1
|
Odéen H, Payne AH, Parker DL. Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI). J Magn Reson Imaging 2025. [PMID: 39842847 DOI: 10.1002/jmri.29712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
This review covers the theoretical background, pulse sequence considerations, practical implementations, and multitudes of applications of magnetic resonance acoustic radiation force imaging (MR-ARFI) described to date. MR-ARFI is an approach to encode tissue displacement caused by the acoustic radiation force of a focused ultrasound field into the phase of a MR image. The displacement encoding is done with motion encoding gradients (MEG) which have traditionally been added to spin echo-type and gradient recalled echo-type pulse sequences. Many different types of MEG (monopolar, bipolar, tripolar etc.) have been described and pros and cons are discussed. We further review studies investigating the safety of MR-ARFI, as well as approaches to simulate the MR-ARFI displacement. Lastly, MR-ARFI applications such as for focal spot localization, tissue stiffness interrogation following thermal ablation, trans-skull aberration correction, and simultaneous MR-ARFI and MR thermometry are discussed. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Allison H Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Yang JB, Powlovich L, Moore D, Martin L, Miller B, Nehrbas J, Tewari AR, Mata J. Transcutaneous Ablation of Lung Tissue in a Porcine Model Using Magnetic-Resonance-Guided Focused Ultrasound (MRgFUS). Tomography 2024; 10:533-542. [PMID: 38668399 PMCID: PMC11055042 DOI: 10.3390/tomography10040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
Focused ultrasound (FUS) is a minimally invasive treatment that utilizes high-energy ultrasound waves to thermally ablate tissue. Magnetic resonance imaging (MRI) guidance may be combined with FUS (MRgFUS) to increase its accuracy and has been proposed for lung tumor ablation/debulking. However, the lungs are predominantly filled with air, which attenuates the strength of the FUS beam. This investigation aimed to test the feasibility of a new approach using an intentional lung collapse to reduce the amount of air inside the lung and a controlled hydrothorax to create an acoustic window for transcutaneous MRgFUS lung ablation. Eleven pigs had one lung mechanically ventilated while the other lung underwent a controlled collapse and subsequent hydrothorax of that hemisphere. The MRgFUS lung ablations were then conducted via the intercostal space. All the animals recovered well and remained healthy in the week following the FUS treatment. The location and size of the ablations were confirmed one week post-treatment via MRI, necropsy, and histological analysis. The animals had almost no side effects and the skin burns were completely eliminated after the first two animal studies, following technique refinement. This study introduces a novel methodology of MRgFUS that can be used to treat deep lung parenchyma in a safe and viable manner.
Collapse
Affiliation(s)
- Jack B. Yang
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (J.B.Y.); (B.M.)
| | | | - David Moore
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
| | - Linda Martin
- Section of Thoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA;
| | - Braden Miller
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (J.B.Y.); (B.M.)
| | - Jill Nehrbas
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (J.B.Y.); (B.M.)
| | - Anant R. Tewari
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (J.B.Y.); (B.M.)
| | - Jaime Mata
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (J.B.Y.); (B.M.)
| |
Collapse
|
3
|
Payne A, Chopra R, Ellens N, Chen L, Ghanouni P, Sammet S, Diederich C, Ter Haar G, Parker D, Moonen C, Stafford J, Moros E, Schlesinger D, Benedict S, Wear K, Partanen A, Farahani K. AAPM Task Group 241: A medical physicist's guide to MRI-guided focused ultrasound body systems. Med Phys 2021; 48:e772-e806. [PMID: 34224149 DOI: 10.1002/mp.15076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/28/2021] [Accepted: 06/21/2021] [Indexed: 11/07/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) is a completely non-invasive technology that has been approved by FDA to treat several diseases. This report, prepared by the American Association of Physicist in Medicine (AAPM) Task Group 241, provides background on MRgFUS technology with a focus on clinical body MRgFUS systems. The report addresses the issues of interest to the medical physics community, specific to the body MRgFUS system configuration, and provides recommendations on how to successfully implement and maintain a clinical MRgFUS program. The following sections describe the key features of typical MRgFUS systems and clinical workflow and provide key points and best practices for the medical physicist. Commonly used terms, metrics and physics are defined and sources of uncertainty that affect MRgFUS procedures are described. Finally, safety and quality assurance procedures are explained, the recommended role of the medical physicist in MRgFUS procedures is described, and regulatory requirements for planning clinical trials are detailed. Although this report is limited in scope to clinical body MRgFUS systems that are approved or currently undergoing clinical trials in the United States, much of the material presented is also applicable to systems designed for other applications.
Collapse
Affiliation(s)
- Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Lili Chen
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Steffen Sammet
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Chris Diederich
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | | | - Dennis Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Chrit Moonen
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jason Stafford
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - David Schlesinger
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | | | - Keith Wear
- U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | - Keyvan Farahani
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
4
|
Ferrer CJ, Bartels LW, van der Velden TA, Grüll H, Heijman E, Moonen CTW, Bos C. Field drift correction of proton resonance frequency shift temperature mapping with multichannel fast alternating nonselective free induction decay readouts. Magn Reson Med 2020; 83:962-973. [PMID: 31544289 PMCID: PMC6899537 DOI: 10.1002/mrm.27985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE To demonstrate that proton resonance frequency shift MR thermometry (PRFS-MRT) acquisition with nonselective free induction decay (FID), combined with coil sensitivity profiles, allows spatially resolved B0 drift-corrected thermometry. METHODS Phantom experiments were performed at 1.5T and 3T. Acquisition of PRFS-MRT and FID were performed during MR-guided high-intensity focused ultrasound heating. The phase of the FIDs was used to estimate the change in angular frequency δωdrift per coil element. Two correction methods were investigated: (1) using the average δωdrift over all coil elements (0th-order) and (2) using coil sensitivity profiles for spatially resolved correction. Optical probes were used for independent temperature verification. In-vivo feasibility of the methods was evaluated in the leg of 1 healthy volunteer at 1.5T. RESULTS In 30 minutes, B0 drift led to an apparent temperature change of up to -18°C and -98°C at 1.5T and 3T, respectively. In the sonicated area, both corrections had a median error of 0.19°C at 1.5T and -0.54°C at 3T. At 1.5T, the measured median error with respect to the optical probe was -1.28°C with the 0th-order correction and improved to 0.43°C with the spatially resolved correction. In vivo, without correction the spatiotemporal median of the apparent temperature was at -4.3°C and interquartile range (IQR) of 9.31°C. The 0th-order correction had a median of 0.75°C and IQR of 0.96°C. The spatially resolved method had the lowest median at 0.33°C and IQR of 0.80°C. CONCLUSION FID phase information from individual receive coil elements allows spatially resolved B0 drift correction in PRFS-based MRT.
