1
|
Meduri A, Perazzolo A, Marano R, Muciaccia M, Lauriero F, Rovere G, Giarletta L, Moliterno E, Natale L. Cardiac MRI in heart failure with preserved ejection fraction. LA RADIOLOGIA MEDICA 2024; 129:1468-1484. [PMID: 39158816 DOI: 10.1007/s11547-024-01874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Patients who have heart failure with preserved ejection fraction (HFpEF) have signs and symptoms of heart failure, yet their ejection fraction remains greater than or equal to 50 percent. Understanding the underlying cause of HFpEF is crucial for accurate diagnosis and effective treatment. This condition can be caused by multiple factors, including ischemic or nonischemic myocardial diseases. HFpEF is often associated with diastolic dysfunction. Cardiac magnetic resonance (CMR) allows for a precise examination of the functional and structural alterations associated with HFpEF through the measurement of volumes and mass, the assessment of systolic and diastolic function, and the analysis of tissue characteristics. We will discuss CMR imaging indicators that are specific to patients with HFpEF and their relation to the disease. These markers can be acquired through both established and emerging methods.
Collapse
Affiliation(s)
- Agostino Meduri
- Department of Radiological and Hematological Sciences, Section of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.Go Agostino Gemelli 8, 00168, Rome, Italy
| | - Alessio Perazzolo
- Department of Radiological and Hematological Sciences, Section of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Marano
- Department of Radiological and Hematological Sciences, Section of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy.
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.Go Agostino Gemelli 8, 00168, Rome, Italy.
| | - Massimo Muciaccia
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.Go Agostino Gemelli 8, 00168, Rome, Italy
| | - Francesco Lauriero
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.Go Agostino Gemelli 8, 00168, Rome, Italy
| | - Giuseppe Rovere
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.Go Agostino Gemelli 8, 00168, Rome, Italy
| | - Lorenzo Giarletta
- Department of Radiological and Hematological Sciences, Section of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eleonora Moliterno
- Department of Radiological and Hematological Sciences, Section of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Natale
- Department of Radiological and Hematological Sciences, Section of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.Go Agostino Gemelli 8, 00168, Rome, Italy
| |
Collapse
|
2
|
Lisi C, Moser LJ, Mergen V, Klambauer K, Uçar E, Eberhard M, Alkadhi H. Advanced myocardial characterization and function with cardiac CT. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024:10.1007/s10554-024-03229-1. [PMID: 39240440 DOI: 10.1007/s10554-024-03229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
Non-invasive imaging with characterization and quantification of the myocardium with computed tomography (CT) became feasible owing to recent technical developments in CT technology. Cardiac CT can serve as an alternative modality when cardiac magnetic resonance imaging and/or echocardiography are contraindicated, not feasible, inconclusive, or non-diagnostic. This review summarizes the current and potential future role of cardiac CT for myocardial characterization including a summary of late enhancement techniques, extracellular volume quantification, and strain analysis. In addition, this review highlights potential fields for research about myocardial characterization with CT to possibly include it in clinical routine in the future.
Collapse
Affiliation(s)
- Costanza Lisi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Lukas J Moser
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Victor Mergen
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Konstantin Klambauer
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Eda Uçar
- Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Matthias Eberhard
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Almeida ALC, Melo MDTD, Bihan DCDSL, Vieira MLC, Pena JLB, Del Castillo JM, Abensur H, Hortegal RDA, Otto MEB, Piveta RB, Dantas MR, Assef JE, Beck ALDS, Santo THCE, Silva TDO, Salemi VMC, Rocon C, Lima MSM, Barberato SH, Rodrigues AC, Rabschkowisky A, Frota DDCR, Gripp EDA, Barretto RBDM, Silva SME, Cauduro SA, Pinheiro AC, Araujo SPD, Tressino CG, Silva CES, Monaco CG, Paiva MG, Fisher CH, Alves MSL, Grau CRPDC, Santos MVCD, Guimarães ICB, Morhy SS, Leal GN, Soares AM, Cruz CBBV, Guimarães Filho FV, Assunção BMBL, Fernandes RM, Saraiva RM, Tsutsui JM, Soares FLDJ, Falcão SNDRS, Hotta VT, Armstrong ADC, Hygidio DDA, Miglioranza MH, Camarozano AC, Lopes MMU, Cerci RJ, Siqueira MEMD, Torreão JA, Rochitte CE, Felix A. Position Statement on the Use of Myocardial Strain in Cardiology Routines by the Brazilian Society of Cardiology's Department Of Cardiovascular Imaging - 2023. Arq Bras Cardiol 2023; 120:e20230646. [PMID: 38232246 PMCID: PMC10789373 DOI: 10.36660/abc.20230646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Central Illustration : Position Statement on the Use of Myocardial Strain in Cardiology Routines by the Brazilian Society of Cardiology's Department Of Cardiovascular Imaging - 2023 Proposal for including strain in the integrated diastolic function assessment algorithm, adapted from Nagueh et al.67 Am: mitral A-wave duration; Ap: reverse pulmonary A-wave duration; DD: diastolic dysfunction; LA: left atrium; LASr: LA strain reserve; LVGLS: left ventricular global longitudinal strain; TI: tricuspid insufficiency. Confirm concentric remodeling with LVGLS. In LVEF, mitral E wave deceleration time < 160 ms and pulmonary S-wave < D-wave are also parameters of increased filling pressure. This algorithm does not apply to patients with atrial fibrillation (AF), mitral annulus calcification, > mild mitral valve disease, left bundle branch block, paced rhythm, prosthetic valves, or severe primary pulmonary hypertension.
Collapse
Affiliation(s)
| | | | | | - Marcelo Luiz Campos Vieira
- Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (Incor/FMUSP), São Paulo, SP - Brasil
| | - José Luiz Barros Pena
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, MG - Brasil
- Hospital Felicio Rocho, Belo Horizonte, MG - Brasil
| | | | - Henry Abensur
- Beneficência Portuguesa de São Paulo, São Paulo, SP - Brasil
| | | | | | | | | | | | | | | | | | - Vera Maria Cury Salemi
- Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (Incor/FMUSP), São Paulo, SP - Brasil
| | - Camila Rocon
- Hospital do Coração (HCor), São Paulo, SP - Brasil
| | - Márcio Silva Miguel Lima
- Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (Incor/FMUSP), São Paulo, SP - Brasil
| | | | | | | | | | - Eliza de Almeida Gripp
- Hospital Pró-Cardiaco, Rio de Janeiro, RJ - Brasil
- Hospital Universitário Antônio Pedro da Universidade Federal Fluminense (UFF), Rio de Janeiro, RJ - Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | | - Maria Veronica Camara Dos Santos
- Departamento de Cardiologia Pediátrica (DCC/CP) da Sociedade Brasileira de Cardiologia (SBC), São Paulo, SP - Brasil
- Sociedade Brasileira de Oncologia Pediátrica, São Paulo, SP - Brasil
| | | | | | - Gabriela Nunes Leal
- Instituto da Criança e do Adolescente do Hospital das Clinicas Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | | | | | | | | | | | | | | | | | - Viviane Tiemi Hotta
- Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (Incor/FMUSP), São Paulo, SP - Brasil
- Grupo Fleury, São Paulo, SP - Brasil
| | | | - Daniel de Andrade Hygidio
- Hospital Nossa Senhora da Conceição, Tubarão, SC - Brasil
- Universidade do Sul de Santa Catarina (UNISUL), Tubarão, SC - Brasil
| | - Marcelo Haertel Miglioranza
- EcoHaertel - Hospital Mae de Deus, Porto Alegre, RS - Brasil
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS - Brasil
| | | | | | | | | | - Jorge Andion Torreão
- Hospital Santa Izabel, Salvador, BA - Brasil
- Santa Casa da Bahia, Salvador, BA - Brasil
| | - Carlos Eduardo Rochitte
- Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (Incor/FMUSP), São Paulo, SP - Brasil
- Hospital do Coração (HCor), São Paulo, SP - Brasil
| | - Alex Felix
- Diagnósticos da América SA (DASA), São Paulo, SP - Brasil
- Instituto Nacional de Cardiologia (INC), Rio de Janeiro, RJ - Brasil
| |
Collapse
|
4
|
V Graves C, Rebelo MFS, Moreno RA, Dantas-Jr RN, Assunção-Jr AN, Nomura CH, Gutierrez MA. Siamese pyramidal deep learning network for strain estimation in 3D cardiac cine-MR. Comput Med Imaging Graph 2023; 108:102283. [PMID: 37562136 DOI: 10.1016/j.compmedimag.2023.102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
Strain represents the quantification of regional tissue deformation within a given area. Myocardial strain has demonstrated considerable utility as an indicator for the assessment of cardiac function. Notably, it exhibits greater sensitivity in detecting subtle myocardial abnormalities compared to conventional cardiac function indices, like left ventricle ejection fraction (LVEF). Nonetheless, the estimation of strain poses considerable challenges due to the necessity for precise tracking of myocardial motion throughout the complete cardiac cycle. This study introduces a novel deep learning-based pipeline, designed to automatically and accurately estimate myocardial strain from three-dimensional (3D) cine-MR images. Consequently, our investigation presents a comprehensive pipeline for the precise quantification of local and global myocardial strain. This pipeline incorporates a supervised Convolutional Neural Network (CNN) for accurate segmentation of the cardiac muscle and an unsupervised CNN for robust left ventricle motion tracking, enabling the estimation of strain in both artificial phantoms and real cine-MR images. Our investigation involved a comprehensive comparison of our findings with those obtained from two commonly utilized commercial software in this field. This analysis encompassed the examination of both intra- and inter-user variability. The proposed pipeline exhibited demonstrable reliability and reduced divergence levels when compared to alternative systems. Additionally, our approach is entirely independent of previous user data, effectively eliminating any potential user bias that could influence the strain analyses.
