1
|
Choi CH, Webb A, Orzada S, Kelenjeridze M, Shah NJ, Felder J. A Review of Parallel Transmit Arrays for Ultra-High Field MR Imaging. IEEE Rev Biomed Eng 2024; 17:351-368. [PMID: 37022919 DOI: 10.1109/rbme.2023.3244132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.
Collapse
|
2
|
Terekhov M, Elabyad IA, Lohr D, Hofmann U, Schreiber LM. High-resolution imaging of the excised porcine heart at a whole-body 7 T MRI system using an 8Tx/16Rx pTx coil. MAGMA (NEW YORK, N.Y.) 2023; 36:279-293. [PMID: 37027119 PMCID: PMC10140105 DOI: 10.1007/s10334-023-01077-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/28/2023]
Abstract
INTRODUCTION MRI of excised hearts at ultra-high field strengths ([Formula: see text]≥7 T) can provide high-resolution, high-fidelity ground truth data for biomedical studies, imaging science, and artificial intelligence. In this study, we demonstrate the capabilities of a custom-built, multiple-element transceiver array customized for high-resolution imaging of excised hearts. METHOD A dedicated 16-element transceiver loop array was implemented for operation in parallel transmit (pTx) mode (8Tx/16Rx) of a clinical whole-body 7 T MRI system. The initial adjustment of the array was performed using full-wave 3D-electromagnetic simulation with subsequent final fine-tuning on the bench. RESULTS We report the results of testing the implemented array in tissue-mimicking liquid phantoms and excised porcine hearts. The array demonstrated high efficiency of parallel transmits characteristics enabling efficient pTX-based B1+-shimming. CONCLUSION The receive sensitivity and parallel imaging capability of the dedicated coil were superior to that of a commercial 1Tx/32Rx head coil in both SNR and T2*-mapping. The array was successfully tested to acquire ultra-high-resolution (0.1 × 0.1 × 0.8 mm voxel) images of post-infarction scar tissue. High-resolution (isotropic 1.6 mm3 voxel) diffusion tensor imaging-based tractography provided high-resolution information about normal myocardial fiber orientation.
Collapse
Affiliation(s)
- Maxim Terekhov
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany.
| | - Ibrahim A Elabyad
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - David Lohr
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I / Cardiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Laura M Schreiber
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| |
Collapse
|
3
|
Elabyad IA, Terekhov M, Lohr D, Bille M, Hock M, Schreiber LM. A novel antisymmetric 16-element transceiver dipole antenna array for parallel transmit cardiac MRI in pigs at 7 T. NMR IN BIOMEDICINE 2022; 35:e4726. [PMID: 35277907 DOI: 10.1002/nbm.4726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
To improve parallel transmit (pTx) and receive performance for cardiac MRI (cMRI) in pigs at 7 T, a dedicated transmit/receive (Tx/Rx), 16-element antisymmetric dipole antenna array, which combines L-shaped and straight dipoles, was designed, implemented, and evaluated in both cadavers and animals in vivo. Electromagnetic-field simulations were performed with the new 16-element dipole antenna array loaded with a pig thorax-shaped phantom and compared with an eight-element array of straight dipoles. The new dipole array was interfaced to a 7 T scanner in pTx mode (8Tx/16Rx). Imaging performance of the novel array was validated through MRI measurements in a pig phantom, an 85 kg pig cadaver, and two pigs in vivo (74 and 81 kg). Due to the improved decoupling between interleaved L-shaped and straight dipole elements, the 16-element dipole array fits within the same outer dimensions as an eight-element array of straight dipoles. This provides improvement of both transmit and receive characteristics and additional degrees of freedom for B1+ shimming. The antisymmetric dipole array demonstrated efficient suppression of destructive interferences in the B1+ field, with up to 25% improvement in the B1+ homogeneity achieved using static pTx-RFPA B1+ shimming in comparison with the hardware-adjusted state, which was optimized for single transmit. High-resolution (0.5 × 0.5 × 4 mm3 ) anatomical images of the heart after cardiac arrest proved good transmit and receive characteristics of the novel array design. Parallel imaging with an acceleration factor up to R = 6 was possible while maintaining a mean g factor of 1.55 within the pig heart. CINE images acquired in vivo in two pigs demonstrated SNR and parallel imaging capabilities similar to those of a reference 8Tx/16Rx dedicated loop array for cMRI in pigs.
Collapse
Affiliation(s)
- Ibrahim A Elabyad
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maxim Terekhov
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - David Lohr
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maya Bille
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Hock
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laura M Schreiber
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
4
|
Tenbergen CJA, Metzger GJ, Scheenen TWJ. Ultra-high-field MR in Prostate cancer: Feasibility and Potential. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2022; 35:631-644. [PMID: 35579785 PMCID: PMC9113077 DOI: 10.1007/s10334-022-01013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Multiparametric MRI of the prostate at clinical magnetic field strengths (1.5/3 Tesla) has emerged as a reliable noninvasive imaging modality for identifying clinically significant cancer, enabling selective sampling of high-risk regions with MRI-targeted biopsies, and enabling minimally invasive focal treatment options. With increased sensitivity and spectral resolution, ultra-high-field (UHF) MRI (≥ 7 Tesla) holds the promise of imaging and spectroscopy of the prostate with unprecedented detail. However, exploiting the advantages of ultra-high magnetic field is challenging due to inhomogeneity of the radiofrequency field and high local specific absorption rates, raising local heating in the body as a safety concern. In this work, we review various coil designs and acquisition strategies to overcome these challenges and demonstrate the potential of UHF MRI in anatomical, functional and metabolic imaging of the prostate and pelvic lymph nodes. When difficulties with power deposition of many refocusing pulses are overcome and the full potential of metabolic spectroscopic imaging is used, UHF MR(S)I may aid in a better understanding of the development and progression of local prostate cancer. Together with large field-of-view and low-flip-angle anatomical 3D imaging, 7 T MRI can be used in its full strength to characterize different tumor stages and help explain the onset and spatial distribution of metastatic spread.
Collapse
Affiliation(s)
- Carlijn J A Tenbergen
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Gregory J Metzger
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| |
Collapse
|
5
|
Terekhov M, Elabyad IA, Schreiber LM. Global optimization of default phases for parallel transmit coils for ultra-high-field cardiac MRI. PLoS One 2021; 16:e0255341. [PMID: 34358243 PMCID: PMC8346258 DOI: 10.1371/journal.pone.0255341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
The development of novel multiple-element transmit-receive arrays is an essential factor for improving B1+ field homogeneity in cardiac MRI at ultra-high magnetic field strength (B0 > = 7.0T). One of the key steps in the design and fine-tuning of such arrays during the development process is finding the default driving phases for individual coil elements providing the best possible homogeneity of the combined B1+-field that is achievable without (or before) subject-specific B1+-adjustment in the scanner. This task is often solved by time-consuming (brute-force) or by limited efficiency optimization methods. In this work, we propose a robust technique to find phase vectors providing optimization of the B1-homogeneity in the default setup of multiple-element transceiver arrays. The key point of the described method is the pre-selection of starting vectors for the iterative solver-based search to maximize the probability of finding a global extremum for a cost function optimizing the homogeneity of a shaped B1+-field. This strategy allows for (i) drastic reduction of the computation time in comparison to a brute-force method and (ii) finding phase vectors providing a combined B1+-field with homogeneity characteristics superior to the one provided by the random-multi-start optimization approach. The method was efficiently used for optimizing the default phase settings in the in-house-built 8Tx/16Rx arrays designed for cMRI in pigs at 7T.