Collapse
Affiliation(s)
- Cyril J. Ferrer
- Imaging DivisionUniversity Medical Center UtrechtUtrechtNetherlands
| | | | | | - Holger Grüll
- Faculty of Medicine and University Hospital of CologneDepartment of Diagnostic and Interventional RadiologyUniversity of CologneCologneGermany
| | - Edwin Heijman
- Faculty of Medicine and University Hospital of CologneDepartment of Diagnostic and Interventional RadiologyUniversity of CologneCologneGermany
- Oncology SolutionsPhilips ResearchAachenGermany
| | | | - Clemens Bos
- Imaging DivisionUniversity Medical Center UtrechtUtrechtNetherlands
| |
Collapse
|
5
|
Odéen H, Parker DL. Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:34-61. [PMID: 30803693 PMCID: PMC6662927 DOI: 10.1016/j.pnmrs.2019.01.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/23/2019] [Indexed: 05/25/2023]
Abstract
Most parameters that influence the magnetic resonance imaging (MRI) signal experience a temperature dependence. The fact that MRI can be used for non-invasive measurements of temperature and temperature change deep inside the human body has been known for over 30 years. Today, MR temperature imaging is widely used to monitor and evaluate thermal therapies such as radio frequency, microwave, laser, and focused ultrasound therapy. In this paper we cover the physical principles underlying the biological applications of MR temperature imaging and discuss practical considerations and remaining challenges. For biological tissue, the MR signal of interest comes mostly from hydrogen protons of water molecules but also from protons in, e.g., adipose tissue and various metabolites. Most of the discussed methods, such as those using the proton resonance frequency (PRF) shift, T1, T2, and diffusion only measure temperature change, but measurements of absolute temperatures are also possible using spectroscopic imaging methods (taking advantage of various metabolite signals as internal references) or various types of contrast agents. Currently, the PRF method is the most used clinically due to good sensitivity, excellent linearity with temperature, and because it is largely independent of tissue type. Because the PRF method does not work in adipose tissues, T1- and T2-based methods have recently gained interest for monitoring temperature change in areas with high fat content such as the breast and abdomen. Absolute temperature measurement methods using spectroscopic imaging and contrast agents often offer too low spatial and temporal resolution for accurate monitoring of ablative thermal procedures, but have shown great promise in monitoring the slower and usually less spatially localized temperature change observed during hyperthermia procedures. Much of the current research effort for ablative procedures is aimed at providing faster measurements, larger field-of-view coverage, simultaneous monitoring in aqueous and adipose tissues, and more motion-insensitive acquisitions for better precision measurements in organs such as the heart, liver, and kidneys. For hyperthermia applications, larger coverage, motion insensitivity, and simultaneous aqueous and adipose monitoring are also important, but great effort is also aimed at solving the problem of long-term field drift which gets interpreted as temperature change when using the PRF method.
Collapse
Affiliation(s)
- Henrik Odéen
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| | - Dennis L Parker
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| |
Collapse
|
6
|
Alongi F, Russo G, Spinelli A, Borasi G, Scorsetti M, Gilardi MC, Messa C. Can magnetic resonance image-guided focused ultrasound surgery replace local oncology treatments? A review. TUMORI JOURNAL 2018; 97:259-64. [DOI: 10.1177/030089161109700301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetic resonance image-guided focused ultrasound surgery (MRgFUS) is an innovative technology in the new panorama of treatment using ultrasound. It combines two well-known and distinct methodologies: high-intensity focused ultrasound (HIFU) and a magnetic resonance imaging system (MRI). This review on MRgFUS is focused on the technical aspects and the current clinical applications in oncology. More precisely, the advantages/disadvantages of MRgFUS compared to other local approaches such as surgery and radiotherapy are discussed in detail.