Collapse
Affiliation(s)
- Catharine V Graves
- Instituto do Coracao HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Escola Politecnica da Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Marina F S Rebelo
- Instituto do Coracao HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ramon A Moreno
- Instituto do Coracao HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Roberto N Dantas-Jr
- Instituto do Coracao HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Antonildes N Assunção-Jr
- Instituto do Coracao HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Cesar H Nomura
- Instituto do Coracao HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marco A Gutierrez
- Instituto do Coracao HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Escola Politecnica da Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
5
|
Raj V, Gowda S, Kothari R. Myocardial tissue characterization by cardiac magnetic resonance: A primer for the clinician. JOURNAL OF THE INDIAN ACADEMY OF ECHOCARDIOGRAPHY & CARDIOVASCULAR IMAGING 2023. [DOI: 10.4103/jiae.jiae_44_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
6
|
Graves CV, Rebelo MFS, Moreno RA, Nomura CH, Gutierrez MA. Automatic myocardium strain quantification in MR synthetic images with Deep Leaning. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:545-548. [PMID: 36086491 DOI: 10.1109/embc48229.2022.9871516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Accurate quantification of myocardium strain in magnetic resonance images is important to correctly diagnose and monitor cardiac diseases. Currently, available methods to estimate motion are based on tracking brightness pattern differences between images. In cine-MR images, the myocardium interior presents an inhered homogeneity, which reduces the accuracy in estimated motion, and consequently strain. Neural networks have recently been shown to be an important tool for a variety of applications, including motion estimation. In this work, we investigate the feasibility of quantifying myocardium strain in cardiac resonance synthetic images using motion generated by a compact and powerful network called Pyramid, Warping, and Cost Volume (PWC). Using the motion generated by the neural network, the radial myocardium strain obtained presents a mean average error of 12.30% +- 6.50%, and in the circumferential direction 1.20% +-0.61 %, better than the two classical methods evaluated. Clinical Relevance- This work demonstrates the feasibility of estimating myocardium strain using motion estimated by a convolutional neural network.
Collapse
|
7
|
Rajiah PS, Kalisz K, Broncano J, Goerne H, Collins JD, François CJ, Ibrahim ES, Agarwal PP. Myocardial Strain Evaluation with Cardiovascular MRI: Physics, Principles, and Clinical Applications. Radiographics 2022; 42:968-990. [PMID: 35622493 DOI: 10.1148/rg.210174] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myocardial strain is a measure of myocardial deformation, which is a more sensitive imaging biomarker of myocardial disease than the commonly used ventricular ejection fraction. Although myocardial strain is commonly evaluated by using speckle-tracking echocardiography, cardiovascular MRI (CMR) is increasingly performed for this purpose. The most common CMR technique is feature tracking (FT), which involves postprocessing of routinely acquired cine MR images. Other CMR strain techniques require dedicated sequences, including myocardial tagging, strain-encoded imaging, displacement encoding with stimulated echoes, and tissue phase mapping. The complex systolic motion of the heart can be resolved into longitudinal strain, circumferential strain, radial strain, and torsion. Myocardial strain metrics include strain, strain rate, displacement, velocity, torsion, and torsion rate. Wide variability exists in the reference ranges for strain dependent on the imaging technique, analysis software, operator, patient demographics, and hemodynamic factors. In anticancer therapy cardiotoxicity, CMR myocardial strain can help identify left ventricular dysfunction before the decline of ejection fraction. CMR myocardial strain is also valuable for identifying patients with left ventricle dyssynchrony who will benefit from cardiac resynchronization therapy. CMR myocardial strain is also useful in ischemic heart disease, cardiomyopathies, pulmonary hypertension, and congenital heart disease. The authors review the physics, principles, and clinical applications of CMR strain techniques. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Prabhakar Shantha Rajiah
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| | - Kevin Kalisz
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| | - Jordi Broncano
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| | - Harold Goerne
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| | - Jeremy D Collins
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| | - Christopher J François
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| | - El-Sayed Ibrahim
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| | - Prachi P Agarwal
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., J.D.C., C.J.F.); Department of Radiology, Duke University Medical Center, Durham, NC (K.K.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Radiology, Division of Cardiac Imaging, Imaging and Diagnostic Center CID, Guadalajara, Mexico (H.G.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (E.S.I.); and Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.)
| |
Collapse
|
8
|
Berberoğlu E, Stoeck CT, Moireau P, Kozerke S, Genet M. In-silico study of accuracy and precision of left-ventricular strain quantification from 3D tagged MRI. PLoS One 2021; 16:e0258965. [PMID: 34739495 PMCID: PMC8570486 DOI: 10.1371/journal.pone.0258965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
Cardiac Magnetic Resonance Imaging (MRI) allows quantifying myocardial tissue deformation and strain based on the tagging principle. In this work, we investigate accuracy and precision of strain quantification from synthetic 3D tagged MRI using equilibrated warping. To this end, synthetic biomechanical left-ventricular tagged MRI data with varying tag distance, spatial resolution and signal-to-noise ratio (SNR) were generated and processed to quantify errors in radial, circumferential and longitudinal strains relative to ground truth. Results reveal that radial strain is more sensitive to image resolution and noise than the other strain components. The study also shows robustness of quantifying circumferential and longitudinal strain in the presence of geometrical inconsistencies of 3D tagged data. In conclusion, our study points to the need for higher-resolution 3D tagged MRI than currently available in practice in order to achieve sufficient accuracy of radial strain quantification.
Collapse
Affiliation(s)
- Ezgi Berberoğlu
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Philippe Moireau
- MΞDISIM team, Inria, Palaiseau, France
- Laboratoire de Mécanique des Solides (LMS), École Polytechnique, C.N.R.S., Institut Polytechnique de Paris, Palaiseau, France
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Martin Genet
- MΞDISIM team, Inria, Palaiseau, France
- Laboratoire de Mécanique des Solides (LMS), École Polytechnique, C.N.R.S., Institut Polytechnique de Paris, Palaiseau, France
- * E-mail:
| |
Collapse
|
9
|
Diagnosing Cardiac Amyloidosis: From Heart Failure to Electrical Storm. Case Rep Med 2021; 2021:3293728. [PMID: 34239572 PMCID: PMC8238623 DOI: 10.1155/2021/3293728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/01/2021] [Accepted: 06/13/2021] [Indexed: 11/18/2022] Open
Abstract
Cardiac amyloidosis is a condition when amyloid fibers are deposited in the extracellular space of the heart causing tachyarrhythmias, heart failure, or sudden cardiac death. We present a 71-year-old woman presenting with dyspnea on admission. Echocardiogram revealed diastolic heart failure and left ventricular hypertrophy with strain pattern concerning for an infiltrative process. She was discharged with diuretic therapy and scheduled for a cardiac magnetic resonance imaging. One week after discharge, she was readmitted with progressive shortness of breath and syncope. She was found to be in shock and had multiple episodes of cardiac arrest with both ventricular tachycardia and pulseless electrical activity. She developed electrical storm and eventually passed within 24 hours. Autopsy revealed gross cardiomegaly and left ventricular hypertrophy with Congo red staining revealing amyloid fibrils with apple-green birefringence. This case demonstrates the rapid progression of cardiac amyloidosis from acute-onset diastolic heart failure to uncontrollable ventricular tachycardia, and eventually death. We review the literature regarding multiple diagnostic modalities that facilitate the confirmation of cardiac amyloidosis.
Collapse
|
10
|
Kumar V, Manduca A, Rao C, Ryu AJ, Gibbons RJ, Gersh BJ, Chandrasekaran K, Asirvatham SJ, Araoz PA, Oh JK, Egbe AC, Behfar A, Borlaug BA, Anavekar NS. An under-recognized phenomenon: Myocardial volume change during the cardiac cycle. Echocardiography 2021; 38:1235-1244. [PMID: 34085722 DOI: 10.1111/echo.15093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Myocardial volume is assumed to be constant over the cardiac cycle in the echocardiographic models used by professional guidelines, despite evidence that suggests otherwise. The aim of this paper is to use literature-derived myocardial strain values from healthy patients to determine if myocardial volume changes during the cardiac cycle. METHODS A systematic review for studies with longitudinal, radial, and circumferential strain from echocardiography in healthy volunteers ultimately yielded 16 studies, corresponding to 2917 patients. Myocardial volume in systole (MVs) and diastole (MVd) was used to calculate MVs/MVd for each study by applying this published strain data to three models: the standard ellipsoid geometric model, a thin-apex geometric model, and a strain-volume ratio. RESULTS MVs/MVd<1 in 14 of the 16 studies, when computed using these three models. A sensitivity analysis of the two geometric models was performed by varying the dimensions of the ellipsoid and calculating MVs/MVd. This demonstrated little variability in MVs/MVd, suggesting that strain values were the primary determinant of MVs/MVd rather than the geometric model used. Another sensitivity analysis using the 97.5th percentile of each orthogonal strain demonstrated that even with extreme values, in the largest two studies of healthy populations, the calculated MVs/MVd was <1. CONCLUSIONS Healthy human myocardium appears to decrease in volume during systole. This is seen in MRI studies and is clinically relevant, but this study demonstrates that this characteristic was also present but unrecognized in the existing echocardiography literature.
