1
|
Bach MJ, Larsen ME, Kellberg AO, Henriksen AC, Fuglsang S, Rasmussen IL, Lonsdale MN, Lubberink M, Marner L. Non-invasive [ 15O]H 2O PET measurements of cerebral perfusion and cerebrovascular reactivity using an additional heart scan. J Cereb Blood Flow Metab 2025:271678X251313743. [PMID: 39829334 PMCID: PMC11748137 DOI: 10.1177/0271678x251313743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Obtaining the arterial input function (AIF) is essential for quantitative regional cerebral perfusion (rCBF) measurements using [15O]H2O PET. However, arterial blood sampling is invasive and complicates the scanning procedure. We propose a new non-invasive dual scan technique with an image derived input function (IDIF) from an additional heart scan. Six patients and two healthy subjects underwent [15O]H2O PET imaging of 1) heart and brain during baseline, and 2) heart and brain after infusion of acetazolamide. The IDIF was extracted from the left ventricle of the heart and compared to the AIF. The rCBF was compared for six bilateral cortical regions. AIFs and IDIFs showed strong agreement. rCBF with AIF and IDIF showed strong correlation for both baseline rCBF (R2 = 0.99, slope = 0.89 CI: [0.87; 0.91], p < 0.0001) and acetazolamide rCBF (R2 = 0.98, slope = 0.93, CI:[0.90;0.97], p < 0.0001) but showed a positive bias of 0.047 mL/(g·min) [-0.025; +0.119] for baseline and 0.024 [-1.04, +1.53] mL/(g·min) for acetazolamide. In conclusion, the invasive arterial cannulation can be replaced by an additional scan of the heart with a minor bias of rCBF estimation. The method is applicable to all scanner systems.
Collapse
Affiliation(s)
- Mathias Jacobsen Bach
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mia E Larsen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Amanda O Kellberg
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Alexander C Henriksen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Radiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Stefan Fuglsang
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Inge Lise Rasmussen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Markus Nowak Lonsdale
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Mark Lubberink
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Hou Y, Hu J, Wang J, Yao C, Wang Z, Lu J. Detection of Crossed Cerebellar Diaschisis in Intractable Epilepsy Using Integrated 18F-FDG PET/MR Imaging. CEREBELLUM (LONDON, ENGLAND) 2024; 24:18. [PMID: 39707060 DOI: 10.1007/s12311-024-01759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 12/23/2024]
Abstract
Crossed cerebellar diaschisis(CCD) involves reduced metabolism and blood flow in the cerebellar hemisphere contralateral to a supratentorial lesion. ASL is a valuable tool for quantifying regional cerebral blood flow. This study assesses ASL-MRI's ability to detect CCD in epilepsy using integrated 18F-FDG PET/MRI and compares ASL with PET images in evaluating CCD. 74 patients with drug-refractory epilepsy who underwent integrated 18F-FDG PET/MRI pre-surgery and CT/MRI post-surgery was analysed. Regions of interest were outlined on MRI images and simultaneously transferred to PET and ASL images. CCD detection was evaluated visually and semi-quantitatively using the absolute asymmetry index (AIabs). Out of 74 patients, PET detected CCD in 24 (32.43%) and ASL in 18 (24.32%), with no significant difference between them (P = 0.274). Based on the PET results, the ROC curve for ASL's diagnostic accuracy for CCD showed an area under the curve of 0.69 (P = 0.008), an accuracy of 75.68%, a sensitivity of 50%, a specificity of 88%, a positive predictive value (PPV) of 66.67%, and a negative predictive value (NPV) of 78.57%. Four CCD types were identified: both PET and ASL positive (16.22%), PET positive and ASL negative (16.22%), ASL positive and PET negative (8.10%), and both negative (59.46%). AIabs correlation was positive between PET and ASL in the epileptic zone (r = 0.658, P < 0.001) and cerebellum (r = 0.407, P < 0.001). In ASL CCD-positive cases, AIabs showed a negative correlation between the epileptic zone and cerebellum (r=-0.581, P = 0.011), while in both PET and ASL CCD-positive cases, AIabs correlation was positive (r = 0.670, P = 0.017). ASL can be used as a method for evaluating CCD, and when combined with FDG-PET, it can further enhance its diagnostic accuracy for CCD. In CCD-positive cases, a notable discrepancy was observed: no correlation in PET images but a correlation in ASL images between the supratentorial epileptic zone and contralateral cerebellar hemisphere, indicating CCD might be linked to regional cerebral blood flow changes.
Collapse
Affiliation(s)
- Yaqin Hou
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Jie Hu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Jingjuan Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Chenyang Yao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Zhenming Wang
- Department of Radiotherapy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
| |
Collapse
|
3
|
Grønlund EW, Lindberg U, Fisher PM, Othman MH, Amiri M, Sølling C, Nielsen RD, Capion T, Ciochon UM, Hauerberg J, Sigurdsson ST, Thomsen G, Knudsen GM, Kjaergaard J, Larsen VA, Møller K, Hansen AE, Kondziella D. Arterial Spin Labeling Magnetic Resonance Imaging for Acute Disorders of Consciousness in the Intensive Care Unit. Neurocrit Care 2024; 41:1027-1037. [PMID: 38918338 PMCID: PMC11599417 DOI: 10.1007/s12028-024-02031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND To investigate patients with disorders of consciousness (DoC) for residual awareness, guidelines recommend quantifying glucose brain metabolism using positron emission tomography. However, this is not feasible in the intensive care unit (ICU). Cerebral blood flow (CBF) assessed by arterial spin labeling magnetic resonance imaging (ASL-MRI) could serve as a proxy for brain metabolism and reflect consciousness levels in acute DoC. We hypothesized that ASL-MRI would show compromised CBF in coma and unresponsive wakefulness states (UWS) but relatively preserved CBF in minimally conscious states (MCS) or better. METHODS We consecutively enrolled ICU patients with acute DoC and categorized them as being clinically unresponsive (i.e., coma or UWS [≤ UWS]) or low responsive (i.e., MCS or better [≥ MCS]). ASL-MRI was then acquired on 1.5 T or 3 T. Healthy controls were investigated with both 1.5 T and 3 T ASL-MRI. RESULTS We obtained 84 ASL-MRI scans from 59 participants, comprising 36 scans from 35 patients (11 women [31.4%]; median age 56 years, range 18-82 years; 24 ≤ UWS patients, 12 ≥ MCS patients; 32 nontraumatic brain injuries) and 48 scans from 24 healthy controls (12 women [50%]; median age 50 years, range 21-77 years). In linear mixed-effects models of whole-brain cortical CBF, patients had 16.2 mL/100 g/min lower CBF than healthy controls (p = 0.0041). However, ASL-MRI was unable to discriminate between ≤ UWS and ≥ MCS patients (whole-brain cortical CBF: p = 0.33; best hemisphere cortical CBF: p = 0.41). Numerical differences of regional CBF in the thalamus, amygdala, and brainstem in the two patient groups were statistically nonsignificant. CONCLUSIONS CBF measurement in ICU patients using ASL-MRI is feasible but cannot distinguish between the lower and the upper ends of the acute DoC spectrum. We suggest that pilot testing of diagnostic interventions at the extremes of this spectrum is a time-efficient approach in the continued quest to develop DoC neuroimaging markers in the ICU.
Collapse
Affiliation(s)
- Elisabeth Waldemar Grønlund
- Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Marwan H Othman
- Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Moshgan Amiri
- Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Christine Sølling
- Department of Neuroanaesthesiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rune Damgaard Nielsen
- Department of Neuroanaesthesiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tenna Capion
- Department of Neurosurgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Urszula Maria Ciochon
- Department of Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - John Hauerberg
- Department of Neurosurgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sigurdur Thor Sigurdsson
- Department of Neuroanaesthesiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Gerda Thomsen
- Neurobiology Research Unit, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Neurobiology Research Unit, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Kjaergaard
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Vibeke Andrée Larsen
- Department of Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Møller
- Department of Neuroanaesthesiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Adam Espe Hansen
- Department of Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Kondziella
- Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Ölmestig J, Mortensen KN, Fagerlund B, Naveed N, Nordling MM, Christensen H, Iversen HK, Poulsen MB, Siebner HR, Kruuse C. Cerebral blood flow and cognition after 3 months tadalafil treatment in small vessel disease (ETLAS-2): study protocol for a randomized controlled trial. Trials 2024; 25:570. [PMID: 39210472 PMCID: PMC11360322 DOI: 10.1186/s13063-024-08402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Targeted treatment is highly warranted for cerebral small vessel disease, a causal factor of one in four strokes and a major contributor to vascular dementia. Patients with cerebral small vessel disease have impaired cerebral blood flow and vessel reactivity. Tadalafil is a specific phosphodiesterase 5 inhibitor shown to improve vascular reactivity in the brain. METHODS The ETLAS-2 trial is a phase 2 double-blind, randomized placebo-controlled, parallel trial with the feasibility of tadalafil as the primary outcome. The trial aims to include 100 patients with small vessel occlusion stroke or transitory ischemic attacks and signs of cerebral small vessel disease more than 6 months before administration of study medication. Patients are treated for 3 months with tadalafil 20 mg or placebo daily and undergo magnetic resonance imaging (MRI) to evaluate changes in small vessel disease according to the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE) criteria as well as cerebral blood flow, cerebrovascular reactivity, and neurovascular coupling in a functional MRI sub-study. The investigation includes comprehensive cognitive testing using paper-pencil tests and Cambridge Neuropsychological Test Automated Battery (CANTAB) tests in a cognitive sub-study. DISCUSSION The ETLAS-2 trial tests the feasibility of long-term treatment with tadalafil and explores vascular and cognitive effects in cerebral small vessel disease in trial sub-studies. The study aims to propose a new treatment target and improve the understanding of small vessel disease. Currently, 64 patients have been included and the trial is estimated to be completed in the year 2024. TRIAL REGISTRATION Clinicaltrials.gov, NCT05173896. Registered on 30 December 2021.
Collapse
Affiliation(s)
- Joakim Ölmestig
- Neurovascular Research Unit, Department of Neurology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
| | - Kristian Nygaard Mortensen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Child and Adolescent Mental Health Center, Copenhagen University Hospital, Mental Health Services CPH, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Nadia Naveed
- Department of Radiology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Mette Maria Nordling
- Department of Radiology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Hanne Christensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Helle Klingenberg Iversen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Mai Bang Poulsen
- Department of Neurology, Copenhagen University Hospital-North Zealand, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Christina Kruuse
- Neurovascular Research Unit, Department of Neurology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
- Department of Brain and Spinal Cord Injury, Neuroscience Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
5
|
Kyrou A, Grünert E, Wüthrich F, Nadesalingam N, Chapellier V, Nuoffer MG, Pavlidou A, Lefebvre S, Walther S. Test-retest reliability of resting-state cerebral blood flow quantification using pulsed Arterial Spin Labeling (PASL) over 3 weeks vs 8 weeks in healthy controls. Psychiatry Res Neuroimaging 2024; 341:111823. [PMID: 38735229 DOI: 10.1016/j.pscychresns.2024.111823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Arterial Spin Labeling is a valuable functional imaging tool for both clinical and research purposes. However, little is known about the test-retest reliability of cerebral blood flow measurements over longer periods. In this study, we investigated the reliability of pulsed Arterial Spin Labeling in assessing cerebral blood flow over a 3 (n = 28) vs 8 (n = 19) weeks interscan interval in 47 healthy participants. As a measure of cerebral blood flow reliability, we calculated voxel-wise, whole-brain, and regions of interest intraclass correlation coefficients. The whole-brain mean resting-state cerebral blood flow showed good to excellent reliability over time for both periods (intraclass correlation coefficients = 0.85 for the 3-week delay, intraclass correlation coefficients = 0.53 for the 8-week delay). However, the voxel-wise and regions of interest intraclass correlation coefficients fluctuated at 8-week compared to the 3-week interval, especially within cortical areas. These results confirmed previous findings that Arterial Spin Labeling could be used as a reliable method to assess brain perfusion. However, as the reliability seemed to decrease over time, caution is warranted when performing correlations with other variables, especially in clinical populations.
Collapse
Affiliation(s)
- Alexandra Kyrou
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Elina Grünert
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Florian Wüthrich
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Niluja Nadesalingam
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Victoria Chapellier
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Melanie G Nuoffer
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Anastasia Pavlidou
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Stephanie Lefebvre
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland.
| | - Sebastian Walther
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| |
Collapse
|
6
|
Bi S, Yan S, Chen Z, Cui B, Shan Y, Yang H, Qi Z, Zhao Z, Han Y, Lu J. Comparison of 18F-FDG PET and arterial spin labeling MRI in evaluating Alzheimer's disease and amnestic mild cognitive impairment using integrated PET/MR. EJNMMI Res 2024; 14:9. [PMID: 38270821 PMCID: PMC10811308 DOI: 10.1186/s13550-024-01068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Developing biomarkers for early stage AD patients is crucial. Glucose metabolism measured by 18F-FDG PET is the most common biomarker for evaluating cellular energy metabolism to diagnose AD. Arterial spin labeling (ASL) MRI can potentially provide comparable diagnostic information to 18F-FDG PET in patients with neurodegenerative disorders. However, the conclusions about the diagnostic performance of AD are still controversial between 18F-FDG PET and ASL. This study aims to compare quantitative cerebral blood flow (CBF) and glucose metabolism measured by 18F-FDG PET diagnostic values in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) using integrated PET/MR. RESULTS Analyses revealed overlapping between decreased regional rCBF and 18F-FDG PET SUVR in patients with AD compared with NC participants in the bilateral parietotemporal regions, frontal cortex, and cingulate cortex. Compared with NC participants, patients with aMCI exclusively demonstrated lower 18F-FDG PET SUVR in the bilateral temporal cortex, insula cortex, and inferior frontal cortex. Comparison of the rCBF in patients with aMCI and NC participants revealed no significant difference (P > 0.05). The ROC analysis of rCBF in the meta-ROI could diagnose patients with AD (AUC, 0.87) but not aMCI (AUC, 0.61). The specificity of diagnosing aMCI has been improved to 75.56% when combining rCBF and 18F-FDG PET SUVR. CONCLUSION ASL could detect similar aberrant patterns of abnormalities compared to 18F-FDG PET in patients with AD compared with NC participants but not in aMCI. The diagnostic efficiency of 18F-FDG-PET for AD and aMCI patients remained higher to ASL. Our findings support that applying 18F-FDG PET may be preferable for diagnosing AD and aMCI.