Collapse
Affiliation(s)
- Filippo Alongi
- Radiotherapy and Radiosurgery, IRCCS Istituto Clinico Humanitas, Milan
| | - Giorgio Russo
- Institute for Molecular Bioimaging and Physiology (IBFM), National Council of Researches (CNR)
- Laboratorio di Tecnologie Oncologiche (LATO) and San Raffaele - G Giglio Foundation, Cefalù
| | - Antonio Spinelli
- Physics, IRCCS Scientific Institute San Raffaele, Milan; Physics-Radiotherapy, Negrar, Verona
| | - Giovanni Borasi
- Laboratorio di Tecnologie Oncologiche (LATO) and San Raffaele - G Giglio Foundation, Cefalù
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery, IRCCS Istituto Clinico Humanitas, Milan
| | - Maria Carla Gilardi
- Institute for Molecular Bioimaging and Physiology (IBFM), National Council of Researches (CNR)
- Laboratorio di Tecnologie Oncologiche (LATO) and San Raffaele - G Giglio Foundation, Cefalù
- Milano-Bicocca University, Milan
| | - Cristina Messa
- Institute for Molecular Bioimaging and Physiology (IBFM), National Council of Researches (CNR)
- Laboratorio di Tecnologie Oncologiche (LATO) and San Raffaele - G Giglio Foundation, Cefalù
- Milano-Bicocca University, Milan
- Nuclear Medicine Center, San Gerardo, Monza, Italy
| |
Collapse
|
7
|
Jeong JH, Hong GP, Kim YR, Hong DG, Ha JE, Yeom JI, Kim EJ, Kim HI, Lee KS. Expulsion of Fibroids to the Endometrial Cavity after Magnetic Resonance Imaging-guided High Intensity Focused Ultrasound Surgery (MRgFUS) Treatment of Intramural Uterine Fibroids. J Menopausal Med 2017; 22:139-145. [PMID: 28119893 PMCID: PMC5256358 DOI: 10.6118/jmm.2016.22.3.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES This report seeks to introduce some cases of the patients who received magnetic resonance imaging (MRI)-guided high intensity focused ultrasound (HIFU) surgery (MRgFUS)-based intramural uterine fibroids treatment where the post-MRgFUS intramural uterine fibroids decreased in its volume and protruded towards the endometrial cavity to be expelled by hysteroscopy. METHODS Of the 157 patients who had received MRgFUS treatment in the Obstetrics and Gynecology of the Hospital from March, 2015 to February, 2016; this study examined 6 of the cases where, after high intensity focused ultrasound treatment, intramural uterine fibroids protruded towards the endometrial cavity to be removed by hysteroscopic myomectomy. The high intensity focused ultrasound utilized in the cases were Philips Achieva 1.5 Tesla MR (Philips Healthcare, Best, The Netherlands) and Sonalleve HIFU system. RESULTS The volume of fibroids ranged from 26.0 cm3 to 199.5 cm3, averaging 95.6 cm3. The major axis length ranged from 4.0 cm to 8.2 cm, averaging 6.3 cm. Fibroid location in all of the patients was in intramural uterine before treatment but after the high intensity focused ultrasound treatment, the fibroids were observed to protrude towards the endometrial cavity in at least Day 5 or up to Day 73 to allow hysteroscopic myomectomy. CONCLUSIONS In some cases, after an intramural uterine fibroid is treated with MRgFUS, fibroid volume is decreased and the fibroid protrudes towards the endometrial cavity. In this case, hysteroscopic myomectomy can be a useful solution.
Collapse
Affiliation(s)
- Jae-Hyeok Jeong
- Department of Obstetrics & Gynecology, Hwa Myung Il Sin Christian Hospital, Busan, Korea
| | - Gil Pyo Hong
- Department of Obstetrics & Gynecology, Hwa Myung Il Sin Christian Hospital, Busan, Korea
| | - Yu-Ri Kim
- Department of Obstetrics & Gynecology, Hwa Myung Il Sin Christian Hospital, Busan, Korea
| | - Da Gyo Hong
- Department of Obstetrics & Gynecology, Hwa Myung Il Sin Christian Hospital, Busan, Korea
| | - Jae-Eun Ha
- Department of Obstetrics & Gynecology, Hwa Myung Il Sin Christian Hospital, Busan, Korea
| | - Jung In Yeom
- Department of Obstetrics & Gynecology, Hwa Myung Il Sin Christian Hospital, Busan, Korea
| | - Eun-Jeong Kim
- Department of Obstetrics & Gynecology, Hwa Myung Il Sin Christian Hospital, Busan, Korea
| | - Hyung-Il Kim
- Department of Obstetrics & Gynecology, Hwa Myung Il Sin Christian Hospital, Busan, Korea
| | - Kyu-Sup Lee
- Department of Obstetrics & Gynecology, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
8
|
Zou C, Tie C, Pan M, Wan Q, Liang C, Liu X, Chung YC. Referenceless MR thermometry—a comparison of five methods. Phys Med Biol 2016; 62:1-16. [DOI: 10.1088/1361-6560/62/1/1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Zhang L, Burant A, McCallister A, Zhao V, Koshlap KM, Degan S, Antonacci M, Branca RT. Accurate MR thermometry by hyperpolarized 129 Xe. Magn Reson Med 2016; 78:1070-1079. [PMID: 27759913 DOI: 10.1002/mrm.26506] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate the temperature dependence of the resonance frequency of lipid-dissolved xenon (LDX) and to assess the accuracy of LDX-based MR thermometry. METHODS The chemical shift temperature dependence of water protons, methylene protons, and LDX was measured from samples containing tissues with varying fat contents using a high-resolution NMR spectrometer. LDX results were then used to acquire relative and absolute temperature maps in vivo and the results were compared with PRF-based MR thermometry. RESULTS The temperature dependence of proton resonance frequency (PRF) is strongly affected by the specific distribution of water and fat. A redistribution of water and fat compartments can reduce the apparent temperature dependence of the water chemical shift from -0.01 ppm/°C to -0.006 ppm, whereas the LDX chemical shift shows a consistent temperature dependence of -0.21 ppm/°C. The use of the methylene protons resonance frequency as internal reference improves the accuracy of LDX-based MR thermometry, but degrades that of PRF-based MR thermometry, as microscopic susceptibility gradients affected lipid and water spins differently. CONCLUSION The LDX resonance frequency, with its higher temperature dependence, provides more accurate and precise temperature measurements, both in vitro and in vivo. More importantly, the resonance frequency of nearby methylene protons can be used to extract absolute temperature information. Magn Reson Med 78:1070-1079, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Le Zhang
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alex Burant
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew McCallister
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victor Zhao
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Karl M Koshlap
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Simone Degan
- Center for Molecular and Biomolecular Imaging, Department of Radiology and Dermatology, Duke University, Durham, North Carolina, USA
| | - Michael Antonacci
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
MRI-Guided HIFU Methods for the Ablation of Liver and Renal Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:43-63. [DOI: 10.1007/978-3-319-22536-4_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Fischer K, McDannold NJ, Tempany CM, Jolesz FA, Fennessy FM. Potential of minimally invasive procedures in the treatment of uterine fibroids: a focus on magnetic resonance-guided focused ultrasound therapy. Int J Womens Health 2015; 7:901-12. [PMID: 26622192 PMCID: PMC4654554 DOI: 10.2147/ijwh.s55564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Minimally invasive treatment options are an important part of the uterine fibroid-treatment arsenal, especially among younger patients and in those who plan future pregnancies. This article provides an overview of the currently available minimally invasive therapy options, with a special emphasis on a completely noninvasive option: magnetic resonance-guided focused ultrasound (MRgFUS). In this review, we describe the background of MRgFUS, the patient-selection criteria for MRgFUS, and how the procedure is performed. We summarize the published clinical trial results, and review the literature on pregnancy post-MRgFUS and on the cost-effectiveness of MRgFUS.
