1
|
Yildirim DK, Uzun D, Bruce CG, Khan JM, Rogers T, Schenke WH, Ramasawmy R, Campbell-Washburn A, Herzka D, Lederman RJ, Kocaturk O. An interventional MRI guidewire combining profile and tip conspicuity for catheterization at 0.55T. Magn Reson Med 2023; 89:845-858. [PMID: 36198118 PMCID: PMC9712240 DOI: 10.1002/mrm.29466] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/04/2022] [Accepted: 09/02/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE We describe a clinical grade, "active", monopole antenna-based metallic guidewire that has a continuous shaft-to-tip image profile, a pre-shaped tip-curve, standard 0.89 mm (0.035″) outer diameter, and a detachable connector for catheter exchange during cardiovascular catheterization at 0.55T. METHODS Electromagnetic simulations were performed to characterize the magnetic field around the antenna whip for continuous tip visibility. The active guidewire was manufactured using medical grade materials in an ISO Class 7 cleanroom. RF-induced heating of the active guidewire prototype was tested in one gel phantom per ASTM 2182-19a, alone and in tandem with clinical metal-braided catheters. Real-time MRI visibility was tested in one gel phantom and in-vivo in two swine. Mechanical performance was compared with commercial equivalents. RESULTS The active guidewire provided continuous "profile" shaft and tip visibility in-vitro and in-vivo, analogous to guidewire shaft-and-tip profiles under X-ray. The MRI signal signature matched simulation results. Maximum unscaled RF-induced temperature rise was 5.2°C and 6.5°C (3.47 W/kg local background specific absorption rate), alone and in tandem with a steel-braided catheter, respectively. Mechanical characteristics matched commercial comparator guidewires. CONCLUSION The active guidewire was clearly visible via real-time MRI at 0.55T and exhibits a favorable geometric sensitivity profile depicting the guidewire continuously from shaft-to-tip including a unique curved-tip signature. RF-induced heating is clinically acceptable. This design allows safe device navigation through luminal structures and heart chambers. The detachable connector allows delivery and exchange of cardiovascular catheters while maintaining guidewire position. This enhanced guidewire design affords the expected performance of X-ray guidewires during human MRI catheterization.
Collapse
Affiliation(s)
- Dursun Korel Yildirim
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, MD, USA
| | - Dogangun Uzun
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, MD, USA
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Christopher G. Bruce
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, MD, USA
| | - Jaffar M. Khan
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, MD, USA
| | - Toby Rogers
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, MD, USA
| | - William H. Schenke
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, MD, USA
| | - Rajiv Ramasawmy
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, MD, USA
| | - Adrienne Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, MD, USA
| | - Daniel Herzka
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, MD, USA
| | - Robert J. Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, MD, USA
| | - Ozgur Kocaturk
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
2
|
Veeram Reddy SR, Arar Y, Zahr RA, Gooty V, Hernandez J, Potersnak A, Douglas P, Blair Z, Greer JS, Roujol S, Forte MNV, Greil G, Nugent AW, Hussain T. Invasive cardiovascular magnetic resonance (iCMR) for diagnostic right and left heart catheterization using an MR-conditional guidewire and passive visualization in congenital heart disease. J Cardiovasc Magn Reson 2020; 22:20. [PMID: 32213193 PMCID: PMC7098096 DOI: 10.1186/s12968-020-0605-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Today's standard of care, in the congenital heart disease (CHD) population, involves performing cardiac catheterization under