Collapse
Affiliation(s)
- Sheng Bi
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Shaozhen Yan
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhigeng Chen
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Bixiao Cui
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Yi Shan
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Hongwei Yang
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhigang Qi
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhilian Zhao
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.
| |
Collapse
|
7
|
Bach MJ, Jakubauskaite A, Law I, Henriksen OM, Havsteen I, Henriksen AC, Rosenbaum S, Marner L. Long-term prognostic value of [ 15O]H 2O PET imaging in patients suspected for cerebral hemodynamic insufficiency. J Stroke Cerebrovasc Dis 2024; 33:107466. [PMID: 38029459 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVES Quantitative regional cerebral perfusion (rCBF) measurements using [15O]H2O PET with arterial cannulation and acetazolamide (ACZ) challenge have been reserved to identify high-risk patients that are candidates for by-pass operation. We aimed to assess the prognostic value of various parameters in quantitative [15O]H2O PET measurements in patients not subsequently undergoing surgery. METHODS We identified 32 eligible patients who underwent [15O]H2O brain PET imaging for suspicion of hemodynamic insufficiency between 2009 and 2020. Cerebrovascular events were defined as new ischemic lesions on MRI, stroke, transient ischemic attack, vascular dementia. Follow-up period was 91 months (range: 26-146). rCBF before (rCBFbase) and after (rCBFacz) ACZ challenge and the relative increase (CVR), were examined in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral artery territories of the affected hemisphere, and the most recent MRI scans were scored for infarcts and white matter lesions. RESULTS Receiver operating characteristic (ROC) curve analysis showed higher prognostic accuracy for rCBFacz(AUC:0.82) compared to CVR (AUC:0.72) and rCBFbase (AUC:0.77). ROC AUC, optimal thresholds (and corresponding sensitivity/specificity/accuracy) for rCBFacz after ACZ in individual territories were 0.79 and 37.8 mL 100g-1 min-1 (0.81/0.63/0.72) for the ACA, 0.84 and 32 mL 100g-1 min-1 (0.81/0.75/0.78) for the MCA, and 0.70 and 43.9 ml/(mL 100g-1 min-1 (0.81/0.43/0,62) for the PCA. Kaplan Meier survival curve showed longer event-free survival in patients with rCBFacz below cut-off (p=0.007). In multivariate analysis rCBFacz remained a significant predictor when correcting for age. CONCLUSION Quantitative rCBF measurements after ACZ challenge with [15O]H2O PET provided high prognostic value for future cerebrovascular events.
Collapse
Affiliation(s)
- Mathias Jacobsen Bach
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Denmark
| | | | - Ian Law
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Physiology and Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Otto Mølby Henriksen
- Department of Clinical Physiology and Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Inger Havsteen
- Department of Radiology Copenhagen University Hospital Bispebjerg, Denmark
| | - Alexander Cuculiza Henriksen
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Denmark; Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Denmark
| | - Sverre Rosenbaum
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Denmark
| | - Lisbeth Marner
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Denmark.
| |
Collapse
|
8
|
Li Z, Chen D, Li Z, Fan H, Guo L, Sui B, Ventikos Y. A computational study of fluid transport characteristics in the brain parenchyma of dementia subtypes. J Biomech 2023; 159:111803. [PMID: 37734184 DOI: 10.1016/j.jbiomech.2023.111803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The cerebral environment is a complex system consisting of parenchymal tissue and multiple fluids. Dementia is a common class of neurodegenerative diseases, caused by structural damages and functional deficits in the cerebral environment. In order to better understand the pathology of dementia from a cerebral fluid transport angle and provide clearer evidence that could help differentiate between dementia subtypes, such as Alzheimer's disease and vascular dementia, we conducted fluid-structure interaction modelling of the brain using a multiple-network poroelasticity model, which considers both neuropathological and cerebrovascular factors. The parenchyma was further subdivided and labelled into parcellations to obtain more localised and detailed data. The numerical results were converted to computed functional images by an in-house workflow. Different cerebral blood flow (CBF) and cerebrospinal fluid (CSF) clearance abnormalities were identified in the modelling results, when comparing Alzheimer's disease and vascular dementia. This paper presents our preliminary results as a proof of concept for a novel clinical diagnostic tool, and paves the way for a larger clinical study.
Collapse
Affiliation(s)
- Zeyan Li
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Duanduan Chen
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhiye Li
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Haojun Fan
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Liwei Guo
- Department of Mechanical Engineering, University College London, London, United Kingdom.
| | - Binbin Sui
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China.
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, United Kingdom; School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
9
|
Cramer SP, Larsson HBW, Knudsen MH, Simonsen HJ, Vestergaard MB, Lindberg U. Reproducibility and Optimal Arterial Input Function Selection in Dynamic Contrast-Enhanced Perfusion MRI in the Healthy Brain. J Magn Reson Imaging 2023; 57:1229-1240. [PMID: 35993510 DOI: 10.1002/jmri.28380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Dynamic contrast-enhanced MRI (DCE-MRI) has seen increasing use for quantification of low level of blood-brain barrier (BBB) leakage in various pathological disease states and correlations with clinical outcomes. However, currently there exists limited studies on reproducibility in healthy controls, which is important for the establishment of a normality threshold for future research. PURPOSE To investigate the reproducibility of DCE-MRI and to evaluate the effect of arterial input function (AIF) selection and manual region of interests (ROI) delineation vs. automated global segmentation. STUDY TYPE Prospective. POPULATION A total of 16 healthy controls; 11 females; mean age 28.7 years (SD 10.1). FIELD STRENGTH/SEQUENCE A 3T; GE DCE; 3D TFE T1WI. 2D TSE T2. ASSESSMENT The influx constant Ki , a measure of BBB permeability, and Vp , the blood plasma volume, was calculated using the Patlak model. Cerebral blood flow (CBF) was calculated using Tikhonov model free deconvolution. Manual tissue ROIs, drawn by H.J.S. (30+ years of experience), were compared to automatic tissue segmentation. STATISTICAL TESTS Intraclass correlation coefficient (ICC) and repeatability coefficient (RC) was used to assess reproducibility. Bland-Altman plots were used to evaluate agreement between measurements day 1 vs. day 2, and manual vs. segmentation method. RESULTS Ki showed excellent reproducibility in both white and gray matter with an ICC between 0.79 and 0.82 and excellent agreement between manual ROI and automatic segmentation, with an ICC of 0.89 for Ki in WM. Furthermore, Ki values in gray and white matter conforms with histological tissue characteristics, where gray matter generally has a 2-fold higher vessel density. The highest reproducibility measures of Ki (ICC = 0.83), CBF (ICC = 0.77) and Vd (ICC = 0.83) was obtained with the AIF sampled in the internal carotid artery (ICA). DATA CONCLUSION DCE-MRI shows excellent reproducibility of pharmacokinetic variables derived from healthy controls. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Stig P Cramer
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Science, Copenhagen University, Denmark
| | - Maria H Knudsen
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Helle J Simonsen
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
10
|
Liu S, Lu M, Han C, Hao F, Sheng F, Liu Y, Zhang L, Liu D, Xie R, Zhang H, Cai J. The Value of Preoperative Phase-Contrast MRI in Predicting the Clinical Outcome of Moyamoya Disease after Encephalo-Duro-Arterial Synangiosis Surgery. AJNR Am J Neuroradiol 2022; 43:1582-1588. [PMID: 36202553 PMCID: PMC9731245 DOI: 10.3174/ajnr.a7667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/12/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE In patients with Moyamoya disease, the relationship between preoperative hemodynamic status and prognosis after encephalo-duro-arterial synangiosis (EDAS) surgery was unclear. We aimed to explore the value of the preoperative hemodynamic status acquired by cine phase-contrast MR imaging in predicting collateral formation and clinical outcomes after EDAS surgery in patients with Moyamoya disease. MATERIALS AND METHODS Participants with Moyamoya disease were prospectively recruited and underwent preoperative phase-contrast MR imaging. All participants were classified into good and poor groups according to the collateral formation after EDAS surgery. On the basis of the change in the mRS system, participants were classified into the improved mRS group and the poor response group. Hemodynamic status including mean velocity, peak velocity, and blood volume flow of the superficial temporal artery was compared between groups. Logistic regression was performed to relate the phase-contrast MR imaging parameters to collateral formation and clinical outcomes. RESULTS A total of 45 patients with Moyamoya disease with unilateral EDAS surgery were finally included. Mean velocity, peak velocity, and blood volume flow of the ipsilateral superficial temporal artery were significantly greater in patients with good collateral formation compared with those with poor collateral formation (P = .011, .004, and .013, respectively). The mean velocity, peak velocity, and blood volume flow were independently associated with postoperative collateral formation after adjusting for confounding factors. Furthermore, the peak velocity of the ipsilateral superficial temporal artery was also significantly associated with improvement of the mRS score. CONCLUSIONS Good hemodynamic status of the ipsilateral superficial temporal artery as a donor artery evaluated by phase-contrast MR imaging was significantly associated with better collateral formation and improved mRS after EDAS surgery in patients with Moyamoya disease.
Collapse
Affiliation(s)
- S Liu
- From the Medical School of Chinese People's Liberation Army (S.L., L.Z.), Beijing, China
- Department of Radiology (S.L., F.S., Y.L., L.Z., D.L., R.X., H.Z., J.C.), the fifth Medical Center
| | - M Lu
- Department of Radiology (M.L.), Pingjin Hospital, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - C Han
- Department of Neurosurgery (C.H., F.H.), Chinese People's Liberation Army General Hospital, Beijing, China
| | - F Hao
- Department of Neurosurgery (C.H., F.H.), Chinese People's Liberation Army General Hospital, Beijing, China
| | - F Sheng
- Department of Radiology (S.L., F.S., Y.L., L.Z., D.L., R.X., H.Z., J.C.), the fifth Medical Center
| | - Y Liu
- Department of Radiology (S.L., F.S., Y.L., L.Z., D.L., R.X., H.Z., J.C.), the fifth Medical Center
| | - L Zhang
- From the Medical School of Chinese People's Liberation Army (S.L., L.Z.), Beijing, China
- Department of Radiology (S.L., F.S., Y.L., L.Z., D.L., R.X., H.Z., J.C.), the fifth Medical Center
| | - D Liu
- Department of Radiology (S.L., F.S., Y.L., L.Z., D.L., R.X., H.Z., J.C.), the fifth Medical Center
| | - R Xie
- Department of Radiology (S.L., F.S., Y.L., L.Z., D.L., R.X., H.Z., J.C.), the fifth Medical Center
| | - H Zhang
- Department of Radiology (S.L., F.S., Y.L., L.Z., D.L., R.X., H.Z., J.C.), the fifth Medical Center
| | - J Cai
- Department of Radiology (S.L., F.S., Y.L., L.Z., D.L., R.X., H.Z., J.C.), the fifth Medical Center
| |
Collapse
|
11
|
Binnie LR, Pauls MMH, Benjamin P, Dhillon MPK, Betteridge S, Clarke B, Ghatala R, Hainsworth FAH, Howe FA, Khan U, Kruuse C, Madigan JB, Moynihan B, Patel B, Pereira AC, Rostrup E, Shtaya ABY, Spilling CA, Trippier S, Williams R, Isaacs JD, Barrick TR, Hainsworth AH. Test-retest reliability of arterial spin labelling for cerebral blood flow in older adults with small vessel disease. Transl Stroke Res 2022; 13:583-594. [PMID: 35080734 PMCID: PMC9232403 DOI: 10.1007/s12975-021-00983-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022]
Abstract
Cerebral small vessel disease (SVD) is common in older people and is associated with lacunar stroke, white matter hyperintensities (WMH) and vascular cognitive impairment. Cerebral blood flow (CBF) is reduced in SVD, particularly within white matter.Here we quantified test-retest reliability in CBF measurements using pseudo-continuous arterial spin labelling (pCASL) in older adults with clinical and radiological evidence of SVD (N=54, mean (SD): 66.9 (8.7) years, 15 females/39 males). We generated whole-brain CBF maps on two visits at least 7 days apart (mean (SD): 20 (19), range 7-117 days).Test-retest reliability for CBF was high in all tissue types, with intra-class correlation coefficient [95%CI]: 0.758 [0.616, 0.852] for whole brain, 0.842 [0.743, 0.905] for total grey matter, 0.771 [0.636, 0.861] for deep grey matter (caudate-putamen and thalamus), 0.872 [0.790, 0.923] for normal-appearing white matter (NAWM) and 0.780 [0.650, 0.866] for WMH (all p<0.001). ANCOVA models indicated significant decline in CBF in total grey matter, deep grey matter and NAWM with increasing age and diastolic blood pressure (all p<0.001). CBF was lower in males relative to females (p=0.013 for total grey matter, p=0.004 for NAWM).We conclude that pCASL has high test-retest reliability as a quantitative measure of CBF in older adults with SVD. These findings support the use of pCASL in routine clinical imaging and as a clinical trial endpoint.All data come from the PASTIS trial, prospectively registered at: https://eudract.ema.europa.eu (2015-001235-20, registered 13/05/2015), http://www.clinicaltrials.gov (NCT02450253, registered 21/05/2015).