Collapse
Affiliation(s)
- Maxim Terekhov
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
- * E-mail:
| | - Ibrahim A. Elabyad
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laura M. Schreiber
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
6
|
Eigentler TW, Kuehne A, Boehmert L, Dietrich S, Els A, Waiczies H, Niendorf T. 32-Channel self-grounded bow-tie transceiver array for cardiac MR at 7.0T. Magn Reson Med 2021; 86:2862-2879. [PMID: 34169546 DOI: 10.1002/mrm.28885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Design, implementation, evaluation, and application of a 32-channel Self-Grounded Bow-Tie (SGBT) transceiver array for cardiac MR (CMR) at 7.0T. METHODS The array consists of 32 compact SGBT building blocks. Transmission field ( B 1 + ) shimming and radiofrequency safety assessment were performed with numerical simulations and benchmarked against phantom experiments. In vivo B 1 + efficiency mapping was conducted with actual flip angle imaging. The array's applicability for accelerated high spatial resolution 2D FLASH CINE imaging of the heart was examined in a volunteer study (n = 7). RESULTS B 1 + shimming provided a uniform field distribution suitable for female and male subjects. Phantom studies demonstrated an excellent agreement between simulated and measured B 1 + efficiency maps (7% mean difference). The SGBT array afforded a spatial resolution of (0.8 × 0.8 × 2.5) mm3 for 2D CINE FLASH which is by a factor of 12 superior to standardized cardiovascular MR (CMR) protocols. The density of the SGBT array supports 1D acceleration of up to R = 4 (mean signal-to-noise ratio (whole heart) ≥ 16.7, mean contrast-to-noise ratio ≥ 13.5) without impairing image quality significantly. CONCLUSION The compact SGBT building block facilitates a modular high-density array that supports accelerated and high spatial resolution CMR at 7.0T. The array provides a technological basis for future clinical assessment of parallel transmission techniques.
Collapse
Affiliation(s)
- Thomas Wilhelm Eigentler
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Chair of Medical Engineering, Technische Universität Berlin, Berlin, Germany
| | | | - Laura Boehmert
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sebastian Dietrich
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,MRI.TOOLS GmbH, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
7
|
Beck MJ, Parker DL, Hadley JR. Capacitive versus Overlap Decoupling of Adjacent Radio Frequency Phased Array Coil Elements: An Imaging Robustness Comparison When Sample Load Varies for 3 Tesla MRI. CONCEPTS IN MAGNETIC RESONANCE. PART B, MAGNETIC RESONANCE ENGINEERING 2020; 2020:8828047. [PMID: 34867110 PMCID: PMC8640609 DOI: 10.1155/2020/8828047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phased array (PA) receive coils are built such that coil elements approximate independent antenna behavior. One method of achieving this goal is to use an available decoupling method to decouple adjacent coil elements. The purpose of this work was to compare the relative performance of two decoupling methods as a function of variation in sample load. Two PA receive coils with 5 channels (5-ch) each, equal outer dimensions, and formed on 12 cm diameter cylindrical phantoms of conductivities 0.3, 0.6, and 0.9 S/m were evaluated for relative signal-to-noise ratio (SNR) and parallel imaging performance. They were only tuned and matched to the 0.6 S/m phantom. Simulated and measured axial, sagittal, and coronal 5-ch PA coil SNR ratios were compared by dividing the overlap by the capacitive decoupled coil SNR results. Issues related to the selection of capacitor values for the two decoupling methods were evaluated by taking the ratio of the match and tune capacitors for large and small 2 channel (2-ch) PA coils. The SNR ratios showed that the SNR of the two decoupling methods were very similar. The inverse geometry-factor maps showed similar but better overall parallel imaging performance for the capacitive decoupled method. The quotients for the 2-ch PA coils' maximum and minimum capacitor value ratios are 3.28 and 1.38 for the large and 3.28 and 2.22 for the small PA. The results of this paper demonstrate that as the sample load varies, the capacitive and overlap decoupling methods are very similar in relative SNR and this similarity continues for parallel imaging performance. Although, for the 5-ch coils studied, the capacitive decoupling method has a slight SNR and parallel imaging advantage and it was noted that the capacitive decoupled coil is more likely to encounter unbuildable PA coil configurations.
Collapse
Affiliation(s)
- Michael J Beck
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City 84132, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City 84132, USA
| | - J Rock Hadley
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City 84132, USA
| |
Collapse
|
8
|
A Novel Mono-surface Antisymmetric 8Tx/16Rx Coil Array for Parallel Transmit Cardiac MRI in Pigs at 7T. Sci Rep 2020; 10:3117. [PMID: 32080274 PMCID: PMC7033245 DOI: 10.1038/s41598-020-59949-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/30/2020] [Indexed: 02/01/2023] Open
Abstract
A novel mono-surface antisymmetric 16-element transmit/receive (Tx/Rx) coil array was designed, simulated, constructed, and tested for cardiac magnetic resonance imaging (cMRI) in pigs at 7 T. The cardiac array comprised of a mono-surface 16-loops with two central elements arranged anti-symmetrically and flanked by seven elements on either side. The array was configured for parallel transmit (pTx) mode to have an eight channel transmit and 16-channel receive (8Tx/16Rx) coil array. Electromagnetic (EM) simulations, bench-top measurements, phantom, and MRI experiments with two pig cadavers (68 and 46 kg) were performed. Finally, the coil was used in pilot in-vivo measurements with a 60 kg pig. Flip angle (FA), geometry factor (g-factor), signal-to-noise ratio (SNR) maps, and high-resolution cardiac images were acquired with an in-plane resolution of 0.6 mm × 0.6 mm (in-vivo) and 0.3 mm × 0.3 mm (ex-vivo). The mean g-factor over the heart was 1.26 (R = 6). Static phase [Formula: see text] shimming in a pig body phantom with the optimal phase vectors makes possible to improve the [Formula: see text] homogeneity by factor > 2 and transmit efficiency by factor > 3 compared to zero phases (before RF shimming). Parallel imaging performed in the in-vivo measurements demonstrated well preserved diagnostic quality of the resulting images at acceleration factors up to R = 6. The described hardware design can be adapted for arrays optimized for animals and humans with a larger number of elements (32-64) while maintaining good decoupling for various MRI applications at UHF (e.g., cardiac, head, and spine).
Collapse
|
9
|
Perez-Terol I, Rios-Navarro C, de Dios E, Morales JM, Gavara J, Perez-Sole N, Diaz A, Minana G, Segura-Sabater R, Bonanad C, Bayés-Genis A, Husser O, Monmeneu JV, Lopez-Lereu MP, Nunez J, Chorro FJ, Ruiz-Sauri A, Bodi V, Monleon D. Magnetic resonance microscopy and correlative histopathology of the infarcted heart. Sci Rep 2019; 9:20017. [PMID: 31882712 PMCID: PMC6934559 DOI: 10.1038/s41598-019-56436-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/10/2019] [Indexed: 02/08/2023] Open
Abstract
Delayed enhancement cardiovascular magnetic resonance (MR) is the gold-standard for non-invasive assessment after myocardial infarction (MI). MR microscopy (MRM) provides a level of detail comparable to the macro objective of light microscopy. We used MRM and correlative histopathology to identify infarct and remote tissue in contrast agent-free multi-sequence MRM in swine MI hearts. One control group (n = 3 swine) and two experimental MI groups were formed: 90 min of ischemia followed by 1 week (acute MI = 6 swine) or 1 month (chronic MI = 5 swine) reperfusion. Representative samples of each heart were analysed by contrast agent-free multi-sequence (T1-weighting, T2-weighting, T2*-weighting, T2-mapping, and T2*-mapping). MRM was performed in a 14-Tesla vertical axis imager (Bruker-AVANCE 600 system). Images from MRM and the corresponding histopathological stained samples revealed differences in signal intensities between infarct and remote areas in both MI groups (p-value < 0.001). The multivariable models allowed us to precisely classify regions of interest (acute MI: specificity 92% and sensitivity 80%; chronic MI: specificity 100% and sensitivity 98%). Probabilistic maps based on MRM images clearly delineated the infarcted regions. As a proof of concept, these results illustrate the potential of MRM with correlative histopathology as a platform for exploring novel contrast agent-free MR biomarkers after MI.