Collapse
Affiliation(s)
- Vinayak Kumar
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Chaitanya Rao
- Electrical Engineer, self-employed, Melbourne, Australia
| | - Alexander J Ryu
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Philip A Araoz
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Jae K Oh
- Department of Cardiology, Mayo Clinic, Rochester, MN, USA
| | | | - Atta Behfar
- Department of Cardiology, Mayo Clinic, Rochester, MN, USA
| | | | - Nandan S Anavekar
- Department of Cardiology, Mayo Clinic, Rochester, MN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Qu YY, Paul J, Li H, Ma GS, Buckert D, Rasche V. Left ventricular myocardial strain quantification with two- and three-dimensional cardiovascular magnetic resonance based tissue tracking. Quant Imaging Med Surg 2021; 11:1421-1436. [PMID: 33816179 DOI: 10.21037/qims-20-635] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Cardiovascular magnetic resonance based tissue tracking (CMR-TT) was reported to provide detailed insight into left ventricular (LV) contractile function and deformation with both of two- and three-dimensional (2/3D) algorithms. This study was designed to investigate the feasibility and reproducibility of these two techniques for measuring LV global and segmental strain, and establish gender- and age-related reference values of global multi-dimensional peak strains among large healthy population. Methods We retrospectively recruited 150 healthy volunteers (75 males/females) and divided them into three age groups (G20-40, G41-60 and G61-80). LV global mean and peak strains as well as segmental strains in radial, circumferential and longitudinal directions were derived from post-hoc 2/3D CMR-TT analysis of standard steady-state free precession (SSFP) cine images acquired at 1.5T field strength. Results Both 2D and 3D CMR-TT modalities enable the tracking of LV myocardial tissues and generate global and segmental strain data. By comparison, 3D CMR-TT was more feasible in measuring segmental deformation since it could generate values at all segments. The amplitudes of LV 3D global peak strain were the smallest among those of 2/3D corresponding global mean or peak strains except in the radial direction, and was highly correlated with 2D global mean strains (correlation coefficient r=0.71-0.90), 2D global peak strains (r=0.75-0.89) and 3D global mean strains (all r=0.99). In healthy cohort, LV 3D global peak values were 44.4%±13.0% for radial, -17.0%±2.7% for circumferential and -15.4%±2.3% for longitudinal strain. Females showed significantly larger amplitude of strains than males, especially in G61-80 (P<0.05). The subjects in G61-80 showed larger amplitude of strains than the volunteers in younger groups. The intra- and inter-observer agreement of 2/3D CMR-TT analysis in evaluating LV myocardial global deformation was better than segmental measurement. Conclusions CMR-TT is a feasible and reproducible technique for assessing LV myocardial deformation, especially at the global level. The establishment of specific reference values of LV global and segmental systolic strains and the investigation of dimension-, gender- and age-related differences provide a fundamental insight into the features of LV contraction and works as an essential step in clinical routine.
Collapse
Affiliation(s)
- Yang-Yang Qu
- Internal Medicine II, Ulm University Medical Center, Ulm, Germany.,Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jan Paul
- Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Hao Li
- Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Gen-Shan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dominik Buckert
- Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Volker Rasche
- Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
12
|
Kihlberg J, Gupta V, Haraldsson H, Sigfridsson A, Sarvari SI, Ebbers T, Engvall JE. Clinical validation of three cardiovascular magnetic resonance techniques to measure strain and torsion in patients with suspected coronary artery disease. J Cardiovasc Magn Reson 2020; 22:83. [PMID: 33280612 PMCID: PMC7720468 DOI: 10.1186/s12968-020-00684-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/29/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Several cardiovascular magnetic resonance (CMR) techniques can measure myocardial strain and torsion with high accuracy. The purpose of this study was to compare displacement encoding with stimulated echoes (DENSE), tagging and feature tracking (FT) for measuring circumferential and radial myocardial strain and myocardial torsion in order to assess myocardial function and infarct scar burden both at a global and at a segmental level. METHOD 116 patients with a high likelihood of coronary artery disease (European SCORE > 15%) underwent CMR examination including cine images, tagging, DENSE and late gadolinium enhancement (LGE) in the short axis direction. In total, 97 patients had signs of myocardial disease and 19 had no abnormalities in terms of left ventricular (LV) wall mass index, LV ejection fraction, wall motion, LGE or a history of myocardial infarction. Thirty-four patients had myocardial infarct scar with a transmural LGE extent (transmurality) that exceeded 50% of the wall thickness in at least one segment. Global circumferential strain (GCS) and global radial strain (GRS) was analyzed using FT of cine loops, deformation of tag lines or DENSE displacement. RESULTS DENSE and tagging both showed high sensitivity (82% and 71%) at a specificity of 80% for the detection of segments with > 50% LGE transmurality, and receiver operating characteristics (ROC) analysis showed significantly higher area under the curve-values (AUC) for DENSE (0.87) than for tagging (0.83, p < 0.001) and FT (0.66, p = 0.003). GCS correlated with global LGE when determined with DENSE (r = 0.41), tagging (r = 0.37) and FT (r = 0.15). GRS had a low but significant negative correlation with LGE; DENSE r = - 0.10, FT r = - 0.07 and tagging r = - 0.16. Torsion from DENSE and tagging had a weak correlation (- 0.20 and - 0.22 respectively) with global LGE. CONCLUSION Circumferential strain from DENSE detected segments with > 50% scar with a higher AUC than strain determined from tagging and FT at a segmental level. GCS and torsion computed from DENSE and tagging showed similar correlation with global scar size, while when computed from FT, the correlation was lower.
Collapse
Affiliation(s)
- Johan Kihlberg
- Department of Radiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| | - Vikas Gupta
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Henrik Haraldsson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Andreas Sigfridsson
- Department of Clinical Physiology & Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Sebastian I Sarvari
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, 0316, Oslo, Norway
| | - Tino Ebbers
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Jan E Engvall
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Clinical Physiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Kumar V, Ryu AJ, Manduca A, Rao C, Gibbons RJ, Gersh BJ, Chandrasekaran K, Asirvatham SJ, Araoz PA, Oh JK, Egbe AC, Behfar A, Borlaug BA, Anavekar NS. Cardiac MRI demonstrates compressibility in healthy myocardium but not in myocardium with reduced ejection fraction. Int J Cardiol 2020; 322:278-283. [PMID: 32871188 DOI: 10.1016/j.ijcard.2020.08.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/04/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The professional guidelines assume that the myocardial volume in systole (MVs) is equal to that in diastole (MVd), despite some limited evidence that points to the contrary. The aim of this manuscript is to determine whether this is true in healthy myocardium using gold standard cardiac MRI, as well as transthoracic echocardiography (TTE). The secondary aim is to determine whether there are similar MV changes in patients with heart failure with reduced ejection fraction (HFrEF). METHOD A prospectively derived cohort at Mayo Clinic of 115 adult subjects (mean age 42.8 years, 58% female) with no cardiac risk factors was identified. Cardiac MRI was obtained on all 115 patients, 51 of whom also consented to a TTE. MRI from a retrospectively derived cohort of 50 HFrEF patients was also collected. MVs and MVd was calculated using standard approaches with inclusion of the papillary muscles. RESULTS In the healthy population, MRI demonstrated MVs/MVd = 0.87 (SD 0.04) and TTE demonstrated MVs/MVd = 0.79 (SD 0.07), suggesting compressibility (p < 0.0001). In the 51 healthy patients who received both imaging modalities, MVs/MVd was 8.0% higher in MRI than TTE (p < 0.0001), but both modalities had MVs/MVd < 1 (p < 0.0001). A Bland-Altman plot demonstrated that as the mean MVs/MVd increases, the difference in MVs/MVd MRI-TTE declines (r = -0.53, p < 0.0001). However, in HFrEF populations, MVs/MVd = 1.01 (0.03), suggesting myocardial incompressibility. CONCLUSION Contrary to currently accepted standards, healthy myocardium is compressible but HFrEF myocardium is incompressible. The ratio MVs/MVd merits further study in an expanded normal cohort and in disease states.
Collapse
Affiliation(s)
- Vinayak Kumar
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, United States of America.
| | - Alexander J Ryu
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Chaitanya Rao
- Electrical Engineering, self-employed, United States of America
| | - Raymond J Gibbons
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Bernard J Gersh
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | | | - Samuel J Asirvatham
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Philip A Araoz
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Jae K Oh
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Alexander C Egbe
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Atta Behfar
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Barry A Borlaug
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Nandan S Anavekar
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America; Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States of America
| |
Collapse
|
14
|
Stathogiannis K, Mor-Avi V, Rashedi N, Lang RM, Patel AR. Regional myocardial strain by cardiac magnetic resonance feature tracking for detection of scar in ischemic heart disease. Magn Reson Imaging 2020; 68:190-196. [PMID: 32084516 DOI: 10.1016/j.mri.2020.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although cardiac magnetic resonance (CMR) can accurately quantify global left ventricular strain using feature tracking (FT), it has been suggested that FT cannot reliably quantify regional strain. We aimed to determine whether abnormalities in regional strain measured using FT can be detected within areas of myocardial scar and to determine the extent to which the regional strain measurement is impacted by LV ejection fraction (EF). METHODS We retrospectively studied 96 patients (46 with LVEF ≤ 40%, 50 with LVEF > 40%) with coronary artery disease and a late gadolinium enhancement (LGE) pattern consistent with myocardial infarction, who underwent CMR imaging (1.5T). Regional peak systolic longitudinal and circumferential strains (RLS, RCS) were measured within LGE and non-LGE areas. Linear regression analysis was performed for strain in both areas against LVEF to determine whether the relationship between strain and LGE holds across the LV function spectrum. Receiver-operating curve (ROC) analysis was performed in 33 patients (derivation cohort) to optimize strain cutoff, which was tested in the remaining 63 patients (validation cohort) for its ability to differentiate LGE from non-LGE areas. RESULTS Both RLS and RCS magnitudes were reduced in LGE areas: RLS = -10.4 ± 6.2% versus -21.0 ± 8.5% (p < 0.001); RCS = -10.4 ± 6.0% versus -18.9 ± 8.6%, respectively (p < 0.001), but there was considerable overlap between LGE and non-LGE areas. Linear regression revealed that it was partially driven by the natural dependence between strain and EF, suggesting that EF-corrected strain cutoff is needed to detect LGE. ROC analysis showed the ability of both RLS and RCS to differentiate LGE from non-LGE areas: area under curve 0.95 and 0.89, respectively. In the validation cohort, optimal cutoffs of RLS/EF = 0.36 and RCS/EF = 0.37 yielded sensitivity, specificity and accuracy 0.74-0.78. CONCLUSION Abnormalities in RLS and RCS within areas of myocardial scar can be detected using CMR-FT; however, LVEF must be accounted for.