Collapse
Affiliation(s)
- Lauren R Binnie
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Mathilde M H Pauls
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Philip Benjamin
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Neuroradiology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Mohani-Preet K Dhillon
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Shai Betteridge
- Department of Neuropsychology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Brian Clarke
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Rita Ghatala
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Fearghal A H Hainsworth
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Franklyn A Howe
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Usman Khan
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Christina Kruuse
- Department of Neurology and Neurovascular Research Unit, Herlev Gentofte Hospital, Herlev, Denmark
| | - Jeremy B Madigan
- Department of Neuroradiology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Barry Moynihan
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Bhavini Patel
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Anthony C Pereira
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Egill Rostrup
- Mental Health Centre, University of Copenhagen, Glostrup, Denmark
| | - Anan B Y Shtaya
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Catherine A Spilling
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sarah Trippier
- South London Stroke Research Network, St George's Hospital, London, UK
| | - Rebecca Williams
- South London Stroke Research Network, St George's Hospital, London, UK
| | - Jeremy D Isaacs
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Thomas R Barrick
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Atticus H Hainsworth
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK.
| |
Collapse
|
12
|
Amemiya S, Takao H, Watanabe Y, Takei N, Ueyama T, Kato S, Miyawaki S, Koizumi S, Abe O, Saito N. Reliability and Sensitivity to Longitudinal CBF Changes in Steno-Occlusive Diseases: ASL Versus 123 I-IMP-SPECT. J Magn Reson Imaging 2022; 55:1723-1732. [PMID: 34780101 DOI: 10.1002/jmri.27996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Noninvasive cerebral blood flow (CBF) monitoring using arterial spin labeling (ASL) magnetic resonance imaging is useful for managing large cerebral artery steno-occlusive diseases. However, knowledge about its measurement characteristics in comparison with reference standard perfusion imaging is limited. PURPOSE To evaluate perfusion in a longitudinal manner in patients with steno-occlusive disease using ASL and compare with single-photon emission computed tomography (SPECT). STUDY TYPE Prospective. POPULATION Moyamoya (n = 10, eight females) and atherosclerotic diseases (n = 2, two males). FIELD STRENGTH/SEQUENCE 3.0 T; gradient-echo three-dimensional T1 -weighted and spin-echo ASL. ASSESSMENT Multi-delay ASL and [123 I]-iodoamphetamine SPECT CBF measurements were performed both before and within 9 days of anterior-circulation revascularization. Reliability and sensitivity to whole-brain voxel-wise CBF changes (ΔCBF) and their postlabeling delay (PLD) dependency with varied PLDs (in milliseconds) of 1000, 2333, and 3666 were examined. STATISTICAL TESTS Reliability and sensitivity to ΔCBF were examined using within-subject standard deviation (Sw) and intraclass correlation coefficients (ICCs). For statistical comparisons, standard deviation of longitudinal ΔCBF within the hemisphere contralateral to surgery, and the ratio between it and average ΔCBF within the ipsilateral regions of interest were subjected to paired t tests, respectively. P < 0.05 was considered statistically significant. RESULTS ASL test-retest time interval was 31 ± 18 days. Test-retest reliability was significantly lower for SPECT (0.16 ± 0.02) than ASL (0.13 ± 0.04). Sensitivity to postoperative changes was significantly higher for ASL (2.71 ± 2.79) than SPECT (0.27 ± 0.62). Test-retest reliability was significantly higher for a PLD of 2333 (0.13 ± 0.04) than 3666 (0.19 ± 0.05), and sensitivity to ΔCBF was significantly higher for PLDs of 1000 (2.53 ± 2.50) and 2333 than 3666 (0.79 ± 1.88). ICC maps also showed higher reliability for ASL than SPECT. DATA CONCLUSION Higher test-retest reliability led to better ASL sensitivity than SPECT for postoperative ΔCBF. ASL test-retest reliability and sensitivity to ΔCBF were higher with a PLD of 2333. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hidemasa Takao
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yusuke Watanabe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Naoyuki Takei
- MR Applications and Workflow, GE Healthcare, Tokyo, Japan
| | - Tsuyoshi Ueyama
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Seiji Kato
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Satoshi Koizumi
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Narciso L, Ssali T, Liu L, Jesso S, Hicks JW, Anazodo U, Finger E, St Lawrence K. Noninvasive Quantification of Cerebral Blood Flow Using Hybrid PET/MR Imaging to Extract the [ 15 O]H 2 O Image-Derived Input Function Free of Partial Volume Errors. J Magn Reson Imaging 2022; 56:1243-1255. [PMID: 35226390 DOI: 10.1002/jmri.28134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Quantification of cerebral blood flow (CBF) with [15 O]H2 O-positron emission tomography (PET) requires arterial sampling to measure the input function. This invasive procedure can be avoided by extracting an image-derived input function (IDIF); however, IDIFs are sensitive to partial volume errors due to the limited spatial resolution of PET. PURPOSE To present an alternative hybrid PET/MR imaging of CBF (PMRFlowIDIF ) that uses phase-contrast (PC) MRI measurements of whole-brain (WB) CBF to calibrate an IDIF extracted from a WB [15 O]H2 O time-activity curve. STUDY TYPE Technical development and validation. ANIMAL MODEL Twelve juvenile Duroc pigs (83% female). POPULATION Thirteen healthy individuals (38% female). FIELD STRENGTH/SEQUENCES 3 T; gradient-echo PC-MRI. ASSESSMENT PMRFlowIDIF was validated against PET-only in a porcine model that included arterial sampling. CBF maps were generated by applying PMRFlowIDIF and two previous PMRFlow methods (PC-PET and double integration method [DIM]) to [15 O]H2 O-PET data acquired from healthy individuals. STATISTICAL TESTS PMRFlow and PET CBF measurements were compared with regression and correlation analyses. Paired t-tests were performed to evaluate differences. Potential biases were assessed using one-sample t-tests. Reliability was assessed by intraclass correlation coefficients. Statistical significance: α = 0.05. RESULTS In the animal study, strong agreement was observed between PMRFlowIDIF (average voxel-wise CBF, 58.0 ± 16.9 mL/100 g/min) and PET (63.0 ± 18.9 mL/100 g/min). In the human study, PMRFlowDIM (y = 1.11x - 5.16, R2 = 0.99 ± 0.01) and PMRFlowPC-PET (y = 0.87x + 3.82, R2 = 0.97 ± 0.02) performed similarly to PMRFlowIDIF, and CBF was within the expected range (eg, 49.7 ± 7.2 mL/100 g/min for gray matter). DATA CONCLUSION Accuracy of PMRFlowIDIF was confirmed in the animal study with the primary source of error attributed to differences in WB CBF measured by PC MRI and PET. In the human study, differences in CBF from PMRFlowIDIF , PMRFlowDIM , and PMRFlowPC-PET were due to the latter two not accounting for blood-borne activity. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Lucas Narciso
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Tracy Ssali
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Linshan Liu
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada
| | - Sarah Jesso
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Justin W Hicks
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Udunna Anazodo
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Elizabeth Finger
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Keith St Lawrence
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
14
|
Kufer J, Preibisch C, Epp S, Göttler J, Schmitzer L, Zimmer C, Hyder F, Kaczmarz S. Imaging effective oxygen diffusivity in the human brain with multiparametric magnetic resonance imaging. J Cereb Blood Flow Metab 2022; 42:349-363. [PMID: 34590895 PMCID: PMC8795223 DOI: 10.1177/0271678x211048412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cerebrovascular diseases can impair blood circulation and oxygen extraction from the blood. The effective oxygen diffusivity (EOD) of the capillary bed is a potential biomarker of microvascular function that has gained increasing interest, both for clinical diagnosis and for elucidating oxygen transport mechanisms. Models of capillary oxygen transport link EOD to measurable oxygen extraction fraction (OEF) and cerebral blood flow (CBF). In this work, we confirm that two well established mathematical models of oxygen transport yield nearly equivalent EOD maps. Furthermore, we propose an easy-to-implement and clinically applicable multiparametric magnetic resonance imaging (MRI) protocol for quantitative EOD mapping. Our approach is based on imaging OEF and CBF with multiparametric quantitative blood oxygenation level dependent (mq-BOLD) MRI and pseudo-continuous arterial spin labeling (pCASL), respectively. We evaluated the imaging protocol by comparing MRI-EOD maps of 12 young healthy volunteers to PET data from a published study in different individuals. Our results show comparably good correlation between MRI- and PET-derived cortical EOD, OEF and CBF. Importantly, absolute values of MRI and PET showed high accordance for all three parameters. In conclusion, our data indicates feasibility of the proposed MRI protocol for EOD mapping, rendering the method promising for future clinical evaluation of patients with cerebrovascular diseases.
Collapse
Affiliation(s)
- Jan Kufer
- Department of Neuroradiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technical University of Munich (TUM), Munich, Germany
| | - Christine Preibisch
- Department of Neuroradiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technical University of Munich (TUM), Munich, Germany.,Clinic for Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Samira Epp
- Department of Neuroradiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technical University of Munich (TUM), Munich, Germany
| | - Jens Göttler
- Department of Neuroradiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technical University of Munich (TUM), Munich, Germany.,Department of Radiology & Biomedical Imaging (MRRC), Yale University, New Haven, CT, USA
| | - Lena Schmitzer
- Department of Neuroradiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technical University of Munich (TUM), Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technical University of Munich (TUM), Munich, Germany
| | - Fahmeed Hyder
- Department of Radiology & Biomedical Imaging (MRRC), Yale University, New Haven, CT, USA
| | - Stephan Kaczmarz
- Department of Neuroradiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technical University of Munich (TUM), Munich, Germany.,Department of Radiology & Biomedical Imaging (MRRC), Yale University, New Haven, CT, USA.,Philips GmbH Market DACH, Hamburg, Germany
| |
Collapse
|
15
|
Xu L, Ware JB, Kim JJ, Shahim P, Silverman E, Magdamo B, Dabrowski C, Wesley L, Le MD, Morrison J, Zamore H, Lynch CE, Petrov D, Chen HI, Schuster J, Diaz-Arrastia R, Sandsmark DK. Arterial Spin Labeling Reveals Elevated Cerebral Blood Flow with Distinct Clusters of Hypo- and Hyperperfusion after Traumatic Brain Injury. J Neurotrauma 2021; 38:2538-2548. [PMID: 34115539 PMCID: PMC8403182 DOI: 10.1089/neu.2020.7553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Imaging detection of brain perfusion alterations after traumatic brain injury (TBI) may provide prognostic insights. In this study, we used arterial spin labeling (ASL) to quantify cross-sectional and longitudinal changes in cerebral blood flow (CBF) after TBI and correlated changes with clinical outcome. We analyzed magnetic resonance imaging scans from adult participants with TBI requiring hospitalization in the acute (2 weeks post-injury, n = 33) and chronic (6 months post-injury, n = 16) phases, with 13 participants scanned longitudinally at both time points. We also analyzed 18 age- and sex-matched healthy controls. Whole-brain CBF maps were derived using a three-dimensional pseudo-continuous arterial spin label technique. Mean CBF across tissue-based regions (whole brain, gray matter, and white matter) was compared cross-sectionally and longitudinally. In addition, individual-level clusters of abnormal perfusion were identified using voxel-based z-score analysis of relative CBF maps, and number and volume of abnormally hypo- and hyperperfused clusters were assessed cross-sectionally and longitudinally. Finally, all CBF measures were correlated with clinical outcome measures. Mean global and gray matter CBF were significantly elevated in acute and chronic TBI participants compared to controls. Participants with better outcome at 6 months post-injury tended to have higher CBF in the acute phase compared to those with poorer outcome. Acute TBI participants had a significantly greater volume of hypo- and hyperperfused brain tissue compared to controls, with these regions partially normalizing by the chronic phase. Our findings demonstrate global elevation of CBF with focal hypo- and hyperperfusion in the early post-injury period and suggest a reparative role for acute elevation in CBF post-TBI.
Collapse
Affiliation(s)
- Linda Xu
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jeffrey B. Ware
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Junghoon J. Kim
- CUNY School of Medicine, The City College of New York, New York, New York, USA
| | | | - Erika Silverman
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brigid Magdamo
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cian Dabrowski
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Leroy Wesley
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - My Duyen Le
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Justin Morrison
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hannah Zamore
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cillian E. Lynch
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dmitriy Petrov
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - H. Isaac Chen
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James Schuster
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Danielle K. Sandsmark
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Luciw NJ, Toma S, Goldstein BI, MacIntosh BJ. Correspondence between patterns of cerebral blood flow and structure in adolescents with and without bipolar disorder. J Cereb Blood Flow Metab 2021; 41:1988-1999. [PMID: 33487070 PMCID: PMC8323335 DOI: 10.1177/0271678x21989246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/06/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022]
Abstract
Adolescence is a period of rapid development of the brain's inherent functional and structural networks; however, little is known about the region-to-region organization of adolescent cerebral blood flow (CBF) or its relationship to neuroanatomy. Here, we investigate both the regional covariation of CBF MRI and the covariation of structural MRI, in adolescents with and without bipolar disorder. Bipolar disorder is a disease with increased onset during adolescence, putative vascular underpinnings, and evidence of anomalous CBF and brain structure. In both groups, through hierarchical clustering, we found CBF covariance was principally described by clusters of regions circumscribed to the left hemisphere, right hemisphere, and the inferior brain; these clusters were spatially reminiscent of cerebral vascular territories. CBF covariance was associated with structural covariance in both the healthy group (n = 56; r = 0.20, p < 0.0001) and in the bipolar disorder group (n = 68; r = 0.36, p < 0.0001), and this CBF-structure correspondence was higher in bipolar disorder (p = 0.0028). There was lower CBF covariance in bipolar disorder compared to controls between the left angular gyrus and pre- and post-central gyri. Altogether, CBF covariance revealed distinct brain organization, had modest correspondence to structural covariance, and revealed evidence of differences in bipolar disorder.
Collapse
Affiliation(s)
- Nicholas J Luciw
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Hurvitz Brain Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Simina Toma
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Benjamin I Goldstein
- Hurvitz Brain Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada
- Departments of Pharmacology and Psychiatry, University of Toronto, Toronto, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Hurvitz Brain Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Evaluation of Arterial Spin Labeling MRI-Comparison with 15O-Water PET on an Integrated PET/MR Scanner. Diagnostics (Basel) 2021; 11:diagnostics11050821. [PMID: 34062847 PMCID: PMC8147295 DOI: 10.3390/diagnostics11050821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Cerebral blood flow (CBF) measurements are of high clinical value and can be acquired non-invasively with no radiation exposure using pseudo-continuous arterial spin labeling (ASL). The aim of this study was to evaluate accordance in resting state CBF between ASL (CBFASL) and 15O-water positron emission tomography (PET) (CBFPET) acquired simultaneously on an integrated 3T PET/MR system. The data comprised ASL and dynamic 15O-water PET data with arterial blood sampling of eighteen subjects (eight patients with focal epilepsy and ten healthy controls, age 21 to 61 years). 15O-water PET parametric CBF images were generated using a basis function implementation of the single tissue compartment model. Cortical and subcortical regions were automatically segmented using Freesurfer. Average CBFASL and CBFPET in grey matter were 60 ± 20 and 75 ± 22 mL/100 g/min respectively, with a relatively high correlation (r = 0.78, p < 0.001). Bland-Altman analysis revealed poor agreement (bias = −15 mL/100 g/min, lower and upper limits of agreements = −16 and 45 mL/100 g/min, respectively) with a negative relationship. Accounting for the negative relationship, the width of the limits of agreement could be narrowed from 61 mL/100 g/min to 35 mL/100 g/min using regression-based limits of agreements. Although a high correlation between CBFASL and CBFPET was found, the agreement in absolute CBF values was not sufficient for ASL to be used interchangeably with 15O-water PET.
