1
|
Volniansky A, Lefebvre TL, Kulbay M, Fan B, Aslan E, Vu KN, Montagnon E, Nguyen BN, Sebastiani G, Giard JM, Sylvestre MP, Gilbert G, Cloutier G, Tang A. Inter-visit and inter-reader reproducibility of multi-parametric diffusion-weighted MR imaging in longitudinally imaged patients with metabolic dysfunction-associated fatty liver disease and healthy volunteers. Magn Reson Imaging 2024; 113:110223. [PMID: 39181478 DOI: 10.1016/j.mri.2024.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Despite the widespread use of diffusion-weighted imaging (DWI) in metabolic dysfunction-associated fatty liver disease (MAFLD), MRI acquisition and quantification techniques vary in the literature suggesting the need for established and reproducible protocols. The goal of this study was to assess inter-visit and inter-reader reproducibility of DWI- and IVIM-derived parameters in patients with MAFLD and healthy volunteers using extensive sampling of the "fast" compartment, non-rigid registration, and exclusion voxels with poor fit quality. METHODS From June 2019 to April 2023, 31 subjects (20 patients with biopsy-proven MAFLD and 11 healthy volunteers) were included in this IRB-approved study. Subjects underwent MRI examinations twice within 40 days. 3.0 T DWI was acquired using a respiratory-triggered spin-echo diffusion-weighted echo-planar imaging sequence (b-values of 0, 10, 20, 30, 40, 50, 100, 200, 400, 800 s/mm2). DWI series were co-registered prior to voxel-wise non-linear regression of the IVIM model and voxels with poor fit quality were excluded (normalized root mean squared error ≥ 0.05). IVIM parameters (perfusion fraction, f; diffusion coefficient, D; and pseudo-diffusion coefficient, D*), and apparent diffusion coefficients (ADC) were computed from manual segmentation of the right liver lobe performed by two analysts on two MRI examinations. RESULTS All results are reported for f, D, D*, and ADC respectively. For inter-reader agreement on the first visit, ICC were of 0.985, 0.994, 0.986, and 0.993 respectively. For intra-reader agreement of analyst 1 assessed on both imaging examinations, ICC between visits were of 0.805, 0.759, 0.511, and 0.850 respectively. For inter-reader agreement on the first visit, mean bias and 95 % limits of agreement were (0.00 ± 0.03), (-0.01 ± 0.03) × 10-3 mm2/s, (0.70 ± 10.40) × 10-3 mm2/s, and (-0.02 ± 0.04) × 10-3 mm2/s respectively. For intra-reader agreement of analyst 1, mean bias and 95 % limits of agreement were (0.01 ± 0.09) × 10-3 mm2/s, (-0.01 ± 0.21) × 10-3 mm2/s, (-13.37 ± 56.19) × 10-3 mm2/s, and (-0.01 ± 0.16) × 10-3 mm2/s respectively. Except for parameter D* that was associated with between-subjects parameter variability (P = 0.009), there was no significant variability between subjects, examinations, or readers. CONCLUSION With our approach, IVIM parameters f, D, D*, and ADC provided excellent inter-reader agreement and good to very good inter-visit or intra-reader agreement, thus showing the reproducibility of IVIM-DWI of the liver in MAFLD patients and volunteers.
Collapse
Affiliation(s)
- Anton Volniansky
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Canada; Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada.
| | - Thierry L Lefebvre
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada; Department of Physics, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Merve Kulbay
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada; Department of Ophthalmology & Visual Sciences, McGill University, Montréal, Canada.
| | - Boyan Fan
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Canada; Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada.
| | - Emre Aslan
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Canada; Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada.
| | - Kim-Nhien Vu
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Canada.
| | - Emmanuel Montagnon
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Bich Ngoc Nguyen
- Service of Pathology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada.
| | - Giada Sebastiani
- Department of Medicine, Division of Gastroenterology and Hepatology, McGill University Health Centre (MUHC), Montréal, Canada.
| | - Jeanne-Marie Giard
- Department of Medicine, Division of Hepatology and Liver Transplantation, Université de Montréal, Montréal, Canada
| | - Marie-Pierre Sylvestre
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada; Department of Social and Preventive Medicine, École de santé publique de l'Université de Montréal (ESPUM), Montréal, Canada.
| | - Guillaume Gilbert
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Canada; MR Clinical Science, Philips Healthcare Canada, Mississauga, Canada.
| | - Guy Cloutier
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Canada; Institute of Biomedical Engineering, Université de Montréal, Montréal, Canada; Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada.
| | - An Tang
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Canada; Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada; Institute of Biomedical Engineering, Université de Montréal, Montréal, Canada.
| |
Collapse
|
2
|
Wei X, Qi S, Wei X, Qiu L, Du X, Liu Y, Xu H, Zhao J, Chen S, Zhang J. Inflammation activity affects liver stiffness measurement by magnetic resonance elastography in MASLD. Dig Liver Dis 2024; 56:1715-1720. [PMID: 38744558 DOI: 10.1016/j.dld.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/28/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Magnetic resonance elastography (MRE) is recognized as the most precise imaging technology for assessing liver fibrosis in individuals with metabolic dysfunction-associated steatotic liver disease (MASLD). We aimed to investigate the clinical factors and pathological characteristics that may impact LSM in MASLD patients. METHODS This cross-sectional study recruited 124 patients who concurrently performed MRE, MRI-PDFF, and biopsy-proven MASLD. Linear regression models, Spearman's correlation, and subgroup analysis were employed to identify the variables affecting LSM. RESULTS The AUROC (95 % CI) of MRE for diagnosing fibrosis stage ≥ 1, 2, 3, and 4 was 0.80 (0.70-0.90), 0.76 (0.66-0.85), 0.92 (0.86-0.99), and 0.99 (0.99-1.00), with corresponding cutoffs of 2.56, 2.88, 3.35, and 4.76 kPa, respectively. Multivariate analyses revealed that AST was the only independent clinical variable significantly correlated with LSM. Furthermore, LSM exhibited a notable association with the grade of lobular inflammation and hepatocellular ballooning. Subgroup analysis showed that when AST ≥ 2 ULN or inflammation grade ≥ 2, LSM of patients with early fibrosis stages showed a slight but significant increase. CONCLUSION MRE demonstrates significant diagnostic accuracy in predicting liver fibrosis stages for MASLD patients, especially for advanced liver fibrosis and cirrhosis. However, elevated AST and the severity of liver inflammation may impact its accuracy in staging early liver fibrosis.
Collapse
Affiliation(s)
- Xiaodie Wei
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shi Qi
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xinhuan Wei
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lixia Qiu
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Du
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yali Liu
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hangfei Xu
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jinhan Zhao
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Sitong Chen
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Ozkaya E, Kennedy P, Chen J, Bane O, Dillman JR, Jhaveri KS, Ohliger MA, Rossman PJ, Tkach JA, Doucette JT, Venkatesh SK, Ehman RL, Taouli B. Precision and Test-Retest Repeatability of Stiffness Measurement with MR Elastography: A Multicenter Phantom Study. Radiology 2024; 311:e233136. [PMID: 38742971 PMCID: PMC11140535 DOI: 10.1148/radiol.233136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024]
Abstract
Background MR elastography (MRE) has been shown to have excellent performance for noninvasive liver fibrosis staging. However, there is limited knowledge regarding the precision and test-retest repeatability of stiffness measurement with MRE in the multicenter setting. Purpose To determine the precision and test-retest repeatability of stiffness measurement with MRE across multiple centers using the same phantoms. Materials and Methods In this study, three cylindrical phantoms made of polyvinyl chloride gel mimicking different degrees of liver stiffness in humans (phantoms 1-3: soft, medium, and hard stiffness, respectively) were evaluated. Between January 2021 and January 2022, phantoms were circulated between five different centers and scanned with 10 MRE-equipped clinical 1.5-T and 3-T systems from three major vendors, using two-dimensional (2D) gradient-recalled echo (GRE) imaging and/or 2D spin-echo (SE) echo-planar imaging (EPI). Similar MRE acquisition parameters, hardware, and reconstruction algorithms were used at each center. Mean stiffness was measured by a single observer for each phantom and acquisition on a single section. Stiffness measurement precision and same-session test-retest repeatability were assessed using the coefficient of variation (CV) and the repeatability coefficient (RC), respectively. Results The mean precision represented by the CV was 5.8% (95% CI: 3.8, 7.7) for all phantoms and both sequences combined. For all phantoms, 2D GRE achieved a CV of 4.5% (95% CI: 3.3, 5.7) whereas 2D SE EPI achieved a CV of 7.8% (95% CI: 3.1, 12.6). The mean RC of stiffness measurement was 5.8% (95% CI: 3.7, 7.8) for all phantoms and both sequences combined, 4.9% (95% CI: 2.7, 7.0) for 2D GRE, and 7.0% (95% CI: 2.9, 11.2) for 2D SE EPI (all phantoms). Conclusion MRE had excellent in vitro precision and same-session test-retest repeatability in the multicenter setting when similar imaging protocols, hardware, and reconstruction algorithms were used. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Tang in this issue.
Collapse
Affiliation(s)
| | | | - Jun Chen
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Octavia Bane
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Jonathan R. Dillman
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Kartik S. Jhaveri
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Michael A. Ohliger
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Phillip J. Rossman
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Jean A. Tkach
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - John T. Doucette
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Sudhakar K. Venkatesh
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Richard L. Ehman
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Bachir Taouli
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| |
Collapse
|
4
|
Gunes A, Schmitt C, Bilodeau L, Huet C, Belblidia A, Baldwin C, Giard JM, Biertho L, Lafortune A, Couture CY, Cheung A, Nguyen BN, Galun E, Bémeur C, Bilodeau M, Laplante M, Tang A, Faraj M, Estall JL. IL-6 Trans-Signaling Is Increased in Diabetes, Impacted by Glucolipotoxicity, and Associated With Liver Stiffness and Fibrosis in Fatty Liver Disease. Diabetes 2023; 72:1820-1834. [PMID: 37757741 PMCID: PMC10658070 DOI: 10.2337/db23-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Many people living with diabetes also have nonalcoholic fatty liver disease (NAFLD). Interleukin-6 (IL-6) is involved in both diseases, interacting with both membrane-bound (classical) and circulating (trans-signaling) soluble receptors. We investigated whether secretion of IL-6 trans-signaling coreceptors are altered in NAFLD by diabetes and whether this might associate with the severity of fatty liver disease. Secretion patterns were investigated with use of human hepatocyte, stellate, and monocyte cell lines. Associations with liver pathology were investigated in two patient cohorts: 1) biopsy-confirmed steatohepatitis and 2) class 3 obesity. We found that exposure of stellate cells to high glucose and palmitate increased IL-6 and soluble gp130 (sgp130) secretion. In line with this, plasma sgp130 in both patient cohorts positively correlated with HbA1c, and subjects with diabetes had higher circulating levels of IL-6 and trans-signaling coreceptors. Plasma sgp130 strongly correlated with liver stiffness and was significantly increased in subjects with F4 fibrosis stage. Monocyte activation was associated with reduced sIL-6R secretion. These data suggest that hyperglycemia and hyperlipidemia can directly impact IL-6 trans-signaling and that this may be linked to enhanced severity of NAFLD in patients with concomitant diabetes. ARTICLE HIGHLIGHTS IL-6 and its circulating coreceptor sgp130 are increased in people with fatty liver disease and steatohepatitis. High glucose and lipids stimulated IL-6 and sgp130 secretion from hepatic stellate cells. sgp130 levels correlated with HbA1c, and diabetes concurrent with steatohepatitis further increased circulating levels of all IL-6 trans-signaling mediators. Circulating sgp130 positively correlated with liver stiffness and hepatic fibrosis. Metabolic stress to liver associated with fatty liver disease might shift the balance of IL-6 classical versus trans-signaling, promoting liver fibrosis that is accelerated by diabetes.
Collapse
Affiliation(s)
- Aysim Gunes
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Montreal Diabetes Research Centre, Montreal, Quebec, Canada
| | - Clémence Schmitt
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Programmes de biologie moléculaire, Faculté de médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Laurent Bilodeau
- Département de radiologie, Centre hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Catherine Huet
- Département de radiologie, Centre hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Assia Belblidia
- Département de radiologie, Centre hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Cindy Baldwin
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Jeanne-Marie Giard
- Liver Unit, Centre hospitalier de l’Université de Montréal (CHUM), Département de médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Laurent Biertho
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Annie Lafortune
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Christian Yves Couture
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Quebec City, Quebec, Canada
| | - Angela Cheung
- Gastroenterology and Hepatology, Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Bich N. Nguyen
- Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, Quebec, Canada
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Chantal Bémeur
- Département de nutrition, Université de Montréal, Montreal, Quebec, Canada
- Labo HépatoNeuro, Centre de recherche du CHUM, Montreal, Quebec, Canada
| | - Marc Bilodeau
- Liver Unit, Centre hospitalier de l’Université de Montréal (CHUM), Département de médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Mathieu Laplante
- Montreal Diabetes Research Centre, Montreal, Quebec, Canada
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - An Tang
- Département de radiologie, Centre hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - May Faraj
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Montreal Diabetes Research Centre, Montreal, Quebec, Canada
- Département de nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Jennifer L. Estall
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Montreal Diabetes Research Centre, Montreal, Quebec, Canada
- Programmes de biologie moléculaire, Faculté de médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Fowler KJ, Venkatesh SK, Obuchowski N, Middleton MS, Chen J, Pepin K, Magnuson J, Brown KJ, Batakis D, Henderson WC, Shankar SS, Kamphaus TN, Pasek A, Calle RA, Sanyal AJ, Loomba R, Ehman R, Samir AE, Sirlin CB, Sherlock SP. Repeatability of MRI Biomarkers in Nonalcoholic Fatty Liver Disease: The NIMBLE Consortium. Radiology 2023; 309:e231092. [PMID: 37815451 PMCID: PMC10625902 DOI: 10.1148/radiol.231092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/30/2023] [Accepted: 08/29/2023] [Indexed: 10/11/2023]
Abstract
Background There is a need for reliable noninvasive methods for diagnosing and monitoring nonalcoholic fatty liver disease (NAFLD). Thus, the multidisciplinary Non-invasive Biomarkers of Metabolic Liver disease (NIMBLE) consortium was formed to identify and advance the regulatory qualification of NAFLD imaging biomarkers. Purpose To determine the different-day same-scanner repeatability coefficient of liver MRI biomarkers in patients with NAFLD at risk for steatohepatitis. Materials and Methods NIMBLE 1.2 is a prospective, observational, single-center short-term cross-sectional study (October 2021 to June 2022) in adults with NAFLD across a spectrum of low, intermediate, and high likelihood of advanced fibrosis as determined according to the fibrosis based on four factors (FIB-4) index. Participants underwent up to seven MRI examinations across two visits less than or equal to 7 days apart. Standardized imaging protocols were implemented with six MRI scanners from three vendors at both 1.5 T and 3 T, with central analysis of the data performed by an independent reading center (University of California, San Diego). Trained analysts, who were blinded to clinical data, measured the MRI proton density fat fraction (PDFF), liver stiffness at MR elastography (MRE), and visceral adipose tissue (VAT) for each participant. Point estimates and CIs were calculated using χ2 distribution and statistical modeling for pooled repeatability measures. Results A total of 17 participants (mean age, 58 years ± 8.5 [SD]; 10 female) were included, of which seven (41.2%), six (35.3%), and four (23.5%) participants had a low, intermediate, or high likelihood of advanced fibrosis, respectively. The different-day same-scanner mean measurements were 13%-14% for PDFF, 6.6 L for VAT, and 3.15 kPa for two-dimensional MRE stiffness. The different-day same-scanner repeatability coefficients were 0.22 L (95% CI: 0.17, 0.29) for VAT, 0.75 kPa (95% CI: 0.6, 0.99) for MRE stiffness, 1.19% (95% CI: 0.96, 1.61) for MRI PDFF using magnitude reconstruction, 1.56% (95% CI: 1.26, 2.07) for MRI PDFF using complex reconstruction, and 19.7% (95% CI: 15.8, 26.2) for three-dimensional MRE shear modulus. Conclusion This preliminary study suggests that thresholds of 1.2%-1.6%, 0.22 L, and 0.75 kPa for MRI PDFF, VAT, and MRE, respectively, should be used to discern measurement error from real change in patients with NAFLD. ClinicalTrials.gov registration no. NCT05081427 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Kozaka and Matsui in this issue.
