1
|
Saïb G, Koretsky AP, Talagala SL. Optimization of pseudo-continuous arterial spin labeling using off-resonance compensation strategies at 7T. Magn Reson Med 2021; 87:1720-1730. [PMID: 34775619 DOI: 10.1002/mrm.29070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/12/2022]
Abstract
PURPOSE The sensitivity of pseudo-continuous arterial spin labeling (PCASL) to off-resonance effects (ΔB0 ) is a major limitation at ultra-high field (≥7T). The aim of this study was to assess the effectiveness of different PCASL ΔB0 compensation methods at 7T and measure the labeling efficiency with off-resonance correction. THEORY AND METHODS Phase offset errors induced by ΔB0 at the feeding arteries can be compensated by adding an extra radiofrequency (RF) phase increment and transverse gradient blips into the PCASL RF pulse train. The effectiveness of an average field correction (AVGcor), a vessel-specific field-map-based correction (FMcor) and a vessel-specific prescan-based correction (PScor) were compared at 7T. After correction, the PCASL labeling efficiency was directly measured in feeding arteries downstream from the labeling location. RESULTS The perfusion signal was more uniform throughout the brain after off-resonance correction. Whole-brain average perfusion signal increased by a factor of 2.4, 2.5, and 2.1, respectively, with AVGcor, FMcor and PScor compared to acquisitions without correction. With off-resonance correction, the maximum labeling efficiency was ~0.68 at mean B1 (B1mean ) of 0.70 µT when using a mean gradient (Gmean ) of 0.25 mT/m. CONCLUSION Either a prescan or a field map can be used to correct for off-resonance effects and retrieve a good brain perfusion signal at 7T. Although the three methods performed well in this study, FMcor may be better suited for patient studies because it accounted for vessel-specific ΔB0 variations. Further improvements in image quality will be possible by optimizing the labeling efficiency with advanced hardware and software while satisfying specific absorption rate constraints.
Collapse
Affiliation(s)
- Gaël Saïb
- NINDS/LFMI, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan P Koretsky
- NINDS/LFMI, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
2
|
Wang R, Hu B, Sun C, Geng D, Lin J, Li Y. Metabolic abnormality in acute stroke-like lesion and its relationship with focal cerebral blood flow in patients with MELAS: Evidence from proton MR spectroscopy and arterial spin labeling. Mitochondrion 2021; 59:276-282. [PMID: 34186261 DOI: 10.1016/j.mito.2021.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/24/2021] [Accepted: 06/23/2021] [Indexed: 11/29/2022]
Abstract
Our purpose is to detect the metabolic alterations in acute stroke-like lesions (SLLs) and further investigate the correlations between metabolic concentrations and focal cerebral blood flow in patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) using proton MR spectroscopy (1H-MRS) and arterial spin labeling (ASL). A total of 23 patients with MELAS at acute stage of stroke-like episodes (SLEs) and 20 normal controls (NC) were recruited in this study, respectively. All subjects underwent conventional MRI and1H-MRS. In addition, ASL was performed in each patient. The measurements of creatine (Cr), choline (Cho), N-acetyl aspartate (NAA), lactate (Lac), glutamine/glutamate (Glx) levels and the ratios of Cho/Cr, NAA/Cr, Lac/Cr and Glx/Cr in acute SLLs for MELAS patients and left parietal and occipital lobes for NC were measured using LC-model software. Furthermore, in MELAS group, the associations between relative cerebral blood flow (rCBF) and metabolite concentrations in acute SLLs were also assessed. In MELAS group, acute SLLs were identified with metabolic abnormalities and increased rCBF. Specifically, compared with controls, MELAS patients exhibited significantly higher Lac, Cho levels and Lac/Cr, Cho/Cr ratios, and lower NAA, Glx levels and NAA/Cr and Glx/Cr ratios. Moreover, for MELAS patients, Lac concentration in acute SLLs was positively correlated with focal rCBF. This study exhibited the neural injury with increasing lactate and cerebral blood flow in the acute SLEs. It might shed light on the underlying biochemical mechanism of mitochondrial cytopathy and angiopathy in MELAS.
Collapse
Affiliation(s)
- Rong Wang
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Shanghai Institution of Medical Imaging, Shanghai 200032, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China
| | - Bin Hu
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daoying Geng
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Shanghai Institution of Medical Imaging, Shanghai 200032, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yuxin Li
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China.