Collapse
Affiliation(s)
- Itziar Perez-Terol
- Laboratory of Metabolomics, Institute of Health Research-INCLIVA, Valencia, Spain
| | - Cesar Rios-Navarro
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain
| | - Elena de Dios
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain
| | - Jose M Morales
- Laboratory of Metabolomics, Institute of Health Research-INCLIVA, Valencia, Spain.,Unidad Central de Investigación Biomédica, University of Valencia, Valencia, Spain.,Pathology Department, School of Medicine, University of Valencia, Valencia, Spain
| | - Jose Gavara
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain
| | - Nerea Perez-Sole
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain
| | - Ana Diaz
- Unidad Central de Investigación Biomédica, University of Valencia, Valencia, Spain
| | - Gema Minana
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red - Cardiovascular (CIBER-CV), Madrid, Spain.,Medicine Department, School of Medicine, University of Valencia, Valencia, Spain
| | | | - Clara Bonanad
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain.,Medicine Department, School of Medicine, University of Valencia, Valencia, Spain
| | - Antoni Bayés-Genis
- Centro de Investigación Biomédica en Red - Cardiovascular (CIBER-CV), Madrid, Spain.,Cardiology Department and Heart Failure Unit, Hospital Universitari Germans Trias i Pujol. Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oliver Husser
- Department of Cardiology, St.-Johannes-Hospital, Dortmund, Germany
| | - Jose V Monmeneu
- Cardiovascular Magnetic Resonance Unit, ERESA, Valencia, Spain
| | | | - Julio Nunez
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red - Cardiovascular (CIBER-CV), Madrid, Spain.,Medicine Department, School of Medicine, University of Valencia, Valencia, Spain
| | - Francisco J Chorro
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red - Cardiovascular (CIBER-CV), Madrid, Spain.,Medicine Department, School of Medicine, University of Valencia, Valencia, Spain
| | - Amparo Ruiz-Sauri
- Pathology Department, School of Medicine, University of Valencia, Valencia, Spain
| | - Vicente Bodi
- Department of Cardiology, Hospital Clínico Universitario, INCLIVA, Valencia, Spain. .,Centro de Investigación Biomédica en Red - Cardiovascular (CIBER-CV), Madrid, Spain. .,Medicine Department, School of Medicine, University of Valencia, Valencia, Spain.
| | - Daniel Monleon
- Laboratory of Metabolomics, Institute of Health Research-INCLIVA, Valencia, Spain. .,Pathology Department, School of Medicine, University of Valencia, Valencia, Spain. .,Centro de Investigación Biomédica en Red - Fragilidad y Envejecimiento Saludable (CIBER-FES), Madrid, Spain.
| |
Collapse
|
10
|
Elabyad IA, Terekhov M, Stefanescu MR, Lohr D, Fischer M, Schreiber LM. Design of a novel antisymmetric coil array for parallel transmit cardiac MRI in pigs at 7 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:195-208. [PMID: 31306985 DOI: 10.1016/j.jmr.2019.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/12/2019] [Accepted: 07/04/2019] [Indexed: 05/12/2023]
Abstract
The design, simulation, assembly and testing of a novel dedicated antisymmetric transmit/receive (Tx/Rx) coil array to demonstrate the feasibility of cardiac magnetic resonance imaging (cMRI) in pigs at 7 T was described. The novel antisymmetric array is composed of eight elements based on mirrored and reversed loop orientations to generate varying B1+ field harmonics for RF shimming. The central four loop elements formed together a pair of antisymmetric L-shaped channels to allow good decoupling between all neighboring elements of the entire array. The antisymmetric array was compared to a standard symmetric rectilinear loop array with an identical housing dimension. Both arrays were driven in the parallel transmit (pTx) mode forming an 8-channel transmit and 16-channel receive (8Tx/16Rx) coil array, where the same posterior array was combined with both anterior arrays. The hardware and imaging performance of the dedicated cardiac arrays were validated and compared by means of electromagnetic (EM) simulations, bench-top measurements, phantom, and ex-vivo MRI experiments with 46 kg female pig. Combined signal-to-noise ratio (SNR), geometry factor (g-factor), noise correlation maps, and high resolution ex-vivo cardiac images were acquired with an in-plane resolution of 0.3 mm × 0.3 mm using both arrays. The novel antisymmetric array enhanced the SNR within the heart by about two times and demonstrated good decoupling and improved control of the B1+ field distributions for RF shimming compared to the standard coil array. Parallel imaging with acceleration factor (R) up to 4 was possible using the novel antisymmetric coil array while maintaining the mean g-factor within the heart region of 1.13.
Collapse
Affiliation(s)
- Ibrahim A Elabyad
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany; Department of Electronics and Communications Engineering, Thebes Higher Institute of Engineering, Cairo, Egypt.
| | - M Terekhov
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - M R Stefanescu
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - D Lohr
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - M Fischer
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - L M Schreiber
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| |
Collapse
|
11
|
Niendorf T, Schulz-Menger J, Paul K, Huelnhagen T, Ferrari VA, Hodge R. High Field Cardiac Magnetic Resonance Imaging: A Case for Ultrahigh Field Cardiac Magnetic Resonance. Circ Cardiovasc Imaging 2019; 10:CIRCIMAGING.116.005460. [PMID: 28611118 DOI: 10.1161/circimaging.116.005460] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Thoralf Niendorf
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.).
| | - Jeanette Schulz-Menger
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Katharina Paul
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Till Huelnhagen
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Victor A Ferrari
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Russell Hodge
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| |
Collapse
|
12
|
Hosseinnezhadian S, Frass-Kriegl R, Goluch-Roat S, Pichler M, Sieg J, Vít M, Poirier-Quinot M, Darrasse L, Moser E, Ginefri JC, Laistler E. A flexible 12-channel transceiver array of transmission line resonators for 7 T MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 296:47-59. [PMID: 30205313 DOI: 10.1016/j.jmr.2018.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/08/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (Sij < -19 dB), and bent on a human torso phantom (Sij < -16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques.
Collapse
Affiliation(s)
- Sajad Hosseinnezhadian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria; IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), Bât 220, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Roberta Frass-Kriegl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Sigrun Goluch-Roat
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Michael Pichler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Jürgen Sieg
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Martin Vít
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria; IKEM (Institute for Clinical and Experimental Medicine), Vídeňská 1958/9, 140 21 Praha 4, Czech Republic
| | - Marie Poirier-Quinot
- IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), Bât 220, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Luc Darrasse
- IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), Bât 220, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Jean-Christophe Ginefri
- IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), Bât 220, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Elmar Laistler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria.
| |
Collapse
|
13
|
Cui J, Dimitrov IE, Cheshkov S, Gu M, Malloy CR, Wright SM. An Adjustable-Length Dipole Using Forced-Current Excitation for 7T MR. IEEE Trans Biomed Eng 2018; 65:2259-2266. [PMID: 29989961 DOI: 10.1109/tbme.2017.2788864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ultrahigh field imaging of the body and the spine is challenging due to the large field-of-view (FOV) required. It is especially difficult for RF transmission due to its requirement on both the length and the depth of the ${\rm{B}}_{1}^{{\rm + }}$ field. One solution is to use a long dipole to provide continuous current distribution. The drawback is the natural falloff of the ${\rm{B}}_{1}$ field toward the ends of the dipole, therefore the ${\rm{B}}_{1}^{{\rm + }}$ per unit square root of maximum specific absorption rate ${\rm{(B}}_{1}^{{\rm + }}{\rm{/ \surd SAR}}_{{\rm{max}}})$ performance is particularly poor toward the end of the dipole. In this study, a segmented element design using forced-current excitation and a switching circuit is presented. The design provides long FOV when desired and allows flexible FOV switching and power distribution without additional power amplifiers. Different element types and arrangements were explored and a segmented dipole design was chosen as the best design. The segmented dipole was implemented and tested on the bench and with a phantom on a 7T whole body scanner. The switchable mode dipole enabled a large FOV in the long mode and improved ${\rm{B}}_{1}^{{\rm + }}{\rm{/ \surd SAR}}_{{\rm{max}}}$ efficiency in a smaller FOV in the short mode.