Collapse
Affiliation(s)
| | | | - Nancy Obuchowski
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Michael S. Middleton
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Jun Chen
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Kay Pepin
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Jessica Magnuson
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Kathy J. Brown
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Danielle Batakis
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Walter C. Henderson
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Sudha S. Shankar
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Tania N. Kamphaus
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Alex Pasek
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Roberto A. Calle
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Arun J. Sanyal
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Rohit Loomba
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Richard Ehman
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Anthony E. Samir
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | | | | |
Collapse
|
6
|
Henry L, Eberly KE, Shah D, Kumar A, Younossi ZM. Noninvasive Tests Used in Risk Stratification of Patients with Nonalcoholic Fatty Liver Disease. Clin Liver Dis 2023; 27:373-395. [PMID: 37024214 DOI: 10.1016/j.cld.2023.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
As the prevalence of obesity and type 2 diabetes increases around the world, the prevalence of nonalcoholic fatty liver disease (NAFLD) has grown proportionately. Although most patients with NAFLD do not experience progressive liver disease, about 15% to 20% of those with nonalcoholic steatohepatitis can and do progress. Because liver biopsy's role in NAFLD has become increasingly limited, efforts have been undertaken to develop non-invasive tests (NITs) to help identify patients at high risk of progression. The following article discusses the NITs that are available to determine the presence of NAFLD as well as high-risk NAFLD.
Collapse
Affiliation(s)
- Linda Henry
- Inova Medicine, Inova Health System, 3300 Gallows Road, Falls Church, VA 22042, USA; Liver and Obesity Research Program, Inova Health System, 3300 Gallows Road, Falls Church, VA 22042, USA; Department of Medicine, Center for Liver Diseases, Inova Fairfax Medical Campus, 3300 Gallows Road, Falls Church, VA 22042, USA; Center for Outcomes Research in Liver Diseases, 2411 I Street, Northwest Washington, DC 20037, USA
| | - Katherine Elizabeth Eberly
- Inova Medicine, Inova Health System, 3300 Gallows Road, Falls Church, VA 22042, USA; Department of Medicine, Center for Liver Diseases, Inova Fairfax Medical Campus, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Dipam Shah
- Inova Medicine, Inova Health System, 3300 Gallows Road, Falls Church, VA 22042, USA; Department of Medicine, Center for Liver Diseases, Inova Fairfax Medical Campus, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Ameeta Kumar
- Inova Medicine, Inova Health System, 3300 Gallows Road, Falls Church, VA 22042, USA; Department of Medicine, Center for Liver Diseases, Inova Fairfax Medical Campus, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Zobair M Younossi
- Inova Medicine, Inova Health System, 3300 Gallows Road, Falls Church, VA 22042, USA; Liver and Obesity Research Program, Inova Health System, 3300 Gallows Road, Falls Church, VA 22042, USA; Department of Medicine, Center for Liver Diseases, Inova Fairfax Medical Campus, 3300 Gallows Road, Falls Church, VA 22042, USA.
| |
Collapse
|
7
|
Low G, Ferguson C, Locas S, Tu W, Manolea F, Sam M, Wilson MP. Multiparametric MR assessment of liver fat, iron, and fibrosis: a concise overview of the liver "Triple Screen". Abdom Radiol (NY) 2023; 48:2060-2073. [PMID: 37041393 DOI: 10.1007/s00261-023-03887-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Chronic liver disease (CLD) is a common source of morbidity and mortality worldwide. Non-alcoholic fatty liver disease (NAFLD) serves as a major cause of CLD with a rising annual prevalence. Additionally, iron overload can be both a cause and effect of CLD with a negative synergistic effect when combined with NAFLD. The development of state-of-the-art multiparametric MR solutions has led to a change in the diagnostic paradigm in CLD, shifting from traditional liver biopsy to innovative non-invasive methods for providing accurate and reliable detection and quantification of the disease burden. Novel imaging biomarkers such as MRI-PDFF for fat, R2 and R2* for iron, and liver stiffness for fibrosis provide important information for diagnosis, surveillance, risk stratification, and treatment. In this article, we provide a concise overview of the MR concepts and techniques involved in the detection and quantification of liver fat, iron, and fibrosis including their relative strengths and limitations and discuss a practical abbreviated MR protocol for clinical use that integrates these three MR biomarkers into a single simplified MR assessment. Multiparametric MR techniques provide accurate and reliable non-invasive detection and quantification of liver fat, iron, and fibrosis. These techniques can be combined in a single abbreviated MR "Triple Screen" assessment to offer a more complete metabolic imaging profile of CLD.
Collapse
Affiliation(s)
- Gavin Low
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Craig Ferguson
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Stephanie Locas
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Wendy Tu
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Florin Manolea
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Medica Sam
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Mitchell P Wilson
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada.
| |
Collapse
|
8
|
Lara Romero C, Liang JX, Fernández Lizaranzazu I, Ampuero Herrojo J, Castell J, Del Prado Alba C, Domínguez Pascual I, Romero Gómez M. Liver stiffness accuracy by magnetic resonance elastography in histologically proven non-alcoholic fatty liver disease patients: a Spanish cohort. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2023; 115:162-167. [PMID: 35791792 DOI: 10.17235/reed.2022.8777/2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
OBJECTIVES to evaluate the performance of magnetic resonance elastography (MRE) to stage liver fibrosis in patients with histologically confirmed nonalcoholic fatty liver disease (NAFLD) and to assess the impact of potential confounding factors in MRE diagnostic accuracy. The secondary objective was to compare MRE with other non-invasive methods for staging fibrosis such as transient elastography (TE) and non-invasive scores (APRI and FIB-4). METHODS sixty-five histologically confirmed NAFLD patients were prospectively enrolled at the Hospital Universitario Virgen del Rocío (Seville, Spain). Liver stiffness was measured by MRE, TE and non-invasive scores (APRI and FIB-4). Fibrosis was assessed by liver biopsy using the steatosis, activity and fibrosis (SAF) score. Patients were classified into three groups according to the consistency between MRE and histopathological findings: underestimation, concordance and overestimation groups. Areas under the ROC curve (AUROC) and diagnostic performance were evaluated. RESULTS the area under the ROC curve (AUROC) of MRE in advanced fibrosis (≥ F3) was 0.90 (0.82-0.97), while TE AUROC was 0.82 (0.72-0.93) (p = 0.22) and lower for the non-invasive test (FIB-4 0.67 and APRI 0.62). Inflammatory activity, steatosis grade and higher levels of liver biochemistry appeared to overestimate MRE results in the univariate analysis, but only gamma-glutamyl transferase (GGT) was statistically significant in the multivariate analysis (p < 0.01). Age, sex, body mass index (BMI), weight, diabetes mellitus (DM), high blood pressure (HBP), platelets or lipidic profile did not affect MRE accuracy. CONCLUSIONS MRE is an effective and non-invasive method for detecting and staging liver fibrosis in NAFLD patients. MRE is more accurate than TE and allows the study of liver anatomy. Histological inflammation and surrogate biomarkers of inflammation can overestimate liver stiffness, but only GGT was statistically significant in the multivariate analysis. Important features of NAFLD patients such as obesity, DM, or lipidic profile did not affect MRE accuracy.
Collapse
Affiliation(s)
| | - Jia-Xu Liang
- Radiodiagnóstico, Hospital Universitario Virgen del Rocío, España
| | | | | | - Javier Castell
- Radiodiagnóstico, Hospital Universitario Virgen del Rocío, España
| | | | | | | |
Collapse
|
9
|
Tokorodani R, Kume T, Daisaki H, Hayashi N, Iwasa H, Yamagami T. Combining 99mTc-GSA single-photon emission-computed tomography and Gd-EOB-DTPA-enhanced magnetic resonance imaging for staging liver fibrosis. Medicine (Baltimore) 2023; 102:e32975. [PMID: 36800578 PMCID: PMC9936016 DOI: 10.1097/md.0000000000032975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Preoperative assessment of the degree of liver fibrosis is important to determine treatment strategies. In this study, galactosyl human serum albumin single-photon emission-computed tomography and ethoxybenzyl (EOB) contrast-enhanced magnetic resonance imaging (MRI) were used to assess the changes in hepatocyte function after liver fibrosis, and the standardized uptake value (SUV) was combined with gadolinium EOB-diethylenetriaminepentaacetic acid to evaluate its added value for liver fibrosis staging. A total of 484 patients diagnosed with hepatocellular carcinoma who underwent liver resection between January 2010 and August 2018 were included. Resected liver specimens were classified based on pathological findings into nonfibrotic and fibrotic groups (stratified according to the Ludwig scale). Galactosyl human serum albumin-single-photon emission-computed tomography and EOB contrast-enhanced MRI examinations were performed, and the mean SUVs (SUVmean) and contrast enhancement indices (CEIs) were obtained. The diagnostic value of the acquired SUV and CEIs for fibrosis was assessed by calculating the area under the receiver operating characteristic curve (AUC). In the receiver operating characteristic analysis, SUV + CEI showed the highest AUC in both fibrosis groups. In particular, in the comparison between fibrosis groups, SUV + CEI showed significantly higher AUCs than SUV and CEI alone in discriminating between fibrosis (F3 and 4) and no or mild fibrosis (F0 and 2) (AUC: 0.879, vs SUV [P = 0.008], vs. CEI [P = 0.023]), suggesting that the combination of SUV + CEI has greater diagnostic performance than the individual indices. Combining the SUV and CEI provides high accuracy for grading liver fibrosis, especially in differentiating between grades F0 and 2 and F3-4. SUV and gadolinium EOB-diethylenetriaminepentaacetic acid-enhanced MRI can be noninvasive diagnostic methods to guide the selection of clinical treatment options for patients with liver diseases.
Collapse
Affiliation(s)
- Ryotaro Tokorodani
- Division of Radiology, Department of Medical Technology, Kochi Medical School Hospital, Nankoku, Japan
- * Correspondence: Ryotaro Tokorodani, Department of Radiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan (e-mail: )
| | - Toshiaki Kume
- Department of Radiological Technology, Kochi Health Sciences Center, Kochi, Japan
| | - Hiromitu Daisaki
- Department of Gunma Prefectural College of Health Sciences, Maebashi, Japan
| | - Naoya Hayashi
- Division of Radiology, Department of Medical Technology, Kochi Medical School Hospital, Nankoku, Japan
| | - Hitomi Iwasa
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Takuji Yamagami
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Nankoku, Japan
| |
Collapse
|
10
|
Kaplan JM, Alexis J, Grimaldi G, Islam M, Izard SM, Lee TP. A comparison of magnetic resonance elastography (MRE) to biomarker testing for staging fibrosis in non-alcoholic fatty liver disease (NAFLD). Transl Gastroenterol Hepatol 2023; 8:7. [PMID: 36704653 PMCID: PMC9813653 DOI: 10.21037/tgh-22-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 01/29/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the world's most prevalent chronic liver disease. In advanced stages, it is associated with significant morbidity and mortality. Magnetic resonance elastography (MRE) and scoring panels Fibrosis-4 (FIB-4) and NAFLD Fibrosis Score (NFS) are useful noninvasive alternatives to liver biopsy for fibrosis staging. Our study aimed to determine how well MRE corresponds with both FIB-4 and NFS at different stages of fibrosis. Methods We performed a retrospective chart review of patients age ≥18 with NAFLD as their only known liver disease who underwent MRE within six months of a lab draw. MRE stratified patients into fibrosis stages using kPa values. FIB-4 categorized patients as Advanced Fibrosis Excluded, Further Investigation Needed or Advanced Fibrosis Likely. NFS categorized them as F0-2, Indeterminate or F3-4. MRE fibrosis staging was compared to FIB-4 and NFS for both ruling out advanced fibrosis and identifying advanced fibrosis/cirrhosis. Results Overall, 193 patients met inclusion criteria. Our statistical analysis included calculating positive predictive values (PPVs) and negative predictive values (NPVs), which are the proportions of positive and negative fibrosis screening results that correspond to positive and negative MRE results respectively. NPV for FIB-4 (0.84) and NFS (0.89) in the 'rule out advanced fibrosis' category signify that 84% and 89% of respective biomarker scores correspond to MRE in early stage disease. The PPV for FIB-4 and NFS in the 'identify advanced fibrosis/cirrhosis' category signify 63% and 72% of respective biomarker scores correspond to MRE in late stage disease. Conclusions FIB-4 and NFS scores indicating little to no fibrosis correspond extremely well with MRE, while scores suggesting advanced fibrosis/cirrhosis correspond less convincingly. MRE shows promise as an effective alternative to liver biopsy, however our study suggests FIB-4 and NFS alone may be sufficient for fibrosis staging, particularly in early stage NAFLD.