Collapse
Affiliation(s)
- Krisztina Fischer
- Department of Radiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA ; Renal Division, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA ; Biomedical Engineering Division, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nathan J McDannold
- Department of Radiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Clare M Tempany
- Department of Radiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ferenc A Jolesz
- Department of Radiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Fiona M Fennessy
- Department of Radiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA ; Department of Radiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
An Ultrasound Image-Based Dynamic Fusion Modeling Method for Predicting the Quantitative Impact of In Vivo Liver Motion on Intraoperative HIFU Therapies: Investigations in a Porcine Model. PLoS One 2015; 10:e0137317. [PMID: 26398366 PMCID: PMC4580572 DOI: 10.1371/journal.pone.0137317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 08/15/2015] [Indexed: 11/19/2022] Open
Abstract
Organ motion is a key component in the treatment of abdominal tumors by High Intensity Focused Ultrasound (HIFU), since it may influence the safety, efficacy and treatment time. Here we report the development in a porcine model of an Ultrasound (US) image-based dynamic fusion modeling method for predicting the effect of in vivo motion on intraoperative HIFU treatments performed in the liver in conjunction with surgery. A speckle tracking method was used on US images to quantify in vivo liver motions occurring intraoperatively during breathing and apnea. A fusion modeling of HIFU treatments was implemented by merging dynamic in vivo motion data in a numerical modeling of HIFU treatments. Two HIFU strategies were studied: a spherical focusing delivering 49 juxtapositions of 5-second HIFU exposures and a toroidal focusing using 1 single 40-second HIFU exposure. Liver motions during breathing were spatially homogenous and could be approximated to a rigid motion mainly encountered in the cranial-caudal direction (f = 0.20 Hz, magnitude > 13 mm). Elastic liver motions due to cardiovascular activity, although negligible, were detectable near millimeter-wide sus-hepatic veins (f = 0.96 Hz, magnitude < 1 mm). The fusion modeling quantified the deleterious effects of respiratory motions on the size and homogeneity of a standard "cigar-shaped" millimetric lesion usually predicted after a 5-second single spherical HIFU exposure in stationary tissues (Dice Similarity Coefficient: DSC < 45%). This method assessed the ability to enlarge HIFU ablations during respiration, either by juxtaposing "cigar-shaped" lesions with spherical HIFU exposures, or by generating one large single lesion with toroidal HIFU exposures (DSC > 75%). Fusion modeling predictions were preliminarily validated in vivo and showed the potential of using a long-duration toroidal HIFU exposure to accelerate the ablation process during breathing (from 0.5 to 6 cm3 · min(-1)). To improve HIFU treatment control, dynamic fusion modeling may be interesting for assessing numerically focusing strategies and motion compensation techniques in more realistic conditions.
Collapse
|
13
|
Anzidei M, Marincola BC, Bezzi M, Brachetti G, Nudo F, Cortesi E, Berloco P, Catalano C, Napoli A. Magnetic resonance-guided high-intensity focused ultrasound treatment of locally advanced pancreatic adenocarcinoma: preliminary experience for pain palliation and local tumor control. Invest Radiol 2014; 49:759-65. [PMID: 24932986 DOI: 10.1097/rli.0000000000000080] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the feasibility of magnetic resonance-guided focused ultrasound (MRgFUS) ablation for pain palliation and local tumor control in selected patients with unresectable primary pancreatic adenocarcinoma. MATERIALS AND METHODS After providing dedicated informed consent, 7 patients with histologically proven unresectable pancreatic adenocarcinoma underwent MRgFUS treatment on a dedicated 3-T unit featuring a dedicated ablation system. All lesions were evaluated for device accessibility before the treatment. Procedures of MRgFUS were performed with the patients under general anesthesia with constant controlled respiration. Clinical assessment included evaluation of symptom severity using a visual analog scale before and after the treatment. Imaging follow-up, including both computed tomographic and magnetic resonance examinations, was performed immediately after the treatment and at 3 and 6 months to evaluate the effects of MRgFUS on the targeted tumor and the occurrence, if any, of procedure-related complications. RESULTS The MRgFUS ablation was successfully performed in 6 patients; no adverse events were observed during or after the procedure. In a single patient, lesion accessibility was limited at treatment time, and the procedure was suspended. The visual analog scale score decreased in all patients from a mean (SD) of 7 (1) to 3 (1) after the treatment. Follow-up imaging results revealed negligible (n = 1) or no (n = 5) tumor regrowth within the ablation area. One patient died because of a metastatic disease 13 months after the treatment, whereas the other 5 are nonprogressing survivors at 6 and 8 months after the treatment. CONCLUSIONS Our preliminary clinical experience suggests that MRgFUS is a feasible and repeatable ablative technique in selected patients with unresectable and device-accessible pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Michele Anzidei
- From the Departments of *Radiological, Oncological and Pathological Sciences, and †Surgery and Transplantation "P. Stefanini," Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schlesinger D, Benedict S, Diederich C, Gedroyc W, Klibanov A, Larner J. MR-guided focused ultrasound surgery, present and future. Med Phys 2014; 40:080901. [PMID: 23927296 DOI: 10.1118/1.4811136] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MR-guided focused ultrasound surgery (MRgFUS) is a quickly developing technology with potential applications across a spectrum of indications traditionally within the domain of radiation oncology. Especially for applications where focal treatment is the preferred technique (for example, radiosurgery), MRgFUS has the potential to be a disruptive technology that could shift traditional patterns of care. While currently cleared in the United States for the noninvasive treatment of uterine fibroids and bone metastases, a wide range of clinical trials are currently underway, and the number of publications describing advances in MRgFUS is increasing. However, for MRgFUS to make the transition from a research curiosity to a clinical standard of care, a variety of challenges, technical, financial, clinical, and practical, must be overcome. This installment of the Vision 20∕20 series examines the current status of MRgFUS, focusing on the hurdles the technology faces before it can cross over from a research technique to a standard fixture in the clinic. It then reviews current and near-term technical developments which may overcome these hurdles and allow MRgFUS to break through into clinical practice.