| |
Collapse
|
3
|
Pfaffenrot V, Voelker MN, Kashyap S, Koopmans PJ. Laminar fMRI using T 2-prepared multi-echo FLASH. Neuroimage 2021; 236:118163. [PMID: 34023449 DOI: 10.1016/j.neuroimage.2021.118163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) using blood oxygenation level dependent (BOLD) contrast at a sub-millimeter scale is a promising technique to probe neural activity at the level of cortical layers. While gradient echo (GRE) BOLD sequences exhibit the highest sensitivity, their signal is confounded by unspecific extravascular (EV) and intravascular (IV) effects of large intracortical ascending veins and pial veins leading to a downstream blurring effect of local signal changes. In contrast, spin echo (SE) fMRI promises higher specificity towards signal changes near the microvascular compartment. However, the T2-weighted signal is typically sampled with a gradient echo readout imposing additional T2'-weighting. In this work, we used a T2-prepared (T2-prep) sequence with short GRE readouts to investigate its capability to acquire laminar fMRI data during a visual task in humans at 7 T. By varying the T2-prep echo time (TEprep) and acquiring multiple gradient echoes (TEGRE) per excitation, we studied the specificity of the sequence and the influence of possible confounding contributions to the shape of laminar fMRI profiles. By fitting and extrapolating the multi-echo GRE data to a TEGRE = 0 ms condition, we show for the first time laminar profiles free of T2'-pollution, confined to gray matter. This finding is independent of TEprep, except for the shortest one (31 ms) where hints of a remaining intravascular component can be seen. For TEGRE > 0 ms a prominent peak at the pial surface is observed that increases with longer TEGRE and dominates the shape of the profiles independent of the amount of T2-weighting. Simulations show that the peak at the pial surface is a result of static EV dephasing around pial vessels in CSF visible in GM due to partial voluming. Additionally, another, weaker, static dephasing effect is observed throughout all layers of the cortex, which is particularly obvious in the data with shortest T2-prep echo time. Our simulations show that this cannot be explained by intravascular dephasing but that it is likely caused by extravascular effects of the intracortical and pial veins. We conclude that even for TEGRE as short as 2.3 ms, the T2'-weighting added to the T2-weighting is enough to dramatically affect the laminar specificity of the BOLD signal change. However, the bulk of this corruption stems from CSF partial volume effects which can in principle be addressed by increasing the spatial resolution of the acquisition.
Collapse
Affiliation(s)
- Viktor Pfaffenrot
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany; High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Maximilian N Voelker
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany; High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 Maastricht, Netherlands
| | - Peter J Koopmans
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany; High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
4
|
Oliveira ÍAF, van der Zwaag W, Raimondo L, Dumoulin SO, Siero JCW. Comparing hand movement rate dependence of cerebral blood volume and BOLD responses at 7T. Neuroimage 2020; 226:117623. [PMID: 33301935 DOI: 10.1016/j.neuroimage.2020.117623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) based on the Blood Oxygenation Level Dependent (BOLD) contrast takes advantage of the coupling between neuronal activity and the hemodynamics to allow a non-invasive localisation of the neuronal activity. In general, fMRI experiments assume a linear relationship between neuronal activation and the observed hemodynamics. However, the relationship between BOLD responses, neuronal activity, and behaviour are often nonlinear. In addition, the nonlinearity between BOLD responses and behaviour may be related to neuronal process rather than a neurovascular uncoupling. Further, part of the nonlinearity may be driven by vascular nonlinearity effects in particular from large vessel contributions. fMRI based on cerebral blood volume (CBV), promises a higher microvascular specificity, potentially without vascular nonlinearity effects and reduced contamination of the large draining vessels compared to BOLD. In this study, we aimed to investigate differences in BOLD and VASO-CBV signal changes during a hand movement task over a broad range of movement rates. We used a double readout 3D-EPI sequence at 7T to simultaneously measure VASO-CBV and BOLD responses in the sensorimotor cortex. The measured BOLD and VASO-CBV responses increased very similarly in a nonlinear fashion, plateauing for movement rates larger than 1 Hz. Our findings show a tight relationship between BOLD and VASO-CBV responses, indicating that the overall interplay of CBV and BOLD responses are similar for the assessed range of movement rates. These results suggest that the observed nonlinearity of neuronal origin is already present in VASO-CBV measurements, and consequently shows relatively unchanged BOLD responses.
Collapse
Affiliation(s)
- Ícaro A F Oliveira
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands.
| | | | - Luisa Raimondo
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Jeroen C W Siero
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Radiology, Utrecht Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
5
|
Berman AJL, Grissom WA, Witzel T, Nasr S, Park DJ, Setsompop K, Polimeni JR. Ultra-high spatial resolution BOLD fMRI in humans using combined segmented-accelerated VFA-FLEET with a recursive RF pulse design. Magn Reson Med 2020; 85:120-139. [PMID: 32705723 DOI: 10.1002/mrm.28415] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE To alleviate the spatial encoding limitations of single-shot echo-planar imaging (EPI) by developing multi-shot segmented EPI for ultra-high-resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration. THEORY AND METHODS Segmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, "FLEET" segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA-FLEET) to improve inter-segment fidelity and maximize signal for fMRI. Scaling a sinc pulse's flip angle for each segment (VFA-FLEET-Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar-Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA-FLEET-SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals. RESULTS The temporal stability of VFA-FLEET-SLR was compared against conventional-segmented EPI and VFA-FLEET-Sinc at 3T and 7T. VFA-FLEET-SLR showed reductions in both intermittent and stable ghosting compared to conventional-segmented and VFA-FLEET-Sinc, resulting in improved image quality with a minor trade-off in temporal SNR. Combining VFA-FLEET-SLR with acceleration, we achieved a 0.6-mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level-dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi-slice VFA-FLEET-SLR was demonstrated using RF-encoded controlled aliasing. CONCLUSIONS VFA-FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a "full-brain" field of view.