Collapse
Affiliation(s)
- Joseph M. Kaplan
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jamil Alexis
- Department of Gastroenterology, Yale New Haven Health Bridgeport Hospital, Bridgeport, CT, USA
| | - Gregory Grimaldi
- Department of Radiology, Hofstra School of Medicine/Northwell Health, Manhasset, NY, USA
| | - Mohammed Islam
- Department of Medicine, Hofstra School of Medicine/Northwell Health, Manhasset, NY, USA
| | - Stephanie M. Izard
- Department of Medicine, Northwell Health Center for Health Innovations and Outcomes Research, Manhasset, NY, USA
| | - Tai-Ping Lee
- Division of Hepatology, Hofstra School of Medicine/Northwell Health, Manhasset, NY, USA
| |
Collapse
|
11
|
Tang A, Dzyubak B, Yin M, Schlein A, Henderson WC, Hooker JC, Delgado TI, Middleton MS, Zheng L, Wolfson T, Gamst A, Loomba R, Ehman RL, Sirlin CB. MR elastography in nonalcoholic fatty liver disease: inter-center and inter-analysis-method measurement reproducibility and accuracy at 3T. Eur Radiol 2022; 32:2937-2948. [PMID: 34928415 PMCID: PMC9038857 DOI: 10.1007/s00330-021-08381-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To assess reproducibility and fibrosis classification accuracy of magnetic resonance elastography (MRE)-determined liver stiffness measured manually at two different centers, and by automated analysis software in adults with nonalcoholic fatty liver disease (NAFLD), using histopathology as a reference standard. METHODS This retrospective, cross-sectional study included 91 adults with NAFLD who underwent liver MRE and biopsy. MRE-determined liver stiffness was measured independently for this analysis by an image analyst at each of two centers using standardized manual analysis methodology, and separately by an automated analysis. Reproducibility was assessed pairwise by intraclass correlation coefficient (ICC) and Bland-Altman analysis. Diagnostic accuracy was assessed by receiver operating characteristic (ROC) analyses. RESULTS ICC of liver stiffness measurements was 0.95 (95% CI: 0.93, 0.97) between center 1 and center 2 analysts, 0.96 (95% CI: 0.94, 0.97) between the center 1 analyst and automated analysis, and 0.94 (95% CI: 0.91, 0.96) between the center 2 analyst and automated analysis. Mean bias and 95% limits of agreement were 0.06 ± 0.38 kPa between center 1 and center 2 analysts, 0.05 ± 0.32 kPa between the center 1 analyst and automated analysis, and 0.11 ± 0.41 kPa between the center 2 analyst and automated analysis. The area under the ROC curves for the center 1 analyst, center 2 analyst, and automated analysis were 0.834, 0.833, and 0.847 for distinguishing fibrosis stage 0 vs. ≥ 1, and 0.939, 0.947, and 0.940 for distinguishing fibrosis stage ≤ 2 vs. ≥ 3. CONCLUSION MRE-determined liver stiffness can be measured with high reproducibility and fibrosis classification accuracy at different centers and by an automated analysis. KEY POINTS • Reproducibility of MRE liver stiffness measurements in adults with nonalcoholic fatty liver disease is high between two experienced centers and between manual and automated analysis methods. • Analysts at two centers had similar high diagnostic accuracy for distinguishing dichotomized fibrosis stages. • Automated analysis provides similar diagnostic accuracy as manual analysis for advanced fibrosis.
Collapse
Affiliation(s)
- An Tang
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Bogdan Dzyubak
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Schlein
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Walter C Henderson
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Jonathan C Hooker
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Timoteo I Delgado
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Michael S Middleton
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Lin Zheng
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
- Department of Mathematics, University of California San Diego, San Diego, CA, USA
| | - Tanya Wolfson
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
- Department of Mathematics, University of California San Diego, San Diego, CA, USA
| | - Anthony Gamst
- Department of Mathematics, University of California San Diego, San Diego, CA, USA
- Computational and Applied Statistics Laboratory (CASL), SDSC - University of California, San Diego, CA, USA
| | - Rohit Loomba
- Division of Gastroenterology, Hepatology, and Medicine, University of California San Diego, San Diego, California, USA
| | | | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
12
|
Keenan KE, Delfino JG, Jordanova KV, Poorman ME, Chirra P, Chaudhari AS, Baessler B, Winfield J, Viswanath SE, deSouza NM. Challenges in ensuring the generalizability of image quantitation methods for MRI. Med Phys 2022; 49:2820-2835. [PMID: 34455593 PMCID: PMC8882689 DOI: 10.1002/mp.15195] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/31/2023] Open
Abstract
Image quantitation methods including quantitative MRI, multiparametric MRI, and radiomics offer great promise for clinical use. However, many of these methods have limited clinical adoption, in part due to issues of generalizability, that is, the ability to translate methods and models across institutions. Researchers can assess generalizability through measurement of repeatability and reproducibility, thus quantifying different aspects of measurement variance. In this article, we review the challenges to ensuring repeatability and reproducibility of image quantitation methods as well as present strategies to minimize their variance to enable wider clinical implementation. We present possible solutions for achieving clinically acceptable performance of image quantitation methods and briefly discuss the impact of minimizing variance and achieving generalizability towards clinical implementation and adoption.
Collapse
Affiliation(s)
- Kathryn E. Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Jana G. Delfino
- Center for Devices and Radiological Health, US Food and Drug Administration, 10993 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Kalina V. Jordanova
- Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Megan E. Poorman
- Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Prathyush Chirra
- Dept of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Akshay S. Chaudhari
- Department of Radiology, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Bettina Baessler
- University Hospital of Zurich and University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Jessica Winfield
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Satish E. Viswanath
- Dept of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Nandita M. deSouza
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| |
Collapse
|
13
|
Imajo K, Honda Y, Kobayashi T, Nagai K, Ozaki A, Iwaki M, Kessoku T, Ogawa Y, Takahashi H, Saigusa Y, Yoneda M, Kirikoshi H, Utsunomiya D, Aishima S, Saito S, Nakajima A. Direct Comparison of US and MR Elastography for Staging Liver Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol 2022; 20:908-917.e11. [PMID: 33340780 DOI: 10.1016/j.cgh.2020.12.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS As alternatives to the expensive liver biopsy for assessing liver fibrosis stage in patients with nonalcoholic fatty liver disease (NAFLD), we directly compared the diagnostic abilities of magnetic resonance elastography (MRE), vibration-controlled transient elastography (VCTE), and two-dimensional shear wave elastography (2D-SWE). METHODS Overall, 231 patients with biopsy-proven NAFLD were included. Intra- and inter-observer reproducibility was analyzed using intraclass correlation coefficient in a sub-group of 70 participants, in whom liver stiffness measurement (LSM) was performed by an elastography expert and an ultrasound expert who was an elastography trainee on the same day. RESULTS Valid LSMs were obtained for 227, 220, 204, and 201 patients using MRE, VCTE, 2D-SWE, and all three modalities combined, respectively. Although the area under the curve did not differ between the modalities for detecting stage ≥1, ≥2, and ≥3 liver fibrosis, it was higher for MRE than VCTE and 2D-SWE for stage 4. Sex was a significant predictor of discordance between VCTE and liver fibrosis stage. Skin-capsule distance and the ratio of the interquartile range of liver stiffness to the median were significantly associated with discordance between 2D-SWE and liver fibrosis stage. However, no factors were associated with discordance between MRE and liver fibrosis stage. Intra- and inter-observer reproducibility in detecting liver fibrosis was higher for MRE than VCTE and 2D-SWE. CONCLUSIONS MRE, VCTE, and 2D-SWE demonstrated excellent diagnostic accuracy in detecting liver fibrosis in patients with NAFLD. MRE demonstrated the highest diagnostic accuracy for stage 4 detection and intra- and inter-observer reproducibility. UMIN Clinical Trials Registry No. UMIN000031491.
Collapse
Affiliation(s)
- Kento Imajo
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Honda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Koki Nagai
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Anna Ozaki
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuji Ogawa
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hirokazu Takahashi
- Liver Center, Saga University Hospital, Faculty of Medicine, Saga University, Saga-shi, Japan
| | - Yusuke Saigusa
- Department of Biostatistics, Yokohama City University School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroyuki Kirikoshi
- Department of Clinical Laboratory, Yokohama City University Hospital, Yokohama, Japan
| | - Daisuke Utsunomiya
- Department of Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shinichi Aishima
- Department of Pathology & Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Satoru Saito
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
14
|
Automated CNN-Based Analysis Versus Manual Analysis for MR Elastography in Nonalcoholic Fatty Liver Disease: Inter-method Agreement and Fibrosis Stage Discriminative Performance. AJR Am J Roentgenol 2022; 219:224-232. [PMID: 35107306 DOI: 10.2214/ajr.21.27135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Histological fibrosis stage is the most important prognostic factor in chronic liver disease. MR elastography (MRE) is the most accurate noninvasive method for detecting and staging liver fibrosis. Although accurate, manual ROI-based MRE analysis is complex, time consuming, requires specialized readers, and prone to methodologic variability and suboptimal inter-reader agreement. Objectives: To develop an automated convolutional neural network (CNN)-based method for liver MRE analysis, evaluate its agreement with manual ROI-based analysis, and assess its discriminative performance for dichotomized fibrosis stages using histology as reference standard. Methods: In this retrospective cross-sectional study, 675 participants who underwent MRE using different MRI systems and field strengths at 28 imaging sites from five multicenter international clinical trials of nonalcoholic steatohepatitis were included for algorithm development and internal testing of agreement between automated CNN- and manual ROI-based analyses. Eighty-one patients (52 women, 29 men; mean age, 54 years) who underwent MRE using a single 3-Tesla system and liver biopsy for clinical purposes at a single institution were included for external testing of agreement and assessment of fibrosis stage discriminative performance. Agreement was evaluated using intra-class correlation coefficients (ICC). 95% CIs were computed using bootstrapping. Discriminative performance of each method for dichotomized histologic fibrosis stage was evaluated by AUC and compared using bootstrapping. Results: Mean CNN- and manual ROI-based stiffness measurements ranged from 3.21 to 3.34 kPa in trial participants and from 3.30 to 3.45 kPa in clinical patients. ICC for CNN- and manual ROI-based measurements was 0.98 (95% CI, 0.978-0.98) in trial participants and 0.99 (95% CI: 0.98-0.99) in clinical patients. AUC for classification of dichotomized fibrosis stage ranged from 0.89-0.93 for CNN- and 0.87-0.93 for manual ROI-based analyses (p=.23-.75). Conclusion: Stiffness measurements using the automated CNN-based method agreed strongly with manual ROIbased analysis across MRI systems and field strengths, with excellent discriminative performance for histology-determined dichotomized fibrosis stages in external testing. Clinical Impact: Given the high incidence of chronic liver disease worldwide, it is important that noninvasive tools to assess fibrosis are applied reliably across different settings. CNN-based analysis is feasible and may reduce reliance on expert image analysts.
Collapse
|
15
|
Nah EH, Cho S, Park H, Noh D, Kwon E, Cho HI. Subclinical steatohepatitis and advanced liver fibrosis in health examinees with nonalcoholic fatty liver disease (NAFLD) in 10 South Korean cities: A retrospective cross-sectional study. PLoS One 2021; 16:e0260477. [PMID: 34818372 PMCID: PMC8612540 DOI: 10.1371/journal.pone.0260477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/10/2021] [Indexed: 01/17/2023] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) has a risk of progressing to cirrhosis. The prevalence of NASH and its associated risk factors in community populations are relatively unknown. This study aimed to determine the prevalence of NASH and advanced liver fibrosis using magnetic resonance elastography (MRE), and determine those risk factors in health examinees with asymptomatic fatty liver. Methods This study consecutively selected subjects who underwent health checkups at 13 health-promotion centers in 10 Korean cities between 2018 and 2020. Hepatic steatosis and stiffness were assessed using ultrasonography and MRE, respectively. Stages of liver stiffness were estimated using MRE with cutoff values for NASH and advanced liver fibrosis of 2.91 and 3.60 kPa, respectively. Results The overall prevalence of NASH and advanced liver fibrosis in the subjects with fatty liver were 8.35% and 2.04%, respectively. Multivariate logistic regression analysis indicated that central obesity (OR = 5.12, 95% CI = 2.70–9.71), increased triglyceride (OR = 3.29, 95% CI = 1.72–6.29), abnormal liver function test (OR = 3.09, 95% CI = 1.66–5.76) (all P<0.001), and decreased high-density lipoprotein cholesterol (OR = 5.18, 95% CI = 1.78–15.05) (P = 0.003) were associated with NASH. The main risk factor for advanced liver fibrosis was diabetes (OR = 4.46, 95% CI = 1.14–17.48) (P = 0.032). Conclusion NASH or advanced liver fibrosis is found in one-tenth of health examinees with asymptomatic fatty liver. This suggests that early detection of NASH should be considered to allow early interventions such as lifestyle changes to prevent the adverse effects of NASH and its progression in health examinees with asymptomatic fatty liver.
Collapse
Affiliation(s)
- Eun-Hee Nah
- Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, Korea
| | - Seon Cho
- Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, Korea
| | - Hyeran Park
- Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, Korea
| | - Dongwon Noh
- Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, Korea
| | - Eunjoo Kwon
- Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, Korea
| | - Han-Ik Cho
- MEDIcheck LAB, Korea Association of Health Promotion, Seoul, Korea
| |
Collapse
|
16
|
Obrzut M, Atamaniuk V, Chen J, Obrzut B, Ehman RL, Cholewa M, Palusińska A, Gutkowski K. Postprandial hepatic stiffness changes on magnetic resonance elastography in healthy volunteers. Sci Rep 2021; 11:19786. [PMID: 34611231 PMCID: PMC8492759 DOI: 10.1038/s41598-021-99243-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
Magnetic resonance elastography (MRE) is a reliable noninvasive method for assessment of hepatic stiffness. Liver stiffness is known to be affected by elevated postprandial portal blood flow in patients with chronic liver disease. The goal of this study was to determine whether food intake affects liver stiffness in the absence of known liver disease. We evaluated 100 volunteers (35 men and 65 women) who met inclusion criteria. The subjects had two MRE examinations, first while fasting and then 30 min after a test meal. Fourteen subjects also had two additional MRE exams 1 h 30 min and 2 h 30 min after the meal. Liver stiffness was measured by placing the largest possible polygon ROIs on the four widest liver slices and calculated as a mean of stiffness values from each slice. The correlation of liver stiffness values before and after the meal was assessed using a paired t-test. To evaluate the relationship between the change in postprandial liver stiffness and fasting liver stiffness values, linear regression was performed. The liver stiffness values in the fasting state ranged from 1.84 to 2.82 kPa, with a mean of 2.30 ± 0.23 kPa (95% CI 2.25–2.34). At 30 min after the meal, liver stiffness values ranged from 2.12 to 3.50 kPa, with a mean of 2.70 ± 0.28 kPa (95% CI 2.64–2.75), demonstrating a systematic postprandial increase by 0.40 ± 0.23 kPa (17.7 ± 3.5%). Meal intake significantly increases liver stiffness in healthy individuals, which persists for at least 2 h 30 min. Patients should fast for 3–4 h before MRE examinations to avoid fibrosis overstaging due to postprandial liver stiffness augmentation.