Collapse
Affiliation(s)
- David Schlesinger
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Iannessi A, Doyen J, Leysalle A, Thyss A. Magnetic resonance guided focalised ultrasound thermo-ablation: A promising oncologic local therapy. Diagn Interv Imaging 2014; 95:339-43. [DOI: 10.1016/j.diii.2013.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Rosenberg C, Kickhefel A, Mensel B, Pickartz T, Puls R, Roland J, Hosten N. PRFS-based MR thermometry versus an alternative T1 magnitude method--comparative performance predicting thermally induced necrosis in hepatic tumor ablation. PLoS One 2013; 8:e78559. [PMID: 24205260 PMCID: PMC3813475 DOI: 10.1371/journal.pone.0078559] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/20/2013] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To compare the accuracy of a semi-quantitative proton resonance frequency shift (PRFS) thermal mapping interface and an alternative qualitative T1 thermometry model in predicting tissue necrosis in an established routine setting of MRI-guided laser ablation in the human liver. MATERIALS AND METHODS 34 cases of PRFS-guided (GRE) laser ablation were retrospectively matched with 34 cases from an earlier patient population of 73 individuals being monitored through T1 magnitude image evaluation (FLASH 2D). The model-specific real-time estimation of necrotizing thermal impact (above 54 °C zone and T1 signal loss, respectively) was correlated in size with the resulting necrosis as shown by lack of enhancement on the first-day contrast exam (T1). Matched groups were compared using the Mann-Whitney test. RESULTS Online PRFS guidance was available in 33 of 34 cases. Positive size correlation between calculated impact zone and contrast defect at first day was evident in both groups (p < 0.0004). The predictive error estimating necrosis was median 21% (range 1 %-52%) in the PRFS group and 61 % (range 22-84%) in the T1 magnitude group. Differences in estimating lethal impact were significant (p = 0.004), whereas the real extent of therapy-induced necrosis showed no significant difference (p > 0.28) between the two groups. CONCLUSION PRFS thermometry is feasible in a clinical setting of thermal hepatic tumor ablation. As an interference-free MR-tool for online therapy monitoring its accuracy to predict tissue necrosis is superior to a competing model of thermally induced alteration of the T1 magnitude signal.
Collapse
Affiliation(s)
- Christian Rosenberg
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Zou C, Shen H, He M, Tie C, Chung YC, Liu X. A fast referenceless PRFS-based MR thermometry by phase finite difference. Phys Med Biol 2013; 58:5735-51. [DOI: 10.1088/0031-9155/58/16/5735] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Harnof S, Zibly Z, Cohen Z, Shaw A, Schlaff C, Kassel NF. Cranial nerve threshold for thermal injury induced by MRI-guided high-intensity focused ultrasound (MRgHIFU): preliminary results on an optic nerve model. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:702-705. [PMID: 23549530 DOI: 10.1109/tuffc.2013.2618] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Future clinical applications of magnetic resonance imaging-guided high-intensity focused ultrasound (MRgHIFU) are moving toward the management of different intracranial pathologies. We sought to validate the production, safety, and efficacy of thermal injury to cranial nerves generated by MRgHIFU. In this study, five female domestic pigs underwent a standard bifrontal craniectomy under general anesthesia. Treatment was then given using an MRgHIFU system to induce hyperthermic ablative sonication (6 to 10 s; 50 to 2000 J.) Histological analyses were done to confirm nerve damage; temperature measured on the optic nerve was approximately 53.4°C (range: 39°C to 70°C.) Histology demonstrated a clear definition between a necrotic, transitional zone, and normal tissue. MRgHIFU induces targeted thermal injury to nervous tissue within a specific threshold of 50°C to 60°C with the tissue near the sonication center yielding the greatest effect; adjacent tissue showed minimal changes. Additional studies utilizing this technology are required to further establish accurate threshold parameters for optic nerve thermo-ablation.
