, efforts in the development of dual MRI probes have provided inconsistent results. Here we present the preparation and relaxometric study of a dual T1-T2 MRI probe based on superparamagnetic nanoparticles, paramagnetic Gd3+ chelates and pNIPAM (poly(N-isopropylacrylamide)), in which the distance between paramagnetic and superparamagnetic species can be modulated externally via temperature variations. Such a probe alleviates traditional nanotechnology limitations (e.g. batch to batch variability) as comparisons can be established within a single probe.
Collapse
Affiliation(s)
- J Gallo
- Advanced (magnetic) Theranostic Nanostructures Group, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n 4715-330, Braga, Portugal
| | | | | | | | | |
Collapse
|
44
|
Abstract
One of the most important types of liver cancer is hepatocellular carcinoma (HCC). HCC is the fifth most common cancer, and its correct diagnosis is very important. For the quick diagnosis of HCC, the use of nanoparticles is helpful. The major applications of nanoparticles are in medicine for organ imaging. Two methods of liver imaging are X-ray computed tomography (CT) and magnetic resonance imaging (MRI). In this review, we attempt to summarize some of the contrast agents used in imaging such as superparamagnetic iron oxide nanoparticles (SPIONs) and iron oxide nanoparticles (IONPs), various types of enhanced MRI for the liver, and nanoparticles like gold (AuNPs), which is used to develop novel CT imaging agents.
Collapse
|
45
|
Bonvin D, Aschauer UJ, Bastiaansen JAM, Stuber M, Hofmann H, Mionić Ebersold M. Versatility of Pyridoxal Phosphate as a Coating of Iron Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E202. [PMID: 28758913 PMCID: PMC5575684 DOI: 10.3390/nano7080202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) is the most important cofactor of vitamin B₆-dependent enzymes, which catalyses a wide range of essential body functions (e.g., metabolism) that could be exploited to specifically target highly metabolic cells, such as tumour metastatic cells. However, the use of PLP as a simultaneous coating and targeting molecule, which at once provides colloidal stability and specific biological effects has not been exploited so far. Therefore, in this work iron oxide nanoparticles (IONPs) were coated by PLP at two different pH values to tune PLP bonding (e.g., orientation) at the IONP surface. The surface study, as well as calculations, confirmed different PLP bonding to the IONP surface at these two pH values. Moreover, the obtained PLP-IONPs showed different zeta potential, hydrodynamic radius and agglomeration state, and consequently different uptake by two metastatic-prostate-cancer cell lines (LnCaP and PC3). In LnCaP cells, PLP modified the morphology of IONP-containing intracellular vesicles, while in PC3 cells PLP impacted the amount of IONPs taken up by cells. Moreover, PLP-IONPs displayed high magnetic resonance imaging (MRI) r₂ relaxivity and were not toxic for the two studied cell lines, rendering PLP promising for biomedical applications. We here report the use of PLP simultaneously as a coating and targeting molecule, directly bound to the IONP surface, with the additional high potential for MRI detection.
Collapse
Affiliation(s)
- Debora Bonvin
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Ulrich J Aschauer
- Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland.
| | - Jessica A M Bastiaansen
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne 1011, Switzerland.
- Center of Biomedical Imaging (CIBM), Lausanne 1011, Switzerland.
| | - Matthias Stuber
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne 1011, Switzerland.
- Center of Biomedical Imaging (CIBM), Lausanne 1011, Switzerland.
| | - Heinrich Hofmann
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Marijana Mionić Ebersold
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne 1011, Switzerland.
- Center of Biomedical Imaging (CIBM), Lausanne 1011, Switzerland.
| |
Collapse
|
46
|
Activatable interpolymer complex-superparamagnetic iron oxide nanoparticles as magnetic resonance contrast agents sensitive to oxidative stress. Colloids Surf B Biointerfaces 2017; 158:578-588. [PMID: 28750340 DOI: 10.1016/j.colsurfb.2017.07.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/29/2017] [Accepted: 07/08/2017] [Indexed: 12/14/2022]
Abstract
Magnetic resonance contrast agents that can be activated in response to specific triggers hold potential as molecular biosensors that may be of great utility in non-invasive disease diagnosis. We developed an activatable agent based on superparamagnetic iron oxide nanoparticles (SPIOs) that is sensitive to oxidative stress, a factor in the pathophysiology of numerous diseases. SPIOs were coated with poly(ethylene glycol) (PEG) and complexed with poly(gallol), a synthetic tannin. Hydrogen bonding between PEG and poly(gallol) creates a complexed layer around the SPIO that decreases the interaction of solute water with the SPIO, attenuating its magnetic resonance relaxivity. The complexed interpolymer nanoparticle is in an OFF state (decreased T2 contrast), where the contrast agent has a low T2 relaxivity of 7±2mM-1s-1. In the presence of superoxides, the poly(gallol) is oxidized and the polymers decomplex, allowing solute water to again interact with the SPIO, representing an ON state (increased T2 contrast) with a T2 relaxivity of 70±10mM-1s-1. These contrast agents show promise as effective sensors for diseases characterized in part by oxidative stress such as atherosclerosis, diabetes, and cancer.