Collapse
Affiliation(s)
- Konstantinos Stathogiannis
- Department of Medicine, University of Chicago Medicine, Chicago, IL, USA; First Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Victor Mor-Avi
- Department of Medicine, University of Chicago Medicine, Chicago, IL, USA.
| | - Nina Rashedi
- Department of Medicine, University of Chicago Medicine, Chicago, IL, USA.
| | - Roberto M Lang
- Department of Medicine, University of Chicago Medicine, Chicago, IL, USA.
| | - Amit R Patel
- Department of Medicine, University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
15
|
Altered regional myocardial velocities by tissue phase mapping and feature tracking in pediatric patients with hypertrophic cardiomyopathy. Pediatr Radiol 2020; 50:168-179. [PMID: 31659403 PMCID: PMC6982608 DOI: 10.1007/s00247-019-04549-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/28/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is associated with heart failure, atrial fibrillation and sudden death. Reduced myocardial function has been reported in HCM despite normal left ventricular (LV) ejection fraction. Additionally, LV fibrosis is associated with elevated T1 and might be an outcome predictor. OBJECTIVE To systematically compare tissue phase mapping and feature tracking for assessing regional LV function in children and young adults with HCM and pediatric controls, and to evaluate structure-function relationships among myocardial velocities, LV wall thickness and myocardial T1. MATERIALS AND METHODS Seventeen pediatric patients with HCM and 21 age-matched controls underwent cardiac MRI including standard cine imaging, tissue phase mapping (two-dimensional cine phase contrast with three-directional velocity encoding), and modified Look-Locker inversion recovery to calculate native global LV T1. Maximum LV wall thickness was measured on cine images. LV radial, circumferential and long-axis myocardial velocity time courses, as well as global and segmental systolic and diastolic peak velocities, were quantified from tissue phase mapping and feature tracking. RESULTS Both tissue phase mapping and feature tracking detected significantly decreased global and segmental diastolic radial and long-axis peak velocities (by 12-51%, P<0.001-0.05) in pediatric patients with HCM vs. controls. Feature tracking peak velocities were lower than directly measured tissue phase mapping velocities (mean bias = 0.3-2.9 cm/s). Diastolic global peak velocities correlated moderately with global T1 (r = -0.57 to -0.72, P<0.01) and maximum wall thickness (r = -0.37 to -0.61, P<0.05). CONCLUSION Both tissue phase mapping and feature tracking detected myocardial velocity changes in children and young adults with HCM vs. controls. Associations between impaired diastolic LV velocities and elevated T1 indicate structure-function relationships in HCM.
Collapse
|
16
|
Karthikeyan B, Sonkawade SD, Pokharel S, Preda M, Schweser F, Zivadinov R, Kim M, Sharma UC. Tagged cine magnetic resonance imaging to quantify regional mechanical changes after acute myocardial infarction. Magn Reson Imaging 2019; 66:208-218. [PMID: 31668928 DOI: 10.1016/j.mri.2019.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/16/2019] [Accepted: 09/15/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE The conventional volumetric approaches of measuring cardiac function are load-dependent, and are not able to discriminate functional changes in the infarct, transition and remote myocardium. We examined phase-dependent regional mechanical changes in the infarct, transition and remote regions after acute myocardial infarction (MI) in a preclinical mouse model using cardiovascular magnetic resonance imaging (CMR). METHODS We induced acute MI in six mice with left anterior descending coronary artery ligation. We then examined cardiac (infarct, transition and remote-zone) morphology and function utilizing 9.4 T high field CMR before and 2 weeks after the induction of acute MI. Myocardial scar tissue was evaluated by using CMR with late gadolinium enhancement (LGE). After determining global function through volumetric analysis, regional wall motion was evaluated by measuring wall thickening and radial velocities. Strain rate imaging was performed to assess circumferential contraction and relaxation at the myocardium, endocardium, and epicardium. RESULTS There was abnormal LGE in the anterior walls after acute MI suggesting a successful MI procedure. The transition zone consisted of a mixed signal intensity, while the remote zone contained viable myocardium. As expected, the infarct zone had demonstrated severely decreased myocardial velocities and strain rates, suggesting reduced contraction and relaxation function. Compared to pre-infarct baseline, systolic and diastolic velocities (vS and vD) were significantly reduced at the transition zone (vS: -1.86 ± 0.16 cm/s vs -0.68 ± 0.13 cm/s, P < 0.001; vD: 1.86 ± 0.17 cm/s vs 0.53 ± 0.06 cm/s, P < 0.001) and remote zone (vS: -1.86 ± 0.16 cm/s vs -0.65 ± 0.12 cm/s, P < 0.001; vD: 1.86 ± 0.16 cm/s vs 0.51 ± 0.04 cm/s, P < 0.001). Myocardial peak systolic and diastolic strain rates (SRS and SRD) were significantly lower in the transition zone (SRS: -4.2 ± 0.3 s-1 vs -1.3 ± 0.2 s-1, P < 0.001; SRD: 3.9 ± 0.3 s-1 vs 1.3 ± 0.2 s-1, P < 0.001) and remote zone (SRS: -3.8 ± 0.3 s-1 vs -1.4 ± 0.3 s-1, P < 0.001; SRD: 3.5 ± 0.2 s-1 vs 1.5 ± 0.4 s-1, P = 0.006). Endocardial and epicardial SRS and SRD were similarly reduced in the transition and remote zones compared to baseline. CONCLUSIONS This study, for the first time, utilized state-of-the art high-field CMR algorithms in a preclinical mouse model for a comprehensive and controlled evaluation of the regional mechanical changes in the transition and remote zones, after acute MI. Our data demonstrate that CMR can quantitatively monitor dynamic post-MI remodeling in the transition and remote zones, thereby serving as a gold standard tool for therapeutic surveillance.
Collapse
Affiliation(s)
- Badri Karthikeyan
- Department of Medicine, Division of Cardiology, Jacob's School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Swati D Sonkawade
- Department of Medicine, Division of Cardiology, Jacob's School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Saraswati Pokharel
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States of America
| | - Marilena Preda
- Center for Biomedical Imaging at the Clinical and Translational Science Institute, University at Buffalo, Buffalo, NY, United States of America
| | - Ferdinand Schweser
- Center for Biomedical Imaging at the Clinical and Translational Science Institute, University at Buffalo, Buffalo, NY, United States of America
| | - Robert Zivadinov
- Center for Biomedical Imaging at the Clinical and Translational Science Institute, University at Buffalo, Buffalo, NY, United States of America
| | - Minhyung Kim
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States of America
| | - Umesh C Sharma
- Department of Medicine, Division of Cardiology, Jacob's School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America.
| |
Collapse
|
17
|
Prasad SK, Lota AS. Improving Risk Stratification by Cardiac Magnetic Resonance Imaging in Heart Failure: Is Strain the Missing Link? JACC Cardiovasc Imaging 2019; 11:1430-1432. [PMID: 30286906 DOI: 10.1016/j.jcmg.2017.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 10/28/2022]
Affiliation(s)
- Sanjay K Prasad
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom.
| | - Amrit S Lota
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
18
|
Quantification of myocardial deformation by deformable registration–based analysis of cine MRI: validation with tagged CMR. Eur Radiol 2019; 29:3658-3668. [DOI: 10.1007/s00330-019-06019-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/05/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
|
19
|
Impact of age and cardiac disease on regional left and right ventricular myocardial motion in healthy controls and patients with repaired tetralogy of fallot. Int J Cardiovasc Imaging 2019; 35:1119-1132. [PMID: 30715669 DOI: 10.1007/s10554-019-01544-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022]
Abstract
The assessment of both left (LV) and right ventricular (RV) motion is important to understand the impact of heart disease on cardiac function. The MRI technique of tissue phase mapping (TPM) allows for the quantification of regional biventricular three-directional myocardial velocities. The goal of this study was to establish normal LV and RV velocity parameters across a wide range of pediatric to adult ages and to investigate the feasibility of TPM for detecting impaired regional biventricular function in patients with repaired tetralogy of Fallot (TOF). Thirty-six healthy controls (age = 1-75 years) and 12 TOF patients (age = 5-23 years) underwent cardiac MRI including TPM in short-axis locations (base, mid, apex). For ten adults, a second TPM scan was used to assess test-retest reproducibility. Data analysis included the calculation of biventricular radial, circumferential, and long-axis velocity components, quantification of systolic and diastolic peak velocities in an extended 16 + 10 LV + RV segment model, and assessment of inter-ventricular dyssynchrony. Biventricular velocities showed good test-retest reproducibility (mean bias ≤ 0.23 cm/s). Diastolic radial and long-axis peak velocities for LV and RV were significantly reduced in adults compared to children (19-61%, p < 0.001-0.02). In TOF patients, TPM identified significantly reduced systolic and diastolic LV and RV long-axis peak velocities (20-50%, p < 0.001-0.05) compared to age-matched controls. In conclusion, tissue phase mapping enables comprehensive analysis of global and regional biventricular myocardial motion. Changes in myocardial velocities associated with age underline the importance of age-matched controls. This pilot study in TOF patients shows the feasibility to detect regionally abnormal LV and RV motion.