Collapse
Affiliation(s)
- Avery J L Berman
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J Park
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Beckett AJS, Dadakova T, Townsend J, Huber L, Park S, Feinberg DA. Comparison of BOLD and CBV using 3D EPI and 3D GRASE for cortical layer functional MRI at 7 T. Magn Reson Med 2020; 84:3128-3145. [PMID: 32557752 DOI: 10.1002/mrm.28347] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/27/2023]
Abstract
PURPOSE Functional MRI (fMRI) at the mesoscale of cortical layers and columns requires both sensitivity and specificity, the latter of which can be compromised if the imaging method is affected by vascular artifacts, particularly cortical draining veins at the pial surface. Recent studies have shown that cerebral blood volume (CBV) imaging is more specific to the actual laminar locus of neural activity than BOLD imaging using standard gradient-echo EPI sequences. Gradient and spin-echo (GRASE) BOLD imaging has also shown greater specificity when compared with standard gradient-echo EPI BOLD. Here we directly compare CBV and BOLD contrasts in high-resolution imaging of the primary motor cortex for laminar functional MRI in four combinations of signal labeling, CBV using slice-selective slab-inversion vascular space occupancy (VASO) and BOLD, each with 3D gradient-echo EPI and zoomed 3D-GRASE image readouts. METHODS Activations were measured using each sequence and contrast combination during a motor task. Activation profiles across cortical depth were measured to assess the sensitivity and specificity (pial bias) of each method. RESULTS Both CBV imaging using gradient-echo 3D-EPI and BOLD imaging using 3D-GRASE show similar specificity and sensitivity and are therefore useful tools for mesoscopic functional MRI in the human cortex. The combination of GRASE and VASO did not demonstrate high levels of sensitivity, nor show increased specificity. CONCLUSION Three-dimensional EPI with VASO contrast and 3D-GRASE with BOLD contrast both demonstrate sufficient sensitivity and specificity for laminar functional MRI to be used by neuroscientists in a wide range of investigations of depth-dependent neural circuitry in the human brain.
Collapse
Affiliation(s)
- Alexander J S Beckett
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA.,Advanced MRI Technologies, Sebastopol, California, USA
| | - Tetiana Dadakova
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Jennifer Townsend
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA.,Advanced MRI Technologies, Sebastopol, California, USA
| | - Laurentius Huber
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Suhyung Park
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA.,Advanced MRI Technologies, Sebastopol, California, USA
| | - David A Feinberg
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA.,Advanced MRI Technologies, Sebastopol, California, USA
| |
Collapse
|
7
|
Gai ND, Butman JA. Determining the optimal postlabeling delay for arterial spin labeling using subject-specific estimates of blood velocity in the carotid artery. J Magn Reson Imaging 2019; 50:951-960. [PMID: 30681220 DOI: 10.1002/jmri.26670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Arterial spin labeling with 3D acquisition requires determining a single postlabeling delay (PLD) value. PLD affects the signal-to-noise ratio (SNR) per unit time as well as quantitative cerebral blood flow (CBF) values due to its bearing on the presence of a vascular signal. PURPOSE To search for an optimal PLD for pseudocontinuous arterial spin labeling (pCASL) using patient-specific carotid artery blood velocity measurements. STUDY TYPE Prospective. SUBJECTS A control group of 11 volunteers with no known pathology. Corroboration was through a separate group of six volunteers and a noncontrol group of five sickle cell disease (SCD) patients. FIELD STRENGTH/SEQUENCE Pseudocontinuous arterial spin labeling with 3D nonsegmented echo planar imaging acquisition at 3T. ASSESSMENT A perfusion-based measure was determined over a range of PLDs for each of 11 volunteers. A third-order polynomial was used to find the optimal PLD where the defined measure was maximum. This was plotted against the corresponding carotid artery velocity to determine a relationship between the perfusion measure and velocity. Corroboration was done using a group of six volunteers and a noncontrol group of five patients with SCD. PLD was determined from the carotid artery velocity and derived relationship and compared with optimal PLD obtained from measured perfusion over a range of PLD values. Error between the perfusion measure at predicted and measured optimal PLD was determined. STATISTICAL TESTS Chi-squared goodness of fit; Pearson correlation; Bland-Altman. RESULTS Carotid artery velocity was 63.8 ± 6.6 cm/s (53.1 ≤ v ≤ 72.3 cm/s) while optimal PLD was 1374 ± 226.5 msec (1102 ≤ PLD ≤ 1787 msec) across the 11 volunteers. PLD as a function of carotid velocity was determined to be PLD = -31.94. v + 3410 msec (Pearson correlation -0.93). In six volunteers, mean error between the perfusion measure at predicted and measured optimal PLD was 1.35%. Pearson correlation between the perfusion measure at the predicted PLD and the measure obtained experimentally was r = 0.96 (P < 0.001). Bland-Altman revealed a slight bias of 1.3%. For the test case of five SCD patients, the mean error was 1.3%. DATA CONCLUSION Carotid artery velocity was used to determine optimal PLD for pCASL with 3D acquisition. The derived relationship was used to predict optimal PLD and the associated perfusion measure, which was found to be accurate when compared with its measured counterpart. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:951-960.