Collapse
|
14
|
Alon L, Lattanzi R, Lakshmanan K, Brown R, Deniz CM, Sodickson DK, Collins CM. Transverse slot antennas for high field MRI. Magn Reson Med 2018; 80:1233-1242. [PMID: 29388250 PMCID: PMC5985532 DOI: 10.1002/mrm.27095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 12/28/2017] [Accepted: 12/28/2017] [Indexed: 11/23/2022]
Abstract
Purpose Introduce a novel coil design using an electrically long transversely oriented slot in a conductive sheet. Theory and Methods Theoretical considerations, numerical simulations, and experimental measurements are presented for transverse slot antennas as compared with electric dipole antennas. Results Simulations show improved central and average transmit and receive efficiency, as well as larger coverage in the transverse plane, for a single slot as compared to a single dipole element. Experiments on a body phantom confirm the simulation results for a slot antenna relative to a dipole, demonstrating a large region of relatively high sensitivity and homogeneity. Images in a human subject also show a large imaging volume for a single slot and six slot antenna array. High central transmit efficiency was observed for slot arrays relative to dipole arrays. Conclusion Transverse slots can exhibit improved sensitivity and larger field of view compared with traditional conductive dipoles. Simulations and experiments indicate high potential for slot antennas in high field MRI. Magn Reson Med 80:1233–1242, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Collapse
Affiliation(s)
- Leeor Alon
- Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,RF Test Labs, Inc., New York, New York, USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Karthik Lakshmanan
- Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Cem M Deniz
- Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,RF Test Labs, Inc., New York, New York, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Christopher M Collins
- Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA
| |
Collapse
|
15
|
Weinberger O, Winter L, Dieringer MA, Els A, Oezerdem C, Rieger J, Kuehne A, Cassara AM, Pfeiffer H, Wetterling F, Niendorf T. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game? PLoS One 2016; 11:e0161863. [PMID: 27598923 PMCID: PMC5012568 DOI: 10.1371/journal.pone.0161863] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/20/2016] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. METHODS Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. RESULTS Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. CONCLUSION Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.
Collapse
Affiliation(s)
- Oliver Weinberger
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Matthias A. Dieringer
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Celal Oezerdem
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | | | | | - Antonino M. Cassara
- Medical Metrology Department, Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Harald Pfeiffer
- Medical Metrology Department, Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
- MRI.TOOLS GmbH, Berlin, Germany
| |
Collapse
|
16
|
Niendorf T, Paul K, Oezerdem C, Graessl A, Klix S, Huelnhagen T, Hezel F, Rieger J, Waiczies H, Frahm J, Nagel AM, Oberacker E, Winter L. W(h)ither human cardiac and body magnetic resonance at ultrahigh fields? technical advances, practical considerations, applications, and clinical opportunities. NMR IN BIOMEDICINE 2016; 29:1173-97. [PMID: 25706103 DOI: 10.1002/nbm.3268] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/26/2014] [Accepted: 01/13/2015] [Indexed: 05/12/2023]
Abstract
The objective of this study was to document and review advances and groundbreaking progress in cardiac and body MR at ultrahigh fields (UHF, B0 ≥ 7.0 T) with the goal to attract talent, clinical adopters, collaborations and resources to the biomedical and diagnostic imaging communities. This review surveys traits, advantages and challenges of cardiac and body MR at 7.0 T. The considerations run the gamut from technical advances to clinical opportunities. Key concepts, emerging technologies, practical considerations, frontier applications and future directions of UHF body and cardiac MR are provided. Examples of UHF cardiac and body imaging strategies are demonstrated. Their added value over the kindred counterparts at lower fields is explored along with an outline of research promises. The achievements of cardiac and body UHF-MR are powerful motivators and enablers, since extra speed, signal and imaging capabilities may be invested to overcome the fundamental constraints that continue to hamper traditional cardiac and body MR applications. If practical obstacles, concomitant physics effects and technical impediments can be overcome in equal measure, sophisticated cardiac and body UHF-MR will help to open the door to new MRI and MRS approaches for basic research and clinical science, with the lessons learned at 7.0 T being transferred into broad clinical use including diagnostics and therapy guiding at lower fields. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Katharina Paul
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Celal Oezerdem
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Andreas Graessl
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Sabrina Klix
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Fabian Hezel
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH, am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva Oberacker
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
17
|
de Boer A, Hoogduin JM, Blankestijn PJ, Li X, Luijten PR, Metzger GJ, Raaijmakers AJE, Umutlu L, Visser F, Leiner T. 7 T renal MRI: challenges and promises. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:417-33. [PMID: 27008461 PMCID: PMC4891364 DOI: 10.1007/s10334-016-0538-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/02/2016] [Accepted: 02/15/2016] [Indexed: 01/07/2023]
Abstract
The progression to 7 Tesla (7 T) magnetic resonance imaging (MRI) yields promises of substantial increase in signal-to-noise (SNR) ratio. This increase can be traded off to increase image spatial resolution or to decrease acquisition time. However, renal 7 T MRI remains challenging due to inhomogeneity of the radiofrequency field and due to specific absorption rate (SAR) constraints. A number of studies has been published in the field of renal 7 T imaging. While the focus initially was on anatomic imaging and renal MR angiography, later studies have explored renal functional imaging. Although anatomic imaging remains somewhat limited by inhomogeneous excitation and SAR constraints, functional imaging results are promising. The increased SNR at 7 T has been particularly advantageous for blood oxygen level-dependent and arterial spin labelling MRI, as well as sodium MR imaging, thanks to changes in field-strength-dependent magnetic properties. Here, we provide an overview of the currently available literature on renal 7 T MRI. In addition, we provide a brief overview of challenges and opportunities in renal 7 T MR imaging.
Collapse
Affiliation(s)
- Anneloes de Boer
- Department of Radiology, University Medical Centre Utrecht, Post box 85500, 3508 GA, Utrecht, The Netherlands
| | - Johannes M Hoogduin
- Department of Radiology, University Medical Centre Utrecht, Post box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Peter J Blankestijn
- Department of Nephrology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Xiufeng Li
- Department of Radiology, Centre for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Peter R Luijten
- Department of Radiology, University Medical Centre Utrecht, Post box 85500, 3508 GA, Utrecht, The Netherlands
| | - Gregory J Metzger
- Department of Radiology, Centre for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alexander J E Raaijmakers
- Department of Radiology, University Medical Centre Utrecht, Post box 85500, 3508 GA, Utrecht, The Netherlands
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Fredy Visser
- Department of Radiology, University Medical Centre Utrecht, Post box 85500, 3508 GA, Utrecht, The Netherlands.,Philips Healthcare, Best, The Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Centre Utrecht, Post box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
18
|
Klix S, Els A, Paul K, Graessl A, Oezerdem C, Weinberger O, Winter L, Thalhammer C, Huelnhagen T, Rieger J, Mehling H, Schulz-Menger J, Niendorf T. On the subjective acceptance during cardiovascular magnetic resonance imaging at 7.0 Tesla. J Cardiovasc Magn Reson 2015. [PMCID: PMC4328605 DOI: 10.1186/1532-429x-17-s1-p13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Niendorf T, Pohlmann A, Reimann HM, Waiczies H, Peper E, Huelnhagen T, Seeliger E, Schreiber A, Kettritz R, Strobel K, Ku MC, Waiczies S. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology. Front Pharmacol 2015; 6:255. [PMID: 26617515 PMCID: PMC4642111 DOI: 10.3389/fphar.2015.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
- German Centre for Cardiovascular ResearchBerlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Henning M. Reimann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | | | - Eva Peper
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Erdmann Seeliger
- Center for Cardiovascular Research, Institute of Physiology, Charité—Universitätsmedizin BerlinBerlin, Germany
| | - Adrian Schreiber
- Clinic for Nephrology and Intensive Care Medicine, Charité Medical Faculty and Experimental and Clinical Research CenterBerlin, Germany
| | - Ralph Kettritz
- Clinic for Nephrology and Intensive Care Medicine, Charité Medical Faculty and Experimental and Clinical Research CenterBerlin, Germany
| | | | - Min-Chi Ku
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| |
Collapse
|
20
|
Graessl A, Ruehle A, Waiczies H, Resetar A, Hoffmann SH, Rieger J, Wetterling F, Winter L, Nagel AM, Niendorf T. Sodium MRI of the human heart at 7.0 T: preliminary results. NMR IN BIOMEDICINE 2015; 28:967-975. [PMID: 26082025 DOI: 10.1002/nbm.3338] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