x-ray fluoroscopy and cardiac magnetic resonance (CMR) imaging separately. The unique ability of CMR to provide real-time functional imaging in multiple views without ionizing radiation exposure has the potential to be a powerful tool for diagnostic and interventional procedures. Limiting fluoroscopic radiation exposure remains a challenge for pediatric interventional cardiologists. This pilot study's objective is to establish feasibility of right (RHC) and left heart catheterization (LHC) during invasive CMR (iCMR) procedures at our institution in the CHD population. Furthermore, we aim to improve simultaneous visualization of the catheter balloon tip, MR-conditional guidewire, and cardiac/vessel anatomy during iCMR procedures. METHODS Subjects with CHD were enrolled in a pilot study for iCMR procedures at 1.5 T with an MR-conditional guidewire. The CMR area is located adjacent to a standard catheterization laboratory. Using the interactive scanning mode for real-time control of the imaging location, a dilute gadolinium-filled balloon-tip catheter was used in combination with an MR-conditional guidewire to obtain cardiac saturations and hemodynamics. A recently developed catheter tracking technique using a real-time single-shot balanced steady-state free precession (bSSFP), flip angle (FA) 35-45°, echo time (TE) 1.3 ms, repetition time (TR) 2.7 ms, 40° partial saturation (pSAT) pre-pulse was used to visualize the gadolinium-filled balloon, MR-conditional guidewire, and cardiac structures simultaneously. MR-conditional guidewire visualization was enabled due to susceptibility artifact created by distal markers. Pre-clinical phantom testing was performed to determine the optimum imaging FA-pSAT combination. RESULTS The iCMR procedure was successfully performed to completion in 31/34 (91%) subjects between August 1st, 2017 to December 13th, 2018. Median age and weight were 7.7 years and 25.2 kg (range: 3 months - 33 years and 8 - 80 kg). Twenty-one subjects had single ventricle (SV) anatomy: one subject was referred for pre-Glenn evaluation, 11 were pre-Fontan evaluations and 9 post-Fontan evaluations for protein losing enteropathy (PLE) and/or cyanosis. Thirteen subjects had bi-ventricular (BiV) anatomy, 4 were referred for coarctation of the aorta (CoA) evaluations, 3 underwent vaso-reactivity testing with inhaled nitric oxide, 3 investigated RV volume dimensions, two underwent branch PA stenosis evaluation, and the remaining subject was status post heart transplant. No catheter related complications were encountered. Average time taken for first pass RHC, LHC/aortic pull back, and to cross the Fontan fenestration was 5.2, 3.0, and 6.5 min, respectively. Total success rate to obtain required data points to complete Fick principle calculations for all patients was 331/337 (98%). Subjects were transferred to the x-ray fluoroscopy lab if further intervention was required including Fontan fenestration device closure, balloon angioplasty of pulmonary arteries/conduits, CoA stenting, and/or coiling of aortopulmonary (AP) collaterals. Starting with subject #10, an MR-conditional guidewire was used in all subsequent subjects (15 SV and 10 BiV) with a success rate of 96% (24/25). Real-time CMR-guided RHC (25/25 subjects, 100%), retrograde and prograde LHC/aortic pull back (24/25 subjects, 96%), CoA crossing (3/4 subjects, 75%) and Fontan fenestration test occlusion (2/3 subjects, 67%) were successfully performed in the majority of subjects when an MR-conditional guidewire was utilized. CONCLUSION Feasibility for detailed diagnostic RHC, LHC, and Fontan fenestration test occlusion iCMR procedures in SV and BiV pediatric subjects with complex CHD is demonstrated with the aid of an MR-conditional guidewire. A novel real-time pSAT GRE sequence with optimized FA-pSAT angle has facilitated simultaneous visualization of the catheter balloon tip, MR-conditional guidewire, and cardiac/vessel anatomy during iCMR procedures.