Collapse
Affiliation(s)
- Neville D Gai
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - John A Butman
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Huber L, Tse DHY, Wiggins CJ, Uludağ K, Kashyap S, Jangraw DC, Bandettini PA, Poser BA, Ivanov D. Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: Capabilities and challenges. Neuroimage 2018; 178:769-779. [PMID: 29890330 PMCID: PMC6100753 DOI: 10.1016/j.neuroimage.2018.06.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/31/2022] Open
Abstract
Functional mapping of cerebral blood volume (CBV) changes has the potential to reveal brain activity with high localization specificity at the level of cortical layers and columns. Non-invasive CBV imaging using Vascular Space Occupancy (VASO) at ultra-high magnetic field strengths promises high spatial specificity but poses unique challenges in human applications. As such, 9.4 T B1+ and B0 inhomogeneities limit efficient blood tagging, while the specific absorption rate (SAR) constraints limit the application of VASO-specific RF pulses. Moreover, short T2* values at 9.4 T require short readout duration, and long T1 values at 9.4 T can cause blood-inflow contaminations. In this study, we investigated the applicability of layer-dependent CBV-fMRI at 9.4 T in humans. We addressed the aforementioned challenges by combining multiple technical advancements: temporally alternating pTx B1+ shimming parameters, advanced adiabatic RF-pulses, 3D-EPI signal readout, optimized GRAPPA acquisition and reconstruction, and stability-optimized RF channel combination. We found that a combination of suitable advanced methodology alleviates the challenges and potential artifacts, and that VASO fMRI provides reliable measures of CBV change across cortical layers in humans at 9.4 T. The localization specificity of CBV-fMRI, combined with the high sensitivity of 9.4 T, makes this method an important tool for future studies investigating cortical micro-circuitry in humans.
Collapse
Affiliation(s)
- Laurentius Huber
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA.
| | - Desmond H Y Tse
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Centre for Advanced Imaging, University of Queensland, Australia
| | | | - Kâmil Uludağ
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sriranga Kashyap
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - David C Jangraw
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA; FMRIF, NIMH, NIH, Bethesda, MD, USA
| | - Benedikt A Poser
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Dimo Ivanov
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
9
|
Huber L, Ivanov D, Handwerker DA, Marrett S, Guidi M, Uludağ K, Bandettini PA, Poser BA. Techniques for blood volume fMRI with VASO: From low-resolution mapping towards sub-millimeter layer-dependent applications. Neuroimage 2018; 164:131-143. [PMID: 27867088 PMCID: PMC5436958 DOI: 10.1016/j.neuroimage.2016.11.039] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022] Open
Abstract
Quantitative cerebral blood volume (CBV) fMRI has the potential to overcome several specific limitations of BOLD fMRI. It provides direct physiological interpretability and promises superior localization specificity in applications of sub-millimeter resolution fMRI applications at ultra-high magnetic fields (7T and higher). Non-invasive CBV fMRI using VASO (vascular space occupancy), however, is inherently limited with respect to its data acquisition efficiency, restricting its imaging coverage and achievable spatial and temporal resolution. This limitation may be reduced with recent advanced acceleration and reconstruction strategies that allow two-dimensional acceleration, such as in simultaneous multi-slice (SMS) 2D-EPI or 3D-EPI in combination with CAIPIRINHA field-of-view shifting. In this study, we sought to determine the functional sensitivity and specificity of these readout strategies with VASO over a broad range of spatial resolutions; spanning from low spatial resolution (3mm) whole-cortex to sub-millimeter (0.75mm) slab-of-cortex (for cortical layer-dependent applications). In the thermal-noise-dominated regime of sub-millimeter resolutions, 3D-EPI-VASO provides higher temporal stability and sensitivity to detect changes in CBV compared to 2D-EPI-VASO. In this regime, 3D-EPI-VASO unveils task activation located in the cortical laminae with little contamination from surface veins, in contrast to the cortical surface weighting of GE-BOLD fMRI. In the physiological-noise-dominated regime of lower resolutions, however, 2D-SMS-VASO shows superior performance compared to 3D-EPI-VASO. Due to its superior sensitivity at a layer-dependent level, 3D-EPI VASO promises to play an important role in future neuroscientific applications of layer-dependent fMRI.