Collapse
Affiliation(s)
- Marzanna Obrzut
- Institute of Health Sciences, Medical College, University of Rzeszow, Rzeszow, Poland
| | - Vitaliy Atamaniuk
- Department of Biophysics, College of Natural Sciences, Institute of Physics, University of Rzeszow, aleja Tadeusza Rejtana 16C, 35-959, Rzeszow, Poland.
| | - Jun Chen
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Bogdan Obrzut
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Medical College, University of Rzeszow, Rzeszow, Poland
| | | | - Marian Cholewa
- Department of Biophysics, College of Natural Sciences, Institute of Physics, University of Rzeszow, aleja Tadeusza Rejtana 16C, 35-959, Rzeszow, Poland
| | - Agnieszka Palusińska
- Department of Internal Medicine and Nephrodiabetology, Medical University of Lodz, Lodz, Poland
| | - Krzysztof Gutkowski
- Institute of Medical Sciences, Medical College, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
17
|
Gidener T, Ahmed OT, Larson JJ, Mara KC, Therneau TM, Venkatesh SK, Ehman RL, Yin M, Allen AM. Liver Stiffness by Magnetic Resonance Elastography Predicts Future Cirrhosis, Decompensation, and Death in NAFLD. Clin Gastroenterol Hepatol 2021; 19:1915-1924.e6. [PMID: 33010409 PMCID: PMC9096913 DOI: 10.1016/j.cgh.2020.09.044] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Magnetic resonance elastography (MRE) is the most accurate method of liver stiffness measurement (LSM) in nonalcoholic fatty liver disease (NAFLD). We aimed to investigate the role of MRE in the prediction of hard outcomes in NAFLD. METHODS AND RESULTS Adults with NAFLD who underwent MRE between 2007 and 2019 at Mayo Clinic, Rochester were identified. Cox regression analyses were used to explore the predictive role of baseline LSM for 1) development of cirrhosis in noncirrhotic NAFLD and 2) development of liver decompensation or death in those with compensated cirrhosis. A total of 829 NAFLD subjects (54% women, median age 58 years) were identified. Of 639 subjects without cirrhosis, 20 developed cirrhosis after a median follow-up of 4 years. Baseline LSM was predictive of future cirrhosis development: age-adjusted HR = 2.93 (95% CI, 1.86-4.62, p <.0001) per 1 kPa increment (C-statistic = 0.86). Baseline LSM by MRE can be used to guide timing of longitudinal noninvasive monitoring: 5, 3 and 1 years for LSM of 2, 3 and 4-5 kPa, respectively. Of 194 subjects with compensated cirrhosis, 81 developed decompensation or death after a median follow-up of 5 years. Baseline LSM was predictive of future decompensation or death: HR = 1.32 (95% CI, 1.13-1.56, p = .0007) per 1 kPa increment after adjusting for age, sex and MELD-Na. The 1-year probability of future decompensation or death in cirrhosis with baseline LSM of 5 kPa vs 8 kPa is 9% vs 20%, respectively. CONCLUSION In NAFLD, LSM by MRE is a significant predictor of future development of cirrhosis. These data expand the role of MRE in clinical practice beyond the estimation of liver fibrosis and provide important evidence that improves individualized disease monitoring and patient counseling.
Collapse
Affiliation(s)
- Tolga Gidener
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Omar T Ahmed
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Joseph J. Larson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Kristin C. Mara
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Terry M. Therneau
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | | | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Alina M. Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
18
|
Joshi A, Muthe MM, Firke V, Badgujar H. Preliminary experience with 3T magnetic resonance elastography imaging of the liver. SA J Radiol 2021; 25:2072. [PMID: 34192073 PMCID: PMC8182447 DOI: 10.4102/sajr.v25i1.2072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/10/2021] [Indexed: 11/06/2022] Open
Abstract
Background Magnetic resonance elastography (MRE) is a promising non-invasive technique for the identification and quantification of hepatic fibrosis. This manuscript describes our early experience with MRE for the assessment of the presence and staging of liver fibrosis on a 3T magnetic resonance imaging (MRI) system. Objectives The purpose of this study was to describe the MRE physics, procedure, interpretation and drawbacks, along with a few recommendations as per our experience. Method Magnetic resonance elastography was performed on 85 patients with a 3T MRI and the images were analysed both qualitatively and quantitatively. Liver stiffness was assessed by drawing freehand geographic regions of interest on the elastograms to cover the maximum portion of the hepatic parenchyma within the 95% confidence maps on each slice. Correlation with histopathology was performed whenever available. Results Of the 80 patients who met the inclusion criteria, 41 patients displayed a normal liver stiffness measurement (LSM) and 39 patients had a raised LSM. In the patients who had a raised LSM, 14 patients had Stage I–II fibrosis, 8 patients had Stage II–III fibrosis, 6 patients had Stage III–IV fibrosis, 4 patients had Stage IV fibrosis or cirrhosis and 7 patients had non-alcoholic steatohepatitis. The mean thickness of the waves increased with increasing stages of fibrosis. The waves became gradually darker medially in patients with normal LSM as compared to the patients with raised LSM. Histopathology with METAVIR scoring was available in 46 patients, which agreed with the MRE findings in all except two patients. Conclusion Magnetic resonance elastography is a suitable non-invasive modality for the identification and quantification of hepatic fibrosis.
Collapse
Affiliation(s)
- Anagha Joshi
- Department of Radiology, Lokmanya Tilak Municipal Medical College, Lokmanya Tilak Municipal General Hospital, Mumbai, India
| | - Mridula M Muthe
- Department of Radiology, Lokmanya Tilak Municipal Medical College, Lokmanya Tilak Municipal General Hospital, Mumbai, India
| | - Vikrant Firke
- Department of Radiology, Lokmanya Tilak Municipal Medical College, Lokmanya Tilak Municipal General Hospital, Mumbai, India
| | - Harshal Badgujar
- Department of Radiology, Lokmanya Tilak Municipal Medical College, Lokmanya Tilak Municipal General Hospital, Mumbai, India
| |
Collapse
|
19
|
Kumada T, Toyoda H, Yasuda S, Sone Y, Ogawa S, Takeshima K, Tada T, Ito T, Sumida Y, Tanaka J. Prediction of Hepatocellular Carcinoma by Liver Stiffness Measurements Using Magnetic Resonance Elastography After Eradicating Hepatitis C Virus. Clin Transl Gastroenterol 2021; 12:e00337. [PMID: 33888672 PMCID: PMC8078363 DOI: 10.14309/ctg.0000000000000337] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Liver fibrosis stage is one of the most important factors in stratifying the risk of developing hepatocellular carcinoma (HCC). We evaluated the usefulness of liver stiffness measured by magnetic resonance elastography (MRE) to stratify the risk of developing HCC in patients who underwent MRE before receiving direct-acting antivirals (DAAs) and subsequently achieved sustained virological response (SVR). METHODS A total of 537 consecutive patients with persistent hepatitis C virus who underwent initial MRE before DAA therapy and achieved SVR were enrolled. Factors associated with HCC development were analyzed by univariate and multivariate Cox proportional hazards models. RESULTS Albumin-bilirubin score ≥ -2.60 (adjusted hazard ratio [aHR] 6.303), fibrosis-4 (FIB-4) score >3.25 (aHR 7.676), and MRE value ≥4.5 kPa (aHR 13.190) were associated with HCC development according to a univariate Cox proportional hazards model. A multivariate Cox proportional hazards model showed that an MRE value ≥4.5 kPa (aHR 7.301) was the only factor independently associated with HCC development. Even in patients with an FIB-4 score >3.25, the cumulative incidence rate of HCC development in those with an MRE value <4.5 kPa was significantly lower than that in patients with an MRE value ≥4.5 kPa. DISCUSSION Liver stiffness measured by MRE before DAA therapy was an excellent marker for predicting subsequent HCC development in patients with hepatitis C virus infection who achieved SVR. The same results were observed in patients with high FIB-4 scores.
Collapse
Affiliation(s)
- Takashi Kumada
- Department of Nursing, Faculty of Nursing, Gifu Kyoritsu University, Ogaki, Gifu, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Yasuhiro Sone
- Department of Radiology, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Sadanobu Ogawa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Kenji Takeshima
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Toshifumi Tada
- Department of Internal Medicine, Himeji Red Cross Hospital, Himeji, Hyougo, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
20
|
Nah EH, Cho S, Kim S, Chu J, Kwon E, Cho HI. Prevalence of liver fibrosis and associated risk factors in the Korean general population: a retrospective cross-sectional study. BMJ Open 2021; 11:e046529. [PMID: 33762246 PMCID: PMC7993338 DOI: 10.1136/bmjopen-2020-046529] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The health burden of chronic liver disease is increasing worldwide. Its main histological consequence is liver fibrosis, and eventually cirrhosis. This process is rarely diagnosed at the pre-cirrhotic stage due to it being asymptomatic. Little is known about the prevalence of liver fibrosis and associated risk factors in the general population. The aims of this study were to determine the prevalence and distribution of liver fibrosis using magnetic resonance elastography (MRE), as well as the risk factors associated with liver fibrosis in the asymptomatic general population. DESIGN, SETTING AND PARTICIPANTS This cross-sectional retrospective study consecutively selected subjects who underwent health check-ups including MRE at 13 health promotion centres in Korea between 2018 and 2020. Liver fibrosis was estimated using MRE with cut-off values for significant and advanced liver fibrosis of 2.90 and 3.60 kPa, respectively. PRIMARY AND SECONDARY OUTCOME MEASURES The Χ2 test was used to compare the prevalence of liver fibrosis according to sex and age groups. Multivariable logistic regression analyses were performed to identify the factors for significant and advanced liver fibrosis. RESULTS Among the 8183 subjects, 778 (9.5%) had ≥significant fibrosis (≥2.9 kPa), which included 214 (2.6%) subjects with ≥advanced fibrosis (≥3.6 kPa). Multivariable analysis revealed that liver fibrosis was associated with age (OR=1.34, 95% CI=1.18 to 1.51), male sex (OR=3.18, 95% CI=1.97 to 5.13), diabetes (OR=2.43, 95% CI=1.8 to 3.28), HBsAg positivity (OR=3.49, 95% CI=2.55 to 4.79), abnormal liver function test (OR=1.9, 95% CI=1.49 to 2.42) and obesity (OR=1.77, 95% CI=1.35 to 2.32) (all p<0.001), as well as metabolic syndrome (OR=1.4, 95% CI=1.05 to 1.87) (p=0.024). CONCLUSIONS The prevalence of significant or more liver fibrosis was high in the Korean general population and much higher among individuals with risk factors. This suggests that screening of liver fibrosis should be considered in general population, especially among high-risk groups.
Collapse
Affiliation(s)
- Eun-Hee Nah
- Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, South Korea
| | - Seon Cho
- Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, South Korea
| | - Suyoung Kim
- Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, South Korea
| | - Jieun Chu
- Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, South Korea
| | - Eunjoo Kwon
- Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, South Korea
| | - Han-Ik Cho
- MEDIcheck LAB, Korea Association of Health Promotion, Seoul, South Korea
| |
Collapse
|
21
|
Dzyubak B, Li J, Chen J, Mara KC, Therneau TM, Venkatesh SK, Ehman RL, Allen AM, Yin M. Automated Analysis of Multiparametric Magnetic Resonance Imaging/Magnetic Resonance Elastography Exams for Prediction of Nonalcoholic Steatohepatitis. J Magn Reson Imaging 2021; 54:122-131. [PMID: 33586159 DOI: 10.1002/jmri.27549] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) affects 25% of the global population. The standard of diagnosis, biopsy, is invasive and affected by sampling error and inter-reader variability. We hypothesized that widely available rapid MRI techniques could be used to predict nonalcoholic steatohepatitis (NASH) noninvasively by measuring liver stiffness, with magnetic resonance elastography (MRE), and liver fat, with chemical shift-encoded (CSE) MRI. Besides, we validate an automated image analysis technique to maximize the utility of these methods. PURPOSE To implement and test an automated system for analyzing CSE-MRI and MRE data coupled with model-based prediction of NASH. STUDY TYPE Prospective. SUBJECTS Eighty-three patients with suspected NAFLD. FIELD STRENGTH/SEQUENCE A 1.5 T using a flow-compensated motion-encoded gradient echo MRE sequence and a multiecho CSE-MRI sequence. ASSESSMENTS The MRE and CSE-MRI data were analyzed by two readers (5+ and 1 years of experience) and an automated algorithm. A logistic regression model to predict pathology-diagnosed NASH was trained based on stiffness and proton density fat fraction, and the area under the receiver operating characteristic curve (AUROC) was calculated using 10-fold cross validation for models based on both automated and manual measurements. A separate model was trained to predict the NASH severity score (NAS). STATISTICAL TESTS Pearson's correlation, Bland-Altman, AUROC, C-statistic. RESULTS The agreement between automated measurements and the more experienced reader (R2 = 0.87 for stiffness and R2 = 0.99 for proton density fat fraction [PDFF]) was slightly better than the agreement between readers (R2 = 0.85 and 0.98). The model for predicting biopsy-diagnosed NASH had an AUROC of 0.87. The NAS-prediction model had a C-statistic of 0.85. DATA CONCLUSION We demonstrated a workflow that used a limited MRI acquisition protocol and fully automated analysis to predict NASH with high accuracy. These methods show promise to provide a reliable noninvasive alternative to biopsy for NASH-screening in populations with NAFLD. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
| | - Jiahui Li
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jie Chen
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | - Alina M Allen
- GI and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Meng Yin
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Gill HE, Lisanti CJ, Schwope RB, Kim J, Katz M, Harrison S. Technical success rate of MR elastography in a population without known liver disease. Abdom Radiol (NY) 2021; 46:590-596. [PMID: 32772122 DOI: 10.1007/s00261-020-02652-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE MR elastography (MRE) has a low technical failure rate in patients with chronic liver disease. The failure rate in an unscreened population is unknown. The purpose of this study was to determine the technical failure rate of MRE in patients with no known liver disease. METHODS In this prospective trial, 633 patients received 673 scans on a 1.5 T MRI using a standard gradient recalled echo MRE protocol. Four MRE images were acquired and repeated as necessary. Two investigators in consensus categorized each failure: 1. Anatomical masking failure; 2. Iron deposition; 3. No waves (connection problem); 4. Poor wave propagation; 5. Poor passive driver placement; 6. Patient breathing problems. Full exam failure was defined as no usable data in all slices. Partial failure was no usable data on at least one slice. RESULTS 1.0% (7/673) were full failures and 7.0% (47/673) were partial failures per patient. Full failures: iron deposition-71.4% (5/7); no waves-28.6% (2/7). 4.0% (108/2733) slice failure rate: Anatomical masking failure-31.5% (34/108); Iron deposition-25.0% (27/108); No waves-13.0% (14/108); Poor wave propagation-7.4% (8/108); Poor passive driver placement-11.1% (12/108); Patient breathing problems-12.0% (13/108). CONCLUSION The failure rate of 1% is lower than for a screened population. Iron overload was implicated in most full failures. This study demonstrates the high technical success rate of MRE in an unscreened population laying the foundation for MRE as a possible screening tool for the general public.