Collapse
Affiliation(s)
- Surendranath R. Veeram Reddy
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, TX 75235 USA
| | - Yousef Arar
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, TX 75235 USA
| | - Riad Abou Zahr
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, TX 75235 USA
| | - Vasu Gooty
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, TX 75235 USA
| | - Jennifer Hernandez
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, TX 75235 USA
| | - Amanda Potersnak
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Phillip Douglas
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Zachary Blair
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Joshua S. Greer
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Sébastien Roujol
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Mari Nieves Velasco Forte
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Gerald Greil
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, TX 75235 USA
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Alan W. Nugent
- Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E Chicago Ave, Chicago, IL 60611 USA
| | - Tarique Hussain
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, TX 75235 USA
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| |
Collapse
|
3
|
Functionalization of endovascular devices with superparamagnetic iron oxide nanoparticles for interventional cardiovascular magnetic resonance imaging. Biomed Microdevices 2019; 21:38. [DOI: 10.1007/s10544-019-0393-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Abstract
Interventional cardiovascular magnetic resonance (iCMR) promises to enable radiation-free catheterization procedures and to enhance contemporary image guidance for structural heart and electrophysiological interventions. However, clinical translation of exciting pre-clinical interventions has been limited by availability of devices that are safe to use in the magnetic resonance (MR) environment. We discuss challenges and solutions for clinical translation, including MR-conditional and MR-safe device design, and how to configure an interventional suite. We review the recent advances that have already enabled diagnostic MR right heart catheterization and simple electrophysiologic ablation to be performed in humans and explore future clinical applications.
Collapse
|
5
|
Campbell-Washburn AE, Rogers T, Basar B, Sonmez M, Kocaturk O, Lederman RJ, Hansen M, Faranesh AZ. Two channel passive visualization of a nitinol guidewire with iron markers. J Cardiovasc Magn Reson 2015. [PMCID: PMC4328310 DOI: 10.1186/1532-429x-17-s1-p236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
6
|
Real-time magnetic resonance imaging-guided transcatheter aortic valve replacement. J Thorac Cardiovasc Surg 2015; 151:1269-77. [PMID: 26725711 DOI: 10.1016/j.jtcvs.2015.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/08/2015] [Accepted: 11/15/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To demonstrate the feasibility of Real-time magnetic resonance imaging (rtMRI) guided transcatheter aortic valve replacement (TAVR) with an active guidewire and an MRI compatible valve delivery catheter system in a swine model. METHODS The CoreValve system was minimally modified to be MRI-compatible by replacing the stainless steel components with fluoroplastic resin and high-density polyethylene components. Eight swine weighing 60-90 kg underwent rtMRI-guided TAVR with an active guidewire through a left subclavian approach. RESULTS Two imaging planes (long-axis view and short-axis view) were used simultaneously for real-time imaging during implantation. Successful deployment was performed without rapid ventricular pacing or cardiopulmonary bypass. Postdeployment images were acquired to evaluate the final valve position in addition to valvular and cardiac function. CONCLUSIONS Our results show that the CoreValve can be easily and effectively deployed through a left subclavian approach using rtMRI guidance, a minimally modified valve delivery catheter system, and an active guidewire. This method allows superior visualization before deployment, thereby allowing placement of the valve with pinpoint accuracy. rtMRI has the added benefit of the ability to perform immediate postprocedural functional assessment, while eliminating the morbidity associated with radiation exposure, rapid ventricular pacing, contrast media renal toxicity, and a more invasive procedure. Use of a commercially available device brings this rtMRI-guided approach closer to clinical reality.
Collapse
|
7
|
Celik H, Mahcicek DI, Senel OK, Wright GA, Atalar E. Tracking the position and rotational orientation of a catheter using a transmit array system. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:809-817. [PMID: 23412592 DOI: 10.1109/tmi.2013.2247047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A new method for detecting the rotational orientation and tracking the position of an inductively coupled radio frequency (ICRF) coil using a transmit array system is proposed. The method employs a conventional body birdcage coil, but the quadrature hybrid is eliminated so that the two excitation channels can be used separately. The transmit array system provides RF excitations such that the body birdcage coil creates linearly polarized and changing RF pulses instead of a conventional rotational forward-polarized excitation. The receive coils and their operations are not modified. Inductively coupled RF coils are constructed on catheters for detecting rotational orientation and for tracking purposes. Signals from the anatomy and from tissue close to the ICRF coil are different due to the new RF excitation scheme: the ICRF coil can be separated from the anatomy in real time, and after doing so, a color-coded image is reconstructed. More importantly, this novel method enables a real-time calculation of the absolute rotational orientation of an ICRF coil constructed on a catheter. Modified FLASH and TrueFISP sequences are used for the experiments. The acquired images from this technique show the feasibility of different applications, such as catheter tracking. Furthermore, applications where knowledge of the rotational orientation of the catheter is important, such as magnetic resonance-guided endoluminal-focused ultrasound, RF ablation, side-looking optical imaging, and catheters with side ports for needles, become feasible with this method.