Collapse
|
18
|
Maier O, Spann SM, Pinter D, Gattringer T, Hinteregger N, Thallinger GG, Enzinger C, Pfeuffer J, Bredies K, Stollberger R. Non-linear fitting with joint spatial regularization in arterial spin labeling. Med Image Anal 2021; 71:102067. [PMID: 33930830 DOI: 10.1016/j.media.2021.102067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Multi-Delay single-shot arterial spin labeling (ASL) imaging provides accurate cerebral blood flow (CBF) and, in addition, arterial transit time (ATT) maps but the inherent low SNR can be challenging. Especially standard fitting using non-linear least squares often fails in regions with poor SNR, resulting in noisy estimates of the quantitative maps. State-of-the-art fitting techniques improve the SNR by incorporating prior knowledge in the estimation process which typically leads to spatial blurring. To this end, we propose a new estimation method with a joint spatial total generalized variation regularization on CBF and ATT. This joint regularization approach utilizes shared spatial features across maps to enhance sharpness and simultaneously improves noise suppression in the final estimates. The proposed method is evaluated at three levels, first on synthetic phantom data including pathologies, followed by in vivo acquisitions of healthy volunteers, and finally on patient data following an ischemic stroke. The quantitative estimates are compared to two reference methods, non-linear least squares fitting and a state-of-the-art ASL quantification algorithm based on Bayesian inference. The proposed joint regularization approach outperforms the reference implementations, substantially increasing the SNR in CBF and ATT while maintaining sharpness and quantitative accuracy in the estimates.
Collapse
Affiliation(s)
- Oliver Maier
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16/III, Graz 8010, Austria.
| | - Stefan M Spann
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16/III, Graz 8010, Austria.
| | - Daniela Pinter
- Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria.
| | - Thomas Gattringer
- Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria; Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria.
| | - Nicole Hinteregger
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria.
| | - Gerhard G Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16/I, Graz 8010, Austria; BioTechMed-Graz, Mozartgasse 12/II, Graz 8010, Austria.
| | - Christian Enzinger
- Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria; Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 22, Graz 8036, Austria.
| | - Josef Pfeuffer
- Application Development, Siemens Healthcare, Henkestraße 127, Erlangen 91052, Germany.
| | - Kristian Bredies
- Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstraße 36, Graz 8010, Austria; BioTechMed-Graz, Mozartgasse 12/II, Graz 8010, Austria.
| | - Rudolf Stollberger
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16/III, Graz 8010, Austria; BioTechMed-Graz, Mozartgasse 12/II, Graz 8010, Austria.
| |
Collapse
|
19
|
Henriksen OM, Gjedde A, Vang K, Law I, Aanerud J, Rostrup E. Regional and interindividual relationships between cerebral perfusion and oxygen metabolism. J Appl Physiol (1985) 2021; 130:1836-1847. [PMID: 33830816 DOI: 10.1152/japplphysiol.00939.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Quantitative measurements of resting cerebral blood flow (CBF) and metabolic rate of oxygen (CMRO2) show large between-subject and regional variability, but the relationships between CBF and CMRO2 measurements regionally and globally are not fully established. Here, we investigated the between-subject and regional associations between CBF and CMRO2 measures with independent and quantitative PET techniques. We included resting CBF and CMRO2 measurements from 50 healthy volunteers (aged 22-81 yr), and calculated the regional and global values of oxygen delivery (Do2) and oxygen extraction fraction (OEF). Linear mixed-model analysis showed that CBF and CMRO2 measurements were closely associated regionally, but no significant between-subject association could be demonstrated, even when adjusting for arterial Pco2 and hemoglobin concentration. The analysis also showed regional differences of OEF, reflecting variable relationship between Do2 and CMRO2, resulting in lower estimates of OEF in thalami, brainstem, and mesial temporal cortices and higher estimates of OEF in occipital cortex. In the present study, we demonstrated no between-subject association of quantitative measurements of CBF and CMRO2 in healthy subjects. Thus, quantitative measurements of CBF did not reflect the underlying between-subject variability of oxygen metabolism measures, mainly because of large interindividual OEF variability not accounted for by Pco2 and hemoglobin concentration.NEW & NOTEWORTHY Using quantitative PET-measurements in healthy human subjects, we confirmed a regional association of CBF and CMRO2, but did not find an association of these values across subjects. This suggests that subjects have an individual coupling between perfusion and metabolism and shows that absolute perfusion measurements does not serve as a surrogate measure of individual measures of oxygen metabolism. The analysis further showed smaller, but significant regional differences of oxygen extraction fraction at rest.
Collapse
Affiliation(s)
- Otto M Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Albert Gjedde
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Translational Neuropsychiatry Unit, Aarhus University and University Hospital, Aarhus, Denmark.,Department of Nuclear Medicine and PET Centre, Aarhus University and University Hospital, Aarhus, Denmark
| | - Kim Vang
- Department of Nuclear Medicine and PET Centre, Aarhus University and University Hospital, Aarhus, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Joel Aanerud
- Department of Nuclear Medicine and PET Centre, Aarhus University and University Hospital, Aarhus, Denmark
| | - Egill Rostrup
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark.,Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Mokhber N, Shariatzadeh A, Avan A, Saber H, Babaei GS, Chaimowitz G, Azarpazhooh MR. Cerebral blood flow changes during aging process and in cognitive disorders: A review. Neuroradiol J 2021; 34:300-307. [PMID: 33749402 PMCID: PMC8447819 DOI: 10.1177/19714009211002778] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We aimed to summarize the available evidence on cerebral blood flow (CBF) changes
in normal aging and common cognitive disorders. We searched PubMed for studies
on CBF changes in normal aging and cognitive disorders up to 1 January 2019. We
summarized the milestones in the history of CBF assessment and reviewed the
current evidence on the association between CBF and cognitive changes in normal
aging, vascular cognitive impairment (VCI) and Alzheimer’s disease (AD). There
is promising evidence regarding the utility of CBF studies in cognition
research. Age-related CBF changes could be related to a progressive neuronal
loss or diminished activity and synaptic density of neurons in the brain. While
a similar cause or outcome theory applies to VCI and AD, it is possible that CBF
reduction might precede cognitive decline. Despite the diversity of CBF research
findings, its measurement could help early detection of cognitive disorders and
also understanding their underlying etiology.
Collapse
Affiliation(s)
- Naghmeh Mokhber
- Department of Psychiatry, Western University, Canada.,Department of Psychiatry and Neuropsychiatry, Mashhad University of Medical Sciences, Iran
| | - Aidin Shariatzadeh
- Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, Canada
| | - Abolfazl Avan
- Department of Public Health, Mashhad University of Medical Sciences, Iran
| | - Hamidreza Saber
- Department of Neurology, Wayne State University School of Medicine, USA
| | | | - Gary Chaimowitz
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Canada
| | - M Reza Azarpazhooh
- Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, Canada.,Department of Clinical Neurological Sciences, Western University, Canada
| |
Collapse
|
21
|
Yang Z, Rong Y, Cao Z, Wu Y, Zhao X, Xie Q, Luo M, Liu Y. Microstructural and Cerebral Blood Flow Abnormalities in Subjective Cognitive Decline Plus: Diffusional Kurtosis Imaging and Three-Dimensional Arterial Spin Labeling Study. Front Aging Neurosci 2021; 13:625843. [PMID: 33597860 PMCID: PMC7882515 DOI: 10.3389/fnagi.2021.625843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
Objective: To explore microstructural and cerebral blood flow (CBF) abnormalities in individuals with subjective cognitive decline plus (SCD plus) using diffusional kurtosis imaging (DKI) and three-dimensional (3D) arterial spin labeling (ASL). Methods: Twenty-seven patients with SCD plus, 31 patients with amnestic mild cognitive impairment (aMCI), and 33 elderly controls (ECs) were recruited and underwent DKI and 3D ASL using a GE 3.0-T MRI. Mean kurtosis (MK), fractional anisotropy (FA), mean diffusivity (MD), and CBF values were acquired from 24 regions of interest (ROIs) in the brain, including the bilateral hippocampal (Hip) subregions (head, body, and tail), posterior cingulate cortex (PCC), precuneus, dorsal thalamus subregions (anterior nucleus, ventrolateral nucleus, and medial nucleus), lenticular nucleus, caput nuclei caudati, white matter (WM) of the frontal lobe, and WM of the occipital lobe. Pearson's correlation analysis was performed to assess the relationships among the DKI-derived parameters, CBF values, and key neuropsychological tests for SCD plus. Results: Compared with ECs, participants with SCD plus showed a significant decline in MK and CBF values, mainly in the Hip head and PCC, and participants with aMCI exhibited more significant abnormalities in the MK and CBF values than individuals with ECs and SCD plus in multiple regions. Combined MK values showed better discrimination between patients with SCD plus and ECs than that obtained using CBF levels, with areas under the receiver operating characteristic (ROC) curve (AUC) of 0.874 and 0.837, respectively. Similarly, the AUC in discriminating SCD plus from aMCI patients obtained using combined MK values was 0.823, which was also higher than the combined AUC of 0.779 obtained using CBF values. Moreover, MK levels in the left Hip (h) and left PCC positively correlated with the auditory verbal learning test-delayed recall (AVLT-DR) score in participants with SCD plus. By contrast, only the CBF value in the left Hip head positively correlated with the AVLT-DR score. Conclusions: Our results provide new evidence of microstructural and CBF changes in patients with SCD plus. MK may be used as an early potential neuroimaging biomarker and may be a more sensitive DKI parameter than CBF at the very early stage of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Zhongxian Yang
- Medical Imaging Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Medical Imaging Center, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Yu Rong
- Medical Imaging Center, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China.,Department of Neurology, The People's Hospital of Gaozhou City, Maoming, China
| | - Zhen Cao
- Medical Imaging Center, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Yi Wu
- Department of Neurology, Shantou Central Hospital and Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Xinzhu Zhao
- Medical Imaging Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Qiuxia Xie
- Medical Imaging Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Min Luo
- Medical Imaging Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yubao Liu
- Medical Imaging Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
22
|
Jann K, Shao X, Ma SJ, Cen SY, D'Orazio L, Barisano G, Yan L, Casey M, Lamas J, Staffaroni AM, Kramer JH, Ringman JM, Wang DJJ. Evaluation of Cerebral Blood Flow Measured by 3D PCASL as Biomarker of Vascular Cognitive Impairment and Dementia (VCID) in a Cohort of Elderly Latinx Subjects at Risk of Small Vessel Disease. Front Neurosci 2021; 15:627627. [PMID: 33584191 PMCID: PMC7873482 DOI: 10.3389/fnins.2021.627627] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/07/2021] [Indexed: 01/16/2023] Open
Abstract
Cerebral small vessel disease (cSVD) affects arterioles, capillaries, and venules and can lead to cognitive impairments and clinical symptomatology of vascular cognitive impairment and dementia (VCID). VCID symptoms are similar to Alzheimer’s disease (AD) but the neurophysiologic alterations are less well studied, resulting in no established biomarkers. The purpose of this study was to evaluate cerebral blood flow (CBF) measured by 3D pseudo-continuous arterial spin labeling (pCASL) as a potential biomarker of VCID in a cohort of elderly Latinx subjects at risk of cSVD. Forty-five elderly Latinx subjects (12 males, 69 ± 7 years) underwent repeated MRI scans ∼6 weeks apart. CBF was measured using 3D pCASL in the whole brain, white matter and 4 main vascular territories (leptomeningeal anterior, middle, and posterior cerebral artery (leptoACA, leptoMCA, leptoPCA), as well as MCA perforator). The test-retest repeatability of CBF was assessed by intra-class correlation coefficient (ICC) and within-subject coefficient of variation (wsCV). Absolute and relative CBF was correlated with gross cognitive measures and domain specific assessment of executive and memory function, vascular risks, and Fazekas scores and volumes of white matter hyperintensity (WMH). Neurocognitive evaluations were performed using Montreal Cognitive Assessment (MoCA) and neuropsychological test battery in the Uniform Data Set v3 (UDS3). Good to excellent test-retest repeatability was achieved (ICC = 0.77–0.85, wsCV 3–9%) for CBF measurements in the whole brain, white matter, and 4 vascular territories. Relative CBF normalized by global mean CBF in the leptoMCA territory was positively correlated with the executive function composite score, while relative CBF in the leptoMCA and MCA perforator territory was positively correlated with MoCA scores, controlling for age, gender, years of education, and testing language. Relative CBF in WM was negatively correlated with WMH volume and MoCA scores, while relative leptoMCA CBF was positively correlated with WMH volume. Reliable 3D pCASL CBF measurements were achieved in the cohort of elderly Latinx subjects. Relative CBF in the leptomeningeal and perforator MCA territories were the most likely candidate biomarker of VCID. These findings need to be replicated in larger cohorts with greater variability of stages of cSVD.
Collapse
Affiliation(s)
- Kay Jann
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xingfeng Shao
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Samantha J Ma
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Steven Y Cen
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lina D'Orazio
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Giuseppe Barisano
- Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lirong Yan
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Marlena Casey
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jesse Lamas
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - John M Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Danny J J Wang
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Bladt P, den Dekker AJ, Clement P, Achten E, Sijbers J. The costs and benefits of estimating T 1 of tissue alongside cerebral blood flow and arterial transit time in pseudo-continuous arterial spin labeling. NMR IN BIOMEDICINE 2020; 33:e4182. [PMID: 31736223 PMCID: PMC7685117 DOI: 10.1002/nbm.4182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/09/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Multi-post-labeling-delay pseudo-continuous arterial spin labeling (multi-PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as well as the arterial transit time (ATT). Estimating these perfusion parameters from multi-PLD PCASL data is a non-linear inverse problem, which is commonly tackled by fitting the single-compartment model (SCM) for PCASL, with CBF and ATT as free parameters. The longitudinal relaxation time of tissue T1t is an important parameter in this model, as it governs the decay of the perfusion signal entirely upon entry in the imaging voxel. Conventionally, T1t is fixed to a population average. This approach can cause CBF quantification errors, as T1t can vary significantly inter- and intra-subject. This study compares the impact on CBF quantification, in terms of accuracy and precision, of either fixing T1t , the conventional approach, or estimating it alongside CBF and ATT. It is shown that the conventional approach can cause a significant bias in CBF. Indeed, simulation experiments reveal that if T1t is fixed to a value that is 10% off its true value, this may already result in a bias of 15% in CBF. On the other hand, as is shown by both simulation and real data experiments, estimating T1t along with CBF and ATT results in a loss of CBF precision of the same order, even if the experiment design is optimized for the latter estimation problem. Simulation experiments suggest that an optimal balance between accuracy and precision of CBF estimation from multi-PLD PCASL data can be expected when using the two-parameter estimator with a fixed T1t value between population averages of T1t and the longitudinal relaxation time of blood T1b .