The objective of this work was to examine the feasibility of three-dimensional (3D) and whole heart coverage (23)Na cardiac MRI at 7.0 T including single-cardiac-phase and cinematic (cine) regimes. A four-channel transceiver RF coil array tailored for (23)Na MRI of the heart at 7.0 T (f = 78.5 MHz) is proposed. An integrated bow-tie antenna building block is used for (1)H MR to support shimming, localization and planning in a clinical workflow. Signal absorption rate simulations and assessment of RF power deposition were performed to meet the RF safety requirements. (23) Na cardiac MR was conducted in an in vivo feasibility study. 3D gradient echo (GRE) imaging in conjunction with Cartesian phase encoding (total acquisition time T(AQ) = 6 min 16 s) and whole heart coverage imaging employing a density-adapted 3D radial acquisition technique (T(AQ) = 18 min 20 s) were used. For 3D GRE-based (23)Na MRI, acquisition of standard views of the heart using a nominal in-plane resolution of (5.0 × 5.0) mm(2) and a slice thickness of 15 mm were feasible. For whole heart coverage 3D density-adapted radial (23)Na acquisitions a nominal isotropic spatial resolution of 6 mm was accomplished. This improvement versus 3D conventional GRE acquisitions reduced partial volume effects along the slice direction and enabled retrospective image reconstruction of standard or arbitrary views of the heart. Sodium cine imaging capabilities were achieved with the proposed RF coil configuration in conjunction with 3D radial acquisitions and cardiac gating. Cardiac-gated reconstruction provided an enhancement in blood-myocardium contrast of 20% versus the same data reconstructed without cardiac gating. The proposed transceiver array enables (23)Na MR of the human heart at 7.0 T within clinical acceptable scan times. This capability is in positive alignment with the needs of explorations that are designed to examine the potential of (23)Na MRI for the assessment of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Andreas Graessl
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Anjuli Ruehle
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | - Ana Resetar
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan H Hoffmann
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Lukas Winter
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Armin M Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
21
|
Oezerdem C, Winter L, Graessl A, Paul K, Els A, Weinberger O, Rieger J, Kuehne A, Dieringer M, Hezel F, Voit D, Frahm J, Niendorf T. 16-channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla. Magn Reson Med 2015; 75:2553-65. [PMID: 26183320 DOI: 10.1002/mrm.25840] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/22/2015] [Accepted: 06/20/2015] [Indexed: 02/03/2023]
Abstract
PURPOSE To design, evaluate, and apply a bow tie antenna transceiver radiofrequency (RF) coil array tailored for cardiac MRI at 7.0 Tesla (T). METHODS The radiofrequency (RF) coil array comprises 16 building blocks each containing a bow tie shaped λ/2-dipole antenna. Numerical simulations were used for transmission field homogenization and RF safety validation. RF characteristics were examined in a phantom study. The array's suitability for high spatial resolution two-dimensional (2D) CINE imaging and for real time imaging of the heart was examined in a volunteer study. RESULTS The arrays transmission fields and RF characteristics are suitable for cardiac MRI at 7.0T. The coil performance afforded a spatial resolution as good as (0.8 × 0.8 × 2.5) mm(3) for segmented 2D CINE MRI at 7.0T which is by a factor of 12 superior versus standardized protocols used in clinical practice at 1.5T. The proposed transceiver array supports 1D acceleration factors of up to R = 6 without impairing image quality significantly. CONCLUSION The 16-channel bow tie antenna transceiver array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0 Tesla. Magn Reson Med 75:2553-2565, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Celal Oezerdem
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Andreas Graessl
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Katharina Paul
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Oliver Weinberger
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | | | - Matthias Dieringer
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Fabian Hezel
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Dirk Voit
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
22
|
Klix S, Els A, Paul K, Graessl A, Oezerdem C, Weinberger O, Winter L, Thalhammer C, Huelnhagen T, Rieger J, Mehling H, Schulz-Menger J, Niendorf T. On the subjective acceptance during cardiovascular magnetic resonance imaging at 7.0 Tesla. PLoS One 2015; 10:e0117095. [PMID: 25621491 PMCID: PMC4306482 DOI: 10.1371/journal.pone.0117095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/18/2014] [Indexed: 12/25/2022] Open
Abstract
PURPOSE This study examines the subjective acceptance during UHF-CMR in a cohort of healthy volunteers who underwent a cardiac MR examination at 7.0T. METHODS Within a period of two-and-a-half years (January 2012 to June 2014) a total of 165 healthy volunteers (41 female, 124 male) without any known history of cardiac disease underwent UHF-CMR. For the assessment of the subjective acceptance a questionnaire was used to examine the participants experience prior, during and after the UHF-CMR examination. For this purpose, subjects were asked to respond to the questionnaire in an exit interview held immediately after the completion of the UHF-CMR examination under supervision of a study nurse to ensure accurate understanding of the questions. All questions were answered with "yes" or "no" including space for additional comments. RESULTS Transient muscular contraction was documented in 12.7% of the questionnaires. Muscular contraction was reported to occur only during periods of scanning with the magnetic field gradients being rapidly switched. Dizziness during the study was reported by 12.7% of the subjects. Taste of metal was reported by 10.1% of the study population. Light flashes were reported by 3.6% of the entire cohort. 13% of the subjects reported side effects/observations which were not explicitly listed in the questionnaire but covered by the question about other side effects. No severe side effects as vomiting or syncope after scanning occurred. No increase in heart rate was observed during the UHF-CMR exam versus the baseline clinical examination. CONCLUSIONS This study adds to the literature by detailing the subjective acceptance of cardiovascular magnetic resonance imaging examinations at a magnetic field strength of 7.0T. Cardiac MR examinations at 7.0T are well tolerated by healthy subjects. Broader observational and multi-center studies including patient cohorts with cardiac diseases are required to gain further insights into the subjective acceptance of UHF-CMR examinations.
Collapse
Affiliation(s)
- Sabrina Klix
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Katharina Paul
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Andreas Graessl
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Celal Oezerdem
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Oliver Weinberger
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Christof Thalhammer
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Jan Rieger
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Heidrun Mehling
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Jeanette Schulz-Menger
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- HELIOS Klinikum Berlin-Buch, Dept. of Cardiology and Nephrology, 13125 Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
23
|
Niendorf T, Pohlmann A, Arakelyan K, Flemming B, Cantow K, Hentschel J, Grosenick D, Ladwig M, Reimann H, Klix S, Waiczies S, Seeliger E. How bold is blood oxygenation level-dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions. Acta Physiol (Oxf) 2015; 213:19-38. [PMID: 25204811 DOI: 10.1111/apha.12393] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/04/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022]
Abstract
Renal tissue hypoperfusion and hypoxia are key elements in the pathophysiology of acute kidney injury and its progression to chronic kidney disease. Yet, in vivo assessment of renal haemodynamics and tissue oxygenation remains a challenge. Many of the established approaches are invasive, hence not applicable in humans. Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) offers an alternative. BOLD-MRI is non-invasive and indicative of renal tissue oxygenation. Nonetheless, recent (pre-) clinical studies revived the question as to how bold renal BOLD-MRI really is. This review aimed to deliver some answers. It is designed to inspire the renal physiology, nephrology and imaging communities to foster explorations into the assessment of renal oxygenation and haemodynamics by exploiting the powers of MRI. For this purpose, the specifics of renal oxygenation and perfusion are outlined. The fundamentals of BOLD-MRI are summarized. The link between tissue oxygenation and the oxygenation-sensitive MR biomarker T2∗ is outlined. The merits and limitations of renal BOLD-MRI in animal and human studies are surveyed together with their clinical implications. Explorations into detailing the relation between renal T2∗ and renal tissue partial pressure of oxygen (pO2 ) are discussed with a focus on factors confounding the T2∗ vs. tissue pO2 relation. Multi-modality in vivo approaches suitable for detailing the role of the confounding factors that govern T2∗ are considered. A schematic approach describing the link between renal perfusion, oxygenation, tissue compartments and renal T2∗ is proposed. Future directions of MRI assessment of renal oxygenation and perfusion are explored.