Collapse
|
23
|
Imajo K, Honda Y, Yoneda M, Saito S, Nakajima A. Magnetic resonance imaging for the assessment of pathological hepatic findings in nonalcoholic fatty liver disease. J Med Ultrason (2001) 2020; 47:535-548. [PMID: 33108553 DOI: 10.1007/s10396-020-01059-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is expected to increase because of the current epidemics of obesity and diabetes, and NAFLD has become a major cause of chronic liver disease worldwide. Liver fibrosis is associated with poor long-term outcomes in patients with NAFLD. Additionally, increased mortality and liver-related complications are primarily seen in patients with nonalcoholic steatohepatitis (NASH); however, nonalcoholic fatty liver (NAFL) is believed to be benign and non-progressive. Therefore, distinguishing between NASH and NAFL is clinically important. Liver biopsy is the gold standard method for the staging of liver fibrosis and distinguishing between NASH and NAFL. Unfortunately, liver biopsy is an invasive and expensive procedure. Therefore, noninvasive methods, to replace biopsy, are urgently needed for the staging of liver fibrosis and diagnosing NASH. In this review, we discuss the recent studies on magnetic resonance imaging (MRI), including magnetic resonance elastography, proton density fat fraction measurement, and multiparametric MRI (mpMRI) that can be used in the assessment of NASH components such as liver fibrosis, steatosis, and liver injury including inflammation and ballooning.
Collapse
Affiliation(s)
- Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
| |
Collapse
|
24
|
Abstract
There are >1.5 billion people with chronic liver disease worldwide, causing liver diseases to be a significant global health issue. Diffuse parenchymal liver diseases, including hepatic steatosis, fibrosis, metabolic diseases, and hepatitis cause chronic liver injury and may progress to fibrosis and eventually hepatocellular carcinoma. As early diagnosis and treatment of these diseases impact the progression and outcome, the need for assessment of the liver parenchyma has increased. While the current gold standard for evaluation of the hepatic parenchymal tissue, biopsy has disadvantages and limitations. Consequently, noninvasive methods have been developed based on serum biomarkers and imaging techniques. Conventional imaging modalities such as ultrasound, computed tomography scan, and magnetic resonance imaging provide noninvasive options for assessment of liver tissue. However, several recent advances in liver imaging techniques have been introduced. This review article focuses on the current status of imaging methods for diffuse parenchymal liver diseases assessment including their diagnostic accuracy, advantages and disadvantages, and comparison between different techniques.
Collapse
|
25
|
Elastography Techniques for the Assessment of Liver Fibrosis in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:ijms21114039. [PMID: 32516937 PMCID: PMC7313067 DOI: 10.3390/ijms21114039] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is expected to increase in prevalence because of the ongoing epidemics of obesity and diabetes, and it has become a major cause of chronic liver disease worldwide. Liver fibrosis is associated with long-term outcomes in patients with NAFLD. Liver biopsy is recommended as the gold standard method for the staging of liver fibrosis. However, it has several problems. Therefore, simple and noninvasive methods for the diagnosis and staging of liver fibrosis are urgently needed in place of biopsy. This review discusses recent studies of elastography techniques (vibration-controlled transient elastography, point shear wave elastography, two-dimensional shear wave elastography, and magnetic resonance elastography) that can be used for the assessment of liver fibrosis in patients with NAFLD.
Collapse
|
26
|
Wang XP, Wang Y, Ma H, Wang H, Yang DW, Zhao XY, Jin EH, Yang ZH. Assessment of liver fibrosis with liver and spleen magnetic resonance elastography, serum markers in chronic liver disease. Quant Imaging Med Surg 2020; 10:1208-1222. [PMID: 32550131 DOI: 10.21037/qims-19-849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background The accurate assessment of liver fibrosis is essential for patients with chronic liver disease. A liver biopsy is an invasive procedure that has many potential defects and complications. Therefore, noninvasive assessment techniques are of considerable value for clinical diagnosis. Liver and spleen magnetic resonance elastography (MRE) and serum markers have been proposed for quantitative and noninvasive assessment of liver fibrosis. This study aims to compare the diagnostic performance of liver and spleen stiffness measured by MRE, fibrosis index based on the 4 factors (FIB-4), aspartate aminotransferase-to-platelet ratio index (APRI), and their combined models for staging hepatic fibrosis. Methods One hundred and twenty patients with chronic liver disease underwent MRE scans. Liver and spleen stiffness were measured by the MRE stiffness maps. Serum markers were collected to calculate FIB-4 and APRI. Liver biopsies were used to identify pathologic grading. Spearman's rank correlation analysis evaluated the correlation between the parameters and fibrosis stages. Receiver operating characteristic (ROC) analysis evaluated the performance of the four individual parameters, a liver and spleen stiffness combined model, and an all-parameters combined model in assessing liver fibrosis. Results Liver stiffness, spleen stiffness, FIB-4, and APRI were all correlated with fibrosis stage (r=0.87, 0.64, 0.65, and 0.51, respectively, all P<0.001). Among the 4 individual diagnostic markers, liver stiffness showed the highest values in staging F1-4, F2-4, F3-4 and F4 (AUC =0.89, 0. 97, 0.95, and 0.95, all P<0.001). The AUCs of the liver and spleen stiffness combined model in the F1-4, F2-4, F3-4, and F4 staging groups were 0.89, 0.97, 0.95, and 0.96, respectively (all P<0.001). The corresponding AUCs of the all-parameters combined model were 0.90, 0.97, 0.95, and 0.96 (all P<0.001). The AUCs of the liver and spleen stiffness combined model were significantly higher than those of APRI, FIB-4 in the F2-4, F3-4, and F4 staging groups (all P<0.05). Both combined models were not significantly different from liver stiffness in staging liver fibrosis (all P>0.05). Conclusions Liver stiffness measured with MRE had better diagnostic performance than spleen stiffness, APRI, and FIB-4 for fibrosis staging. The combined models did not significantly improve the diagnostic value compared with liver stiffness in staging fibrosis.
Collapse
Affiliation(s)
- Xiao-Pei Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yu Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Hong Ma
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Han Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Da-Wei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xin-Yan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Er-Hu Jin
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zheng-Han Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
27
|
Krishnamurthy R, Thompson BL, Shankar A, Gariepy CE, Potter CJ, Fung BR, Hu HH. Magnetic Resonance Elastography of the Liver in Children and Adolescents: Assessment of Regional Variations in Stiffness. Acad Radiol 2020; 27:e109-e115. [PMID: 31412984 DOI: 10.1016/j.acra.2019.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Abstract
RATIONALE AND OBJECTIVES We describe our experience in measuring parenchyma stiffness across the liver Couinaud segments in lieu of the conventional practice of using a single slice-wise "global" region-of-interest. We hypothesize that the heterogeneous nature of fibrosis can lead to regional stiffness within the organ, and that it can be reflected by Couinaud segment-based magnetic resonance elastography measurements. MATERIALS AND METHODS This retrospective study involved from 173 patients (116 males, 57 females, 1.0-22.5 years, 14.7 ± 3.5 years) who underwent exams between June 2017 and September 2018. Liver stiffness across the eight Couinaud segments was measured in addition to a single-slice global measurement by two analysts. Inter- and intrarater analysis was performed in a subset of 20 cases. Individual segment stiffness values, the average across the segments, and the coefficients of variation (CoV) were compared to global single-slice-derived values using linear and Lin's concordance correlation coefficients. Linear correlations between stiffness values versus age, gender, and body-mass-index (BMI) were also evaluated. RESULTS We observed CoVs ranging from 3.1%-79.2%, 17.2 ± 7.2%. The CoV was not correlated with age or BMI (r2 < 0.01, p = 0.99 for both). The CoV did not differ between males (17.1 ± 5.6%) and females (17.3 ± 9.8%) (p = 0.88). There were no correlations between global stiffness versus age (r2 = 0.02, p = 0.84) or BMI (r2 = 0.03, p = 0.68). A range of 0.58-0.86 was observed for Lin's concordance correlation coefficient between segmental stiffness, the average stiffness across segments, and global stiffness. Segments II and VII had the highest frequency of being the stiffest Couinaud segment. The average stiffness across the segments correlated strongly with the single-slice global measurement (r2 = 0.88, p< 0.01). CONCLUSION There exists potential variations in parenchyma stiffness across the liver Couinaud segments, which may reflect the heterogeneous nature of fibrosis. This variation can potentially provide additional diagnostic and clinical information.
Collapse
Affiliation(s)
- Ramkumar Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205
| | - Benjamin L Thompson
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205
| | - Anand Shankar
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205
| | - Cheryl E Gariepy
- Department of Gastroenterology and Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, Ohio
| | - Carol J Potter
- Department of Gastroenterology and Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, Ohio
| | - Bonita R Fung
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Houchun H Hu
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205.
| |
Collapse
|
28
|
Kromrey ML, Le Bihan D, Ichikawa S, Motosugi U. Diffusion-weighted MRI-based Virtual Elastography for the Assessment of Liver Fibrosis. Radiology 2020; 295:127-135. [DOI: 10.1148/radiol.2020191498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Kim HJ, Kim B, Yu HJ, Huh J, Lee JH, Lee SS, Kim KW, Kim JK. Reproducibility of hepatic MR elastography across field strengths, pulse sequences, scan intervals, and readers. Abdom Radiol (NY) 2020; 45:107-115. [PMID: 31720766 DOI: 10.1007/s00261-019-02312-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the reproducibility of hepatic MRE under various combinations of settings of field strength, pulse sequence, scan interval, and reader in non-alcoholic fatty liver disease (NAFLD) patients. METHODS Adult NAFLD patients were prospectively enrolled for serial hepatic MRE with 1.5 T using 2D GRE sequence and 3.0 T using 2D SE-EPI sequence on the same day and after 2 weeks, resulting a total of four MRE examinations per patient. Three readers with various levels of background knowledge in MRE technique and liver anatomy measured liver stiffness after a training session. Linear regression, Bland-Altman analysis, within-subject coefficient of variation, and reproducibility coefficient (RDC) were used to determine reproducibility of hepatic MRE measurement. RESULTS Twenty patients completed the MRE sessions. Liver stiffness through MRE showed pooled RDC of 26% (upper 95% CI 30.6%) and corresponding limits of agreement (LOA) within 0.55 kPa across field strengths, MRE sequences, and 2-week interscan interval in three readers. Small mean biases and narrow LOA were observed among readers (0.05-0.19 kPa ± 0.53). CONCLUSION The magnitude of change across combinations of scan parameters is within acceptable clinical range, rendering liver stiffness through MRE a reproducible quantitative imaging biomarker. A lower reproducibility was observed for measurements under different field strengths/MRE sequences at a longer (2 weeks) interscan interval. Operators should be trained to acquire region of interest consistently in repeat examinations.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Radiology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Bohyun Kim
- Department of Radiology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.
| | - Hyun Jeong Yu
- Department of Radiology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jimi Huh
- Department of Radiology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jei Hee Lee
- Department of Radiology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyung Won Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jai Keun Kim
- Department of Radiology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| |
Collapse
|
30
|
Saito S. [7. Reproducibility of Liver Magnetic Resonance Elastography (MRE) Measurement and Its Affecting Factors]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2019; 75:1484-1490. [PMID: 31866649 DOI: 10.6009/jjrt.2019_jsrt_75.12.1484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine.,Department of Biomedical Imaging, National Cardiovascular and Cerebral Research Center
| |
Collapse
|
31
|
Pepin K, Grimm R, Kargar S, Howe BM, Fritchie K, Frick M, Wenger D, Okuno S, Ehman R, McGee K, James S, Laack N, Herman M, Pafundi D. Soft Tissue Sarcoma Stiffness and Perfusion Evaluation by MRE and DCE-MRI for Radiation Therapy Response Assessment: A Technical Feasibility Study. Biomed Phys Eng Express 2019; 5:10.1088/2057-1976/ab2175. [PMID: 32110433 PMCID: PMC7045581 DOI: 10.1088/2057-1976/ab2175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Soft tissue sarcomas are a rare and heterogeneous group of malignancies that present significant diagnostic and therapeutic challenges. Patient stratification based on tumor aggressiveness and early therapeutic response based on quantitative imaging may improve prediction of treatment response and the evaluation of new treatment strategies in clinical trials. The purpose of this pilot study was to determine the technical feasibility of magnetic resonance elastography (MRE) and dynamic contrast-enhanced (DCE) MRI for the evaluation of sarcoma stiffness and perfusion in 9 patients with histologically confirmed sarcoma. Additionally, we assessed the feasibility of utilizing MRE and DCE-MRI for the early evaluation of response to radiation therapy in 4 patients to determine the utility of further evaluation in a larger cohort study. Tumor size, stiffness, and perfusion parameters all decreased from baseline at the time of the pre-surgery or follow-up MRI, and results were compared to pathology or conventional imaging. MRE and DCE-MRI may be useful for the quantitative evaluation of tumor stiffness and perfusion, and therapy response assessment in soft tissue sarcomas.
Collapse
Affiliation(s)
- Kay Pepin
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Roger Grimm
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Soudabeh Kargar
- Mayo Clinic Graduate School of Biomedical Sciences, 200 1 Street SW, Rochester, MN 55905
| | - B Matthew Howe
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Karen Fritchie
- Department of Pathology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Matthew Frick
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Doris Wenger
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Scott Okuno
- Department of Oncology, Mayo Clinic, 200 1 St SW, Rochester MN, 55905
| | - Richard Ehman
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Kiaran McGee
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Sarah James
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Nadia Laack
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Michael Herman
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Deanna Pafundi
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| |
Collapse
|
32
|
Keenan KE, Biller JR, Delfino JG, Boss MA, Does MD, Evelhoch JL, Griswold MA, Gunter JL, Hinks RS, Hoffman SW, Kim G, Lattanzi R, Li X, Marinelli L, Metzger GJ, Mukherjee P, Nordstrom RJ, Peskin AP, Perez E, Russek SE, Sahiner B, Serkova N, Shukla-Dave A, Steckner M, Stupic KF, Wilmes LJ, Wu HH, Zhang H, Jackson EF, Sullivan DC. Recommendations towards standards for quantitative MRI (qMRI) and outstanding needs. J Magn Reson Imaging 2019; 49:e26-e39. [PMID: 30680836 PMCID: PMC6663309 DOI: 10.1002/jmri.26598] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2019.