Collapse
Affiliation(s)
- Piet Bladt
- imec‐Vision Lab, Department of PhysicsUniversity of Antwerp2610AntwerpBelgium
| | - Arnold J. den Dekker
- imec‐Vision Lab, Department of PhysicsUniversity of Antwerp2610AntwerpBelgium
- Delft Center for Systems and ControlDelft University of Technology2628 CDDelftThe Netherlands
| | - Patricia Clement
- Department of Radiology and Nuclear MedicineGhent University9000GhentBelgium
| | - Eric Achten
- Department of Radiology and Nuclear MedicineGhent University9000GhentBelgium
| | - Jan Sijbers
- imec‐Vision Lab, Department of PhysicsUniversity of Antwerp2610AntwerpBelgium
| |
Collapse
|
24
|
Puig O, Henriksen OM, Vestergaard MB, Hansen AE, Andersen FL, Ladefoged CN, Rostrup E, Larsson HB, Lindberg U, Law I. Comparison of simultaneous arterial spin labeling MRI and 15O-H 2O PET measurements of regional cerebral blood flow in rest and altered perfusion states. J Cereb Blood Flow Metab 2020; 40:1621-1633. [PMID: 31500521 PMCID: PMC7370368 DOI: 10.1177/0271678x19874643] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) technique that may provide fully quantitative regional cerebral blood flow (rCBF) images. However, before its application in clinical routine, ASL needs to be validated against the clinical gold standard, 15O-H2O positron emission tomography (PET). We aimed to compare the two techniques by performing simultaneous quantitative ASL-MRI and 15O-H2O-PET examinations in a hybrid PET/MRI scanner. Duplicate rCBF measurements were performed in healthy young subjects (n = 14) in rest, during hyperventilation, and after acetazolamide (post-ACZ), yielding 63 combined PET/MRI datasets in total. Average global CBF by ASL-MRI and 15O-H2O-PET was not significantly different in any state (40.0 ± 6.5 and 40.6 ± 4.1 mL/100 g/min, respectively in rest, 24.5 ± 5.1 and 23.4 ± 4.8 mL/100 g/min, respectively, during hyperventilation, and 59.1 ± 10.4 and 64.7 ± 10.0 mL/100 g/min, respectively, post-ACZ). Overall, strong correlation between the two methods was found across all states (slope = 1.01, R2 = 0.82), while the correlations within individual states and of reactivity measures were weaker, in particular in rest (R2 = 0.05, p = 0.03). Regional distribution was similar, although ASL yielded higher perfusion and absolute reactivity in highly vascularized areas. In conclusion, ASL-MRI and 15O-H2O-PET measurements of rCBF are highly correlated across different perfusion states, but with variable correlation within and between hemodynamic states, and systematic differences in regional distribution.
Collapse
Affiliation(s)
- Oriol Puig
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Otto M Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Mark B Vestergaard
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Adam E Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Flemming L Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Claes N Ladefoged
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Egill Rostrup
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Henrik Bw Larsson
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
25
|
Ceccarini J, Bourgeois S, Van Weehaeghe D, Goffin K, Vandenberghe R, Vandenbulcke M, Sunaert S, Van Laere K. Direct prospective comparison of 18F-FDG PET and arterial spin labelling MR using simultaneous PET/MR in patients referred for diagnosis of dementia. Eur J Nucl Med Mol Imaging 2020; 47:2142-2154. [PMID: 31960098 DOI: 10.1007/s00259-020-04694-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/12/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE 18F-FDG PET is routinely used as an imaging marker in the early and differential diagnosis of dementing disorders and has incremental value over the clinical neurological and neuropsychological evaluation. Perfusion MR imaging by means of arterial spin labelling (ASL) is an alternative modality to indirectly measure neuronal functioning and could be used as complement measurement in a single MR session in the workup of dementia. Using simultaneous PET-MR, we performed a direct head-to-head comparison between enhanced multiplane tagging ASL (eASL) and 18F-FDG PET in a true clinical context of subjects referred for suspicion of neurodegenerative dementia. METHODS Twenty-seven patients underwent a 20-min 18F-FDG PET/MR and simultaneously acquired eASL on a GE Signa PET/MR. Data were compared with 30 screened age- and gender-matched healthy controls. Both integral eASL and 18F-FDG datasets were analysed visually by two readers unaware of the final clinical diagnosis, either in normal/abnormal classes, or full differential diagnosis (normal, Alzheimer type dementia [AD], dementia with Lewy Bodies [LBD], frontotemporal dementia [FTD] or other). Reader confidence was assessed with a rating scale (range 1-4). Data were also analysed semiquantitatively by VOI and voxel-based analyses. RESULTS The ground truth diagnosis for the patient group resulted in 14 patients with a neurodegenerative cognitive disorder (AD, FTD, LBD) and 13 patients with no arguments for an underlying neurodegenerative cause. Visual analysis resulted in equal specificity (0.70) for differentiating normal and abnormal cases between the two modalities, but in a higher sensitivity (0.93), confidence rating (0.64) and interobserver agreement for 18F-FDG PET compared with eASL. The same was true for assigning a specific differential diagnosis (sensitivity: and 0.39 for 18F-FDG PET and eASL, respectively). Semiquantitative analyses revealed prototypical patterns for AD and FTD, with both higher volumes of abnormality and intensity differences on 18F-FDG PET. CONCLUSION In a direct head-to-head comparison on a simultaneous GE Signa PET/MR, 18F-FDG PET performed better compared with ASL in terms of sensitivity and reader confidence, as well as volume and intensity of abnormalities. However, using pure semiquantitative analysis, similar diagnostic accuracy between the two modalities was obtained. Therefore, ASL may still serve as complement to neuroreceptor or protein deposition PET studies when a single simultaneous investigation is warranted.
Collapse
Affiliation(s)
- Jenny Ceccarini
- Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Sophie Bourgeois
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Donatienne Van Weehaeghe
- Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Karolien Goffin
- Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Stefan Sunaert
- Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Van Laere
- Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Carotid pulse pressure and intima media thickness are independently associated with cerebral hemodynamic pulsatility in community-living older adults. J Hum Hypertens 2019; 34:768-777. [PMID: 31822781 DOI: 10.1038/s41371-019-0295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 11/09/2022]
Abstract
Vascular aging is associated with markers of cerebrovascular impairment. Whether discrete characteristics of arterial structure and function have independent and/or additive effects on cerebral hemodynamics, however, is not completely understood. We examined the association of cerebral hemodynamics with common carotid artery intima-media thickness (IMT) and pulse pressure (PP) in 61 older adults with prevalent cardiometabolic risk but no history of cerebrovascular disease. We calculated pulsatility index (PI) and hypercapnic reactivity of the middle cerebral artery, as well as global blood flow through the extracranial arteries. The dominant effects were related to hemodynamic pulsatility. In adults with metabolic syndrome, PI was related to IMT (r = 0.48, P = 0.003) after adjustment for age and sex. Without metabolic syndrome, PI was directly related to PP (r = 0.63, P = 0.003). Across the whole cohort, PP [β (95%CI) = 0.42 (0.18, 0.67), P = 0.001] and IMT [0.42 (0.18, 0.67), P < 0.001] remained significant predictors of PI, after accounting for individual cardiometabolic risk factors. The independent and combined effects of IMT and PP were tested by binarizing PP and IMT at the sample median. Participants with both IMT and PP above their respective medians had elevated PI compared with those with both vascular markers below the median [median (interquartile range) = 1.06 (0.22) vs. 0.84 (0.14), P = 0.003)]. PI was not different from the low risk group if only one of IMT or PP were above the median. Although overall vascular burden was low, moderate associations with PI persisted, suggesting pulsatile characteristics represent one of the earliest markers linking vascular aging to changes in brain health.
Collapse
|
27
|
Puig O, Vestergaard MB, Lindberg U, Hansen AE, Ulrich A, Andersen FL, Johannesen HH, Rostrup E, Law I, Larsson HBW, Henriksen OM. Phase contrast mapping MRI measurements of global cerebral blood flow across different perfusion states - A direct comparison with 15O-H 2O positron emission tomography using a hybrid PET/MR system. J Cereb Blood Flow Metab 2019; 39:2368-2378. [PMID: 30200799 PMCID: PMC6890999 DOI: 10.1177/0271678x18798762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/25/2018] [Accepted: 07/29/2018] [Indexed: 11/29/2022]
Abstract
Phase-contrast mapping (PCM) magnetic resonance imaging (MRI) provides easy-access non-invasive quantification of global cerebral blood flow (gCBF) but its accuracy in altered perfusion states is not established. We aimed to compare paired PCM MRI and 15O-H2O positron emission tomography (PET) measurements of gCBF in different perfusion states in a single scanning session. Duplicate combined gCBF PCM-MRI and 15O-H2O PET measurements were performed in the resting condition, during hyperventilation and after acetazolamide administration (post-ACZ) using a 3T hybrid PET/MR system. A total of 62 paired gCBF measurements were acquired in 14 healthy young male volunteers. Average gCBF in resting state measured by PCM-MRI and 15O-H2O PET were 58.5 ± 10.7 and 38.6 ± 5.7 mL/100 g/min, respectively, during hyperventilation 33 ± 8.6 and 24.7 ± 5.8 mL/100 g/min, respectively, and post-ACZ 89.6 ± 27.1 and 57.3 ± 9.6 mL/100 g/min, respectively. On average, gCBF measured by PCM-MRI was 49% higher compared to 15O-H2O PET. A strong correlation between the two methods across all states was observed (R2 = 0.72, p < 0.001). Bland-Altman analysis suggested a perfusion dependent relative bias resulting in higher relative difference at higher CBF values. In conclusion, measurements of gCBF by PCM-MRI in healthy volunteers show a strong correlation with 15O-H2O PET, but are associated with a large and non-linear perfusion-dependent difference.
Collapse
Affiliation(s)
- Oriol Puig
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Mark B Vestergaard
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Adam E Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Annette Ulrich
- Department of Cardiothoracic Anesthesiology, Copenhagen University Hospital Rigshospitalet Blegdamsvej, Copenhagen, Denmark
| | - Flemming L Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Helle H Johannesen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Egill Rostrup
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Henrik BW Larsson
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Otto M Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
28
|
Cerebral oxygenation and blood flow in normal term infants at rest measured by a hybrid near-infrared device (BabyLux). Pediatr Res 2019; 86:515-521. [PMID: 31234195 DOI: 10.1038/s41390-019-0474-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 06/14/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND The BabyLux device is a prototype optical neuro-monitor of cerebral oxygenation and blood flow for neonatology integrating time-resolved reflectance spectroscopy and diffuse correlation spectroscopy. METHODS Here we report the variability of six consecutive 30 s measurements performed in 27 healthy term infants at rest. Poor data quality excluded four infants. RESULTS Mean cerebral oxygenation was 59.6 ± 8.0%, with intra-subject standard deviation of 3.4%, that is, coefficient of variation (CV) of 5.7%. The inter-subject CV was 13.5%. Mean blood flow index was 2.7 × 10-8 ± 1.56 × 10-8 (cm2/s), with intra-subject CV of 27% and inter-subject CV of 56%. The variability in blood flow index was not reduced by the use of individual measures of tissue scattering, nor accompanied by a parallel variability in cerebral oxygenation. CONCLUSION The intra-subject variability for cerebral oxygenation variability was improved compared to spatially resolved spectroscopy devices, while for the blood flow index it was comparable to that of other modalities for estimating cerebral blood flow in newborn infants. Most importantly, the simultaneous measurement of oxygenation and flow allows for interpretation of the high inter-subject variability of cerebral blood flow as being due to error of measurement rather than to physiological instability.
Collapse
|
29
|
Stevens RRF, Donders WP, Quicken S, van de Vosse FN, Mess WH, Delhaas T, Huberts W. The Role of One-Dimensional Model-Generated Inter-Subject Variations in Systemic Properties on Wall Shear Stress Indices of Intracranial Aneurysms. IEEE Trans Biomed Eng 2019; 67:1030-1039. [PMID: 31329544 DOI: 10.1109/tbme.2019.2928416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Variations in systemic properties of the arterial tree, such as aging-induced vessel stiffness, can alter the shape of pressure and flow waveforms. As a consequence, the hemodynamics around a cerebral aneurysm change, and therefore, also the corresponding in- and outlet boundary conditions (BCs) used for three-dimensional (3D) calculations of hemodynamic indices. In this study, we investigate the effects of variations in systemic properties on wall shear stress (WSS) indices of a cerebral aneurysm. We created a virtual patient database by varying systemic properties within physiological ranges. BCs for 3D-CFD simulations were derived using a pulse wave propagation model for each realization of the virtual database. WSS indices were derived from the 3D simulations and their variabilities quantified. Variations in BCs, caused by changes in systemic properties, yielded variabilities in the WSS indices that were of the same order of magnitude as differences in these WSS indices between ruptured and unruptured aneurysms. Sensitivity analysis showed that the systemic properties impacted both in- and outlet BCs simultaneously and altered the WSS indices. We conclude that the influence of variations in patient-specific systemic properties on WSS indices should be evaluated when using WSS indices in multidisciplinary rupture prediction models.
Collapse
|
30
|
Fazlollahi A, Calamante F, Liang X, Bourgeat P, Raniga P, Dore V, Fripp J, Ames D, Masters CL, Rowe CC, Connelly A, Villemagne VL, Salvado O. Increased cerebral blood flow with increased amyloid burden in the preclinical phase of alzheimer's disease. J Magn Reson Imaging 2019; 51:505-513. [PMID: 31145515 DOI: 10.1002/jmri.26810] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/15/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Arterial spin labeling (ASL) is an emerging MRI technique for noninvasive measurement of cerebral blood flow (CBF) that has been used to show hemodynamic changes in the brains of people with Alzheimer's disease (AD). CBF changes have been measured using positron emission tomography (PET) across the AD spectrum, but ASL showed limited success in measuring CBF variations in the preclinical phase of AD, where amyloid β (Aβ) plaques accumulate in the decades prior to symptom onset. PURPOSE To investigate the relationship between CBF measured by multiphase-pseudocontinuous-ASL (MP-PCASL) and Aβ burden as measured by 11 C-PiB PET imaging in a study of cognitively normal (CN) subjects age over 65. STUDY TYPE Cross-sectional. POPULATION Forty-six CN subjects including 33 with low levels of Aβ burden and 13 with high levels of Aβ. FIELD STRENGTH/SEQUENCE 3T/3D MP-PCASL. ASSESSMENT The MP-PCASL method was chosen because it has a high signal-to-noise ratio. Furthermore, the data were analyzed using an efficient processing pipeline consisting of motion correction, ASL motion correction imprecision removal, temporal and spatial filtering, and partial volume effect correction. STATISTICAL TESTS General Linear Model. RESULTS In CN subjects positive for Aβ burden (n = 13), we observed a positive correlation between CBF and Aβ burden in the hippocampus, amygdala, caudate (P < 0.01), frontal, temporal, and insula (P < 0.05). DATA CONCLUSION To the best of our knowledge, this is the first study using MP-PCASL in the study of AD, and the results suggest a potential compensatory hemodynamic mechanism that protects against pathology in the early stages of AD. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;51:505-513.