Collapse
Affiliation(s)
- T. Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - A. Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - K. Arakelyan
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - B. Flemming
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - K. Cantow
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - J. Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - D. Grosenick
- Physikalisch-Technische Bundesanstalt (PTB); Berlin Germany
| | - M. Ladwig
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - H. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - S. Klix
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - S. Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - E. Seeliger
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
24
|
Linz P, Santoro D, Renz W, Rieger J, Ruehle A, Ruff J, Deimling M, Rakova N, Muller DN, Luft FC, Titze J, Niendorf T. Skin sodium measured with ²³Na MRI at 7.0 T. NMR IN BIOMEDICINE 2015; 28:54-62. [PMID: 25328128 DOI: 10.1002/nbm.3224] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 06/04/2023]
Abstract
Skin sodium (Na(+) ) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na(+) storage in humans ((23) Na MRI) at 3.0 T. This work examines the feasibility of high in-plane spatial resolution (23) Na MRI in skin at 7.0 T. A two-channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two-dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20-79 years) were investigated. Transverse slices of the calf were imaged with (23) Na MRI using a high in-plane resolution of 0.9 × 0.9 mm(2) . Skin Na(+) content was determined using external agarose standards covering a physiological range of Na(+) concentrations. To assess the intra-subject reproducibility, each volunteer was examined three to five times with each session including a 5-min walk and repositioning/preparation of the subject. The age dependence of skin Na(+) content was investigated. The (23) Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in-plane spatial resolution imaging of human skin. Intra-subject variability of human skin Na(+) content in the volunteer population was <10.3%. An age-dependent increase in skin Na(+) content was observed (r = 0.78). The assignment of Na(+) stores with (23) Na MRI techniques could be improved at 7.0 T compared with current 3.0 T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na(+) balance and Na(+) storage function of skin.
Collapse
Affiliation(s)
- Peter Linz
- Interdisciplinary Center for Clinical Research, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Plantinga BR, Temel Y, Roebroeck A, Uludağ K, Ivanov D, Kuijf ML, Ter Haar Romenij BM. Ultra-high field magnetic resonance imaging of the basal ganglia and related structures. Front Hum Neurosci 2014; 8:876. [PMID: 25414656 PMCID: PMC4220687 DOI: 10.3389/fnhum.2014.00876] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/10/2014] [Indexed: 12/13/2022] Open
Abstract
Deep brain stimulation is a treatment for Parkinson's disease and other related disorders, involving the surgical placement of electrodes in the deeply situated basal ganglia or thalamic structures. Good clinical outcome requires accurate targeting. However, due to limited visibility of the target structures on routine clinical MR images, direct targeting of structures can be challenging. Non-clinical MR scanners with ultra-high magnetic field (7T or higher) have the potential to improve the quality of these images. This technology report provides an overview of the current possibilities of visualizing deep brain stimulation targets and their related structures with the aid of ultra-high field MRI. Reviewed studies showed improved resolution, contrast- and signal-to-noise ratios at ultra-high field. Sequences sensitive to magnetic susceptibility such as T2* and susceptibility weighted imaging and their maps in general showed the best visualization of target structures, including a separation between the subthalamic nucleus and the substantia nigra, the lamina pallidi medialis and lamina pallidi incompleta within the globus pallidus and substructures of the thalamus, including the ventral intermediate nucleus (Vim). This shows that the visibility, identification, and even subdivision of the small deep brain stimulation targets benefit from increased field strength. Although ultra-high field MR imaging is associated with increased risk of geometrical distortions, it has been shown that these distortions can be avoided or corrected to the extent where the effects are limited. The availability of ultra-high field MR scanners for humans seems to provide opportunities for a more accurate targeting for deep brain stimulation in patients with Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Birgit R Plantinga
- Biomedical Image Analysis, Eindhoven University of Technology Eindhoven, Netherlands ; Department of Neuroscience, Maastricht University Maastricht, Netherlands
| | - Yasin Temel
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Department of Neurology, Maastricht University Medical Center Maastricht, Netherlands
| | - Alard Roebroeck
- Department of Neurosurgery, Maastricht University Medical Center Maastricht, Netherlands
| | - Kâmil Uludağ
- Department of Neurosurgery, Maastricht University Medical Center Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Neurosurgery, Maastricht University Medical Center Maastricht, Netherlands
| | - Mark L Kuijf
- Department of Cognitive Neuroscience, Maastricht University Maastricht, Netherlands
| | - Bart M Ter Haar Romenij
- Biomedical Image Analysis, Eindhoven University of Technology Eindhoven, Netherlands ; Department of Biomedical and Information Engineering, Northeastern University Shenyang, China
| |
Collapse
|
26
|
Winter L, Oberacker E, Özerdem C, Ji Y, von Knobelsdorff-Brenkenhoff F, Weidemann G, Ittermann B, Seifert F, Niendorf T. On the RF heating of coronary stents at 7.0 Tesla MRI. Magn Reson Med 2014; 74:999-1010. [PMID: 25293952 DOI: 10.1002/mrm.25483] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE Examine radiofrequency (RF) induced heating of coronary stents at 7.0 Tesla (T) to derive an analytical approach which supports RF heating assessment of arbitrary stent geometries and RF coils. METHODS Simulations are performed to detail electromagnetic fields (EMF), local specific absorption rates (SAR) and temperature changes. For validation E-field measurements and RF heating experiments are conducted. To progress to clinical setups RF coils tailored for cardiac MRI at 7.0T and coronary stents are incorporated into EMF simulations using a human voxel model. RESULTS Our simulations of coronary stents at 297 MHz were confirmed by E-field and temperature measurements. An analytical solution which describes SAR(1g tissue voxel) induced by an arbitrary coronary stent interfering with E-fields generated by an arbitrary RF coil was derived. The analytical approach yielded a conservative estimation of induced SAR(1g tissue voxel) maxima without the need for integrating the stent into EMF simulations of the human voxel model. CONCLUSION The proposed analytical approach can be applied for any patient, coronary stent type, RF coil configuration and RF transmission regime. The generalized approach is of value for RF heating assessment of other passive electrically conductive implants and provides a novel design criterion for RF coils.
Collapse
Affiliation(s)
- Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Eva Oberacker
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Celal Özerdem
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Yiyi Ji
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Florian von Knobelsdorff-Brenkenhoff
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Gerd Weidemann
- Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Bernd Ittermann
- Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
27
|
Aussenhofer SA, Webb AG. An eight-channel transmit/receive array of TE01 mode high permittivity ceramic resonators for human imaging at 7T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 243:122-129. [PMID: 24818565 DOI: 10.1016/j.jmr.2014.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 06/03/2023]
Abstract
This study describes the design, construction and operation of a new type of transmit/receive array using ceramic resonators operating in a transverse electromagnetic (TE) mode. Single element function and performance at 298.1MHz (7T) are analyzed and compared to a lumped element design loop coil with comparable geometry. The results show that ceramic resonators working in the TE01δ mode configuration produce similar efficiency, defined as the transmit magnetic field (B1(+)) per square root of the specific absorption rate (SAR), to conventional surface coils. An array consisting of eight ceramic elements was then designed to operate in transmit/receive mode. This array was driven via power/phase splitters by two independent transmit channels and functional cardiac images were produced from a number of healthy volunteers.
Collapse
Affiliation(s)
- S A Aussenhofer
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - A G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
28
|
Niendorf T, Schulz-Menger J. [Cardiovascular ultrahigh field magnetic resonance imaging : challenges, technical solutions and opportunities]. Radiologe 2014; 53:422-8. [PMID: 23613023 DOI: 10.1007/s00117-012-2348-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CLINICAL/METHODICAL ISSUE This involves high spatial resolution cardiac imaging with ultrahigh magnetic fields (7 T) and clinically acceptable image quality. STANDARD RADIOLOGICAL METHODS Cardiovascular magnetic resonance imaging (MRI) at a field strength of 1.5 T using a spatial resolution of (2 × 2 × 6-8) mm(3). METHODICAL INNOVATIONS Cardiac MRI at ultrahigh field strength makes use of multitransmit/receive radiofrequency (RF) technology and development of novel technology that utilizes the traits of ultrahigh field MRI. PERFORMANCE Enhanced spatial resolution which is superior by a factor of 6-10 to what can be achieved by current clinical cardiac MRI. The relative spatial resolution (pixels per anatomical structure) comes close to what can be accomplished by current cardiac MRI in small rodents. ACHIEVEMENTS Feasibility studies demonstrate the gain in spatial resolution at 7.0 T due to the sensitivity advantage inherent to ultrahigh magnetic fields. PRACTICAL RECOMMENDATIONS Please stay tuned and please put further weight behind the solution of the remaining technical problems of cardiac MRI at 7.0 T.