Collapse
Affiliation(s)
- Kathryn E Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Joshua R Biller
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Jana G Delfino
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael A Boss
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
- Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Mark D Does
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Mark A Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jeffrey L Gunter
- Departments of Radiology and Information Technology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Stuart W Hoffman
- Rehabilitation Research and Development Service, Department of Veterans Affairs, Washington, DC, USA
| | - Geena Kim
- College of Computer & Information Sciences, Regis University, Denver, Colorado, USA
| | - Riccardo Lattanzi
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Xiaojuan Li
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Gregory J Metzger
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pratik Mukherjee
- Department of Radiology, University of California San Francisco, San Francisco, California, USA
| | | | - Adele P Peskin
- Information Technology Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | | | - Stephen E Russek
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Berkman Sahiner
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Natalie Serkova
- Department of Radiology, Anschutz Medical Center, Aurora, Colorado, USA
| | - Amita Shukla-Dave
- Departments of Medical Physics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Karl F Stupic
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Lisa J Wilmes
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Holden H Wu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | - Edward F Jackson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Daniel C Sullivan
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
33
|
Obrzut M, Atamaniuk V, Obrzut B, Ehman R, Cholewa M, Rzucidło M, Pozaruk A, Gutkowski K. Normative values for magnetic resonance elastography-based liver stiffness in a healthy population. Pol Arch Intern Med 2019; 129:321-326. [PMID: 30793705 PMCID: PMC6731548 DOI: 10.20452/pamw.4456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Chronic liver disease resulting in fibrosis, and ultimately cirrhosis, is a significant cause of morbidity and mortality worldwide. None of the conventional imaging techniques are able to detect early fibrosis and compare its grade with the histopathologic scale. Liver biopsy, as the diagnostic standard for liver fibrosis, also has limitations and is not well accepted by patients. Magnetic resonance elastography is a well‑established technique for evaluating liver stiffness and may replace invasive procedures. Detection of liver fibrosis in its early stages, however, requires a detailed knowledge of normal liver stiffness. OBJECTIVES This study aimed to determine normal liver stiffness values in healthy volunteers. PATIENTS AND METHODS A total of 102 volunteers (mean age, 21.6 years; range, 20-28 years) with no history of gastrointestinal, hepatobiliary, or cardiovascular disease were enrolled in the study. Liver stiffness was evaluated by magnetic resonance elastography with a 1.5T clinical magnetic resonance scanner. Images of the induced transverse wave propagation were obtained and converted to tissue stiffness maps (elastograms). RESULTS The mean (SD) liver stiffness for the entire group of volunteers was 2.14 (0.28) kPa (range, 1.37-2.66 kPa). For women, the mean (SD) stiffness value was 2.14 (0.30) kPa (range, 1.37-2.66 kPa), and for men, 2.14 (0.25) kPa (range, 1.54-2.54 kPa). CONCLUSIONS Liver stiffness in a healthy adult cohort did not exceed 2.7 kPa and is not influenced by sex, body mass index, or fat content.
Collapse
Affiliation(s)
- Marzanna Obrzut
- Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Rzeszów, Poland
| | - Vitaliy Atamaniuk
- Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Rzeszów, Poland
| | - Bogdan Obrzut
- Department of Obstetrics and Gynaecology, Provincial Clinical Hospital No 2 in Rzeszow, University of Rzeszów, Rzeszów, Poland
| | - Richard Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Marian Cholewa
- Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Rzeszów, Poland
| | - Mateusz Rzucidło
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Teaching Hospital No. 1 in Rzeszów, Rzeszów, Poland
| | - Andrii Pozaruk
- Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Rzeszów, Poland,Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Krzysztof Gutkowski
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Teaching Hospital No. 1 in Rzeszów, Rzeszów, Poland
| |
Collapse
|
34
|
Feasibility of measuring spleen stiffness with MR elastography and splenic volume to predict hepatic fibrosis stage. PLoS One 2019; 14:e0217876. [PMID: 31150508 PMCID: PMC6544288 DOI: 10.1371/journal.pone.0217876] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/20/2019] [Indexed: 01/02/2023] Open
Abstract
AIM The aim of this study was to investigate the relationship between spleen stiffness value, splenic volume and the liver fibrosis stages. MATERIALS AND METHODS This retrospective study was approved by the institutional review board of our institute. We enrolled 109 patients that had undergone abdominal MR imaging and histopathological examination. The preoperative MR imaging, MR elastography and laboratory data were reviewed. Liver stiffness and spleen stiffness were determined with MR elastography, and splenic volume was calculated. Liver fibrosis stage was determined using surgical pathology. RESULTS The correlation coefficient between the liver stiffness and the fibrosis stage was r = 0.72 and r = 0.62 when the passive driver was on right chest wall and the left chest wall, respectively. The correlation coefficient between the spleen stiffness and the fibrosis stage was r = 0.63 and r = 0.18 when the passive driver was on the left chest wall and the right chest wall, respectively. The correlation coefficient between the splenic volume and the fibrosis stage was r = 0.31. The diagnostic performance of spleen stiffness was similar to liver stiffness in prediction of advanced liver fibrosis. The combination of spleen stiffness and liver stiffness provided greater sensitivity in prediction of advanced fibrosis than spleen or liver stiffness alone, but no significant difference was found. CONCLUSION According to our study, the spleen stiffness value was useful in staging liver fibrosis. The combination of spleen stiffness and liver stiffness could provide higher diagnostic sensitivity than liver stiffness alone in prediction of advanced fibrosis.
Collapse
|
35
|
Bachtiar V, Kelly MD, Wilman HR, Jacobs J, Newbould R, Kelly CJ, Gyngell ML, Groves KE, McKay A, Herlihy AH, Fernandes CC, Halberstadt M, Maguire M, Jayaratne N, Linden S, Neubauer S, Banerjee R. Repeatability and reproducibility of multiparametric magnetic resonance imaging of the liver. PLoS One 2019; 14:e0214921. [PMID: 30970039 PMCID: PMC6457552 DOI: 10.1371/journal.pone.0214921] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/24/2019] [Indexed: 12/15/2022] Open
Abstract
As the burden of liver disease reaches epidemic levels, there is a high unmet medical need to develop robust, accurate and reproducible non-invasive methods to quantify liver tissue characteristics for use in clinical development and ultimately in clinical practice. This prospective cross-sectional study systematically examines the repeatability and reproducibility of iron-corrected T1 (cT1), T2*, and hepatic proton density fat fraction (PDFF) quantification with multiparametric MRI across different field strengths, scanner manufacturers and models. 61 adult participants with mixed liver disease aetiology and those without any history of liver disease underwent multiparametric MRI on combinations of 5 scanner models from two manufacturers (Siemens and Philips) at different field strengths (1.5T and 3T). We report high repeatability and reproducibility across different field strengths, manufacturers, and scanner models in standardized cT1 (repeatability CoV: 1.7%, bias -7.5ms, 95% LoA of -53.6 ms to 38.5 ms; reproducibility CoV 3.3%, bias 6.5 ms, 95% LoA of -76.3 to 89.2 ms) and T2* (repeatability CoV: 5.5%, bias -0.18 ms, 95% LoA -5.41 to 5.05 ms; reproducibility CoV 6.6%, bias -1.7 ms, 95% LoA -6.61 to 3.15 ms) in human measurements. PDFF repeatability (0.8%) and reproducibility (0.75%) coefficients showed high precision of this metric. Similar precision was observed in phantom measurements. Inspection of the ICC model indicated that most of the variance in cT1 could be accounted for by study participants (ICC = 0.91), with minimal contribution from technical differences. We demonstrate that multiparametric MRI is a non-invasive, repeatable and reproducible method for quantifying liver tissue characteristics across manufacturers (Philips and Siemens) and field strengths (1.5T and 3T).
Collapse
Affiliation(s)
| | | | - Henry R. Wilman
- Perspectum Diagnostics Ltd, Oxford, United Kingdom
- Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Jaco Jacobs
- Perspectum Diagnostics Ltd, Oxford, United Kingdom
| | | | | | | | | | - Andy McKay
- Perspectum Diagnostics Ltd, Oxford, United Kingdom
| | | | | | | | | | | | | | - Stefan Neubauer
- Perspectum Diagnostics Ltd, Oxford, United Kingdom
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford United Kingdom
| | | |
Collapse
|
36
|
Do regions of interest location and type influence liver stiffness measurement using magnetic resonance elastography? Diagn Interv Imaging 2019; 100:363-370. [PMID: 30745249 DOI: 10.1016/j.diii.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE To assess the variability of liver stiffness measurements using magnetic resonance elastography (MRE) at 1.5T, depending on different approaches of regions of interest (ROIs) drawing. MATERIAL AND METHODS Fifty consecutive patients with successful liver MRE were included. There were 32 men and 18 women with a mean age of 52±14 (SD) years (range: 20-85 years). MRE was acquired using a gradient recalled-echo MRE sequence. At the level of the portal bifurcation, one observer drawn in the right liver first 3 elliptical ROI and then one free-hand ROI, as large as possible based on the confidence map and the anatomy. Three additional elliptical ROIs were further drawn on the slice above and 3 other on the slice below, for a total of 9 elliptical ROIs. The average value of liver stiffness in the 3 elliptical ROIs of the central slice and the one from the 9 elliptical ROIs were computed. Three liver stiffness values were obtained for each patient from the 3 measurement methods (one free-hand ROI, 3 elliptical ROIs and 9 elliptical ROIs). Inter-method variability was assessed using the intra-class correlation coefficient (ICC) and Bland-Altman analysis. RESULTS The variability between the 3 methods was excellent with ICC>0.978 (P<0.0001). The Bland-Altman analysis revealed high agreement between the 3 methods with bias<0.45kPa and limits of agreement<±1.13kPa. The variability was lower when comparing a large free-hand ROI and the 3-elliptical ROIs, than when comparing the 9-elliptical ROIs to one of the other methods. CONCLUSION Our results show that the variability between the 3 methods of ROI drawing and placement is very low.
Collapse
|
37
|
Sadeghi S, Lin CY, Cortes DH. Narrowband Shear Wave Generation Using Sinusoidally Modulated Acoustic Radiation Force. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:264-272. [PMID: 30530360 DOI: 10.1109/tuffc.2018.2884847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Most transient ultrasound elastography methods use high-intensity ultrasound "push" pulses that generate a shear wave with a wide frequency spectrum. However, it is difficult to control how the energy of the wave is distributed within that spectrum. For this reason, the shear-wave group velocity may not match that of harmonic methods like magnetic resonance elastography (MRE). The objective of this study was to introduce a narrowband shear wave generation method produced by "push" pulses with sinusoidally modulated intensity. The method, named harmonic shear wave imaging (HSWI), successively transmits a series of push pulses with a periodic change in duration. The excited shear waves form a continuous shear wave with a known main frequency that can be controlled by the user. Push pulses are interleaved with imaging pulses so only one clinical transducer is used to generate and record the shear waves. The proposed method was compared to MRE and a transient shear wave elastography method using phantoms and in vivo measurements. It was found that HSWI produces narrowband waves with a speed that closely matches that measured by MRE. Measurement of the acoustic output parameters indicated that the acoustic intensities in HSWI are suitable for clinical applications. The ability of HSWI to generate narrowband shear waves using a single linear array transducer makes it amenable for clinical translation. HSWI can potentially use the same thresholds as MRE for diagnosis of diseases affecting the stiffness of soft tissues.
Collapse
|
38
|
Abstract
The first clinical application of magnetic resonance elastography (MRE) was in the evaluation of chronic liver disease (CLD) for detection and staging of liver fibrosis. In the past 10 years, MRE has been incorporated seamlessly into a standard magnetic resonance imaging (MRI) liver protocol worldwide. Liver MRE is a robust technique for evaluation of liver stiffness and is currently the most accurate noninvasive imaging technology for evaluation of liver fibrosis. Newer MRE sequences including spin-echo MRE and 3 dimensional MRE have helped in reducing the technical limitations of clinical liver MRE that is performed with 2D gradient recalled echo (GRE) MRE. Advances in MRE technology have led to understanding of newer mechanical parameters such as dispersion, attenuation, and viscoelasticity that may be useful in evaluating pathological processes in CLD and may prove useful in their management.This review article will describe the changes in CLD that cause an increase in stiffness followed by principle and technique of liver MRE. In the later part of the review, we will briefly discuss the advances in liver MRE.
Collapse
|
39
|
Sinkus R, Lambert S, Abd-Elmoniem KZ, Morse C, Heller T, Guenthner C, Ghanem AM, Holm S, Gharib AM. Rheological determinants for simultaneous staging of hepatic fibrosis and inflammation in patients with chronic liver disease. NMR IN BIOMEDICINE 2018; 31:e3956. [PMID: 30059174 PMCID: PMC6141320 DOI: 10.1002/nbm.3956] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 05/12/2023]
Abstract
The purpose of this study is to investigate the use of fundamental rheological parameters as quantified by MR elastography (MRE) to measure liver fibrosis and inflammation simultaneously in humans. MRE was performed on 45 patients at 3 T using a vibration frequency of 56 Hz. Fibrosis and inflammation scores were obtained from liver biopsies. Biomechanical properties were quantified in terms of complex shear modulus G* as well as shear wave phase velocity c and shear wave attenuation α. A rheological fractional derivative order model was used to investigate the linear dependence of the free model parameters (dispersion slope y, intrinsic speed c0 , and intrinsic relaxation time τ) on histopathology. Leave-one-out cross-validation was then utilized to demonstrate the effectiveness of the model. The intrinsic speed c0 increases with hepatic fibrosis, while an increased relaxation time τ is reflective of more inflammation of the liver parenchyma. The dispersion slope y does not depend either on fibrosis or on inflammation. The proposed rheological model, given this specific parameterization, establishes the functional dependences of biomechanical parameters on histological fibrosis and inflammation. The leave-one-out cross-validation demonstrates that the model allows identification, from the MRE measurements, of the histology scores when grouped into low-/high-grade fibrosis and low-/high-grade inflammation with significance levels of P = 0.0004 (fibrosis) and P = 0.035 (inflammation). The functional dependences of intrinsic speed and relaxation time on fibrosis and inflammation, respectively, shed new light onto the impact hepatic pathological changes on liver tissue biomechanics in humans. The dispersion slope y appears to represent a structural parameter of liver parenchyma not impacted by the severity of fibrosis/inflammation present in this patient cohort. This specific parametrization of the well-established rheological fractional order model is valuable for the clinical assessment of both fibrosis and inflammation scores, going beyond the capability of the plain shear modulus measurement commonly used for MRE.