Collapse
Affiliation(s)
| | - Fernando Calamante
- University of Sydney, Sydney Imaging and School of Aerospace, Mechanical and Mechatronic Engineering, Sydney, Australia.,Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia.,Florey Department of Neuroscience & Mental Health, University of Melbourne, Australia
| | - Xiaoyun Liang
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | | | | | - Vincent Dore
- CSIRO Health and Biosecurity, Brisbane, Australia.,Austin Health, Heidelberg, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, Brisbane, Australia
| | - David Ames
- University of Melbourne, Parkville, Australia
| | - Colin L Masters
- Florey Department of Neuroscience & Mental Health, University of Melbourne, Australia.,University of Melbourne, Parkville, Australia
| | - Christopher C Rowe
- Austin Health, Heidelberg, Australia.,University of Melbourne, Parkville, Australia
| | - Alan Connelly
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia.,Florey Department of Neuroscience & Mental Health, University of Melbourne, Australia
| | - Victor L Villemagne
- Austin Health, Heidelberg, Australia.,University of Melbourne, Parkville, Australia
| | - Olivier Salvado
- CSIRO Health and Biosecurity, Brisbane, Australia.,CSIRO Data61, Sydney, Australia
| | | |
Collapse
|
31
|
Ishii Y, Thamm T, Guo J, Khalighi MM, Wardak M, Holley D, Gandhi H, Park JH, Shen B, Steinberg GK, Chin FT, Zaharchuk G, Fan AP. Simultaneous phase-contrast MRI and PET for noninvasive quantification of cerebral blood flow and reactivity in healthy subjects and patients with cerebrovascular disease. J Magn Reson Imaging 2019; 51:183-194. [PMID: 31044459 DOI: 10.1002/jmri.26773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND H2 15 O-positron emission tomography (PET) is considered the reference standard for absolute cerebral blood flow (CBF). However, this technique requires an arterial input function measured through continuous sampling of arterial blood, which is invasive and has limitations with tracer delay and dispersion. PURPOSE To demonstrate a new noninvasive method to quantify absolute CBF with a PET/MRI hybrid scanner. This blood-free approach, called PC-PET, takes the spatial CBF distribution from a static H2 15 O-PET scan, and scales it to the whole-brain average CBF value measured by simultaneous phase-contrast MRI. STUDY TYPE Observational. SUBJECTS Twelve healthy controls (HC) and 13 patients with Moyamoya disease (MM) as a model of chronic ischemic disease. FIELD STRENGTH/SEQUENCES 3T/2D cardiac-gated phase-contrast MRI and H2 15 O-PET. ASSESSMENT PC-PET CBF values from whole brain (WB), gray matter (GM), and white matter (WM) in HCs were compared with literature values since 2000. CBF and cerebrovascular reactivity (CVR), which is defined as the percent CBF change between baseline and post-acetazolamide (vasodilator) scans, were measured by PC-PET in MM patients and HCs within cortical regions corresponding to major vascular territories. Statistical Tests: Linear, mixed effects models were created to compare CBF and CVR, respectively, between patients and controls, and between different degrees of stenosis. RESULTS The mean CBF values in WB, GM, and WM in HC were 42 ± 7 ml/100 g/min, 50 ± 7 ml/100 g/min, and 23 ± 3 ml/100 g/min, respectively, which agree well with literature values. Compared with normal regions (57 ± 23%), patients showed significantly decreased CVR in areas with mild/moderate stenosis (47 ± 17%, P = 0.011) and in severe/occluded areas (40 ± 16%, P = 0.016). Data Conclusion: PC-PET identifies differences in cerebrovascular reactivity between healthy controls and cerebrovascular patients. PC-PET is suitable for CBF measurement when arterial blood sampling is not accessible, and warrants comparison to fully quantitative H2 15 O-PET in future studies. LEVEL OF EVIDENCE 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:183-194.
Collapse
Affiliation(s)
- Yosuke Ishii
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Thoralf Thamm
- Department of Radiology, Stanford University, Stanford, California, USA.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jia Guo
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, University of California Riverside, Riverside, California, USA
| | | | - Mirwais Wardak
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Dawn Holley
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Harsh Gandhi
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Jun Hyung Park
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Bin Shen
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Frederick T Chin
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Audrey Peiwen Fan
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
32
|
Pham T, Tgavalekos K, Sassaroli A, Blaney G, Fantini S. Quantitative measurements of cerebral blood flow with near-infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:2117-2134. [PMID: 31061774 PMCID: PMC6484993 DOI: 10.1364/boe.10.002117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/07/2019] [Accepted: 03/20/2019] [Indexed: 05/29/2023]
Abstract
We propose a new near-infrared spectroscopy (NIRS) method for quantitative measurements of cerebral blood flow (CBF). Because this method uses concepts of coherent hemodynamics spectroscopy (CHS), we identify this new method with the acronym NIRS-CHS. We tested this method on the prefrontal cortex of six healthy human subjects during mean arterial pressure (MAP) transients induced by the rapid deflation of pneumatic thigh cuffs. A comparison of CBF dynamics measured with NIRS-CHS and with diffuse correlation spectroscopy (DCS) showed a good agreement for characteristic times of the CBF transient. We also report absolute measurements of baseline CBF with NIRS-CHS (69 ± 6 ml/100g/min over the six subjects). NIRS-CHS can provide more accurate measurements of CBF with respect to previously reported NIRS surrogates of CBF.
Collapse
Affiliation(s)
- Thao Pham
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Kristen Tgavalekos
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Giles Blaney
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
33
|
Clement P, Mutsaerts HJ, Václavů L, Ghariq E, Pizzini FB, Smits M, Acou M, Jovicich J, Vanninen R, Kononen M, Wiest R, Rostrup E, Bastos-Leite AJ, Larsson EM, Achten E. Variability of physiological brain perfusion in healthy subjects - A systematic review of modifiers. Considerations for multi-center ASL studies. J Cereb Blood Flow Metab 2018; 38:1418-1437. [PMID: 28393659 PMCID: PMC6120130 DOI: 10.1177/0271678x17702156] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quantitative measurements of brain perfusion are influenced by perfusion-modifiers. Standardization of measurement conditions and correction for important modifiers is essential to improve accuracy and to facilitate the interpretation of perfusion-derived parameters. An extensive literature search was carried out for factors influencing quantitative measurements of perfusion in the human brain unrelated to medication use. A total of 58 perfusion modifiers were categorized into four groups. Several factors (e.g., caffeine, aging, and blood gases) were found to induce a considerable effect on brain perfusion that was consistent across different studies; for other factors, the modifying effect was found to be debatable, due to contradictory results or lack of evidence. Using the results of this review, we propose a standard operating procedure, based on practices already implemented in several research centers. Also, a theory of 'deep MRI physiotyping' is inferred from the combined knowledge of factors influencing brain perfusion as a strategy to reduce variance by taking both personal information and the presence or absence of perfusion modifiers into account. We hypothesize that this will allow to personalize the concept of normality, as well as to reach more rigorous and earlier diagnoses of brain disorders.
Collapse
Affiliation(s)
- Patricia Clement
- 1 Department of Radiology and nuclear medicine, Ghent University, Ghent, Belgium
| | - Henk-Jan Mutsaerts
- 2 Cognitive Neurology Research Unit, Sunnybrook Healthy Sciences Centre, Toronto, Canada.,3 Academic Medical Center, Amsterdam, the Netherlands
| | - Lena Václavů
- 3 Academic Medical Center, Amsterdam, the Netherlands
| | - Eidrees Ghariq
- 4 Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Marjan Acou
- 1 Department of Radiology and nuclear medicine, Ghent University, Ghent, Belgium
| | - Jorge Jovicich
- 7 Magnetic Resonance Imaging Laboratory Center for Mind/Brain Sciences, University of Trento, Mattarello, Italy
| | | | | | | | - Egill Rostrup
- 10 Department of Diagnostics, Glostrup Hospital, University of Copenhagen, Denmark
| | | | | | - Eric Achten
- 1 Department of Radiology and nuclear medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Henriksen OM, Vestergaard MB, Lindberg U, Aachmann-Andersen NJ, Lisbjerg K, Christensen SJ, Rasmussen P, Olsen NV, Forman JL, Larsson HBW, Law I. Interindividual and regional relationship between cerebral blood flow and glucose metabolism in the resting brain. J Appl Physiol (1985) 2018; 125:1080-1089. [PMID: 29975605 DOI: 10.1152/japplphysiol.00276.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies of the resting brain measurements of cerebral blood flow (CBF) show large interindividual and regional variability, but the metabolic basis of this variability is not fully established. The aim of the present study was to reassess regional and interindividual relationships between cerebral perfusion and glucose metabolism in the resting brain. Regional quantitative measurements of CBF and cerebral metabolic rate of glucose (CMRglc) were obtained in 24 healthy young men using dynamic [15O]H2O and [18F]fluorodeoxyglucose positron emission tomography (PET). Magnetic resonance imaging measurements of global oxygen extraction fraction (gOEF) and metabolic rate of oxygen ([Formula: see text]) were obtained by combined susceptometry-based sagittal sinus oximetry and phase contrast mapping. No significant interindividual associations between global CBF, global CMRglc, and [Formula: see text] were observed. Linear mixed-model analysis showed a highly significant association of CBF with CMRglc regionally. Compared with neocortex significantly higher CBF values than explained by CMRglc were demonstrated in infratentorial structures, thalami, and mesial temporal cortex, and lower values were found in the striatum and cerebral white matter. The present study shows that absolute quantitative global CBF measurements appear not to be a valid surrogate measure of global cerebral glucose or oxygen consumption, and further demonstrates regionally variable relationship between perfusion and glucose metabolism in the resting brain that could suggest regional differences in energy substrate metabolism. NEW & NOTEWORTHY Using method-independent techniques the study cannot confirm direct interindividual correlations of absolute global values of perfusion with oxygen or glucose metabolism in the resting brain, and absolute global perfusion measurements appear not to be valid surrogate measures of cerebral metabolism. The ratio of both perfusion and oxygen delivery to glucose metabolism varies regionally, also when accounting for known methodological regional bias in quantification of glucose metabolism.
Collapse
Affiliation(s)
- Otto M Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen , Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | | | - Kristian Lisbjerg
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, Copenhagen , Denmark
| | - Søren J Christensen
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, Copenhagen , Denmark
| | - Peter Rasmussen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Niels V Olsen
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, Copenhagen , Denmark.,Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Julie L Forman
- Section of Biostatistics, University of Copenhagen, The Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark.,Institute of Clinical Medicine, The Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen , Denmark.,Institute of Clinical Medicine, The Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
35
|
Components of day-to-day variability of cerebral perfusion measurements - Analysis of phase contrast mapping magnetic resonance imaging measurements in healthy volunteers. PLoS One 2018; 13:e0197807. [PMID: 29879126 PMCID: PMC5991708 DOI: 10.1371/journal.pone.0197807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/09/2018] [Indexed: 11/26/2022] Open
Abstract
Purpose The aim of the study was to investigate the components of day-to-day variability of repeated phase contrast mapping (PCM) magnetic resonance imaging measurements of global cerebral blood flow (gCBF). Materials and methods Two dataset were analyzed. In Dataset 1 duplicated PCM measurements of total brain flow were performed in 11 healthy young volunteers on two separate days applying a strictly standardized setup. For comparison PCM measurements obtained from a previously published study (Dataset 2) were analyzed in order to assess long-term variability in an aged population in a less strictly controlled setup. Global CBF was calculated by normalizing total brain flow to brain volume. On each day measurements of hemoglobin, caffeine and glucose were obtained. Linear mixed models were applied to estimate coefficients of variation (CV) of total (CVt), between-subject (CVb), within-subject day-to-day (CVw), and intra-session residual variability (CVr). Results In Dataset 1 CVt, CVb, CVw and CVr were estimated to be 11%, 9.4%, 4% and 4.2%, respectively, and to 8.8%, 7.2%, 2.7% and 4.3%, respectively, when adjusting for hemoglobin and plasma caffeine. In Dataset 2 CVt, CVb and CVw were estimated to be 25.4%, 19.2%, and 15.0%, respectively, and decreased to 16.6%, 8.2% and 12.5%, respectively, when adjusting for the same covariates. Discussion Our results suggest that short-term day-to-day variability of gCBF is relatively low compared to between-subject variability when studied in standardized conditions, whereas long-term variability in an aged population appears to be much larger when studied in less a standardized setup. The results further showed that from 20% to 35% of the total variability in gCBF can be attributed to the effects of hemoglobin and caffeine.
Collapse
|
36
|
Chen CM, Huang YC, Shih CT, Chen YF, Peng SL. MRI-based measurements of whole-brain global cerebral blood flow: Comparison and validation at 1.5T and 3T. J Magn Reson Imaging 2018; 48:1273-1280. [PMID: 29479823 DOI: 10.1002/jmri.25989] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/08/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Whole-brain global cerebral blood flow (CBF) determined by MRI techniques, calculated using total CBF (TCBF) from phase-contrast MRI (PC-MRI), and brain parenchyma volume (BPV) from T1 -weighted image, have become increasingly popular in many applications. PURPOSE/HYPOTHESIS To determine if MRI-based measurements of whole-brain global CBF data obtained across different field strengths could be merged, TCBF and BPV data acquired at 1.5T and 3T were compared. STUDY TYPE Prospective study. POPULATION Seventeen healthy subjects (eight females, aged 21-29 years old). FIELD STRENGTH/SEQUENCE Fast spoiled gradient echo (FSPGR) and PC-MRI at both 1.5T and 3T. ASSESSMENT TCBF and BPV data acquired at 1.5T and 3T were compared. STATISTICAL TESTS The relationships of TCBF and whole-brain global CBF between two field strengths were examined by using the Pearson correlation coefficient analysis and intraclass correlation coefficient (ICC). RESULTS Regression analysis revealed a strong correlation between TCBF at two field strengths (R2 = 0.78, P < 0.001), and the ICC was 0.85, suggesting measurements of TCBF at 1.5T were comparable and correlated with those at 3T. There was a significant difference in BPV between field strengths, where the white matter estimate was significantly larger at 1.5T when compared with that at 3T (P < 0.001). When TCBF was further normalized to the brain parenchyma mass to obtain whole-brain global CBF, it only showed a moderate correlation between measurements at the two field strengths (R2 = 0.46, P = 0.003) and lower ICC of 0.66, reflecting the slightly higher interstrength variability in the whole-brain global CBF measurements. DATA CONCLUSION TCBF measurements could be performed equally well with comparable results at both field strengths, but specific attention should be given when TCBF is further normalized to BPV to obtain whole-brain global CBF. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:1273-1280.