Collapse
Affiliation(s)
- T Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13125, Berlin, Deutschland.
| | | |
Collapse
|
29
|
Graessl A, Renz W, Hezel F, Dieringer MA, Winter L, Oezerdem C, Rieger J, Kellman P, Santoro D, Lindel TD, Frauenrath T, Pfeiffer H, Niendorf T. Modular 32-channel transceiver coil array for cardiac MRI at 7.0T. Magn Reson Med 2013; 72:276-90. [PMID: 23904404 DOI: 10.1002/mrm.24903] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 01/18/2023]
Abstract
PURPOSE To design and evaluate a modular transceiver coil array with 32 independent channels for cardiac MRI at 7.0T. METHODS The modular coil array comprises eight independent building blocks, each containing four transceiver loop elements. Numerical simulations were used for B1 (+) field homogenization and radiofrequency (RF) safety validation. RF characteristics were examined in a phantom study. The array's suitability for accelerated high spatial resolution two-dimensional (2D) FLASH CINE imaging of the heart was examined in a volunteer study. RESULTS Transmission field adjustments and RF characteristics were found to be suitable for the volunteer study. The signal-to-noise intrinsic to 7.0T together with the coil performance afforded a spatial resolution of 1.1 × 1.1 × 2.5 mm(3) for 2D CINE FLASH MRI, which is by a factor of 6 superior to standardized CINE protocols used in clinical practice at 1.5T. The 32-channel transceiver array supports one-dimensional acceleration factors of up to R = 4 without impairing image quality significantly. CONCLUSION The modular 32-channel transceiver cardiac array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0T.
Collapse
Affiliation(s)
- Andreas Graessl
- Berlin Ultrahigh Field Facility, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Niendorf T, Graessl A, Thalhammer C, Dieringer MA, Kraus O, Santoro D, Fuchs K, Hezel F, Waiczies S, Ittermann B, Winter L. Progress and promises of human cardiac magnetic resonance at ultrahigh fields: a physics perspective. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:208-22. [PMID: 23290625 DOI: 10.1016/j.jmr.2012.11.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/16/2012] [Accepted: 11/16/2012] [Indexed: 05/12/2023]
Abstract
A growing number of reports eloquently speak about explorations into cardiac magnetic resonance (CMR) at ultrahigh magnetic fields (B0≥7.0 T). Realizing the progress, promises and challenges of ultrahigh field (UHF) CMR this perspective outlines current trends in enabling MR technology tailored for cardiac MR in the short wavelength regime. For this purpose many channel radiofrequency (RF) technology concepts are outlined. Basic principles of mapping and shimming of transmission fields including RF power deposition considerations are presented. Explorations motivated by the safe operation of UHF-CMR even in the presence of conductive implants are described together with the physics, numerical simulations and experiments, all of which detailing antenna effects and RF heating induced by intracoronary stents at 7.0 T. Early applications of CMR at 7.0 T and their clinical implications for explorations into cardiovascular diseases are explored including assessment of cardiac function, myocardial tissue characterization, MR angiography of large and small vessels as well as heteronuclear MR of the heart and the skin. A concluding section ventures a glance beyond the horizon and explores future directions. The goal here is not to be comprehensive but to inspire the biomedical and diagnostic imaging communities to throw further weight behind the solution of the many remaining unsolved problems and technical obstacles of UHF-CMR with the goal to transfer MR physics driven methodological advancements into extra clinical value.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
von Knobelsdorff-Brenkenhoff F, Tkachenko V, Winter L, Rieger J, Thalhammer C, Hezel F, Graessl A, Dieringer MA, Niendorf T, Schulz-Menger J. Assessment of the right ventricle with cardiovascular magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson 2013; 15:23. [PMID: 23497030 PMCID: PMC3621368 DOI: 10.1186/1532-429x-15-23] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/06/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Functional and morphologic assessment of the right ventricle (RV) is of clinical importance. Cardiovascular magnetic resonance (CMR) at 1.5T has become gold standard for RV chamber quantification and assessment of even small wall motion abnormalities, but tissue analysis is still hampered by limited spatial resolution. CMR at 7T promises increased resolution, but is technically challenging. We examined the feasibility of cine imaging at 7T to assess the RV. METHODS Nine healthy volunteers underwent CMR at 7T using a 16-element TX/RX coil and acoustic cardiac gating. 1.5T served as gold standard. At 1.5T, steady-state free-precession (SSFP) cine imaging with voxel size (1.2 x 1.2 x 6) mm3 was used; at 7T, fast gradient echo (FGRE) with voxel size (1.2 x 1.2 x 6) mm3 and (1.3 x 1.3 x 4) mm3 were applied. RV dimensions (RVEDV, RVESV), RV mass (RVM) and RV function (RVEF) were quantified in transverse slices. Overall image quality, image contrast and image homogeneity were assessed in transverse and sagittal views. RESULTS All scans provided diagnostic image quality. Overall image quality and image contrast of transverse RV views were rated equally for SSFP at 1.5T and FGRE at 7T with voxel size (1.3 x 1.3 x 4)mm3. FGRE at 7T provided significantly lower image homogeneity compared to SSFP at 1.5T. RVEDV, RVESV, RVEF and RVM did not differ significantly and agreed close between SSFP at 1.5T and FGRE at 7T (p=0.5850; p=0.5462; p=0.2789; p=0.0743). FGRE at 7T with voxel size (1.3 x 1.3 x 4) mm3 tended to overestimate RV volumes compared to SSFP at 1.5T (mean difference of RVEDV 8.2 ± 9.3 ml) and to FGRE at 7T with voxel size (1.2 x 1.2 x 6) mm3 (mean difference of RVEDV 9.3 ± 8.6 ml). CONCLUSIONS FGRE cine imaging of the RV at 7T was feasible and provided good image quality. RV dimensions and function were comparable to SSFP at 1.5T as gold standard.
Collapse
Affiliation(s)
- Florian von Knobelsdorff-Brenkenhoff
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Valeriy Tkachenko
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Jan Rieger
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Christof Thalhammer
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Fabian Hezel
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Andreas Graessl
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Matthias A Dieringer
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Jeanette Schulz-Menger
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| |
Collapse
|
32
|
Santoro D, Winter L, Müller A, Vogt J, Renz W, Özerdem C, Grässl A, Tkachenko V, Schulz-Menger J, Niendorf T. Detailing radio frequency heating induced by coronary stents: a 7.0 Tesla magnetic resonance study. PLoS One 2012. [PMID: 23185498 PMCID: PMC3503867 DOI: 10.1371/journal.pone.0049963] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study.
Collapse
Affiliation(s)
- Davide Santoro
- Berlin Ultrahigh Field Facility, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Alexander Müller
- Berlin Ultrahigh Field Facility, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Physics, Humboldt University, Berlin, Germany
| | - Julia Vogt
- Berlin Ultrahigh Field Facility, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Physics, Humboldt University, Berlin, Germany
| | - Wolfgang Renz
- Berlin Ultrahigh Field Facility, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Siemens Healthcare, Erlangen, Germany
| | - Celal Özerdem
- Berlin Ultrahigh Field Facility, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Andreas Grässl
- Berlin Ultrahigh Field Facility, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Valeriy Tkachenko
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Jeanette Schulz-Menger
- Berlin Ultrahigh Field Facility, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- * E-mail:
| |
Collapse
|
33
|
Thalhammer C, Renz W, Winter L, Hezel F, Rieger J, Pfeiffer H, Graessl A, Seifert F, Hoffmann W, von Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-Menger J, Kellman P, Niendorf T. Two-dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: design, evaluation, and application. J Magn Reson Imaging 2012; 36:847-57. [PMID: 22706727 PMCID: PMC3445730 DOI: 10.1002/jmri.23724] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/07/2012] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To design, evaluate, and apply a 2D 16-channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T. MATERIALS AND METHODS The cardiac coil array consists of two sections each using eight elements arranged in a 2 × 4 array. Radiofrequency (RF) safety was validated by specific absorption rate (SAR) simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T 2 mapping, and fat-water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification, and overall image quality. RESULTS RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well within the limits of legal guidelines. The baseline signal-to-noise ratio (SNR) advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm(3) . The proposed coil array supports 1D acceleration factors of up to R = 4 without significantly impairing image quality. CONCLUSION The 16-channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 T.