Collapse
Affiliation(s)
- Ralph Sinkus
- Inserm U1148, LVTS, University Paris Diderot, University Paris 13, Paris, France
- King's College London, BHF Centre of Excellence, Division of Imaging Sciences and Biomedical Engineering, UK
| | - Simon Lambert
- King's College London, BHF Centre of Excellence, Division of Imaging Sciences and Biomedical Engineering, UK
| | - Khaled Z Abd-Elmoniem
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Caryn Morse
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Christian Guenthner
- Institute for Biomedical Engineering, University and ETH, Zurich, Zurich, Switzerland
| | - Ahmed M Ghanem
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sverre Holm
- Department of Informatics, University of Oslo, Norway
| | - Ahmed M Gharib
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| |
Collapse
|
40
|
Garteiser P, Doblas S, Van Beers BE. Magnetic resonance elastography of liver and spleen: Methods and applications. NMR IN BIOMEDICINE 2018; 31:e3891. [PMID: 29369503 DOI: 10.1002/nbm.3891] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/16/2017] [Accepted: 12/04/2017] [Indexed: 05/06/2023]
Abstract
The viscoelastic properties of the liver and spleen can be assessed with magnetic resonance elastography (MRE). Several actuators, MRI acquisition sequences and reconstruction algorithms have been proposed for this purpose. Reproducible results are obtained, especially when the examination is performed in standard conditions with the patient fasting. Accurate staging of liver fibrosis can be obtained by measuring liver stiffness or elasticity with MRE. Moreover, emerging evidence shows that assessing the tissue viscous parameters with MRE is useful for characterizing liver inflammation, non-alcoholic steatohepatitis, hepatic congestion, portal hypertension, and hepatic tumors. Further advances such as multifrequency acquisitions and compression-sensitive MRE may provide novel quantitative markers of hepatic and splenic mechanical properties that may improve the diagnosis of hepatic and splenic diseases.
Collapse
Affiliation(s)
- Philippe Garteiser
- Laboratory of Imaging Biomarkers, Center of Research on Inflammation, UMR 1149 INSERM-University Paris Diderot, Paris, France
| | - Sabrina Doblas
- Laboratory of Imaging Biomarkers, Center of Research on Inflammation, UMR 1149 INSERM-University Paris Diderot, Paris, France
| | - Bernard E Van Beers
- Laboratory of Imaging Biomarkers, Center of Research on Inflammation, UMR 1149 INSERM-University Paris Diderot, Paris, France
- Department of Radiology, Beaujon University Hospital Paris Nord, Clichy, France
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the current imaging techniques for non-invasive assessment of liver fibrosis (LF). RECENT FINDINGS Elastography-based techniques are the most widely used imaging methods for the evaluation of LF. Currently, MR elastography (MRE) is the most accurate non-invasive method for detection and staging of LF. Ultrasound-based vibration-controlled transient elastography (VCTE) is the most widely used as it can be easily performed at the point of care but has technical limitations especially in the obese. Innovations and technical improvements continue to evolve in elastography for improving accuracy and avoiding misinterpretation from confounding factors. Other imaging methods including diffusion-weighted imaging (DWI), hepatocellular contrast-enhanced (HCE) MRI, T1 relaxometry, T1ρ imaging, textural analysis, liver surface nodularity, susceptibility-weighted imaging, and perfusion imaging are promising but need further evaluation and clinical validation. MRE is the most accurate imaging technique for assessment of LF.
Collapse
Affiliation(s)
- Rishi Philip Mathew
- Department of Radiology, Mayo Clinic, Mayo Clinic College of Medicine, 200, First Street SW, Rochester, MN, 55905, USA
| | - Sudhakar Kundapur Venkatesh
- Department of Radiology, Mayo Clinic, Mayo Clinic College of Medicine, 200, First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
42
|
Karatzas A, Konstantakis C, Aggeletopoulou I, Kalogeropoulou C, Thomopoulos K, Triantos C. Νon-invasive screening for esophageal varices in patients with liver cirrhosis. Ann Gastroenterol 2018; 31:305-314. [PMID: 29720856 PMCID: PMC5924853 DOI: 10.20524/aog.2018.0241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Esophageal varices are one of the main complications of liver cirrhosis. Upper gastrointestinal endoscopy is the gold standard for the detection of esophageal varices. Many less invasive methods for screening of varices have been investigated and the most recent Baveno VI guidelines suggest that endoscopy is not necessary in patients with liver stiffness <20 kPa and platelets >150,000/μL. A critical review of the literature was performed concerning non-invasive or minimally invasive methods of screening for esophageal varices. Liver and spleen elastography, imaging methods including computed tomography, magnetic resonance imaging and ultrasound, laboratory tests and capsule endoscopy are discussed. The accuracy of each method, and its advantages and limitations compared to endoscopy are analyzed. There are data to support the Baveno VI guidelines, but there is still a lack of large prospective studies and low specificity has been reported for the liver stiffness and platelet count combination. Spleen elastography has shown promising results, as there are data to support its superiority to liver elastography, but it needs further assessment. Computed tomography has shown high diagnostic accuracy and can be part of the diagnostic work up of cirrhotic patients in the future, including screening for varices.
Collapse
Affiliation(s)
- Andreas Karatzas
- Department of Radiology, Olympion Therapeutirio (Andreas Karatzas)
| | | | - Ioanna Aggeletopoulou
- Department of Gastroenterology, University Hospital of Patras (Ioanna Aggeletopoulou, Konstantinos Thomopoulos, Christos Triantos)
| | - Christina Kalogeropoulou
- Department of Radiology, University Hospital of Patras (Christina Kalogeropoulou), Patras, Achaia, Greece
| | - Konstantinos Thomopoulos
- Department of Gastroenterology, University Hospital of Patras (Ioanna Aggeletopoulou, Konstantinos Thomopoulos, Christos Triantos)
| | - Christos Triantos
- Department of Gastroenterology, University Hospital of Patras (Ioanna Aggeletopoulou, Konstantinos Thomopoulos, Christos Triantos)
| |
Collapse
|
43
|
Kennedy P, Wagner M, Castéra L, Hong CW, Johnson CL, Sirlin CB, Taouli B. Quantitative Elastography Methods in Liver Disease: Current Evidence and Future Directions. Radiology 2018; 286:738-763. [PMID: 29461949 DOI: 10.1148/radiol.2018170601] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic liver diseases often result in the development of liver fibrosis and ultimately, cirrhosis. Treatment strategies and prognosis differ greatly depending on the severity of liver fibrosis, thus liver fibrosis staging is clinically relevant. Traditionally, liver biopsy has been the method of choice for fibrosis evaluation. Because of liver biopsy limitations, noninvasive methods have become a key research interest in the field. Elastography enables the noninvasive measurement of tissue mechanical properties through observation of shear-wave propagation in the tissue of interest. Increasing fibrosis stage is associated with increased liver stiffness, providing a discriminatory feature that can be exploited by elastographic methods. Ultrasonographic (US) and magnetic resonance (MR) imaging elastographic methods are commercially available, each with their respective strengths and limitations. Here, the authors review the technical basis, acquisition techniques, and results and limitations of US- and MR-based elastography techniques. Diagnostic performance in the most common etiologies of chronic liver disease will be presented. Reliability, reproducibility, failure rate, and emerging advances will be discussed. © RSNA, 2018 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Paul Kennedy
- From the Translational and Molecular Imaging Institute (P.K., B.T.) and Department of Radiology (B.T.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029; Department of Radiology, Sorbonne Universités, UPMC, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France (M.W.); Department of Hepatology, University Paris-VII, Hôpital Beaujon, Clichy, France (L.C.); Liver Imaging Group, Department of Radiology, University of California-San Diego, San Diego, Calif (C.W.H., C.B.S.); Department of Biomedical Engineering, University of Delaware, Newark, Del (C.L.J.)
| | - Mathilde Wagner
- From the Translational and Molecular Imaging Institute (P.K., B.T.) and Department of Radiology (B.T.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029; Department of Radiology, Sorbonne Universités, UPMC, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France (M.W.); Department of Hepatology, University Paris-VII, Hôpital Beaujon, Clichy, France (L.C.); Liver Imaging Group, Department of Radiology, University of California-San Diego, San Diego, Calif (C.W.H., C.B.S.); Department of Biomedical Engineering, University of Delaware, Newark, Del (C.L.J.)
| | - Laurent Castéra
- From the Translational and Molecular Imaging Institute (P.K., B.T.) and Department of Radiology (B.T.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029; Department of Radiology, Sorbonne Universités, UPMC, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France (M.W.); Department of Hepatology, University Paris-VII, Hôpital Beaujon, Clichy, France (L.C.); Liver Imaging Group, Department of Radiology, University of California-San Diego, San Diego, Calif (C.W.H., C.B.S.); Department of Biomedical Engineering, University of Delaware, Newark, Del (C.L.J.)
| | - Cheng William Hong
- From the Translational and Molecular Imaging Institute (P.K., B.T.) and Department of Radiology (B.T.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029; Department of Radiology, Sorbonne Universités, UPMC, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France (M.W.); Department of Hepatology, University Paris-VII, Hôpital Beaujon, Clichy, France (L.C.); Liver Imaging Group, Department of Radiology, University of California-San Diego, San Diego, Calif (C.W.H., C.B.S.); Department of Biomedical Engineering, University of Delaware, Newark, Del (C.L.J.)
| | - Curtis L Johnson
- From the Translational and Molecular Imaging Institute (P.K., B.T.) and Department of Radiology (B.T.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029; Department of Radiology, Sorbonne Universités, UPMC, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France (M.W.); Department of Hepatology, University Paris-VII, Hôpital Beaujon, Clichy, France (L.C.); Liver Imaging Group, Department of Radiology, University of California-San Diego, San Diego, Calif (C.W.H., C.B.S.); Department of Biomedical Engineering, University of Delaware, Newark, Del (C.L.J.)
| | - Claude B Sirlin
- From the Translational and Molecular Imaging Institute (P.K., B.T.) and Department of Radiology (B.T.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029; Department of Radiology, Sorbonne Universités, UPMC, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France (M.W.); Department of Hepatology, University Paris-VII, Hôpital Beaujon, Clichy, France (L.C.); Liver Imaging Group, Department of Radiology, University of California-San Diego, San Diego, Calif (C.W.H., C.B.S.); Department of Biomedical Engineering, University of Delaware, Newark, Del (C.L.J.)
| | - Bachir Taouli
- From the Translational and Molecular Imaging Institute (P.K., B.T.) and Department of Radiology (B.T.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029; Department of Radiology, Sorbonne Universités, UPMC, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France (M.W.); Department of Hepatology, University Paris-VII, Hôpital Beaujon, Clichy, France (L.C.); Liver Imaging Group, Department of Radiology, University of California-San Diego, San Diego, Calif (C.W.H., C.B.S.); Department of Biomedical Engineering, University of Delaware, Newark, Del (C.L.J.)
| |
Collapse
|
44
|
Wang K, Manning P, Szeverenyi N, Wolfson T, Hamilton G, Middleton MS, Vaida F, Yin M, Glaser K, Ehman RL, Sirlin CB. Repeatability and reproducibility of 2D and 3D hepatic MR elastography with rigid and flexible drivers at end-expiration and end-inspiration in healthy volunteers. Abdom Radiol (NY) 2017; 42:2843-2854. [PMID: 28612163 DOI: 10.1007/s00261-017-1206-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To evaluate the repeatability and reproducibility of 2D and 3D hepatic MRE with rigid and flexible drivers at end-expiration and end-inspiration in healthy volunteers. MATERIALS AND METHODS Nine healthy volunteers underwent two same-day MRE exams separated by a 5- to 10-min break. In each exam, 2D and 3D MRE scans were performed, each under four conditions (2 driver types [rigid, flexible] × 2 breath-hold phases [end-expiration, end-inspiration]). Repeatability (measurements under identical conditions) and reproducibility (measurements under different conditions) were analyzed by calculating bias, limit of agreement, repeatability coefficient (RC), reproducibility coefficient (RDC), intraclass correlation coefficient (ICC), and concordance correlation coefficient (CCC), as appropriate. RESULTS For 2D MRE, RCs and ICCs range between 0.29-0.49 and 0.71-0.91, respectively. For 3D MRE, RCs and ICCs range between 0.16-0.26 and 0.84-0.96, respectively. Stiffness values were biased by breath-hold phase, being higher at end-inspiration than end-expiration, and the differences were significant for 3D MRE (p < 0.01). No bias was found between driver types. Inspiration vs. expiration RDCs and CCCs ranged between 0.30-0.54 and 0.61-0.72, respectively. Rigid vs. flexible driver RDCs and CCCs ranged between 0.10-0.44 and 0.79-0.94, respectively. CONCLUSION This preliminary study suggests that 2D MRE and 3D MRE under most conditions potentially have good repeatability. Our result also points to the possibility that stiffness measured with the rigid and flexible drivers is reproducible. Reproducibility between breath-hold phases was modest, suggesting breath-hold phase might be a confounding factor in MRE-based stiffness measurement. However, larger studies are required to validate these preliminary results.
Collapse
|
45
|
Morisaka H, Motosugi U, Ichikawa S, Nakazawa T, Kondo T, Funayama S, Matsuda M, Ichikawa T, Onishi H. Magnetic resonance elastography is as accurate as liver biopsy for liver fibrosis staging. J Magn Reson Imaging 2017; 47:1268-1275. [PMID: 29030995 DOI: 10.1002/jmri.25868] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Liver MR elastography (MRE) is available for the noninvasive assessment of liver fibrosis; however, no previous studies have compared the diagnostic ability of MRE with that of liver biopsy. PURPOSE To compare the diagnostic accuracy of liver fibrosis staging between MRE-based methods and liver biopsy using the resected liver specimens as the reference standard. STUDY TYPE A retrospective study at a single institution. POPULATION In all, 200 patients who underwent preoperative MRE and subsequent surgical liver resection were included in this study. Data from 80 patients were used to estimate cutoff and distributions of liver stiffness values measured by MRE for each liver fibrosis stage (F0-F4, METAVIR system). In the remaining 120 patients, liver biopsy specimens were obtained from the resected liver tissues using a standard biopsy needle. FIELD STRENGTH/SEQUENCE 2D liver MRE with gradient-echo based sequence on a 1.5 or 3T scanner was used. ASSESSMENT Two radiologists independently measured the liver stiffness value on MRE and two types of MRE-based methods (threshold and Bayesian prediction method) were applied. Two pathologists evaluated all biopsy samples independently to stage liver fibrosis. Surgically resected whole tissue specimens were used as the reference standard. STATISTICAL TESTS The accuracy for liver fibrosis staging was compared between liver biopsy and MRE-based methods with a modified McNemar's test. RESULTS Accurate fibrosis staging was achieved in 53.3% (64/120) and 59.1% (71/120) of patients using MRE with threshold and Bayesian methods, respectively, and in 51.6% (62/120) with liver biopsy. Accuracies of MRE-based methods for diagnoses of ≥F2 (90-91% [108-9/120]), ≥F3 (79-81% [95-97/120]), and F4 (82-85% [98-102/120]) were statistically equivalent to those of liver biopsy (≥F2, 79% [95/120], P ≤ 0.01; ≥F3, 88% [105/120], P ≤ 0.006; and F4, 82% [99/120], P ≤ 0.017). DATA CONCLUSION MRE can be an alternative to liver biopsy for fibrosis staging. LEVEL OF EVIDENCE 3. Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1268-1275.