Collapse
Affiliation(s)
- Sagi Harnof
- Department of Neurosurgery, Chaim Sheba Medical Center, Tel Hashomer, Israel.
| | | | | | | | | | | |
Collapse
|
19
|
Pichardo S, Kivinen J, Melodelima D, Curiel L. Suitability of a tumour-mimicking material for the evaluation of high-intensity focused ultrasound ablation under magnetic resonance guidance. Phys Med Biol 2013; 58:2163-83. [DOI: 10.1088/0031-9155/58/7/2163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Hofstetter LW, Yeo DTB, Dixon WT, Kempf JG, Davis CE, Foo TK. Fat-referenced MR thermometry in the breast and prostate using IDEAL. J Magn Reson Imaging 2012; 36:722-32. [PMID: 22581513 DOI: 10.1002/jmri.23692] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/02/2012] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To demonstrate a three-echo fat-referenced MR thermometry technique that estimates and corrects for time-varying phase disturbances in heterogeneous tissues. MATERIALS AND METHODS Fat protons do not exhibit a temperature-dependent frequency shift. Fat-referenced thermometry methods exploit this insensitivity and use the signal from fat to measure and correct for magnetic field disturbances. In this study, we present a fat-referenced method that uses interpolation of the fat signal to correct for phase disturbances in fat free regions. Phantom and ex vivo tissue cool-down experiments were performed to evaluate the accuracy of this method in the absence of motion. Non-heated in vivo imaging of the breast and prostate was performed to demonstrate measurement robustness in the presence of systemic and motion-induced field disturbances. Measurement accuracy of the method was compared to conventional proton resonance frequency shift MR thermometry. RESULTS In the ex vivo porcine tissue experiment, maximum measurement error of the fat-referenced method was reduced 42% from 3.3 to 1.9°C when compared to conventional MR thermometry. In the breasts, measurement errors were reduced by up to 70% from 6.4 to 1.9°C. CONCLUSION Ex vivo and in vivo results show that the proposed method reduces measurement errors in the heterogeneous tissue experiments when compared to conventional MR thermometry.
Collapse
|
21
|
Prakash P, Diederich CJ. Considerations for theoretical modelling of thermal ablation with catheter-based ultrasonic sources: implications for treatment planning, monitoring and control. Int J Hyperthermia 2012; 28:69-86. [PMID: 22235787 DOI: 10.3109/02656736.2011.630337] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To determine the impact of including dynamic changes in tissue physical properties during heating on feedback controlled thermal ablation with catheter-based ultrasound. Additionally, we compared the impact of several indicators of thermal damage on predicted extents of ablation zones for planning and monitoring ablations with this modality. METHODS A 3D model of ultrasound ablation with interstitial and transurethral applicators incorporating temperature-based feedback control was used to simulate thermal ablations in prostate and liver tissue. We investigated five coupled models of heat dependent changes in tissue acoustic attenuation/absorption and blood perfusion of varying degrees of complexity. Dimensions of the ablation zone were computed using temperature, thermal dose, and Arrhenius thermal damage indicators of coagulative necrosis. A comparison of the predictions by each of these models was illustrated on a patient-specific anatomy in the treatment planning setting. RESULTS Models including dynamic changes in blood perfusion and acoustic attenuation as a function of thermal dose/damage predicted near-identical ablation zone volumes (maximum variation < 2.5%). Accounting for dynamic acoustic attenuation appeared to play a critical role in estimating ablation zone size, as models using constant values for acoustic attenuation predicted ablation zone volumes up to 50% larger or 47% smaller in liver and prostate tissue, respectively. Thermal dose (t(43) ≥ 240 min) and thermal damage (Ω ≥ 4.6) thresholds for coagulative necrosis are in good agreement for all heating durations, temperature thresholds in the range of 54°C for short (<5 min) duration ablations and 50°C for long (15 min) ablations may serve as surrogates for determination of the outer treatment boundary. CONCLUSIONS Accounting for dynamic changes in acoustic attenuation/absorption appeared to play a critical role in predicted extents of ablation zones. For typical 5-15 min ablations with this modality, thermal dose and Arrhenius damage measures of ablation zone dimensions are in good agreement, while appropriately selected temperature thresholds provide a computationally cheaper surrogate.
Collapse
Affiliation(s)
- Punit Prakash
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California-San Francisco, CA 94143, USA.
| | | |
Collapse
|
22
|
Auboiroux V, Viallon M, Roland J, Hyacinthe JN, Petrusca L, Morel DR, Goget T, Terraz S, Gross P, Becker CD, Salomir R. ARFI-prepared MRgHIFU in liver: simultaneous mapping of ARFI-displacement and temperature elevation, using a fast GRE-EPI sequence. Magn Reson Med 2012; 68:932-46. [PMID: 22246646 DOI: 10.1002/mrm.23309] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/25/2011] [Accepted: 11/07/2011] [Indexed: 01/18/2023]
Abstract
MR acoustic radiation force imaging (ARFI) is an elegant adjunct to MR-guided high intensity focused ultrasound for treatment planning and optimization, permitting in situ assessment of the focusing and targeting quality. The thermal effect of high intensity focused ultrasound pulses associated with ARFI measurements is recommended to be monitored on line, in particular when the beam crosses highly absorbent structures or interfaces (e.g., bones or air-filled cavities). A dedicated MR sequence is proposed here, derived from a segmented gradient echo-echo planar imaging kernel by adding a bipolar motion encoding gradient with interleaved alternating polarities. Temporal resolution was reduced to 2.1 s, with in-plane spatial resolution of 1 mm. MR-ARFI measurements were executed during controlled animal breathing, with trans-costal successively steered foci, to investigate the spatial modulation of the focus intensity and the targeting offset. ARFI-induced tissue displacement measurements enabled the accurate localization, in vivo, of the high intensity focused ultrasound focal point in sheep liver, with simultaneous monitoring of the temperature elevation. ARFI-based precalibration of the focal point position was immediately followed by trans-costal MR-guided high intensity focused ultrasound ablation, monitored with a conventional proton resonance frequency shift MR thermometry sequence. The latter MR thermometry sequence had spatial resolution and geometrical distortion identical with the ARFI maps, hence no coregistration was required.