Collapse
|
47
|
Reguera J, Jiménez de Aberasturi D, Henriksen-Lacey M, Langer J, Espinosa A, Szczupak B, Wilhelm C, Liz-Marzán LM. Janus plasmonic-magnetic gold-iron oxide nanoparticles as contrast agents for multimodal imaging. NANOSCALE 2017; 9:9467-9480. [PMID: 28660946 DOI: 10.1039/c7nr01406f] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The design of compact nanoprobes for multimodal bioimaging is a current challenge and may have a major impact on diagnostics and therapeutics. Multicomponent gold-iron oxide nanoparticles have shown high potential as contrast agents in numerous imaging techniques due to the complementary features of iron oxide and gold nanomaterials. In this paper we describe novel gold-iron oxide Janus magnetic-plasmonic nanoparticles as versatile nanoprobes for multimodal imaging. The nanoparticles are characterized as contrast agents for different imaging techniques, including X-ray computed tomography (CT), T2-weighted nuclear magnetic resonance imaging (MRI), photoacoustic imaging (PA), dark-field and bright-field optical microscopy, transmission electron microscopy (TEM), and surface enhanced Raman spectroscopy (SERS). We discuss the effect of particle size and morphology on their performance as contrast agents and show the advantage of a Janus configuration. Additionally, the uptake of nanoparticles by cells can be simultaneously visualized in dark- and bright-field optical microscopy, SERS mapping, and electron microscopy. These complementary techniques allow a complete view of cell uptake in an artifact-free manner, with multiplexing capabilities, and with extra information regarding the nanoparticles' fate inside the cells. Altogether, the results obtained with these non-invasive techniques show the high versatility of these nanoparticles, the advantages of a Janus configuration, and their high potential in multipurpose biomedical applications.
Collapse
Affiliation(s)
- Javier Reguera
- CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Multifunctional ultrasmall superparamagnetic iron oxide nanoparticles as a theranostic agent. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Vuong QL, Gillis P, Roch A, Gossuin Y. Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: a theoretical review. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [PMID: 28398013 DOI: 10.1002/wnan.1468] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/02/2017] [Accepted: 02/13/2017] [Indexed: 12/24/2022]
Abstract
Superparamagnetic nanoparticles are used as contrast agents in magnetic resonance imaging and allow, for example, the detection of tumors or the tracking of stem cells in vivo. By producing magnetic inhomogeneities, they influence the nuclear magnetic relaxation times, which results in a darkening, on the image, of the region containing these particles. A great number of studies have been devoted to their magnetic properties, to their synthesis and to their influence on nuclear magnetic relaxation. The theoretical and fundamental understanding of the behavior of these particles is a necessary step in predicting their efficiency as contrast agents, or to be able to experimentally obtain some of their properties from a nuclear magnetic resonance measurement. Many relaxation models have been published, and choosing one of them is not always easy, many parameters and conditions have to be taken into account. Relaxation induced by superparamagnetic particles is generally attributed to an outersphere relaxation mechanism. Each model can only be used under specific conditions (motional averaging regime, static regime, high magnetic field, etc.) or for a particular sequence (Carr-Purcell-Meiboom-Gill, spin echo, free-induction decay, nuclear magnetic relaxation dispersion profile, etc.). The parameters included in the equations must be carefully interpreted. In some more complex conditions, simulations are necessary to be able to predict the relaxation rates. A good agreement is usually observed between the theoretical predictions and the experimental results, although some data still cannot be fully understood, such as the dependence of the transverse relaxation on the magnetic field. WIREs Nanomed Nanobiotechnol 2017, 9:e1468. doi: 10.1002/wnan.1468 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | | | - Alain Roch
- Faculty of Medicine, UMONS, Mons, Belgium
| | | |
Collapse
|
50
|
Zhou H, Tang J, Li J, Li W, Liu Y, Chen C. In vivo aggregation-induced transition between T 1 and T 2 relaxations of magnetic ultra-small iron oxide nanoparticles in tumor microenvironment. NANOSCALE 2017; 9:3040-3050. [PMID: 28186215 DOI: 10.1039/c7nr00089h] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Surface ligands and their densities may significantly influence the optic, electric, and stable properties of inorganic nanoparticles as well as their magnetic resonance imaging (MRI) characters. In this study, ultra-small iron oxide nanoparticles with hyaluronic acid as surface ligand (Fe3O4@HA) were designed to target tumor cells and tune the T1- and T2-weighted MRI by aggregating in the tumor microenvironment via the degradation of HA upon exposure to hyaluronidase (HAase) with decreasing pH. To realize this purpose, four kinds of Fe3O4@HA nanoparticles with increasing HA density were synthesized and characterized. Fe3O4@HA280, with higher r1 value than others, was chosen for the signal modulation test in vitro; the T2 signal was enhanced by 36%, and the T1 signal decreased by 22% in the presence of HAase and acidic environment during the measurement. However, the chitosan-coated Fe3O4 nanoparticles did not show a similar tendency. The overlapping sections in the signal change graph of MDA-MB-231 cells and tumor-bearing mice also validate the self-assembling ability of Fe3O4@HA280. Meanwhile, the tumor mapping graphs indicate the excellent tumor penetration of Fe3O4@HA280, which facilitates this self-assembly process and enhances the interior section contrast of the tumor. This fundamental technique for tuning magnetic properties by the tumor microenvironment may provide a useful strategy for the rational synthesis of other inorganic nanoparticles in the field of tumor diagnostics and therapy.
Collapse
Affiliation(s)
- Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanosciences, National Center for Nanoscience and Technology of China, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P.R. China.
| | - Jinglong Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanosciences, National Center for Nanoscience and Technology of China, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P.R. China.
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanosciences, National Center for Nanoscience and Technology of China, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P.R. China.
| | - Wanqi Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanosciences, National Center for Nanoscience and Technology of China, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P.R. China.
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanosciences, National Center for Nanoscience and Technology of China, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P.R. China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanosciences, National Center for Nanoscience and Technology of China, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P.R. China.
| |
Collapse
|