Collapse
Affiliation(s)
- Haydar Celik
- Electrical and Electronics Engineering Department, Bilkent University, TR-06800 Ankara, Turkey.
| | | | | | | | | |
Collapse
|
8
|
Macdonald ME, Stafford RB, Yerly J, Andersen LB, McCreary CR, Frayne R. Accelerated passive MR catheter tracking into the carotid artery of canines. Magn Reson Imaging 2012; 31:120-9. [PMID: 22898687 DOI: 10.1016/j.mri.2012.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Using magnetic resonance (MR) imaging for navigating catheters has several advantages when compared with the current "gold standard" modality of X-ray imaging. A significant drawback to interventional MR is inferior temporal and spatial resolutions, as high spatial resolution images cannot be collected and displayed at rates equal to X-ray imaging. In particular, passive MR catheter tracking experiments that use positive contrast mechanisms have poor temporal imaging rates and signal-to-noise ratio. As a result, with passive methods, it is often difficult to reconstruct motion artifact-free tracking images from areas with motion, such as the thoracic cavity. METHODS In this study, several accelerated MR acquisition strategies, including parallel imaging and compressed sensing (CS), were evaluated to determine which method is most effective at improving the frame rate and passive detection of catheters in regions of physiological motion. Device navigation was performed both in vitro, through the aortic arch of an anthropomorphic chest phantom, and in vivo from the femoral artery, up the descending aorta into the supra-aortic branching vessels in canines. RESULTS AND DISCUSSION The different parallel imaging methods produced images of low quality. CS with a two-fold acceleration was found to be the most effective method for generating tracking images, improving the image frame rate to 5.2 Hz, while maintaining a relatively high in-plane resolution. Using CS, motion artifact was decreased and the catheters were visualized with good conspicuity near the heart. CONCLUSIONS The improvement in the imaging frame rate by image acceleration was sufficient to overcome motion artifacts and to better visualize catheters in the thoracic cavity with passive tracking. CS preformed best at tracking. Navigation with passive MR catheter tracking was demonstrated from the femoral artery to the carotid artery in canines.
Collapse
|
9
|
Uecker M, Zhang S, Voit D, Merboldt KD, Frahm J. Real-time MRI: recent advances using radial FLASH. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/iim.12.32] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Sonmez M, Saikus CE, Bell JA, Franson DN, Halabi M, Faranesh AZ, Ozturk C, Lederman RJ, Kocaturk O. MRI active guidewire with an embedded temperature probe and providing a distinct tip signal to enhance clinical safety. J Cardiovasc Magn Reson 2012; 14:38. [PMID: 22720758 PMCID: PMC3419092 DOI: 10.1186/1532-429x-14-38] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 05/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The field of interventional cardiovascular MRI is hampered by the unavailability of active guidewires that are both safe and conspicuous. Heating of conductive guidewires is difficult to predict in vivo and disruptive to measure using external probes. We describe a clinical-grade 0.035" (0.89 mm) guidewire for MRI right and left heart catheterization at 1.5 T that has an internal probe to monitor temperature in real-time, and that has both tip and shaft visibility as well as suitable flexibility. METHODS The design has an internal fiberoptic temperature probe, as well as a distal solenoid to enhance tip visibility on a loopless antenna. We tested different tip-solenoid configurations to balance heating and signal