Collapse
|
23
|
Langley J, Potter W, Phipps C, Huang F, Zhao Q. A self-reference PRF-shift MR thermometry method utilizing the phase gradient. Phys Med Biol 2011; 56:N307-20. [DOI: 10.1088/0031-9155/56/24/n02] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Tempany CMC, McDannold NJ, Hynynen K, Jolesz FA. Focused ultrasound surgery in oncology: overview and principles. Radiology 2011; 259:39-56. [PMID: 21436096 DOI: 10.1148/radiol.11100155] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Focused ultrasound surgery (FUS) is a noninvasive image-guided therapy and an alternative to surgical interventions. It presents an opportunity to revolutionize cancer therapy and to affect or change drug delivery of therapeutic agents in new focally targeted ways. In this article the background, principles, technical devices, and clinical cancer applications of image-guided FUS are reviewed.
Collapse
Affiliation(s)
- Clare M C Tempany
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Room 050, L1, Boston, MA 02129, USA.
| | | | | | | |
Collapse
|
25
|
Wyatt CR, Soher BJ, MacFall JR. Correction of breathing-induced errors in magnetic resonance thermometry of hyperthermia using multiecho field fitting techniques. Med Phys 2011; 37:6300-9. [PMID: 21302786 DOI: 10.1118/1.3515462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Breathing motion can create large errors when performing magnetic resonance (MR) thermometry of the breast. Breath holds can be used to minimize these errors, but not eliminate them. Between breath holds, the referenceless method can be used to further reduce errors by relying on regions of nonheated fatty tissue surrounding the heated region. When the surrounding tissue is heated (i.e., for a hyperthermia treatment), errors can result due to phase changes of the small amounts of water in the tissue. Therefore, an extension of the referenceless method is proposed which fits for the field in fatty tissue independent of temperature change and extrapolates it to the water-rich regions. METHODS Nonheating experiments were performed with male volunteers performing breath holds on top of a phantom mimicking a breast with a tumor. Heating experiments were also conducted with the same phantom while mechanically simulated breath holds were performed. A nonheating experiment was also performed with a healthy female breast. For each experiment, a nonlinear fitting algorithm was used to fit for temperature change and B0 field inside of the fatty tissue. The field changes were then extrapolated into water-rich (tumor) portions of the image using a least-squares fit to a fifth-order equation, to correct for field changes due to breath hold changes. Similar results were calculated using the image phase, to mimic the use of the referenceless method. RESULTS Phantom results showed large reduction of mean error and standard deviation. In the non-heating experiments, the traditional referenceless method and our extended method both corrected by similar amounts. However, in the heating experiments, the average deviation of the temperature calculated with the extended method from a fiber optic probe temperature was approximately 50% less than the deviation with the referenceless method. The in vivo breast results demonstrated reduced standard deviation and mean. CONCLUSIONS In this paper, we have developed an extension of the referenceless method to correct for breathing errors using multiecho fitting methods to fit for the B0 field in the fatty tissue and using measured field changes as references to extrapolate field corrections into a water-only (tumor) region. This technique has been validated in a number of situations, and in all cases, the correction method has been shown to greatly reduce temperature error in water-rich regions. The method has also been shown to be an improvement over similar methods that use image phase changes instead of field changes, particularly when temperature changes are induced.
Collapse
Affiliation(s)
- Cory R Wyatt
- Department of Radiology, Duke University Medical Center, Duke University, P.O. Box 3808, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
26
|
de Senneville BD, Roujol S, Moonen C, Ries M. Motion correction in MR thermometry of abdominal organs: a comparison of the referenceless vs. the multibaseline approach. Magn Reson Med 2011; 64:1373-81. [PMID: 20677237 DOI: 10.1002/mrm.22514] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reliable temperature and thermal-dose measurements using proton resonance frequency shift-based magnetic resonance (MR) thermometry for MR-guided ablation of abdominal organs require a robust correction of artefacts induced by the target displacement through an inhomogeneous and time-variant magnetic field. Two correction approaches emerged recently as promising candidates to allow continuous real-time MR-thermometry under free-breathing conditions: The multibaseline correction method, which relies on a pre-recorded correction table allowing to correct for periodic phase changes, and the referenceless method, which depends on a background phase estimation in the target area based on the assumption of a smooth spatial variation of the phase across the organ. This study combines both methods with real-time in-plane motion correction to permit both temperature and thermal-dose calculations on the fly. Subsequently, the practical aspects of both methods are compared in two application scenarios, a radio frequency-ablation and a high-intensity focused ultrasound ablation. A hybrid approach is presented that exploits the strong points of both methods, allowing accurate and precise proton resonance frequency-thermometry measurements during periodical displacement, even in the presence of spontaneous motion and strong susceptibility variations in the target area.
Collapse
Affiliation(s)
- Baudouin Denis de Senneville
- Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, UMR 5231 CNRS/Université Bordeaux 2, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | | | | | | |
Collapse
|
27
|
Grissom WA, Rieke V, Holbrook AB, Medan Y, Lustig M, Santos J, McConnell MV, Pauly KB. Hybrid referenceless and multibaseline subtraction MR thermometry for monitoring thermal therapies in moving organs. Med Phys 2010; 37:5014-26. [PMID: 20964221 DOI: 10.1118/1.3475943] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Magnetic resonance thermometry using the proton resonance frequency (PRF) shift is a promising technique for guiding thermal ablation. For temperature monitoring in moving organs, such as the liver and the heart, problems with motion must be addressed. Multi-baseline subtraction techniques have been proposed, which use a library of baseline images covering the respiratory and cardiac cycle. However, main field shifts due to lung and diaphragm motion can cause large inaccuracies in multi-baseline subtraction. Referenceless thermometry methods based on polynomial phase regression are immune to motion and susceptibility shifts. While referenceless methods can accurately estimate temperature within the organ, in general, the background phase at organ/tissue interfaces requires large polynomial orders to fit, leading to increased danger that the heated region itself will be fitted by the polynomial and thermal dose will be underestimated. In this paper, a hybrid method for PRF thermometry in moving organs is presented that combines the strengths of referenceless and multi-baseline thermometry. METHODS The hybrid image model assumes that three sources contribute to image phase during thermal treatment: Background anatomical phase, spatially smooth phase deviations, and focal, heat-induced phase shifts. The new model and temperature estimation algorithm were tested in the heart and liver of normal volunteers, in a moving phantom HIFU heating experiment, and in numerical simulations of thermal ablation. The results were compared to multi-baseline and referenceless methods alone. RESULTS The hybrid method allows for in vivo temperature estimation in the liver and the heart with lower temperature uncertainty compared to multi-baseline and referenceless methods. The moving phantom HIFU experiment showed that the method accurately estimates temperature during motion in the presence of smooth main field shifts. Numerical simulations illustrated the method's sensitivity to algorithm parameters and hot spot features. CONCLUSIONS This new hybrid method for MR thermometry in moving organs combines the strengths of both multi-baseline subtraction and referenceless thermometry and overcomes their fundamental weaknesses.