Collapse
Affiliation(s)
- Chun-Ming Chen
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Yen-Chih Huang
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Ting Shih
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yung-Fang Chen
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
37
|
Zun Z, Limperopoulos C. Placental perfusion imaging using velocity-selective arterial spin labeling. Magn Reson Med 2018; 80:1036-1047. [PMID: 29436733 DOI: 10.1002/mrm.27100] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Zungho Zun
- Division of Diagnostic Imaging and Radiology, Children's National Medical Center, Washington, DC.,Division of Fetal and Transitional Medicine, Children's National Medical Center, Washington, DC.,Department of Pediatrics, School of Medicine and Health Sciences, George Washington University, Washington, DC.,Department of Radiology, School of Medicine and Health Sciences, George Washington University, Washington, DC
| | - Catherine Limperopoulos
- Division of Diagnostic Imaging and Radiology, Children's National Medical Center, Washington, DC.,Division of Fetal and Transitional Medicine, Children's National Medical Center, Washington, DC.,Department of Pediatrics, School of Medicine and Health Sciences, George Washington University, Washington, DC.,Department of Radiology, School of Medicine and Health Sciences, George Washington University, Washington, DC
| |
Collapse
|
38
|
Vestergaard MB, Henriksen OM, Lindberg U, Aachmann-Andersen NJ, Lisbjerg K, Christensen SJ, Olsen NV, Law I, Larsson HBW, Rasmussen P. No evidence for direct effects of recombinant human erythropoietin on cerebral blood flow and metabolism in healthy humans. J Appl Physiol (1985) 2018; 124:1107-1116. [PMID: 29357480 DOI: 10.1152/japplphysiol.00869.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Erythropoietin (EPO) is expressed in human brain tissue, but its exact role is unknown. EPO may improve the efficiency of oxidative metabolism and has neuroprotective properties against hypoxic injuries in animal models. We aimed to investigate the effect of recombinant human EPO (rHuEPO) administration on healthy cerebral metabolism in humans during normoxia and during metabolic stress by inhalation of 10% O2 hypoxic air. Twenty-four healthy men participated in a two-arm double-blind placebo-controlled trial. rHuEPO was administered as a low dose (5,000 IU) over 4 wk ( n = 12) or as a high dose (500 IU·kg body wt-1·day-1) for three consecutive days ( n = 12). Global cerebral blood flow (CBF) and metabolic rate of glucose (CMRglc) were measured with positron emission tomography. CBF, metabolic rate of oxygen ([Formula: see text]), and cerebral lactate concentration were measured by magnetic resonance imaging and spectroscopy. Low-dose treatment increased hemoglobin and was associated with a near-significant decrease in CBF during baseline normoxia. High-dose treatment caused no change in CBF. Neither treatment had an effect on normoxia CMRglc, [Formula: see text], or lactate concentration or an effect on the cerebral metabolic response to inhalation of hypoxic air. In conclusion, the study found no evidence for a direct effect of rHuEPO on cerebral metabolism. NEW & NOTEWORTHY We demonstrate with magnetic resonance imaging and positron emission tomography that administration of erythropoietin does not have a substantial direct effect on healthy human resting cerebral blood flow or effect on cerebral glucose and oxygen metabolism. Also, administration of erythropoietin did not have a direct effect on the metabolic response to acute hypoxic stress in healthy humans, and a suggested neuroprotective effect from erythropoietin is therefore likely not a direct effect of erythropoietin on cerebral metabolism.
Collapse
Affiliation(s)
- Mark Bitsch Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Otto Mølby Henriksen
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital Rigshospitalet , Copenhagen , Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Niels Jacob Aachmann-Andersen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Kristian Lisbjerg
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Søren Just Christensen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Niels Vidiendal Olsen
- Department of Neuroanaesthesia, The Neuroscience Centre, Copenhagen University Hospital Rigshospitalet Blegdamsvej , Copenhagen , Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital Rigshospitalet , Copenhagen , Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Peter Rasmussen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
39
|
Hougaard A, Amin FM, Christensen CE, Younis S, Wolfram F, Cramer SP, Larsson HBW, Ashina M. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura. Brain 2017; 140:1633-1642. [PMID: 28430860 DOI: 10.1093/brain/awx089] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/24/2017] [Indexed: 01/03/2023] Open
Abstract
See Moskowitz (doi:10.1093/brain/awx099) for a scientific commentary on this article.The migraine aura is characterized by transient focal cortical disturbances causing dramatic neurological symptoms that are usually followed by migraine headache. It is currently not understood how the aura symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas of the anterior, middle and posterior circulation during spontaneous attacks of migraine with aura. Patients reported to our institution to undergo magnetic resonance imaging during the headache phase after presenting with typical visual aura. Nineteen patients were scanned during attacks and on an attack-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability in any of the investigated regions. There was no correlation between blood-brain barrier permeability, brain perfusion, and time from symptom onset to examination or pain intensity. Our findings demonstrate hyperperfusion in brainstem during the headache phase of migraine with aura, while the blood-brain barrier remains intact during attacks of migraine with aura. These data thus contradict the preclinical hypothesis of cortical spreading depression-induced blood-brain barrier disruption as a possible mechanism linking aura and headache.awx089media15422686892001.
Collapse
Affiliation(s)
- Anders Hougaard
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Faisal M Amin
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Casper E Christensen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Samaira Younis
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Frauke Wolfram
- Department of Radiology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Stig P Cramer
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
40
|
Lin L, Cheng X, Bivard A, Levi CR, Dong Q, Parsons MW. Quantifying reperfusion of the ischemic region on whole-brain computed tomography perfusion. J Cereb Blood Flow Metab 2017; 37:2125-2136. [PMID: 27461903 PMCID: PMC5464706 DOI: 10.1177/0271678x16661338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To derive the reperfusion index best predicting clinical outcome of ischemic stroke patients, we retrospectively analysed the acute and 24-h computed tomography perfusion data of 116 patients, collected from two centres equipped with whole-brain computed tomography perfusion. Reperfusion index was defined by the percentage of the ischemic region reperfused from acute to 24-h computed tomography perfusion. Recanalization was graded by arterial occlusive lesion system. Receiver operator characteristic analysis was performed to assess the prognostic value of reperfusion and recanalization in predicting good clinical outcome, defined as modified Rankin Score of 0-2 at 90 days. Among previous reported reperfusion measurements, reperfusion of the Tmax>6 s region resulted in higher prognostic value than recanalization at predicting good clinical outcome (area under the curve = 0.88 and 0.74, respectively, p = 0.002). Successful reperfusion of the Tmax>6 s region (≥60%) had 89% sensitivity and 78% specificity in predicting good clinical outcome. A reperfusion index defined by Tmax>2 s or by mean transit time>145% had much lower area under the curve in comparison to Tmax>6 s measurement (p < 0.001 and p = 0.003, respectively), and had no significant difference to recanalization at predicting clinical outcome (p = 0.58 and 0.63, respectively). In conclusion, reperfusion index calculated by Tmax>6 s is a stronger predictor of clinical outcome than recanalization or other reperfusion measures.
Collapse
Affiliation(s)
- Longting Lin
- 1 School of Medicine and Public health, University of Newcastle, Newcastle, Australia
| | - Xin Cheng
- 3 Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Andrew Bivard
- 1 School of Medicine and Public health, University of Newcastle, Newcastle, Australia
| | - Christopher R Levi
- 1 School of Medicine and Public health, University of Newcastle, Newcastle, Australia.,2 Department of Neurology, John Hunter Hospital, University of Newcastle, Newcastle, Australia
| | - Qiang Dong
- 3 Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mark W Parsons
- 1 School of Medicine and Public health, University of Newcastle, Newcastle, Australia.,2 Department of Neurology, John Hunter Hospital, University of Newcastle, Newcastle, Australia
| |
Collapse
|
41
|
Fällmar D, Haller S, Lilja J, Danfors T, Kilander L, Tolboom N, Egger K, Kellner E, Croon PM, Verfaillie SCJ, van Berckel BNM, Ossenkoppele R, Barkhof F, Larsson EM. Arterial spin labeling-based Z-maps have high specificity and positive predictive value for neurodegenerative dementia compared to FDG-PET. Eur Radiol 2017; 27:4237-4246. [PMID: 28374078 PMCID: PMC5579184 DOI: 10.1007/s00330-017-4784-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/23/2017] [Accepted: 02/16/2017] [Indexed: 11/30/2022]
Abstract
Objective Cerebral perfusion analysis based on arterial spin labeling (ASL) MRI has been proposed as an alternative to FDG-PET in patients with neurodegenerative disease. Z-maps show normal distribution values relating an image to a database of controls. They are routinely used for FDG-PET to demonstrate disease-specific patterns of hypometabolism at the individual level. This study aimed to compare the performance of Z-maps based on ASL to FDG-PET. Methods Data were combined from two separate sites, each cohort consisting of patients with Alzheimer’s disease (n = 18 + 7), frontotemporal dementia (n = 12 + 8) and controls (n = 9 + 29). Subjects underwent pseudocontinuous ASL and FDG-PET. Z-maps were created for each subject and modality. Four experienced physicians visually assessed the 166 Z-maps in random order, blinded to modality and diagnosis. Results Discrimination of patients versus controls using ASL-based Z-maps yielded high specificity (84%) and positive predictive value (80%), but significantly lower sensitivity compared to FDG-PET-based Z-maps (53% vs. 96%, p < 0.001). Among true-positive cases, correct diagnoses were made in 76% (ASL) and 84% (FDG-PET) (p = 0.168). Conclusion ASL-based Z-maps can be used for visual assessment of neurodegenerative dementia with high specificity and positive predictive value, but with inferior sensitivity compared to FDG-PET. Key points • ASL-based Z-maps yielded high specificity and positive predictive value in neurodegenerative dementia. • ASL-based Z-maps had significantly lower sensitivity compared to FDG-PET-based Z-maps. • FDG-PET might be reserved for ASL-negative cases where clinical suspicion persists. • Findings were similar at two study sites.
Collapse
Affiliation(s)
- David Fällmar
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.
| | - Sven Haller
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Department of Neuroradiology, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Affidea CDRC - Centre Diagnostique Radiologique de Carouge, Carouge, Switzerland
| | - Johan Lilja
- Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden.,Hermes Medical Solutions, Stockholm, Sweden
| | - Torsten Danfors
- Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands
| | - Karl Egger
- Department of Neuroradiology, University Medical Center Freiburg, Freiburg, Germany
| | - Elias Kellner
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, Freiburg, Germany
| | - Philip M Croon
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands
| | - Sander C J Verfaillie
- Department of Neurology, Alzheimer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Department of Neurology, Alzheimer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
42
|
Henriksen OM, Hansen NL, Osler M, Mortensen EL, Hallam DM, Pedersen ET, Chappell M, Lauritzen MJ, Rostrup E. Sub-Clinical Cognitive Decline and Resting Cerebral Blood Flow in Middle Aged Men. PLoS One 2017; 12:e0169912. [PMID: 28095458 PMCID: PMC5241142 DOI: 10.1371/journal.pone.0169912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/22/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although dementia is associated with both global and regional cerebral blood flow (CBF) changes, little is known about cerebral perfusion in the early pre-clinical stages of cognitive decline preceding overt cognitive dysfunction. The aim of this study was to investigate the association of early sub-clinical cognitive decline with CBF. MATERIALS AND METHODS The study participants were recruited from a cohort of Danish men born in 1953. Based on a regression model we selected men who performed better (Group A, n = 94) and poorer (Group B, n = 95) on cognitive testing at age 57 than expected from testing at age 20. Participants underwent supplementary cognitive testing, blood sampling and MRI including measurements of regional and global CBF. RESULTS Regional CBF was lower in group B than in group A in the posterior cingulate gyrus and the precuneus. The associations were attenuated when corrected for global atrophy, but remained significant in regions of interest based analysis adjusting for regional gray matter volume and vascular risk factors. No influence of group on global CBF was observed. CONCLUSIONS We conclude that early sub-clinical cognitive decline is associated with reduced perfusion in the precuneus and posterior cingulate gyrus independently of regional atrophy and vascular risk factors, but cannot be statistically separated from an association with global atrophy.
Collapse
Affiliation(s)
- Otto Mølby Henriksen
- Functional Imaging Unit, Dept. of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet Glostrup, Glostrup, Denmark
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Dept. of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet Blegdamsvej, Copenhagen, Denmark
| | - Naja Liv Hansen
- Functional Imaging Unit, Dept. of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet Glostrup, Glostrup, Denmark
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Dept. of Clin. Physiology and Nuclear Medicine, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Merete Osler
- Dept. of Public Health, University of Copenhagen, Copenhagen, Denmark
- Research Center for Prevention and Health, Copenhagen University Hospital Rigshospitalet Glostrup, Glostrup, Denmark
| | - Erik Lykke Mortensen
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Dept. of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Dorte Merete Hallam
- Dept. of Radiology, Copenhagen University Hospital Rigshospitalet Glostrup, Glostrup, Denmark
| | - Esben Thade Pedersen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Michael Chappell
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Functional MRI of the Brain, Nuffield Dept. of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Martin Johannes Lauritzen
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Dept. of Neuroscience & Pharmacology, University of Copenhagen, Copenhagen Denmark
- Dept. of Clinical Neurophysiology, Copenhagen University Hospital Rigshospitalet Glostrup, Glostrup, Denmark
| | - Egill Rostrup
- Functional Imaging Unit, Dept. of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet Glostrup, Glostrup, Denmark
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Hart J, Novak V, Saunders C, Gremaud PA. Transcranial Doppler-Based Surrogates for Cerebral Blood Flow: A Statistical Study. PLoS One 2016; 11:e0165536. [PMID: 27880813 PMCID: PMC5120791 DOI: 10.1371/journal.pone.0165536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/13/2016] [Indexed: 11/18/2022] Open
Abstract
It is commonly assumed that perfusion in a given cerebral territory can be inferred from Blood Flow Velocity (BFV) measurements in the corresponding stem artery. In order to test this hypothesis, we construct a cerebral blood flow (CBF) estimator based on transcranial Doppler (TCD) blood flow velocity and ten other easily available patient characteristics and clinical parameters. A total of 261 measurements were collected from 88 older patients. The estimator is based on local regression (Random Forest). Its performance is analyzed against baseline CBF from 3-D pseudocontinuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI). Patient specific CBF predictions are of poor quality (r = 0.41 and p-value = 4.5 × 10−12); the hypothesis is thus not clearly supported by evidence.