profiles. We tested mechanical performance in vitro and in vivo in comparison with a popular clinical nitinol guidewire. RESULTS The solenoid displaced the point of maximal heating ("hot spot") from the tip to a more proximal location where it can be measured without impairing guidewire flexion. Probe pullback allowed creation of lengthwise guidewire temperature maps that allowed rapid evaluation of design prototypes. Distal-only solenoid attachment offered the best compromise between tip visibility and heating among design candidates. When fixed at the hot spot, the internal probe consistently reflected the maximum temperature compared external probes.Real-time temperature monitoring was performed during porcine left heart catheterization. Heating was negligible using normal operating parameters (flip angle, 45°; SAR, 1.01 W/kg); the temperature increased by 4.2°C only during high RF power mode (flip angle, 90°; SAR, 3.96 W/kg) and only when the guidewire was isolated from blood cooling effects by an introducer sheath. The tip flexibility and in vivo performance of the final guidewire design were similar to a popular commercial guidewire. CONCLUSIONS We integrated a fiberoptic temperature probe inside a 0.035" MRI guidewire. Real-time monitoring helps detect deleterious heating during use, without impairing mechanical guidewire operation, and without impairing MRI visibility. We therefore need not rely on prediction to ensure safe clinical operation. Future implementations may modulate specific absorption rate (SAR) based on temperature feedback.
Collapse
Affiliation(s)
- Merdim Sonmez
- Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Christina E Saikus
- Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jamie A Bell
- Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominique N Franson
- Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Majdi Halabi
- Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony Z Faranesh
- Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cengizhan Ozturk
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Robert J Lederman
- Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ozgur Kocaturk
- Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Gu H, Zhang F, Meng Y, Qiu B, Yang X. Development of a 0.014-in., anti-solenoid loop MR imaging guidewire for intravascular 3.0-T MR imaging. Magn Reson Imaging 2011; 29:1002-6. [PMID: 21705168 DOI: 10.1016/j.mri.2011.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/28/2011] [Accepted: 04/04/2011] [Indexed: 11/30/2022]
Abstract
PURPOSE This study aimed to develop a 0.014-in., anti-solenoid loop (ASL) magnetic resonance imaging guidewire (MRIG) for intravascular 3.0-T MR imaging. MATERIALS AND METHODS We first designed the ASL MRIG, which was made of a coaxial cable with its extended inner conductor and outer conductor connected to two micro-anti-solenoids. We then evaluated in vitro the functionality of the ASL MRIG by imaging a "vessel" in a phantom and achieving signal-to-noise ratio (SNR) and SNR contour map of the new 0.014-in. ASL MRIG. Subsequently, we validated in vivo the feasibility of using the ASL MRIG to generate intravenous 3.0-T MR images of parallel iliofemoral arteries of near-human-sized living pigs. RESULTS In vitro evaluation showed that the 0.014-in. ASL MRIG functioned well as a receiver coil with the 3.0-T MR scanner, clearly displaying the vessel wall with even distribution of MR signals and SNR contours from the ASL MRIG. Of the in vivo studies, the new ASL MRIG enabled us to successfully generate intravenous 3.0-T MR imaging of the iliofemoral arteries. CONCLUSION This study confirms that it is possible to build such small-looped MRIG at 0.014 in. for intravascular 3.0-T MR imaging.