Collapse
|
20
|
Regional Myocardial Strain and Function: From Novel Techniques to Clinical Applications. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-1-4939-8841-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
21
|
Tayal U, Wage R, Ferreira PF, Nielles-Vallespin S, Epstein FH, Auger D, Zhong X, Pennell DJ, Firmin DN, Scott AD, Prasad SK. The feasibility of a novel limited field of view spiral cine DENSE sequence to assess myocardial strain in dilated cardiomyopathy. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:317-329. [PMID: 30694416 PMCID: PMC6525145 DOI: 10.1007/s10334-019-00735-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022]
Abstract
Objective Develop an accelerated cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance (CMR) sequence to enable clinically feasible myocardial strain evaluation in patients with dilated cardiomyopathy (DCM). Materials and methods A spiral cine DENSE sequence was modified by limiting the field of view in two dimensions using in-plane slice-selective pulses in the stimulated echo. This reduced breath hold duration from 20RR to 14RR intervals. Following phantom and pilot studies, the feasibility of the sequence to assess peak radial, circumferential, and longitudinal strain was tested in control subjects (n = 18) and then applied in DCM patients (n = 29). Results DENSE acquisition was possible in all participants. Elements of the data were not analysable in 1 control (6%) and 4 DCM r(14%) subjects due to off-resonance or susceptibility artefacts and low signal-to-noise ratio. Peak radial, circumferential, short-axis contour strain and longitudinal strain was reduced in DCM patients (p < 0.001 vs. controls) and strain measurements correlated with left ventricular ejection fraction (with circumferential strain r = − 0.79, p < 0.0001; with vertical long-axis strain r = − 0.76, p < 0.0001). All strain measurements had good inter-observer agreement (ICC > 0.80), except peak radial strain. Discussion We demonstrate the feasibility of CMR strain assessment in healthy controls and DCM patients using an accelerated cine DENSE technique. This may facilitate integration of strain assessment into routine CMR studies. Electronic supplementary material The online version of this article (10.1007/s10334-019-00735-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Upasana Tayal
- National Heart Lung Institute, Imperial College London, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, SW3 6NP UK
| | - Ricardo Wage
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, SW3 6NP UK
| | - Pedro Filipe Ferreira
- National Heart Lung Institute, Imperial College London, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, SW3 6NP UK
| | - Sonia Nielles-Vallespin
- National Heart Lung Institute, Imperial College London, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, SW3 6NP UK
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | | | - Daniel Auger
- Biomedical Engineering, University of Virginia, Charlottesville, VA USA
| | | | - Dudley John Pennell
- National Heart Lung Institute, Imperial College London, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, SW3 6NP UK
| | - David Nigel Firmin
- National Heart Lung Institute, Imperial College London, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, SW3 6NP UK
| | - Andrew David Scott
- National Heart Lung Institute, Imperial College London, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, SW3 6NP UK
| | - Sanjay Kumar Prasad
- National Heart Lung Institute, Imperial College London, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, SW3 6NP UK
| |
Collapse
|
22
|
Xu Y, Yamashiro T, Moriya H, Tsubakimoto M, Nagatani Y, Matsuoka S, Murayama S. Strain measurement on four-dimensional dynamic-ventilation CT: quantitative analysis of abnormal respiratory deformation of the lung in COPD. Int J Chron Obstruct Pulmon Dis 2018; 14:65-72. [PMID: 30587962 PMCID: PMC6305131 DOI: 10.2147/copd.s183740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Strain measurement is frequently used to assess myocardial motion in cardiac imaging. This study aimed to apply strain measurement to pulmonary motion observed by four-dimensional dynamic-ventilation computed tomography (CT) and to clarify motion abnormality in COPD. Materials and methods Thirty-two smokers, including ten with COPD, underwent dynamic-ventilation CT during spontaneous breathing. CT data were continuously reconstructed every 0.5 seconds. In the series of images obtained by dynamic-ventilation CT, five expiratory frames were identified starting from the peak inspiratory frame (first expiratory frame) and ending with the fifth expiratory frame. Strain measurement of the scanned lung was performed using research software that was originally developed for cardiac strain measurement and modified for assessing deformation of the lung. The measured strain values were divided by the change in mean lung density to adjust for the degree of expiration. Spearman’s rank correlation analysis was used to evaluate associations between the adjusted strain measurements and various spirometric values. Results The adjusted strain measurement was negatively correlated with FEV1/FVC (ρ=−0.52, P<0.01), maximum mid-expiratory flow (ρ=−0.59, P<0.001), and peak expiratory flow (ρ=−0.48, P<0.01), suggesting that abnormal deformation of lung motion is related to various patterns of expiratory airflow limitation. Conclusion Abnormal deformation of lung motion exists in COPD patients and can be quantitatively assessed by strain measurement using dynamic-ventilation CT. This technique can be expanded to dynamic-ventilation CT in patients with various lung and airway diseases that cause abnormal pulmonary motion.
Collapse
Affiliation(s)
- Yanyan Xu
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan, .,Department of Radiology, China-Japan Friendship Hospital, Beijing, Republic of China
| | - Tsuneo Yamashiro
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan,
| | - Hiroshi Moriya
- Department of Radiology, Ohara General Hospital, Fukushima-City, Fukushima, Japan
| | - Maho Tsubakimoto
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan,
| | - Yukihiro Nagatani
- Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Shin Matsuoka
- Department of Radiology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Sadayuki Murayama
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan,
| | | |
Collapse
|
23
|
Giusca S, Korosoglou G, Zieschang V, Stoiber L, Schnackenburg B, Stehning C, Gebker R, Pieske B, Schuster A, Backhaus S, Pieske-Kraigher E, Patel A, Kawaji K, Steen H, Lapinskas T, Kelle S. Reproducibility study on myocardial strain assessment using fast-SENC cardiac magnetic resonance imaging. Sci Rep 2018; 8:14100. [PMID: 30237411 PMCID: PMC6147889 DOI: 10.1038/s41598-018-32226-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022] Open
Abstract
Myocardial strain is a well validated parameter for estimating left ventricular (LV) performance. The aim of our study was to evaluate the inter-study as well as intra- and interobserver reproducibility of fast-SENC derived myocardial strain. Eighteen subjects (11 healthy individuals and 7 patients with heart failure) underwent a cardiac MRI examination including fast-SENC acquisition for evaluating left ventricular global longitudinal (GLS) and circumferential strain (GCS) as well as left ventricular ejection fraction (LVEF). The examination was repeated after 63 [range 49‒87] days and analyzed by two experienced observers. Ten datasets were repeatedly assessed after 1 month by the same observer to test intraobserver variability. The reproducibility was measured using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. Patients with heart failure demonstrated reduced GLS and GCS compared to healthy controls (−15.7 ± 3.7 vs. −20.1 ± 1.4; p = 0.002 for GLS and −15.3 ± 3.7 vs. −21.4 ± 1.1; p = 0.001 for GCS). The test-retest analysis showed excellent ICC for LVEF (0.92), GLS (0.94) and GCS (0.95). GLS exhibited excellent ICC (0.99) in both intra- and interobserver variability analysis with very narrow limits of agreement (−0.6 to 0.5 for intraobserver and −1.3 to 0.96 for interobserver agreement). Similarly, GCS showed excellent ICC (0.99) in both variability analyses with narrow limits of agreement (−1.1 to 1.2 for intraobserver and −1.7 to 1.3 for interobserver agreement), whereas LVEF showed larger limits of agreement (−14.4 to 10.1). The analysis of fast-SENC derived myocardial strain using cardiac MRI provides a highly reproducible method for assessing LV functional performance.
Collapse
Affiliation(s)
- Sorin Giusca
- Department of Cardiology and Vascular Medicine, GRN Hospital Weinheim, Weinheim, Germany
| | - Grigorios Korosoglou
- Department of Cardiology and Vascular Medicine, GRN Hospital Weinheim, Weinheim, Germany
| | - Victoria Zieschang
- Department of Internal Medicine/Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Lukas Stoiber
- Department of Internal Medicine/Cardiology, German Heart Center Berlin, Berlin, Germany
| | | | | | - Rolf Gebker
- Department of Internal Medicine/Cardiology, German Heart Center Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Burkert Pieske
- Department of Internal Medicine/Cardiology, German Heart Center Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center, Georg-August University, Göttingen, Germany.,Department of Cardiology, Royal North Shore Hospital, the Kolling Institute, Northern Clinical School, University of Sydney, Sydney, Australia
| | - Sören Backhaus
- Department of Cardiology and Pneumology, University Medical Center, Georg-August University, Göttingen, Germany
| | | | - Amit Patel
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Keigo Kawaji
- Department of Medicine, University of Chicago, Chicago, Illinois, USA.,Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Henning Steen
- Department of Internal Medicine/Cardiology, Marienkrankenhaus Hamburg, Hamburg, Germany
| | - Tomas Lapinskas
- Department of Internal Medicine/Cardiology, German Heart Center Berlin, Berlin, Germany.,Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Sebastian Kelle
- Department of Internal Medicine/Cardiology, German Heart Center Berlin, Berlin, Germany. .,Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.
| |
Collapse
|
24
|
Abstract
The objective assessments of left ventricular (LV) and right ventricular (RV) ejection fractions (EFs) are the main important tasks of routine cardiovascular magnetic resonance (CMR). Over the years, CMR has emerged as the reference standard for the evaluation of biventricular morphology and function. However, changes in EF may occur in the late stages of the majority of cardiac diseases, and being a measure of global function, it has limited sensitivity for identifying regional myocardial impairment. On the other hand, current wall motion evaluation is done on a subjective basis and subjective, qualitative analysis has a substantial error rate. In an attempt to better quantify global and regional LV function; several techniques, to assess myocardial deformation, have been developed, over the past years. The aim of this review is to provide a comprehensive compendium of all the CMR techniques to assess myocardial deformation parameters as well as the application in different clinical scenarios.
Collapse
Affiliation(s)
- A Scatteia
- Cardiac Magnetic Resonance Unit, Bristol Heart Institute, NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK.,Division of Cardiology, Ospedale Medico-Chirurgico Accreditato Villa dei Fiori, Acerra, Naples, Italy
| | - A Baritussio
- Cardiac Magnetic Resonance Unit, Bristol Heart Institute, NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK
| | - C Bucciarelli-Ducci
- Cardiac Magnetic Resonance Unit, Bristol Heart Institute, NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK.
| |
Collapse
|
25
|
Johnston CM, Krafft AJ, Russe MF, Rog-Zielinska EA. A new look at the heart-novel imaging techniques. Herzschrittmacherther Elektrophysiol 2017; 29:14-23. [PMID: 29242981 DOI: 10.1007/s00399-017-0546-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/24/2017] [Indexed: 01/20/2023]
Abstract
The development and successful implementation of cutting-edge imaging technologies to visualise cardiac anatomy and function is a key component of effective diagnostic efforts in cardiology. Here, we describe a number of recent exciting advances in the field of cardiology spanning from macro- to micro- to nano-scales of observation, including magnetic resonance imaging, computed tomography, optical mapping, photoacoustic imaging, and electron tomography. The methodologies discussed are currently making the transition from scientific research to routine clinical use, albeit at different paces. We discuss the most likely trajectory of this transition into clinical research and standard diagnostics, and highlight the key challenges and opportunities associated with each of the methodologies.