Collapse
Affiliation(s)
- Joseph Hart
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Vera Novak
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Charles Saunders
- Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | - Pierre A. Gremaud
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
44
|
Vestergaard MB, Lindberg U, Aachmann-Andersen NJ, Lisbjerg K, Christensen SJ, Rasmussen P, Olsen NV, Law I, Larsson HBW, Henriksen OM. Comparison of global cerebral blood flow measured by phase-contrast mapping MRI with 15 O-H 2 O positron emission tomography. J Magn Reson Imaging 2016; 45:692-699. [PMID: 27619317 PMCID: PMC5324556 DOI: 10.1002/jmri.25442] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022] Open
Abstract
Purpose To compare mean global cerebral blood flow (CBF) measured by phase‐contrast mapping magnetic resonance imaging (PCM MRI) and by 15O‐H2O positron emission tomography (PET) in healthy subjects. PCM MRI is increasingly being used to measure mean global CBF, but has not been validated in vivo against an accepted reference technique. Materials and Methods Same‐day measurements of CBF by 15O‐H2O PET and subsequently by PCM MRI were performed on 22 healthy young male volunteers. Global CBF by PET was determined by applying a one‐tissue compartment model with measurement of the arterial input function. Flow was measured in the internal carotid and vertebral arteries by a noncardiac triggered PCM MRI sequence at 3T. The measured flow was normalized to total brain weight determined from a volume‐segmented 3D T1‐weighted anatomical MR‐scan. Results Mean CBF was 34.9 ± 3.4 mL/100 g/min measured by 15O‐H2O PET and 57.0 ± 6.8 mL/100 g/min measured by PCM MRI. The measurements were highly correlated (P = 0.0008, R2 = 0.44), although values obtained by PCM MRI were higher compared to 15O‐H2O PET (absolute and relative differences were 22.0 ± 5.2 mL/100 g/min and 63.4 ± 14.8%, respectively). Conclusion This study confirms the use of PCM MRI for quantification of global CBF, but also that PCM MRI systematically yields higher values relative to 15O‐H2O PET, probably related to methodological bias. Level of Evidence: 3 J. Magn. Reson. Imaging 2017;45:692–699.
Collapse
Affiliation(s)
- Mark Bitsch Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet Glostrup, Glostrup, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet Glostrup, Glostrup, Denmark
| | - Niels Jacob Aachmann-Andersen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Lisbjerg
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Just Christensen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Rasmussen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Vidiendal Olsen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Neuroanaesthesia, Neuroscience Centre, Copenhagen University Hospital Rigshospitalet Blegdamsvej, Copenhagen, Denmark
| | - Ian Law
- Institute for Clinical Medicine, The Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet Blegdamsvej, Copenhagen, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet Glostrup, Glostrup, Denmark.,Institute for Clinical Medicine, The Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Otto Mølby Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet Blegdamsvej, Copenhagen, Denmark
| |
Collapse
|
45
|
Roquet D, Sourty M, Botzung A, Armspach JP, Blanc F. Brain perfusion in dementia with Lewy bodies and Alzheimer's disease: an arterial spin labeling MRI study on prodromal and mild dementia stages. ALZHEIMERS RESEARCH & THERAPY 2016; 8:29. [PMID: 27401267 PMCID: PMC4940880 DOI: 10.1186/s13195-016-0196-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/06/2016] [Indexed: 01/29/2023]
Abstract
Background We aimed to describe specific changes in brain perfusion in patients with dementia with Lewy bodies (DLB) at both the prodromal (also called mild cognitive impairment) and mild dementia stages, relative to patients with Alzheimer’s disease (AD) and controls. Methods Altogether, 96 participants in five groups (prodromal DLB, prodromal AD, DLB with mild dementia, AD with mild dementia, and healthy elderly controls) took part in an arterial spin labeling MRI study. Three analyses were performed: a global perfusion value comparison, a voxel-wise analysis of both absolute and relative perfusion, and a linear discriminant analysis. These were used to assess the global decrease in perfusion, regional changes, and the sensitivity and specificity of these changes. Results Patterns of perfusion in DLB differed from AD and controls in both the prodromal stage and dementia, DLB having more deficits in frontal, insular, and temporal cortices whereas AD showed reduced perfusion in parietal and parietotemporal cortices. Decreases but also increases of perfusion in DLB relative to controls were observed in both absolute and relative measurements. All these regional changes of perfusion classified DLB patients with respect to either healthy controls or AD with sensitivity from 87 to 100 % and specificity from 90 to 96 % depending on the stage of the disease. Conclusions Our results are consistent with previous studies. We extend the scope of those studies by integrating prodromal DLB patients and by describing both hypo- and hyperperfusion in DLB. While decreases in perfusion may relate to functional impairments, increases might suggest a functional compensation of some brain areas. Electronic supplementary material The online version of this article (doi:10.1186/s13195-016-0196-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Roquet
- ICube laboratory, University of Strasbourg, CNRS, FMTS(Fédération de Médecine Translationnelle de Strasbourg), ICube - IPB, Faculté de Médecine, 4 rue Kirschleger, Strasbourg, 67085, France.
| | - Marion Sourty
- ICube laboratory, University of Strasbourg, CNRS, FMTS(Fédération de Médecine Translationnelle de Strasbourg), ICube - IPB, Faculté de Médecine, 4 rue Kirschleger, Strasbourg, 67085, France
| | - Anne Botzung
- ICube laboratory, University of Strasbourg, CNRS, FMTS(Fédération de Médecine Translationnelle de Strasbourg), ICube - IPB, Faculté de Médecine, 4 rue Kirschleger, Strasbourg, 67085, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
| | - Jean-Paul Armspach
- ICube laboratory, University of Strasbourg, CNRS, FMTS(Fédération de Médecine Translationnelle de Strasbourg), ICube - IPB, Faculté de Médecine, 4 rue Kirschleger, Strasbourg, 67085, France
| | - Frédéric Blanc
- ICube laboratory, University of Strasbourg, CNRS, FMTS(Fédération de Médecine Translationnelle de Strasbourg), ICube - IPB, Faculté de Médecine, 4 rue Kirschleger, Strasbourg, 67085, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
| |
Collapse
|
46
|
Fan AP, Jahanian H, Holdsworth SJ, Zaharchuk G. Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: A systematic review. J Cereb Blood Flow Metab 2016; 36:842-61. [PMID: 26945019 PMCID: PMC4853843 DOI: 10.1177/0271678x16636393] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/19/2016] [Accepted: 02/04/2016] [Indexed: 11/16/2022]
Abstract
Noninvasive imaging of cerebral blood flow provides critical information to understand normal brain physiology as well as to identify and manage patients with neurological disorders. To date, the reference standard for cerebral blood flow measurements is considered to be positron emission tomography using injection of the [(15)O]-water radiotracer. Although [(15)O]-water has been used to study brain perfusion under normal and pathological conditions, it is not widely used in clinical settings due to the need for an on-site cyclotron, the invasive nature of arterial blood sampling, and experimental complexity. As an alternative, arterial spin labeling is a promising magnetic resonance imaging technique that magnetically labels arterial blood as it flows into the brain to map cerebral blood flow. As arterial spin labeling becomes more widely adopted in research and clinical settings, efforts have sought to standardize the method and validate its cerebral blood flow values against positron emission tomography-based cerebral blood flow measurements. The purpose of this work is to critically review studies that performed both [(15)O]-water positron emission tomography and arterial spin labeling to measure brain perfusion, with the aim of better understanding the accuracy and reproducibility of arterial spin labeling relative to the positron emission tomography reference standard.
Collapse
Affiliation(s)
- Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
47
|
Heijtel DFR, Petersen ET, Mutsaerts HJMM, Bakker E, Schober P, Stevens MF, van Berckel BNM, Majoie CBLM, Booij J, van Osch MJP, van Bavel ET, Boellaard R, Lammertsma AA, Nederveen AJ. Quantitative agreement between [(15)O]H2O PET and model free QUASAR MRI-derived cerebral blood flow and arterial blood volume. NMR IN BIOMEDICINE 2016; 29:519-526. [PMID: 26876426 DOI: 10.1002/nbm.3480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/13/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to assess whether there was an agreement between quantitative cerebral blood flow (CBF) and arterial cerebral blood volume (CBVA) measurements by [(15)O]H2O positron emission tomography (PET) and model-free QUASAR MRI. Twelve healthy subjects were scanned within a week in separate MRI and PET imaging sessions, after which quantitative and qualitative agreement between both modalities was assessed for gray matter, white matter and whole brain region of interests (ROI). The correlation between CBF measurements obtained with both modalities was moderate to high (r(2): 0.28-0.60, P < 0.05), although QUASAR significantly underestimated CBF by 30% (P < 0.001). CBVA was moderately correlated (r(2): 0.28-0.43, P < 0.05), with QUASAR yielding values that were only 27% of the [(15)O]H2O-derived values (P < 0.001). Group-wise voxel statistics identified minor areas with significant contrast differences between [(15)O]H2O PET and QUASAR MRI, indicating similar qualitative CBVA and CBF information by both modalities. In conclusion, the results of this study demonstrate that QUASAR MRI and [(15)O]H2O PET provide similar CBF and CBVA information, but with systematic quantitative discrepancies.
Collapse
Affiliation(s)
- D F R Heijtel
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - E T Petersen
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - H J M M Mutsaerts
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - E Bakker
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - P Schober
- Department of Anesthesiology, VU University Medical Center, Amsterdam, the Netherlands
| | - M F Stevens
- Department of Anesthesiology, Academic Medical Center, Amsterdam, the Netherlands
| | - B N M van Berckel
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - C B L M Majoie
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - J Booij
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - M J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - E T van Bavel
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - R Boellaard
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - A A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - A J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
48
|
Positron emission tomography/magnetic resonance hybrid scanner imaging of cerebral blood flow using (15)O-water positron emission tomography and arterial spin labeling magnetic resonance imaging in newborn piglets. J Cereb Blood Flow Metab 2015; 35:1703-10. [PMID: 26058699 PMCID: PMC4635240 DOI: 10.1038/jcbfm.2015.139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 11/08/2022]
Abstract
Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic-ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous (15)O-water positron emission tomography (PET) and single TI pulsed arterial spin labeling (ASL) magnetic resonance imaging (MR) on a hybrid PET/MR in seven newborn piglets. Positron emission tomography was performed with IV injections of 20 MBq and 100 MBq (15)O-water to confirm CBF reliability at low activity. Cerebral blood flow was quantified using a one-tissue-compartment-model using two input functions: an arterial input function (AIF) or an image-derived input function (IDIF). The mean global CBF (95% CI) PET-AIF, PET-IDIF, and ASL at baseline were 27 (23; 32), 34 (31; 37), and 27 (22; 32) mL/100 g per minute, respectively. At acetazolamide stimulus, PET-AIF, PET-IDIF, and ASL were 64 (55; 74), 76 (70; 83) and 79 (67; 92) mL/100 g per minute, respectively. At baseline, differences between PET-AIF, PET-IDIF, and ASL were 22% (P<0.0001) and -0.7% (P=0.9). At acetazolamide, differences between PET-AIF, PET-IDIF, and ASL were 19% (P=0.001) and 24% (P=0.0003). In conclusion, PET-IDIF overestimated CBF. Injected activity of 20 MBq (15)O-water had acceptable concordance with 100 MBq, without compromising image quality. Single TI ASL was questionable for regional CBF measurements. Global ASL CBF and PET CBF were congruent during baseline but not during hyperperfusion.
Collapse
|
49
|
Ambarki K, Wåhlin A, Zarrinkoob L, Wirestam R, Petr J, Malm J, Eklund A. Accuracy of Parenchymal Cerebral Blood Flow Measurements Using Pseudocontinuous Arterial Spin-Labeling in Healthy Volunteers. AJNR Am J Neuroradiol 2015; 36:1816-21. [PMID: 26251434 DOI: 10.3174/ajnr.a4367] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/16/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The arterial spin-labeling method for CBF assessment is widely available, but its accuracy is not fully established. We investigated the accuracy of a whole-brain arterial spin-labeling technique for assessing the mean parenchymal CBF and the effect of aging in healthy volunteers. Phase-contrast MR imaging was used as the reference method. MATERIALS AND METHODS Ninety-two healthy volunteers were included: 49 young (age range, 20-30 years) and 43 elderly (age range, 65-80 years). Arterial spin-labeling parenchymal CBF values were averaged over the whole brain to quantify the mean pCBF(ASL) value. Total CBF was assessed with phase-contrast MR imaging as the sum of flows in the internal carotid and vertebral arteries, and subsequent division by brain volume returned the pCBF(PCMRI) value. Accuracy was considered as good as that of the reference method if the systematic difference was less than 5 mL/min/100 g of brain tissue and if the 95% confidence intervals were equal to or better than ±10 mL/min/100 g. RESULTS pCBF(ASL) correlated to pCBF(PCMRI) (r = 0.73; P < .001). Significant differences were observed between the pCBF(ASL) and pCBF(PCMRI) values in the young (P = .001) and the elderly (P < .001) volunteers. The systematic differences (mean ± 2 standard deviations) were -4 ± 14 mL/min/100 g in the young subjects and 6 ± 12 mL/min/100 g in the elderly subjects. Young subjects showed higher values than the elderly subjects for pCBF(PCMRI) (young, 57 ± 8 mL/min/100 g; elderly, 54 ± 7 mL/min/100 g; P = .05) and pCBF(ASL) (young, 61 ± 10 mL/min/100 g; elderly, 48 ± 10 mL/min/100 g; P < .001). CONCLUSIONS The limits of agreement were too wide for the arterial spin-labeling method to be considered satisfactorily accurate, whereas the systematic overestimation in the young subjects and underestimation in the elderly subjects were close to acceptable. The age-related decrease in parenchymal CBF was augmented in arterial spin-labeling compared with phase-contrast MR imaging.
Collapse
Affiliation(s)
- K Ambarki
- From the Department of Radiation Sciences (K.A., A.W., A.E.) Centre for Biomedical Engineering and Physics (K.A., A.E.)
| | - A Wåhlin
- From the Department of Radiation Sciences (K.A., A.W., A.E.) Center for Functional Brain Imaging (A.W., A.E.)
| | - L Zarrinkoob
- Department of Clinical Neuroscience (L.Z., J.M.), Umeå University, Umeå, Sweden
| | - R Wirestam
- Department of Medical Radiation Physics (R.W.), Lund University, Lund, Sweden
| | - J Petr
- PET Center (J.P.), Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - J Malm
- Department of Clinical Neuroscience (L.Z., J.M.), Umeå University, Umeå, Sweden
| | - A Eklund
- From the Department of Radiation Sciences (K.A., A.W., A.E.) Centre for Biomedical Engineering and Physics (K.A., A.E.) Center for Functional Brain Imaging (A.W., A.E.)
| |
Collapse
|
50
|
Zhang J. How far is arterial spin labeling MRI from a clinical reality? Insights from arterial spin labeling comparative studies in Alzheimer's disease and other neurological disorders. J Magn Reson Imaging 2015; 43:1020-45. [PMID: 26250802 DOI: 10.1002/jmri.25022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jing Zhang
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| |
Collapse
|