Collapse
Affiliation(s)
- Hiroyuki Morisaka
- Department of Radiology, University of Yamanashi, Yamanashi, Japan.,Diagnostic Radiology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Utaroh Motosugi
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | | | - Tadao Nakazawa
- Department of Pathology, University of Yamanashi, Yamanashi, Japan
| | - Tetsuo Kondo
- Department of Pathology, University of Yamanashi, Yamanashi, Japan
| | - Satoshi Funayama
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Masanori Matsuda
- Department of Gastrointestinal Surgery, University of Yamanashi, Yamanashi, Japan
| | - Tomoaki Ichikawa
- Diagnostic Radiology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
46
|
Horowitz JM, Venkatesh SK, Ehman RL, Jhaveri K, Kamath P, Ohliger MA, Samir AE, Silva AC, Taouli B, Torbenson MS, Wells ML, Yeh B, Miller FH. Evaluation of hepatic fibrosis: a review from the society of abdominal radiology disease focus panel. Abdom Radiol (NY) 2017. [PMID: 28624924 DOI: 10.1007/s00261-017-1211-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatic fibrosis is potentially reversible; however early diagnosis is necessary for treatment in order to halt progression to cirrhosis and development of complications including portal hypertension and hepatocellular carcinoma. Morphologic signs of cirrhosis on ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) alone are unreliable and are seen with more advanced disease. Newer imaging techniques to diagnose liver fibrosis are reliable and accurate, and include magnetic resonance elastography and US elastography (one-dimensional transient elastography and point shear wave elastography or acoustic radiation force impulse imaging). Research is ongoing with multiple other techniques for the noninvasive diagnosis of hepatic fibrosis, including MRI with diffusion-weighted imaging, hepatobiliary contrast enhancement, and perfusion; CT using perfusion, fractional extracellular space techniques, and dual-energy, contrast-enhanced US, texture analysis in multiple modalities, quantitative mapping, and direct molecular imaging probes. Efforts to advance the noninvasive imaging assessment of hepatic fibrosis will facilitate earlier diagnosis and improve patient monitoring with the goal of preventing the progression to cirrhosis and its complications.
Collapse
Affiliation(s)
- Jeanne M Horowitz
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 676 St. Clair St, Suite 800, Chicago, IL, 60611, USA.
| | - Sudhakar K Venkatesh
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kartik Jhaveri
- Division of Abdominal Imaging, Joint Department of Medical Imaging, University Health Network, Mt. Sinai Hospital & Women's College Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | - Patrick Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, San Francisco, CA, 94110, USA
| | - Anthony E Samir
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Alvin C Silva
- Department of Radiology, Mayo Clinic in Arizona, 13400 E. Shea Blvd., Scottsdale, AZ, 85259, USA
| | - Bachir Taouli
- Department of Radiology and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, Box 1234, New York, NY, 10029, USA
| | - Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Michael L Wells
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Benjamin Yeh
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, San Francisco, CA, 94110, USA
| | - Frank H Miller
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 676 St. Clair St, Suite 800, Chicago, IL, 60611, USA
| |
Collapse
|
47
|
Toguchi M, Tsurusaki M, Yada N, Sofue K, Hyodo T, Onoda M, Numoto I, Matsuki M, Imaoka I, Kudo M, Murakami T. Magnetic resonance elastography in the assessment of hepatic fibrosis: a study comparing transient elastography and histological data in the same patients. Abdom Radiol (NY) 2017; 42:1659-1666. [PMID: 28144720 DOI: 10.1007/s00261-017-1045-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE To evaluate the quantitative measurement of liver stiffness (LS), compare the diagnostic performance of magnetic resonance elastography (MRE) and ultrasound-based transient elastography (TE), and evaluate two different MRE-based LS measurement methods. METHODS Between October 2013 and January 2015, 116 consecutive patients with chronic liver disease underwent MRE to measure LS (kilopascals; kPa). Of the 116 patients, 51 patients underwent both TE and liver biopsy, and the interval between the liver biopsy and both the MRE and TE was less than 90 days. MRE-derived LS values were measured on the anterior segment of the right lobe (single small round regions of interest per slice; srROIs) and whole right lobe of the liver (free hand region of interest; fhROI), and these values were correlated with pathological fibrosis grades and diagnostic performance. RESULTS Pathological fibrosis stage was significantly correlated with srROIs (r = 0.87, p < 0.001), fhROI (r = 0.80, p < 0.001), and TE (r = 0.73, p < 0.001). For detection of significant fibrosis (≥F2), advanced fibrosis (≥F3), and cirrhosis, the area under the curve (AUC) associated with the srROIs was largest, and there was a significant difference between srROIs and TE (0.93 vs. 0.82, p = 0.006), srROIs and fhROI (0.93 vs. 0.89, p = 0.04) for detection of ≥F2. For advanced fibrosis and cirrhosis detection, AUCs were not significant (0.92-0.96). CONCLUSIONS MRE and TE detected liver fibrosis with comparable accuracy. In particular, the srROIs method was effective for detecting of significant fibrosis.
Collapse
|
48
|
Serai SD, Obuchowski NA, Venkatesh SK, Sirlin CB, Miller FH, Ashton E, Cole PE, Ehman RL. Repeatability of MR Elastography of Liver: A Meta-Analysis. Radiology 2017; 285:92-100. [PMID: 28530847 DOI: 10.1148/radiol.2017161398] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose To perform a meta-analysis to generate an estimate of the repeatability coefficient (RC) for magnetic resonance (MR) elastography of the liver. Materials and Methods A systematic search of databases was performed for publications on MR elastography during the 10-year period between 2006 and 2015. The identified studies were screened independently and were verified reciprocally by all authors. Two reviewers independently determined the percentage RC and effective sample size from each article. A forest plot was constructed of the percentage RC estimates from the 12 studies. Bootstrap 95% confidence intervals (CIs) were constructed for the summary percentage RCs. Results Twelve studies comprising 274 patients met the eligibility criteria and were included for analysis. A flow diagram of studies included according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was prepared for the inclusion and exclusion criteria. All studies included in the meta-analysis fulfilled four or more of the seven categories of the Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2. The estimated summary RC was 22% (95% CI: 16.1%, 28.2%). The three main sources for this heterogeneity were the trained versus untrained operator drawing contours to choose regions of interest, the time between two replicate examinations, and, finally, the field strength of the MR imaging unit. The RC estimates tended to be higher for studies that did not use a well-trained operator, those with 1.5-T field strength imaging units, and those with longer time intervals between examinations. Conclusion The meta-analysis results provide the basis for the following draft longitudinal Quantitative Imaging Biomarkers Alliance MR elastography claim: A measured change in hepatic stiffness of 22% or greater, at the same site and with use of the same equipment and acquisition sequence, indicates that a true change in stiffness has occurred with 95% confidence. © RSNA, 2017.
Collapse
Affiliation(s)
- Suraj D Serai
- From the Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH 45229 (S.D.S.); Department of Quantitative Health Sciences, the Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); Department of Radiology, Mayo Clinic, Rochester, Minn (S.K.V., R.L.E.); Department of Radiology, UCSD Liver Imaging Group, San Diego, Calif (C.B.S.); Department of Radiology, Northwestern Memorial Hospital, Chicago, Ill (F.H.M.); Virtualscopics, Rochester, NY (E.A.); and Clinical and Translational Science-Imaging, Takeda Pharmaceuticals, Deerfield, Ill (P.E.C.)
| | - Nancy A Obuchowski
- From the Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH 45229 (S.D.S.); Department of Quantitative Health Sciences, the Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); Department of Radiology, Mayo Clinic, Rochester, Minn (S.K.V., R.L.E.); Department of Radiology, UCSD Liver Imaging Group, San Diego, Calif (C.B.S.); Department of Radiology, Northwestern Memorial Hospital, Chicago, Ill (F.H.M.); Virtualscopics, Rochester, NY (E.A.); and Clinical and Translational Science-Imaging, Takeda Pharmaceuticals, Deerfield, Ill (P.E.C.)
| | - Sudhakar K Venkatesh
- From the Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH 45229 (S.D.S.); Department of Quantitative Health Sciences, the Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); Department of Radiology, Mayo Clinic, Rochester, Minn (S.K.V., R.L.E.); Department of Radiology, UCSD Liver Imaging Group, San Diego, Calif (C.B.S.); Department of Radiology, Northwestern Memorial Hospital, Chicago, Ill (F.H.M.); Virtualscopics, Rochester, NY (E.A.); and Clinical and Translational Science-Imaging, Takeda Pharmaceuticals, Deerfield, Ill (P.E.C.)
| | - Claude B Sirlin
- From the Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH 45229 (S.D.S.); Department of Quantitative Health Sciences, the Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); Department of Radiology, Mayo Clinic, Rochester, Minn (S.K.V., R.L.E.); Department of Radiology, UCSD Liver Imaging Group, San Diego, Calif (C.B.S.); Department of Radiology, Northwestern Memorial Hospital, Chicago, Ill (F.H.M.); Virtualscopics, Rochester, NY (E.A.); and Clinical and Translational Science-Imaging, Takeda Pharmaceuticals, Deerfield, Ill (P.E.C.)
| | - Frank H Miller
- From the Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH 45229 (S.D.S.); Department of Quantitative Health Sciences, the Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); Department of Radiology, Mayo Clinic, Rochester, Minn (S.K.V., R.L.E.); Department of Radiology, UCSD Liver Imaging Group, San Diego, Calif (C.B.S.); Department of Radiology, Northwestern Memorial Hospital, Chicago, Ill (F.H.M.); Virtualscopics, Rochester, NY (E.A.); and Clinical and Translational Science-Imaging, Takeda Pharmaceuticals, Deerfield, Ill (P.E.C.)
| | - Edward Ashton
- From the Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH 45229 (S.D.S.); Department of Quantitative Health Sciences, the Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); Department of Radiology, Mayo Clinic, Rochester, Minn (S.K.V., R.L.E.); Department of Radiology, UCSD Liver Imaging Group, San Diego, Calif (C.B.S.); Department of Radiology, Northwestern Memorial Hospital, Chicago, Ill (F.H.M.); Virtualscopics, Rochester, NY (E.A.); and Clinical and Translational Science-Imaging, Takeda Pharmaceuticals, Deerfield, Ill (P.E.C.)
| | - Patricia E Cole
- From the Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH 45229 (S.D.S.); Department of Quantitative Health Sciences, the Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); Department of Radiology, Mayo Clinic, Rochester, Minn (S.K.V., R.L.E.); Department of Radiology, UCSD Liver Imaging Group, San Diego, Calif (C.B.S.); Department of Radiology, Northwestern Memorial Hospital, Chicago, Ill (F.H.M.); Virtualscopics, Rochester, NY (E.A.); and Clinical and Translational Science-Imaging, Takeda Pharmaceuticals, Deerfield, Ill (P.E.C.)
| | - Richard L Ehman
- From the Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH 45229 (S.D.S.); Department of Quantitative Health Sciences, the Cleveland Clinic Foundation, Cleveland, Ohio (N.A.O.); Department of Radiology, Mayo Clinic, Rochester, Minn (S.K.V., R.L.E.); Department of Radiology, UCSD Liver Imaging Group, San Diego, Calif (C.B.S.); Department of Radiology, Northwestern Memorial Hospital, Chicago, Ill (F.H.M.); Virtualscopics, Rochester, NY (E.A.); and Clinical and Translational Science-Imaging, Takeda Pharmaceuticals, Deerfield, Ill (P.E.C.)
| |
Collapse
|
49
|
Thompson SM, Wang J, Chandan VS, Glaser KJ, Roberts LR, Ehman RL, Venkatesh SK. MR elastography of hepatocellular carcinoma: Correlation of tumor stiffness with histopathology features-Preliminary findings. Magn Reson Imaging 2017; 37:41-45. [PMID: 27845245 PMCID: PMC5587120 DOI: 10.1016/j.mri.2016.11.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE To determine if tumor stiffness by MR Elastography (MRE) is associated with hepatocellular carcinoma (HCC) pathologic features. MATERIAL AND METHODS A retrospective review was undertaken of all patients with pathologically confirmed HCC who underwent MRE prior to loco-regional therapy, surgical resection or transplant between 1/1/2007 to 12/31/2015. An independent observer measured tumor stiffness (kilopascals, kPa) by drawing regions of interest (ROI) covering the HCC and in the case of HCCs with non-enhancing/necrotic components, only the solid portion was included in the ROI. HCC tumor grade (WHO criteria), vascular invasion and tumor encapsulation were assessed from retrievable pathology specimens by an expert hepatobiliary pathologist. Tumor stiffness was compared by tumor grade, size, presence of capsule and vascular invasion using Student's t-test (or Exact Mann-Whitney test). RESULTS 21 patients were identified who had pathologically confirmed HCCs and tumor MRE data. 17 patients (81.0%) had underlying chronic liver disease. The mean±SD tumor size (cm) was 5.3±3.9cm. The mean±SD tumor stiffness was 5.9±1.4kPa. Tumors were graded as well differentiated (N=2), moderately differentiated (N=11) and poorly differentiated (N=8). There was a trend toward increased tumor stiffness in well/moderately differentiated HCCs (6.5±1.2kPa; N=13) compared to poorly differentiated HCCs (4.9±1.2kPa; N=8) (p<0.01). There was no significant correlation between tumor stiffness and liver stiffness or tumor size. There was no significant difference in tumor stiffness by presence or etiology of chronic liver disease, vascular invasion or tumor encapsulation. CONCLUSION Preliminary data suggest that tumor stiffness by MRE may be able to differentiate HCC tumor grade.
Collapse
Affiliation(s)
- Scott M Thompson
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States
| | - Jin Wang
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States
| | - Vishal S Chandan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States
| | - Kevin J Glaser
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States
| | - Sudhakar K Venkatesh
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States.
| |
Collapse
|
50
|
Ichikawa S, Motosugi U, Enomoto N, Matsuda M, Onishi H. Noninvasive hepatic fibrosis staging using mr elastography: The usefulness of the bayesian prediction method. J Magn Reson Imaging 2016; 46:375-382. [DOI: 10.1002/jmri.25551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Utaroh Motosugi
- Department of Radiology; University of Yamanashi; Yamanashi Japan
| | - Nobuyuki Enomoto
- First Department of Internal Medicine; University of Yamanashi; Yamanashi Japan
| | - Masanori Matsuda
- First Department of Surgery; University of Yamanashi; Yamanashi Japan
| | - Hiroshi Onishi
- Department of Radiology; University of Yamanashi; Yamanashi Japan
| |
Collapse
|