Collapse
Affiliation(s)
- C M Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A J Krafft
- Department of Radiology, Medical Physics, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M F Russe
- Department of Radiology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - E A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
26
|
Menza M, Föll D, Hennig J, Jung B. Segmental biventricular analysis of myocardial function using high temporal and spatial resolution tissue phase mapping. MAGMA (NEW YORK, N.Y.) 2017; 31:61-73. [PMID: 29143137 DOI: 10.1007/s10334-017-0661-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/13/2017] [Accepted: 10/30/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Myocardial dysfunction of the right ventricle (RV) is an important indicator of RV diseases, e.g. RV infarction or pulmonary hypertension. Tissue phase mapping (TPM) has been widely used to determine function of the left ventricle (LV) by analyzing myocardial velocities. The analysis of RV motion is more complicated due to the different geometry and smaller wall thickness. The aim of this work was to adapt and optimize TPM to the demands of the RV. MATERIALS AND METHODS TPM measurements were acquired in 25 healthy volunteers using a velocity-encoded phase-contrast sequence and kt-accelerated parallel imaging in combination with optimized navigator strategy and blood saturation. Post processing was extended by a 10-segment RV model and a detailed biventricular analysis of myocardial velocities was performed. RESULTS High spatio-temporal resolution (1.0 × 1.0 × 6 mm3, 21.3 ms) and the optimized blood saturation enabled good delineation of the RV and its velocities. Global and segmental velocities, as well as time to peak velocities showed significant differences between the LV and RV. Furthermore, complex timing of the RV could be demonstrated by segmental time to peak analysis. CONCLUSION High spatio-temporal resolution TPM enables a detailed biventricular analysis of myocardial motion and might provide a reliable tool for description and detection of diseases affecting left and right ventricular function.
Collapse
Affiliation(s)
- Marius Menza
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 60a, 79106, Freiburg, Germany.
| | - Daniela Föll
- Department of Cardiology and Angiology I, Heart Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 60a, 79106, Freiburg, Germany
| | - Bernd Jung
- Institute of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
27
|
White JA, Fine NM. Recent Advances in Cardiovascular Imaging Relevant to the Management of Patients with Suspected Cardiac Amyloidosis. Curr Cardiol Rep 2017; 18:77. [PMID: 27319007 DOI: 10.1007/s11886-016-0752-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac amyloidosis is a form of infiltrative cardiomyopathy typically presenting with progressive heart failure. The clinical presentation and morphological findings often overlap with other cardiovascular diseases, and frequently results in misdiagnosis and consequent under-reporting. Cardiovascular imaging is playing an increasingly important diagnostic and prognostic role in this referral population, and is reducing the reliance on endomyocardial biopsy as a confirmatory testing. Advancements across multiple cardiac imaging modalities, including echocardiography, magnetic resonance imaging, nuclear imaging, and computed tomography, are improving diagnostic accuracy and offering novel approaches to sub-type differentiation and prognostication. This review explores recent advancements in cardiac imaging for the diagnosis, typing, and staging of cardiac amyloidosis, with a focus on new and evolving techniques. Emphasis is also placed on the promise of non-invasive cardiac imaging to provide value across the spectrum of this clinical disease, from early disease identification (prior to the development of increased wall thickness) through to markers of advanced disease associated with early mortality.
Collapse
Affiliation(s)
- James A White
- Stephenson Cardiovascular Imaging Center, University of Calgary, Calgary, Alberta, Canada. .,Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada. .,Stephenson Cardiovascular Imaging Center, Foothills Medical Centre Suite #0700, SSB, 1403-29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Nowell M Fine
- Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada.,South Health Campus, 4448 Front Street SE, Calgary, Alberta, T3M 1M4, Canada
| |
Collapse
|
28
|
Kinno M, Nagpal P, Horgan S, Waller AH. Comparison of Echocardiography, Cardiac Magnetic Resonance, and Computed Tomographic Imaging for the Evaluation of Left Ventricular Myocardial Function: Part 2 (Diastolic and Regional Assessment). Curr Cardiol Rep 2017; 19:6. [PMID: 28116679 DOI: 10.1007/s11886-017-0816-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Assessing left ventricular diastolic and regional function is a crucial part of the cardiovascular evaluation. Diastolic function is as important as systolic function for left ventricular performance because it is the determinant of the ability of the left atrium and ventricle to fill at relatively low pressures. Additionally, diastolic function plays an important role in the management and prognosis of patients with symptoms and signs of heart failure. Technical advances in the imaging modalities have allowed a comprehensive noninvasive assessment of global and regional cardiac mechanics and precise estimation of cardiovascular hemodynamics. In this review, we will discuss and compare clinically available techniques and novel approaches using echocardiography, cardiac magnetic resonance, and computed tomography for the assessment of diastolic and regional left ventricular function.
Collapse
Affiliation(s)
- Menhel Kinno
- Division of Cardiology, Department of Medicine, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Prashant Nagpal
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Stephen Horgan
- Department of Cardiovascular Medicine, Morristown Medical Center, Gagnon Cardiovascular Institute, Morristown, NJ, USA
| | - Alfonso H Waller
- Division of Cardiology, Department of Medicine, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA. .,Department of Radiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ, 07103, USA.
| |
Collapse
|
29
|
Ghonim S, Voges I, Gatehouse PD, Keegan J, Gatzoulis MA, Kilner PJ, Babu-Narayan SV. Myocardial Architecture, Mechanics, and Fibrosis in Congenital Heart Disease. Front Cardiovasc Med 2017; 4:30. [PMID: 28589126 PMCID: PMC5440586 DOI: 10.3389/fcvm.2017.00030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/28/2017] [Indexed: 01/15/2023] Open
Abstract
Congenital heart disease (CHD) is the most common category of birth defect, affecting 1% of the population and requiring cardiovascular surgery in the first months of life in many patients. Due to advances in congenital cardiovascular surgery and patient management, most children with CHD now survive into adulthood. However, residual and postoperative defects are common resulting in abnormal hemodynamics, which may interact further with scar formation related to surgical procedures. Cardiovascular magnetic resonance (CMR) has become an important diagnostic imaging modality in the long-term management of CHD patients. It is the gold standard technique to assess ventricular volumes and systolic function. Besides this, advanced CMR techniques allow the acquisition of more detailed information about myocardial architecture, ventricular mechanics, and fibrosis. The left ventricle (LV) and right ventricle have unique myocardial architecture that underpins their mechanics; however, this becomes disorganized under conditions of volume and pressure overload. CMR diffusion tensor imaging is able to interrogate non-invasively the principal alignments of microstructures in the left ventricular wall. Myocardial tissue tagging (displacement encoding using stimulated echoes) and feature tracking are CMR techniques that can be used to examine the deformation and strain of the myocardium in CHD, whereas 3D feature tracking can assess the twisting motion of the LV chamber. Late gadolinium enhancement imaging and more recently T1 mapping can help in detecting fibrotic myocardial changes and evolve our understanding of the pathophysiology of CHD patients. This review not only gives an overview about available or emerging CMR techniques for assessing myocardial mechanics and fibrosis but it also describes their clinical value and how they can be used to detect abnormalities in myocardial architecture and mechanics in CHD patients.
Collapse
Affiliation(s)
- Sarah Ghonim
- Adult Congenital Heart Unit, Royal Brompton Hospital, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Inga Voges
- Adult Congenital Heart Unit, Royal Brompton Hospital, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
| | - Peter D. Gatehouse
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
| | - Jennifer Keegan
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
| | - Michael A. Gatzoulis
- Adult Congenital Heart Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Philip J. Kilner
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
| | - Sonya V. Babu-Narayan
- Adult Congenital Heart Unit, Royal Brompton Hospital, London, UK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
30
|
Bhogal S, Ladia V, Sitwala P, Cook E, Bajaj K, Ramu V, Lavie CJ, Paul TK. Cardiac Amyloidosis: An Updated Review With Emphasis on Diagnosis and Future Directions. Curr Probl Cardiol 2017; 43:10-34. [PMID: 29173805 DOI: 10.1016/j.cpcardiol.2017.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cardiac amyloidosis occurs because of abnormal protein (amyloid) deposition in the cardiac tissue. Even with advanced diagnostic techniques and treatments, the prognosis of amyloidosis remains poor. The diagnosis of cardiac amyloidosis particularly needs to be in the differential in patients presenting with heart failure with preserved ejection fraction. This entity remains underdiagnosed due to lack of suspicion on the part of many clinicians. Involvement of cardiac tissue is the utmost determinant factor for available treatment options and prognosis. Many cases of cardiac amyloidosis usually remain undiagnosed or diagnosed only in advanced stages when treatment options are limited and associated with poor survival. Hence, early recognition of cardiac amyloidosis is indispensable in halting the disease process before irreversible changes occur. The purpose of this review is to summarize the recent updates in the evaluation and management of cardiac amyloidosis and to discuss potential future treatments options.
Collapse
|
31
|
Bordi L, Kovács I, Bajka B, Blendea C, Rat N, Benedek A, Suciu Z, Benedek I. New Imaging-Based Tools for the Assessment of Ventricular Function in Ischemic Heart Diseases. JOURNAL OF INTERDISCIPLINARY MEDICINE 2017. [DOI: 10.1515/jim-2017-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIschemic heart disease morbidity and mortality are closely related to global and regional left ventricular function. The evaluation of left ventricular global function is a relevant part in the evolution of ischemic heart disease because it plays a significant role in prognosis prediction and patient management after revascularization. Regional function is also a critical part of the evolution, offering a possible and reliable mode for the assessment of myocardial disease. Currently several techniques for the evaluation of left ventricular parameters and function are in use. In this review we will discuss and compare currently available methods for the evaluation of global and regional left ventricular function such as 2D and 3D echocardiography, 3D speckle-tracking echocardiography, multi-slice computed tomography, and cardiac magnetic resonance imaging.