Collapse
Affiliation(s)
- William A Grissom
- Department of Radiology, Stanford University, Stanford, California 94304, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jenista ER, Galiana G, Branca RT, Yarmolenko PS, Stokes AM, Dewhirst MW, Warren WS. Application of mixed spin iMQCs for temperature and chemical-selective imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 204:208-18. [PMID: 20303808 PMCID: PMC2874652 DOI: 10.1016/j.jmr.2010.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 05/16/2023]
Abstract
The development of accurate and non-invasive temperature imaging techniques has a wide variety of applications in fields such as medicine, chemistry and materials science. Accurate detection of temperature both in phantoms and in vivo can be obtained using iMQCs (intermolecular multiple quantum coherences), as demonstrated in a recent paper. This paper describes the underlying theory of iMQC temperature detection, as well as extensions of that work allowing not only for imaging of absolute temperature but also for imaging of analyte concentrations through chemically-selective spin density imaging.
Collapse
Affiliation(s)
- Elizabeth R Jenista
- Center for Molecular and Biomolecular Imaging, 2220 French Family Science Center, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Current World Literature. Curr Opin Obstet Gynecol 2009; 21:353-63. [DOI: 10.1097/gco.0b013e32832f731f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Bradley WG. MR-Guided Focused Ultrasound: A Potentially Disruptive Technology. J Am Coll Radiol 2009; 6:510-3. [DOI: 10.1016/j.jacr.2009.01.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 01/08/2009] [Indexed: 11/26/2022]
|
31
|
Curiel L, Huang Y, Vykhodtseva N, Hynynen K. Focused ultrasound treatment of VX2 tumors controlled by local harmonic motion. Phys Med Biol 2009; 54:3405-19. [PMID: 19436103 DOI: 10.1088/0031-9155/54/11/009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study was to evaluate the feasibility of using localized harmonic motion (LHM) to monitor and control focused ultrasound surgery (FUS) in VX2 tumors in vivo. FUS exposures were performed on 13 VX2 tumors implanted in nine rabbits. The same transducer induced coagulation and generated a localized oscillatory motion by periodically varying the radiation force. A separate diagnostic ultrasound transducer tracked motion by cross-correlating echo signals at different instances. A threshold in motion amplitude was instituted to cease exposure. Coagulation was confirmed by T2-weighted MR images, thermal dose obtained through MR thermometry and histological examinations. For tumor locations achieving coagulation, the LHM amplitude was 9% (p = 0.04) to 57% (p < 0.0001) lower than that before exposure. Control was successful for 74 (69%) out of 108 cases, with 52 (48%) reaching the threshold and achieving coagulation and 22 (21%) never reaching threshold nor coagulating. For the 34 (31%) unsuccessful exposures, 16 (15%) never reached the threshold but coagulation occurred, and 18 (16%) reached threshold without coagulation confirmed. Noise or radio-frequency signal changes explained motion over- or underestimation in 24 (22%) cases; the remaining 10 (9%) had other causes of error. The control was generally successful, but sudden change or noise in the acquired echo signal caused failure. Coagulation after exposure could be validated by comparing amplitudes before and after exposure.
Collapse
Affiliation(s)
- Laura Curiel
- Imaging Res., Sunnybrook Health Sciences Centre, 2075 Bayview Av., Toronto, ON, M4N 3M5, Canada. High Intensity Focused Ultrasound (HIFU) Lab., Thunder Bay Regional Research Institute, 980 Oliver Rd, Thunder Bay, ON, P7C 1M5, Canada.
| | | | | | | |
Collapse
|
32
|
Rieke V, Kinsey AM, Ross AB, Nau WH, Diederich CJ, Sommer G, Pauly KB. Referenceless MR thermometry for monitoring thermal ablation in the prostate. IEEE TRANSACTIONS ON MEDICAL IMAGING 2007; 26:813-21. [PMID: 17679332 PMCID: PMC2780365 DOI: 10.1109/tmi.2007.892647] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Referenceless proton resonance frequency (PRF) shift thermometry provides a means to measure temperature changes during minimally invasive thermotherapy that is inherently robust to motion and tissue displacement. However, if the referenceless method is used to determine temperature changes during prostate ablation, phase gaps between water and fat in image regions used to determine the background phase can confound the phase estimation. We demonstrate an extension to referenceless thermometry which eliminates this problem by allowing background phase estimation in the presence of phase discontinuities between aqueous and fatty tissue. In this method, images are acquired with a multiecho sequence and binary water and fat maps are generated from a Dixon reconstruction. For the background phase estimation, water and fat regions are treated separately and the phase offset between the two tissue types is determined. The method is demonstrated feasibile in phantoms and during in vivo thermal ablation of canine prostate.
Collapse
Affiliation(s)
- Viola Rieke
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|