Collapse
Affiliation(s)
- Laurentius Huber
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA.
| | - Dimo Ivanov
- Maastricht Brain Imaging Centre, Faculty of Psychology and Neurosciencve, Maastricht University, Maastricht, The Netherlands
| | - Daniel A Handwerker
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| | | | - Maria Guidi
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kâmil Uludağ
- Maastricht Brain Imaging Centre, Faculty of Psychology and Neurosciencve, Maastricht University, Maastricht, The Netherlands
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA; FMRIF, NIMH, NIH, Bethesda, MD, USA
| | - Benedikt A Poser
- Maastricht Brain Imaging Centre, Faculty of Psychology and Neurosciencve, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
Suzuki Y, Helle M, Koken P, Van Cauteren M, van Osch MJP. Simultaneous acquisition of perfusion image and dynamic MR angiography using time-encoded pseudo-continuous ASL. Magn Reson Med 2017; 79:2676-2684. [PMID: 28913838 PMCID: PMC5947630 DOI: 10.1002/mrm.26926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/18/2023]
Abstract
PURPOSE Both dynamic magnetic resonance angiography (4D-MRA) and perfusion imaging can be acquired by using arterial spin labeling (ASL). While 4D-MRA highlights large vessel pathology, such as stenosis or collateral blood flow patterns, perfusion imaging provides information on the microvascular status. Therefore, a complete picture of the cerebral hemodynamic condition could be obtained by combining the two techniques. Here, we propose a novel technique for simultaneous acquisition of 4D-MRA and perfusion imaging using time-encoded pseudo-continuous arterial spin labeling. METHODS The time-encoded pseudo-continuous arterial spin labeling module consisted of a first subbolus that was optimized for perfusion imaging by using a labeling duration of 1800 ms, whereas the other six subboli of 130 ms were used for encoding the passage of the labeled spins through the arterial system for 4D-MRA acquisition. After the entire labeling module, a multishot 3D turbo-field echo-planar-imaging readout was executed for the 4D-MRA acquisition, immediately followed by a single-shot, multislice echo-planar-imaging readout for perfusion imaging. The optimal excitation flip angle for the 3D turbo-field echo-planar-imaging readout was investigated by evaluating the image quality of the 4D-MRA and perfusion images as well as the accuracy of the estimated cerebral blood flow values. RESULTS When using 36 excitation radiofrequency pulses with flip angles of 5 or 7.5°, the saturation effects of the 3D turbo-field echo-planar-imaging readout on the perfusion images were relatively moderate and after correction, there were no statistically significant differences between the obtained cerebral blood flow values and those from traditional time-encoded pseudo-continuous arterial spin labeling. CONCLUSIONS This study demonstrated that simultaneous acquisition of 4D-MRA and perfusion images can be achieved by using time-encoded pseudo-continuous arterial spin labeling. Magn Reson Med 79:2676-2684, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yuriko Suzuki
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Philips Electronics Japan Ltd, Healthcare, Tokyo, Japan
| | - Michael Helle
- Philips GmbH Innovative Technologies, Research Laboratories, Hamburg, Germany
| | - Peter Koken
- Philips GmbH Innovative Technologies, Research Laboratories, Hamburg, Germany
| | | | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
11
|
Gai ND, Chou YY, Pham D, Butman JA. Reduced distortion artifact whole brain CBF mapping using blip-reversed non-segmented 3D echo planar imaging with pseudo-continuous arterial spin labeling. Magn Reson Imaging 2017; 44:119-124. [PMID: 28867670 DOI: 10.1016/j.mri.2017.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE To implement and evaluate interleaved blip-up, blip-down, non-segmented 3D echo planar imaging (EPI) with pseudo-continuous arterial spin labeling (pCASL) and post-processing for reduced susceptibility artifact cerebral blood flow (CBF) maps. MATERIALS AND METHODS 3D EPI non-segmented acquisition with a pCASL labeling sequence was modified to include alternating k-space coverage along phase encoding direction (referred to as "blip-reversed") for alternating dynamic acquisitions of control and label pairs. Eight volunteers were imaged on a 3T scanner. Images were corrected for distortion using spatial shifting transformation of the underlying field map. CBF maps were calculated and compared with maps obtained without blip reversal using matching gray matter (GM) images from a high resolution 3D scan. Additional benefit of using the correction for alternating blip-up and blip-down acquisitions was assessed by comparing to corrected blip-up only and corrected blip-down only CBF maps. Matched Student t-test of overlapping voxels for the eight volunteers was done to ascertain statistical improvement in distortion. RESULTS Mean CBF value in GM for the eight volunteers from distortion corrected CBF maps was 50.8±9.9ml/min/100 gm tissue. Corrected CBF maps had 6.3% and 4.1% more voxels in GM when compared with uncorrected blip up (BU) and blip down (BD) images, respectively. Student t-test showed significant reduction in distortion when compared with blip-up images and blip-down images (p<0.001). When compared with corrected BU and corrected BD only CBF maps, BU and BD corrected maps had 2.3% and 1% more voxels (p=0.006 and 0.04, respectively). CONCLUSION Pseudo-continuous arterial spin labeling with non-segmented 3D EPI acquisition using alternating blip-reversed k-space traversal and distortion correction provided significantly better matching GM CBF maps. In addition, employing alternating blip-reversed acquisitions during pCASL acquisition resulted in statistically significant improvement over corrected blip-up and blip-down CBF maps.