Collapse
|
32
|
Keller EJ, Fang S, Lin K, Freed BH, Smith PM, Spottiswoode BS, Davids R, Carr M, Jolly MP, Markl M, Carr JC, Collins JD. The consistency of myocardial strain derived from heart deformation analysis. Int J Cardiovasc Imaging 2017; 33:1169-1177. [DOI: 10.1007/s10554-017-1090-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/02/2017] [Indexed: 11/24/2022]
|
33
|
Arani A, Arunachalam SP, Chang ICY, Baffour F, Rossman PJ, Glaser KJ, Trzasko JD, McGee KP, Manduca A, Grogan M, Dispenzieri A, Ehman RL, Araoz PA. Cardiac MR elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis. J Magn Reson Imaging 2017; 46:1361-1367. [PMID: 28236336 PMCID: PMC5572539 DOI: 10.1002/jmri.25678] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose To evaluate if cardiac magnetic resonance elastography (MRE) can measure increased stiffness in patients with cardiac amyloidosis. Myocardial tissue stiffness plays an important role in cardiac function. A noninvasive quantitative imaging technique capable of measuring myocardial stiffness could aid in disease diagnosis, therapy monitoring, and disease prognostic strategies. We recently developed a high‐frequency cardiac MRE technique capable of making noninvasive stiffness measurements. Materials and Methods In all, 16 volunteers and 22 patients with cardiac amyloidosis were enrolled in this study after Institutional Review Board approval and obtaining formal written consent. All subjects were imaged head‐first in the supine position in a 1.5T closed‐bore MR imager. 3D MRE was performed using 5 mm isotropic resolution oblique short‐axis slices and a vibration frequency of 140 Hz to obtain global quantitative in vivo left ventricular stiffness measurements. The median stiffness was compared between the two cohorts. An octahedral shear strain signal‐to‐noise ratio (OSS‐SNR) threshold of 1.17 was used to exclude exams with insufficient motion amplitude. Results Five volunteers and six patients had to be excluded from the study because they fell below the 1.17 OSS‐SNR threshold. The myocardial stiffness of cardiac amyloid patients (median: 11.4 kPa, min: 9.2, max: 15.7) was significantly higher (P = 0.0008) than normal controls (median: 8.2 kPa, min: 7.2, max: 11.8). Conclusion This study demonstrates the feasibility of 3D high‐frequency cardiac MRE as a contrast‐agent‐free diagnostic imaging technique for cardiac amyloidosis. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1361–1367.
Collapse
Affiliation(s)
- Arvin Arani
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ian C Y Chang
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | - Martha Grogan
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Angela Dispenzieri
- Medicine: Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA.,Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
34
|
Leong CO, Liew YM, Bilgen M, Abdul Aziz YF, Chee KH, Chiam YK, Lim E. Assessment of infarct-specific cardiac motion dysfunction using modeling and multimodal magnetic resonance merging. J Magn Reson Imaging 2016; 45:525-534. [DOI: 10.1002/jmri.25390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/30/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- Chen Onn Leong
- Department of Biomedical Engineering; Faculty of Engineering, University of Malaya; Kuala Lumpur Malaysia
| | - Yih Miin Liew
- Department of Biomedical Engineering; Faculty of Engineering, University of Malaya; Kuala Lumpur Malaysia
| | - Mehmet Bilgen
- Biophysics Department; Faculty of Medicine, Adnan Menderes University; Aydin Turkey
| | - Yang Faridah Abdul Aziz
- Department of Biomedical Imaging; University Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya; Kuala Lumpur Malaysia
| | - Kok Han Chee
- Department of Medicine; Faculty of Medicine, University of Malaya; Kuala Lumpur Malaysia
| | - Yin Kia Chiam
- Department of Software Engineering; Faculty of Computer Science & Information Technology, University of Malaya; Kuala Lumpur Malaysia
| | - Einly Lim
- Department of Biomedical Engineering; Faculty of Engineering, University of Malaya; Kuala Lumpur Malaysia
| |
Collapse
|
35
|
Chen X, Yang Y, Cai X, Auger DA, Meyer CH, Salerno M, Epstein FH. Accelerated two-dimensional cine DENSE cardiovascular magnetic resonance using compressed sensing and parallel imaging. J Cardiovasc Magn Reson 2016; 18:38. [PMID: 27301487 PMCID: PMC4906684 DOI: 10.1186/s12968-016-0253-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/20/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cine Displacement Encoding with Stimulated Echoes (DENSE) provides accurate quantitative imaging of cardiac mechanics with rapid displacement and strain analysis; however, image acquisition times are relatively long. Compressed sensing (CS) with parallel imaging (PI) can generally provide high-quality images recovered from data sampled below the Nyquist rate. The purposes of the present study were to develop CS-PI-accelerated acquisition and reconstruction methods for cine DENSE, to assess their accuracy for cardiac imaging using retrospective undersampling, and to demonstrate their feasibility for prospectively-accelerated 2D cine DENSE imaging in a single breathhold. METHODS An accelerated cine DENSE sequence with variable-density spiral k-space sampling and golden angle rotations through time was implemented. A CS method, Block LOw-rank Sparsity with Motion-guidance (BLOSM), was combined with sensitivity encoding (SENSE) for the reconstruction of under-sampled multi-coil spiral data. Seven healthy volunteers and 7 patients underwent 2D cine DENSE imaging with fully-sampled acquisitions (14-26 heartbeats in duration) and with prospectively rate-2 and rate-4 accelerated acquisitions (14 and 8 heartbeats in duration). Retrospectively- and prospectively-accelerated data were reconstructed using BLOSM-SENSE and SENSE. Image quality of retrospectively-undersampled data was quantified using the relative root mean square error (rRMSE). Myocardial displacement and circumferential strain were computed for functional assessment, and linear correlation and Bland-Altman analyses were used to compare accelerated acquisitions to fully-sampled reference datasets. RESULTS For retrospectively-undersampled data, BLOSM-SENSE provided similar or lower rRMSE at rate-2 and lower rRMSE at rate-4 acceleration compared to SENSE (p < 0.05, ANOVA). Similarly, for retrospective undersampling, BLOSM-SENSE provided similar or better correlation with reference displacement and strain data at rate-2 and better correlation at rate-4 acceleration compared to SENSE. Bland-Altman analyses showed similar or better agreement for displacement and strain data at rate-2 and better agreement at rate-4 using BLOSM-SENSE compared to SENSE for retrospectively-undersampled data. Rate-2 and rate-4 prospectively-accelerated cine DENSE provided good image quality and expected values of displacement and strain. CONCLUSIONS BLOSM-SENSE-accelerated spiral cine DENSE imaging with 2D displacement encoding can be acquired in a single breathhold of 8-14 heartbeats with high image quality and accurate assessment of myocardial displacement and circumferential strain.
Collapse
Affiliation(s)
- Xiao Chen
- Medical Imaging Technologies, Siemens Medical Solutions, USA Inc., 755 College Rd E., Princeton, NJ, 08540, USA
| | - Yang Yang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Xiaoying Cai
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Daniel A Auger
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Radiology , University of Virginia, Charlottesville, VA, 22908, USA
| | - Michael Salerno
- Department of Radiology , University of Virginia, Charlottesville, VA, 22908, USA
- Department of Cardiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Radiology , University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
36
|
Contijoch FJ, Witschey WRT, McGarvey J, Lee ME, Gorman J, Gorman RC, Pilla JJ. Slice-by-Slice Pressure-Volume Loop Analysis Demonstrates Native Differences in Regional Cardiac Contractility and Response to Inotropic Agents. Ann Thorac Surg 2016; 102:796-802. [PMID: 27112654 DOI: 10.1016/j.athoracsur.2016.02.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Regional changes in diastolic and systolic properties after myocardial infarction contribute to adverse left ventricular (LV) remodeling. Regional function is currently assessed using load-dependent measures such as slice ejection fraction (sEF), wall motion abnormalities, or strain imaging. However, load-independent measures of cardiac function may be useful in the study of the infarction-induced remodeling. METHODS In this study, we used a recently validated 2-dimensional (2D) real-time magnetic resonance imaging (MRI) technique to evaluate regional variations in load-independent slice-by-slice measures of systolic and diastolic function and compared the values to a load-dependent measure in 11 sheep at rest and during inotropic agent infusion. RESULTS Slice-derived ejection fraction (sEF) was greater in the apex relative to the midventricular and basal regions, and inotropic infusion increased sEF in the base more than in the apex and midventricle. Slice-derived ESPVR (sESPVR) in the apex was significantly lower than in the midventricle and the base, and inotropic infusion increased sESPVR in the apical slices more than in the midventricle. Similarly, slice-derived volume-axis intercept V0 (sV0) was higher in the base relative to the midventricle and apex. sEDPVR did not demonstrate significant regional variations, but inotropic infusion resulted in a small increase in the apex. CONCLUSIONS In conclusion, acquisition of slice-derived load-independent measures demonstrated variations that contradict those observed with load-dependent sEF. The approach may provide advanced slice-based measures of function during the LV remodeling process and aid in the development of therapies.
Collapse
Affiliation(s)
- Francisco J Contijoch
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Walter R T Witschey
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeremy McGarvey
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Madonna E Lee
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph Gorman
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert C Gorman
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - James J Pilla
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Aurich M, Keller M, Greiner S, Steen H, aus dem Siepen F, Riffel J, Katus HA, Buss SJ, Mereles D. Left ventricular mechanics assessed by two-dimensional echocardiography and cardiac magnetic resonance imaging: comparison of high-resolution speckle tracking and feature tracking. Eur Heart J Cardiovasc Imaging 2016; 17:1370-1378. [DOI: 10.1093/ehjci/jew042] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
|
38
|
Cordero-Grande L, Royuela-del-Val J, Sanz-Estébanez S, Martín-Fernández M, Alberola-López C. Multi-oriented windowed harmonic phase reconstruction for robust cardiac strain imaging. Med Image Anal 2016; 29:1-11. [PMID: 26745763 DOI: 10.1016/j.media.2015.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 11/28/2015] [Accepted: 12/04/2015] [Indexed: 11/16/2022]
Abstract
The purpose of this paper is to develop a method for direct estimation of the cardiac strain tensor by extending the harmonic phase reconstruction on tagged magnetic resonance images to obtain more precise and robust measurements. The extension relies on the reconstruction of the local phase of the image by means of the windowed Fourier transform and the acquisition of an overdetermined set of stripe orientations in order to avoid the phase interferences from structures outside the myocardium and the instabilities arising from the application of a gradient operator. Results have shown that increasing the number of acquired orientations provides a significant improvement in the reproducibility of the strain measurements and that the acquisition of an extended set of orientations also improves the reproducibility when compared with acquiring repeated samples from a smaller set of orientations. Additionally, biases in local phase estimation when using the original harmonic phase formulation are greatly diminished by the one here proposed. The ideas here presented allow the design of new methods for motion sensitive magnetic resonance imaging, which could simultaneously improve the resolution, robustness and accuracy of motion estimates.