Collapse
Affiliation(s)
- Huidong Gu
- Image-Guided Bio-Molecular Interventions Section, Department of Radiology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
12
|
Saybasili H, Faranesh AZ, Saikus CE, Ozturk C, Lederman RJ, Guttman MA. Interventional MRI using multiple 3D angiography roadmaps with real-time imaging. J Magn Reson Imaging 2010; 31:1015-9. [PMID: 20373448 DOI: 10.1002/jmri.22097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To enhance real-time magnetic resonance (MR)-guided catheter navigation by overlaying colorized multiphase MR angiography (MRA) and cholangiopancreatography (MRCP) roadmaps in an anatomic context. MATERIALS AND METHODS Time-resolved MRA and respiratory-gated MRCP were acquired prior to real-time imaging in a pig model. MRA and MRCP data were loaded into a custom real-time MRI reconstruction and visualization workstation where they were displayed as maximum intensity projections (MIPs) in distinct colors. The MIPs were rendered in 3D together with real-time multislice imaging data using alpha blending. Interactive rotation allowed different views of the combined data. RESULTS Fused display of the previously acquired MIP angiography data with real-time imaging added anatomical context during endovascular interventions in swine. The use of multiple MIPs rendered in different colors facilitated differentiation of vascular structures, improving visual feedback during device navigation. CONCLUSION Interventional real-time MRI may be enhanced by combining with previously acquired multiphase angiograms. Rendered as 3D MIPs together with 2D slice data, this technique provided useful anatomical context that enhanced MRI-guided interventional applications.
Collapse
Affiliation(s)
- Haris Saybasili
- Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1061, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Magnetic Resonance Imaging of the Cardiac Venous System and Magnetic Resonance-Guided Intubation of the Coronary Sinus in Swine. Invest Radiol 2010; 45:502-6. [DOI: 10.1097/rli.0b013e3181e45578] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
George AK, Derbyshire JA, Saybasili H, Saikus CE, Kocaturk O, Guttman MA, McVeigh ER, Lederman RJ, Faranesh AZ. Visualization of active devices and automatic slice repositioning ("SnapTo") for MRI-guided interventions. Magn Reson Med 2010; 63:1070-9. [PMID: 20373408 DOI: 10.1002/mrm.22307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The accurate visualization of interventional devices is crucial for the safety and effectiveness of MRI-guided interventional procedures. In this paper, we introduce an improvement to the visualization of active devices. The key component is a fast, robust method ("CurveFind") that reconstructs the three-dimensional trajectory of the device from projection images in a fraction of a second. CurveFind is an iterative prediction-correction algorithm that acts on a product of orthogonal projection images. By varying step size and search direction, it is robust to signal inhomogeneities. At the touch of a key, the imaged slice is repositioned to contain the relevant section of the device ("SnapTo"), the curve of the device is plotted in a three-dimensional display, and the point on a target slice, which the device will intersect, is displayed. These features have been incorporated into a real-time MRI system. Experiments in vitro and in vivo (in a pig) have produced successful results using a variety of single- and multichannel devices designed to produce both spatially continuous and discrete signals. CurveFind is typically able to reconstruct the device curve, with an average error of approximately 2 mm, even in the case of complex geometries.
Collapse
Affiliation(s)
- Ashvin K George
- Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ratnayaka K, Lederman RJ. Interventional cardiovascular MR—The next stage in pediatric cardiology. PROGRESS IN PEDIATRIC CARDIOLOGY 2010. [DOI: 10.1016/j.ppedcard.2009.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Saikus CE, Lederman RJ. Interventional cardiovascular magnetic resonance imaging: a new opportunity for image-guided interventions. JACC Cardiovasc Imaging 2009; 2:1321-31. [PMID: 19909937 PMCID: PMC2843404 DOI: 10.1016/j.jcmg.2009.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 01/12/2023]
Abstract
Cardiovascular magnetic resonance (CMR) combines excellent soft-tissue contrast, multiplanar views, and dynamic imaging of cardiac function without ionizing radiation exposure. Interventional cardiovascular magnetic resonance (iCMR) leverages these features to enhance conventional interventional procedures or to enable novel ones. Although still awaiting clinical deployment, this young field has tremendous potential. We survey promising clinical applications for iCMR. Next, we discuss the technologies that allow CMR-guided interventions and, finally, what still needs to be done to bring them to the clinic.
Collapse
Affiliation(s)
- Christina E Saikus
- Translational Medicine Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-1538, USA
| | | |
Collapse
|