Collapse
Affiliation(s)
- Neville D Gai
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA..
| | - Yi Yu Chou
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.; Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Dzung Pham
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.; Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, USA
| | - John A Butman
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Ivanov D, Gardumi A, Haast RA, Pfeuffer J, Poser BA, Uludağ K. Comparison of 3 T and 7 T ASL techniques for concurrent functional perfusion and BOLD studies. Neuroimage 2017; 156:363-376. [DOI: 10.1016/j.neuroimage.2017.05.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 02/04/2023] Open
|
13
|
Cheng Y, van Zijl PCM, Pekar JJ, Hua J. Three-dimensional acquisition of cerebral blood volume and flow responses during functional stimulation in a single scan. Neuroimage 2014; 103:533-541. [PMID: 25152092 PMCID: PMC4252776 DOI: 10.1016/j.neuroimage.2014.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 11/30/2022] Open
Abstract
In addition to the BOLD scan, quantitative functional MRI studies require measurement of both cerebral blood volume (CBV) and flow (CBF) dynamics. The ability to detect CBV and CBF responses in a single additional scan would shorten the total scan time and reduce temporal variations. Several approaches for simultaneous CBV and CBF measurement during functional MRI experiments have been proposed in two-dimensional (2D) mode covering one to three slices in one repetition time (TR). Here, we extended the principles from previous work and present a three-dimensional (3D) whole-brain MRI approach that combines the vascular-space-occupancy (VASO) and flow-sensitive alternating inversion recovery (FAIR) arterial spin labeling (ASL) techniques, allowing the measurement of CBV and CBF dynamics, respectively, in a single scan. 3D acquisitions are complicated for such a scan combination as the time to null blood signal during a steady state needs to be known. We estimated this using Bloch simulations and demonstrate that the resulting 3D acquisition can detect activation patterns and relative signal changes of quality comparable to that of the original separate scans. The same was found for temporal signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). This approach provides improved acquisition efficiency when both CBV and CBF responses need to be monitored during a functional task.
Collapse
Affiliation(s)
- Ying Cheng
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James J Pekar
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Hua
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Li X, Wang D, Auerbach EJ, Moeller S, Ugurbil K, Metzger GJ. Theoretical and experimental evaluation of multi-band EPI for high-resolution whole brain pCASL Imaging. Neuroimage 2014; 106:170-81. [PMID: 25462690 DOI: 10.1016/j.neuroimage.2014.10.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022] Open
Abstract
Multi-band echo planar imaging (MB-EPI), a new approach to increase data acquisition efficiency and/or temporal resolution, has the potential to overcome critical limitations of standard acquisition strategies for obtaining high-resolution whole brain perfusion imaging using arterial spin labeling (ASL). However, the use of MB also introduces confounding effects, such as spatially varying amplified thermal noise and leakage contamination, which have not been evaluated to date as to their effect on cerebral blood flow (CBF) estimation. In this study, both the potential benefits and confounding effects of MB-EPI were systematically evaluated through both simulation and experimentally using a pseudo-continuous arterial spin labeling (pCASL) strategy. These studies revealed that the amplified noise, given by the geometry factor (g-factor), and the leakage contamination, assessed by the total leakage factor (TLF), have a minimal impact on CBF estimation. Furthermore, it is demonstrated that MB-EPI greatly benefits high-resolution whole brain pCASL studies in terms of improved spatial and temporal signal-to-noise ratio efficiencies, and increases compliance with the assumptions of the commonly used single blood compartment model, resulting in improved CBF estimates.