Collapse
Affiliation(s)
- Christof Thalhammer
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Wolfgang Renz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Siemens Healthcare, Erlangen, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Fabian Hezel
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Jan Rieger
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- MRI.TOOLS GmbH, Berlin, Germany
| | - Harald Pfeiffer
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Physikalische-Technische Bundesanstalt (PTB), Germany
| | - Andreas Graessl
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Frank Seifert
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Physikalische-Technische Bundesanstalt (PTB), Germany
| | - Werner Hoffmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Physikalische-Technische Bundesanstalt (PTB), Germany
| | - Florian von Knobelsdorff-Brenkenhoff
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- HELIOS Klinikum Berlin-Buch, Dept. of Cardiology and Nephrology, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité - University Medicine Campus Berlin Buch, Berlin, Germany
| | - Valeriy Tkachenko
- HELIOS Klinikum Berlin-Buch, Dept. of Cardiology and Nephrology, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité - University Medicine Campus Berlin Buch, Berlin, Germany
| | - Jeanette Schulz-Menger
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- HELIOS Klinikum Berlin-Buch, Dept. of Cardiology and Nephrology, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité - University Medicine Campus Berlin Buch, Berlin, Germany
| | - Peter Kellman
- Laboratory of Cardiac Energetics, National Institutes of Health/NHLBI, Bethesda, MD, USA
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- MRI.TOOLS GmbH, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité - University Medicine Campus Berlin Buch, Berlin, Germany
| |
Collapse
|
34
|
Comparison of three multichannel transmit/receive radiofrequency coil configurations for anatomic and functional cardiac MRI at 7.0T: implications for clinical imaging. Eur Radiol 2012; 22:2211-20. [PMID: 22653280 DOI: 10.1007/s00330-012-2487-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To implement, examine, and compare three multichannel transmit/receive coil configurations for cardiovascular MR (CMR) at 7T. METHODS Three radiofrequency transmit-receive (TX/RX) coils with 4-, 8-, and 16-coil elements were used. Ten healthy volunteers (seven males, age 28 ± 4 years) underwent CMR at 7T. For all three RX/TX coils, 2D CINE FLASH images of the heart were acquired. Cardiac chamber quantification, signal-to-noise ratio (SNR) analysis, parallel imaging performance assessment, and image quality scoring were performed. RESULTS Mean total examination time was 29 ± 5 min. All images obtained with the 8- and 16-channel coils were diagnostic. No significant difference in ejection fraction (EF) (P > 0.09) or left ventricular mass (LVM) (P > 0.31) was observed between the coils. The 8- and 16-channel arrays yielded a higher mean SNR in the septum versus the 4-channel coil. The lowest geometry factors were found for the 16-channel coil (mean ± SD 2.3 ± 0.5 for R = 4). Image quality was rated significantly higher (P < 0.04) for the 16-channel coil versus the 8- and 4-channel coils. CONCLUSIONS All three coil configurations are suitable for CMR at 7.0T under routine circumstances. A larger number of coil elements enhances image quality and parallel imaging performance but does not impact the accuracy of cardiac chamber quantification. KEY POINTS • Cardiac chamber quantification using 7.0T magnetic resonance imaging is feasible. • Examination times for cardiac chamber quantification at 7.0T match current clinical practice. • Multichannel transceiver RF technology facilitates improved image quality and parallel imaging performance. • Increasing the number of RF channels does not influence cardiac chamber quantification.
Collapse
|
35
|
Katscher U, Findeklee C, Voigt T. B1-based specific energy absorption rate determination for nonquadrature radiofrequency excitation. Magn Reson Med 2012; 68:1911-8. [PMID: 22374804 DOI: 10.1002/mrm.24215] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 12/22/2011] [Accepted: 01/21/2012] [Indexed: 11/07/2022]
Abstract
The current gold standard to estimate local and global specific energy absorption rate for MRI involves numerically modeling the patient and the transmit radiofrequency coil. Recently, a patient-individual method was presented, which estimated specific energy absorption rate from individually measured B(1) maps. This method, however, was restricted to quadrature volume coils due to difficulties distinguishing phase contributions from radiofrequency transmission and reception. In this study, a method separating these two phase contributions by comparing the electric conductivity reconstructed from different transmit channels of a parallel radiofrequency transmission system is presented. This enables specific energy absorption rate estimation not only for quadrature excitation but also for the nonquadrature excitation of the single elements of the transmit array. Though the contributions of the different phases are known, unknown magnetic field components and tissue boundary artifacts limit the technique. Nevertheless, the high agreement between simulated and experimental results found in this study is promising. B(1)-based specific energy absorption rate determination might become possible for arbitrary radiofrequency excitation on a patient-individual basis.
Collapse
Affiliation(s)
- Ulrich Katscher
- Philips Research Europe-Hamburg, Tomographic Imaging Department, Röntgenstr. 24-26, 22335 Hamburg, Germany.
| | | | | |
Collapse
|
36
|
Gräßl A, Winter L, Thalhammer C, Renz W, Kellman P, Martin C, von Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-Menger J, Niendorf T. Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T. Eur J Radiol 2011; 82:752-9. [PMID: 21920683 DOI: 10.1016/j.ejrad.2011.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/03/2011] [Indexed: 12/18/2022]
Abstract
The objective of this work is to design, examine and apply an eight channel transmit/receive coil array tailored for cardiac magnetic resonance imaging at 7.0 T that provides image quality suitable for clinical use, patient comfort, and ease of use. The cardiac coil array was designed to consist of a planar posterior section and a modestly curved anterior section. For radio frequency (RF) safety validation, numerical computations of the electromagnetic field (EMF) and the specific absorption rate (SAR) distribution were conducted. In vivo cardiac imaging was performed using a 2D CINE FLASH technique. For signal-to-noise ratio (SNR) assessment reconstructed images were scaled in SNR units. The parallel imaging capabilities of the coil were examined using GRAPPA and SENSE reconstruction with reduction factors of up to R=4. The assessment of the RF characteristics yielded a maximum noise correlation of 0.33. The baseline SNR advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a spatial resolution of 1 mm × 1 mm × 4 mm. The coil array supports 1D acceleration factors of up to R=3 without impairing image quality significantly. For un-accelerated 2D CINE FLASH acquisitions the results revealed an SNR of approximately 140 for the left ventricular blood pool. Blood/myocardium contrast was found to be approximately 90 for un-accelerated 2D CINE FLASH acquisitions. The proposed 8 channel cardiac transceiver surface coil has the capability to acquire high contrast, high spatial and temporal resolution in vivo images of the heart at 7.0 T.
Collapse
Affiliation(s)
- Andreas Gräßl
- Berlin Ultrahigh Field Facility, Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Martin C, Frauenrath T, Ozerdem C, Renz W, Niendorf T. Development and evaluation of a small and mobile Magneto Alert Sensor (MALSE) to support safety requirements for magnetic resonance imaging. Eur Radiol 2011; 21:2187-92. [PMID: 21647823 DOI: 10.1007/s00330-011-2153-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/15/2011] [Accepted: 04/25/2011] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The purpose of this study is to (i) design a small and mobile Magnetic field ALert SEnsor (MALSE), (ii) to carefully evaluate its sensors to their consistency of activation/deactivation and sensitivity to magnetic fields, and (iii) to demonstrate the applicability of MALSE in 1.5 T, 3.0 T and 7.0 T MR fringe field environments. METHODS MALSE comprises a set of reed sensors, which activate in response to their exposure to a magnetic field. The activation/deactivation of reed sensors was examined by moving them in/out of the fringe field generated by 7TMR. RESULTS The consistency with which individual reed sensors would activate at the same field strength was found to be 100% for the setup used. All of the reed switches investigated required a substantial drop in ambient magnetic field strength before they deactivated. CONCLUSIONS MALSE is a simple concept for alerting MRI staff to a ferromagnetic object being brought into fringe magnetic fields which exceeds MALSEs activation magnetic field. MALSE can easily be attached to ferromagnetic objects within the vicinity of a scanner, thus creating a barrier for hazardous situations induced by ferromagnetic parts which should not enter the vicinity of an MR-system to occur.
Collapse
Affiliation(s)
- Conrad Martin
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany.
| | | | | | | | | |
Collapse
|