Collapse
Affiliation(s)
- Xiufeng Li
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| | - Dingxin Wang
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Siemens Healthcare, Minneapolis, MN, USA
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Liang X, Connelly A, Tournier JD, Calamante F. A variable flip angle-based method for reducing blurring in 3D GRASE ASL. Phys Med Biol 2014; 59:5559-73. [PMID: 25170985 DOI: 10.1088/0031-9155/59/18/5559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Arterial Spin Labeling (ASL) is an MRI technique to measure cerebral blood flow directly and noninvasively, and thus provides a more direct quantitative correlate of neural activity than blood-oxygen-level-dependent fMRI. A 3D gradient and spin-echo (GRASE) sequence is capable of enhancing signal-to-noise ratio, and has been shown to be a very useful readout module for ASL sequences. Nonetheless, the introduction of significant blurring in its single-shot version, due to T2 decay along the partition dimension, compromises the achievable spatial resolution, limiting the potential of this technique for whole-brain coverage. To address this issue, a method for reducing blurring based on a variable flip angle (VFA) scheme is proposed in this study for 3D GRASE ASL perfusion. Numerical simulations show that the proposed method is capable of reducing the blurring significantly compared to the standard constant flip angle approach; this result was further confirmed using in vivo data. The proposed VFA method should therefore be of significance to 3D GRASE ASL fMRI studies, since it is able to reduce blurring without sacrificing temporal resolution.
Collapse
Affiliation(s)
- Xiaoyun Liang
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | | | | | | |
Collapse
|
16
|
Trotier AJ, Lefrançois W, Ribot EJ, Thiaudiere E, Franconi JM, Miraux S. Time-resolved TOF MR angiography in mice using a prospective 3D radial double golden angle approach. Magn Reson Med 2014; 73:984-94. [DOI: 10.1002/mrm.25201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Aurelien J. Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Université Bordeaux Segalen; Bordeaux Cedex France
| | - William Lefrançois
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Université Bordeaux Segalen; Bordeaux Cedex France
| | - Emeline J. Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Université Bordeaux Segalen; Bordeaux Cedex France
| | - Eric Thiaudiere
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Université Bordeaux Segalen; Bordeaux Cedex France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Université Bordeaux Segalen; Bordeaux Cedex France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Université Bordeaux Segalen; Bordeaux Cedex France
| |
Collapse
|
17
|
Johnston ME, Zheng Z, Maldjian JA, Whitlow CT, Morykwas MJ, Jung Y. Cerebral blood flow quantification in swine using pseudo-continuous arterial spin labeling. J Magn Reson Imaging 2013; 38:1111-8. [PMID: 24105693 DOI: 10.1002/jmri.24066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/10/2013] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To develop quantitative cerebral blood flow (CBF) imaging using pseudo-continuous arterial spin labeling (PCASL) in swine, accounting for their cerebrovascular anatomy and physiology. MATERIALS AND METHODS Five domestic pigs (2.5-3 months, 25 kg) were used in these studies. The orientation of the labeled arteries, T1bl , M0bl , and T1gm were measured in swine. Labeling parameters were tuned with respect to blood velocity to optimize labeling efficiency based on the data collected from three subjects. Finally, CBF and arterial transit time (ATT) maps for two subjects were created from PCASL data to determine global averages. RESULTS The average labeling efficiency over measured velocities of 5-18 cm/s was 0.930. The average T1bl was 1546 ms, the average T1gm was 1224 ms, and the average blood-to-white matter ratio of M0 was 1.25, which was used to find M0bl . The global averages over the subjects were 54.05 mL/100 g tissue/min CBF and 1261 ms ATT. CONCLUSION This study demonstrates the feasibility of PCASL for CBF quantification in swine. Quantification of CBF using PCASL in swine can be further developed as an accessible and cost-effective model of human cerebral perfusion for investigating injuries that affect blood flow.
Collapse
Affiliation(s)
- Megan E Johnston
- Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
18
|
Petr J, Ferré JC, Raoult H, Bannier E, Gauvrit JY, Barillot C. Template-based approach for detecting motor task activation-related hyperperfusion in pulsed ASL data. Hum Brain Mapp 2013; 35:1179-89. [PMID: 23408457 DOI: 10.1002/hbm.22243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 10/31/2012] [Accepted: 11/24/2012] [Indexed: 11/10/2022] Open
Abstract
Arterial spin labeling (ASL) permits the noninvasive measurement of quantitative values of cerebral blood flow (CBF) and is thus well adapted to study inter- and intrasubject perfusion variations whether at rest or during an fMRI task. In this study, a template approach to detect brain activation as a CBF difference between resting and activated groups was compared with a standard generalized linear model (GLM) analysis. A basal perfusion template of PICORE-Q2TIPS ASL images acquired at 3T from a group of 25 healthy subjects (mean age 31.6 ± 8.3 years) was created. The second group of 12 healthy subjects (mean age 28.6 ± 2.7 years) performed a block-design motor task. The template was compared with the mean activated image of the second group both at the individual and at the group level to extract activation maps. The results obtained using a GLM analysis of the whole sequence was used as ground truth for comparison. The influences of spatial normalization using DARTEL registration and of correction of partial volume effects (PVE) in the construction of the template were assessed. Results showed that a basal perfusion template can detect activation-related hyperperfusion in motor areas. The true positive ratio was increased by 2.5% using PVE-correction and by 3.2% using PVE-correction with DARTEL registration. On average, the group comparison presented a 2.2% higher true positive ratio than the one-to-many comparison.
Collapse
Affiliation(s)
- Jan Petr
- INRIA, Team VisAGeS, Campus Universitaire de Beaulieu, Rennes, France; INSERM, Unit VisAGeS U746, Campus Universitaire de Beaulieu, Rennes, France; University of Rennes I, CNRS, Unit VisAGeS U746, IRISA, Campus Universitaire de Beaulieu, Rennes, France; Helmholtz-Zentrum Dresden-Rossendorf, Dep. of Positron Emission Tomography, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Vidorreta M, Wang Z, Rodríguez I, Pastor MA, Detre JA, Fernández-Seara MA. Comparison of 2D and 3D single-shot ASL perfusion fMRI sequences. Neuroimage 2012; 66:662-71. [PMID: 23142069 DOI: 10.1016/j.neuroimage.2012.10.087] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/03/2012] [Accepted: 10/29/2012] [Indexed: 11/27/2022] Open
Abstract
Arterial spin labeling (ASL) can be implemented by combining different labeling schemes and readout sequences. In this study, the performance of 2D and 3D single-shot pulsed-continuous ASL (pCASL) sequences was assessed in a group of young healthy volunteers undergoing a baseline perfusion and a functional study with a sensory-motor activation paradigm. The evaluated sequences were 2D echo-planar imaging (2D EPI), 3D single-shot fast spin-echo with in-plane spiral readout (3D FSE spiral), and 3D single-shot gradient-and-spin-echo (3D GRASE). The 3D sequences were implemented with and without the addition of an optimized background suppression (BS) scheme. Labeling efficiency, signal-to-noise ratio (SNR), and gray matter (GM) to white matter (WM) contrast ratio were assessed in baseline perfusion measurements. 3D acquisitions without BS yielded 2-fold increments in spatial SNR, but no change in temporal SNR. The addition of BS to the 3D sequences yielded a 3-fold temporal SNR increase compared to the unsuppressed sequences. 2D EPI provided better GM-to-WM contrast ratio than the 3D sequences. The analysis of functional data at the subject level showed a 3-fold increase in statistical power for the BS 3D sequences, although the improvement was attenuated at the group level. 3D without BS did not increase the maximum t-values, however, it yielded larger activation clusters than 2D. These results demonstrate that BS 3D single-shot imaging sequences improve the performance of pCASL in baseline and activation studies, particularly for individual subject analyses where the improvement in temporal SNR translates into markedly enhanced power for task activation detection.
Collapse
Affiliation(s)
- Marta Vidorreta
- Neuroimaging Laboratory, Division of Neuroscience, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Ze Wang
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ignacio Rodríguez
- Department of Chemical Physics II, Faculty of Pharmacy, UCM, Madrid, Spain; CIBER of Respiratory Diseases, Spain
| | - María A Pastor
- Neuroimaging Laboratory, Division of Neuroscience, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Deparment of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - María A Fernández-Seara
- Neuroimaging Laboratory, Division of Neuroscience, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
| |
Collapse
|
20
|
Nielsen JF, Hernandez-Garcia L. Functional perfusion imaging using pseudocontinuous arterial spin labeling with low-flip-angle segmented 3D spiral readouts. Magn Reson Med 2012; 69:382-90. [PMID: 22488451 DOI: 10.1002/mrm.24261] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 11/12/2022]
Abstract
Arterial spin labeling (ASL) provides quantitative and reproducible measurements of regional cerebral blood flow, and is therefore an attractive method for functional MRI. However, most existing ASL functional MRI protocols are based on either two-dimensional (2D) multislice or 3D spin-echo and suffer from very low image signal-to-noise ratio or through-plane blurring. 3D ASL with multishot (segmented) readouts can improve the signal-to-noise ratio efficiency relative to 2D multislice and does not suffer from T(2)-blurring. However, segmented readouts require lower imaging flip-angles and may increase the susceptibility to temporal signal fluctuations (e.g., due to physiology) relative to 2D multislice. In this article, we characterize the temporal signal-to-noise ratio of a segmented 3D spiral ASL sequence, and investigate the effects of radiofrequency phase cycling scheme and flip-angle schedule on image properties. We show that radiofrequency-spoiling is essential in segmented 3D spiral ASL, and that 3D ASL can improve temporal signal-to-noise ratio 2-fold relative to 2D multislice when using a simple polynomial (cubic) flip-angle schedule. Functional MRI results using the proposed optimized segmented 3D spiral ASL protocol show excellent activation in the visual cortex.
Collapse
Affiliation(s)
- Jon-Fredrik Nielsen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|