Collapse
Affiliation(s)
- Lucilio Cordero-Grande
- Laboratorio de Procesado de Imagen, Department of Teoría de la Señal y Comunicaciones e Ingeniería Telemática, ETSIT, Universidad de Valladolid, Campus Miguel Delibes s.n., 40011, Valladolid, Spain; Centre for the Developing Brain and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas' Hospital, SE1 7EH, London, UK.
| | - Javier Royuela-del-Val
- Laboratorio de Procesado de Imagen, Department of Teoría de la Señal y Comunicaciones e Ingeniería Telemática, ETSIT, Universidad de Valladolid, Campus Miguel Delibes s.n., 40011, Valladolid, Spain.
| | - Santiago Sanz-Estébanez
- Laboratorio de Procesado de Imagen, Department of Teoría de la Señal y Comunicaciones e Ingeniería Telemática, ETSIT, Universidad de Valladolid, Campus Miguel Delibes s.n., 40011, Valladolid, Spain.
| | - Marcos Martín-Fernández
- Laboratorio de Procesado de Imagen, Department of Teoría de la Señal y Comunicaciones e Ingeniería Telemática, ETSIT, Universidad de Valladolid, Campus Miguel Delibes s.n., 40011, Valladolid, Spain.
| | - Carlos Alberola-López
- Laboratorio de Procesado de Imagen, Department of Teoría de la Señal y Comunicaciones e Ingeniería Telemática, ETSIT, Universidad de Valladolid, Campus Miguel Delibes s.n., 40011, Valladolid, Spain.
| |
Collapse
|
39
|
Knight DS, Steeden JA, Moledina S, Jones A, Coghlan JG, Muthurangu V. Left ventricular diastolic dysfunction in pulmonary hypertension predicts functional capacity and clinical worsening: a tissue phase mapping study. J Cardiovasc Magn Reson 2015; 17:116. [PMID: 26715551 PMCID: PMC4696235 DOI: 10.1186/s12968-015-0220-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/15/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The function of the right and left ventricles is intimately related through a shared septum and pericardium. Therefore, right ventricular (RV) disease in pulmonary hypertension (PH) can result in abnormal left ventricular (LV) myocardial mechanics. To assess this, we implemented novel cardiovascular magnetic resonance (CMR) tissue phase mapping (TPM) to assess radial, longitudinal and tangential LV myocardial velocities in patients with PH. METHODS Respiratory self-gated TPM was performed using a rotating golden-angle spiral acquisition with retrospective cardiac gating. TPM of a mid ventricular slice was acquired in 40 PH patients and 20 age- and sex-matched healthy controls. Endocardial and epicardial LV borders were manually defined, and myocardial velocities calculated using in-house software. Patients without proximal CTEPH (chronic thromboembolic PH) and not receiving intravenous prostacyclin therapy (n = 34) were followed up until the primary outcome of disease progression (death, transplantation, or progression to intravenous therapy) or the end of the study. Physicians who determined disease progression were blinded to CMR data. Conventional ventricular volumetric indices and novel TPM metrics were analyzed for prediction of 6-min walk distance (6MWD) and disease progression. RESULTS Peak longitudinal (p < 0.0001) and radial (p = 0.001) early diastolic (E) wave velocities were significantly lower in PH patients compared with healthy volunteers. Reversal of tangential E waves was observed in all patients and was highly discriminative for the presence of PH (p < 0.0001). The global radial E wave (β = 0.41, p = 0.017) and lateral wall radial systolic (S) wave velocities (β = 0.33, p = 0.028) were the only independent predictors of 6MWD in a model including RV ejection fraction (RVEF) and LV stroke volume. Over a median follow-up period of 20 months (IQR 7.9 months), 8 patients commenced intravenous therapy and 1 died. Global longitudinal E wave was the only independent predictor of clinical worsening (6.3× increased risk, p = 0.009) in a model including RVEF and septal curvature. CONCLUSIONS TPM metrics of LV diastolic function are significantly abnormal in PH. More importantly, abnormal LV E wave velocities are the only independent predictors of functional capacity and clinical worsening in a model that includes conventional metrics of biventricular function.
Collapse
MESH Headings
- Adult
- Biomechanical Phenomena
- Case-Control Studies
- Diastole
- Disease Progression
- Feasibility Studies
- Female
- Humans
- Hypertension, Pulmonary/diagnosis
- Hypertension, Pulmonary/mortality
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/therapy
- Image Interpretation, Computer-Assisted/methods
- Magnetic Resonance Imaging/methods
- Male
- Middle Aged
- Predictive Value of Tests
- Prognosis
- Stroke Volume
- Time Factors
- Ventricular Dysfunction, Left/diagnosis
- Ventricular Dysfunction, Left/mortality
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/therapy
- Ventricular Function, Left
- Ventricular Function, Right
Collapse
Affiliation(s)
- Daniel S Knight
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, London, UK.
- UCL Medical School, Royal Free Campus, Rowland Hill Street, London, UK.
| | | | - Shahin Moledina
- UCL Medical School, Royal Free Campus, Rowland Hill Street, London, UK.
| | - Alexander Jones
- UCL Medical School, Royal Free Campus, Rowland Hill Street, London, UK.
| | - J Gerry Coghlan
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, London, UK.
| | - Vivek Muthurangu
- UCL Medical School, Royal Free Campus, Rowland Hill Street, London, UK.
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
40
|
Abstract
The identification of patients at risk of cardiac toxicity (cardiotoxicity) from cancer therapy is challenging. There is an increasing focus on early detection of cardiotoxicity such that interventions can be instituted to prevent advanced heart failure. Clinical risk prediction tools are limited and clinical symptoms are not specific. Direct assessment of myocardial function before and during cancer treatment using cardiac imaging appears to be an objective method to identify patients at risk. Although, multiple imaging modalities and measures of cardiac function are available, the best modality or the optimal measure of function is unknown. Measurement of left ventricular ejection fraction is most commonly used; however, growing literature suggests that it is inadequate for the detection of early cardiac injury. Other measures include left ventricular diastolic function, myocardial deformation, and myocardial tissue characterization. This review will provide an overview of the clinically available measures for the assessment of cardiotoxicity.
Collapse
|
41
|
Kihlberg J, Haraldsson H, Sigfridsson A, Ebbers T, Engvall JE. Clinical experience of strain imaging using DENSE for detecting infarcted cardiac segments. J Cardiovasc Magn Reson 2015; 17:50. [PMID: 26104510 PMCID: PMC4478716 DOI: 10.1186/s12968-015-0155-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/10/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We hypothesised that myocardial deformation determined with magnetic resonance imaging (MRI) will detect myocardial scar. METHODS Displacement Encoding with Stimulated Echoes (DENSE) was used to calculate left ventricular strain in 125 patients (29 women and 96 men) with suspected coronary artery disease. The patients also underwent cine imaging and late gadolinium enhancement. 57 patients had a scar area >1% in at least one segment, 23 were considered free from coronary artery disease (control group) and 45 had pathological findings but no scar (mixed group). Peak strain was calculated in eight combinations: radial and circumferential strain in transmural, subendocardial and epicardial layers derived from short axis acquisition, and transmural longitudinal and radial strain derived from long axis acquisitions. In addition, the difference between strain in affected segments and reference segments, "differential strain", from the control group was analysed. RESULTS In receiver-operator-characteristic analysis for the detection of 50% transmurality, circumferential strain performed best with area-under-curve (AUC) of 0.94. Using a cut-off value of -17%, sensitivity was 95% at a specificity of 80%. AUC did not further improve with differential strain. There were significant differences between the control group and global strain circumferential direction (-17% versus -12%) and in the longitudinal direction (-13% versus -10%). Interobserver and scan-rescan reproducibility was high with an intraclass correlation coefficient (ICC) >0.93. CONCLUSIONS DENSE-derived circumferential strain may be used for the detection of myocardial segments with >50 % scar area. The repeatability of strain is satisfactory. DENSE-derived global strain agrees with other global measures of left ventricular ejection fraction.
Collapse
Affiliation(s)
- Johan Kihlberg
- Department of Radiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| | - Henrik Haraldsson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Andreas Sigfridsson
- Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Tino Ebbers
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| | - Jan E Engvall
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
- Department of Clinical Physiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
42
|
McComb C, Carrick D, McClure JD, Woodward R, Radjenovic A, Foster JE, Berry C. Assessment of the relationships between myocardial contractility and infarct tissue revealed by serial magnetic resonance imaging in patients with acute myocardial infarction. Int J Cardiovasc Imaging 2015; 31:1201-9. [PMID: 26047771 PMCID: PMC4486782 DOI: 10.1007/s10554-015-0678-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 05/11/2015] [Indexed: 02/06/2023]
Abstract
Imaging changes in left ventricular (LV) volumes during the cardiac cycle and LV ejection fraction do not provide information on regional contractility. Displacement ENcoding with Stimulated Echoes (DENSE) is a strain-encoded cardiac magnetic resonance (CMR) technique that measures strain directly. We investigated the relationships between strain revealed by DENSE and the presence and extent of infarction in patients with recent myocardial infarction (MI). 50 male subjects were invited to undergo serial CMR within 7 days of MI (baseline) and after 6 months (follow-up; n = 47). DENSE and late gadolinium enhancement (LGE) images were acquired to enable localised regional quantification of peak circumferential strain (Ecc) and the extent of infarction, respectively. We assessed: (1) receiver operating characteristic (ROC) analysis for the classification of LGE, (2) strain differences according to LGE status (remote, adjacent, infarcted) and (3) changes in strain revealed between baseline and follow-up. 300 and 258 myocardial segments were available for analysis at baseline and follow-up respectively. LGE was present in 130/300 (43 %) and 97/258 (38 %) segments, respectively. ROC analysis revealed moderately high values for peak Ecc at baseline [threshold 12.8 %; area-under-curve (AUC) 0.88, sensitivity 84 %, specificity 78 %] and at follow-up (threshold 15.8 %; AUC 0.76, sensitivity 85 %, specificity 64 %). Differences were observed between remote, adjacent and infarcted segments. Between baseline and follow-up, increases in peak Ecc were observed in infarcted segments (median difference of 5.6 %) and in adjacent segments (1.5 %). Peak Ecc at baseline was indicative of the change in LGE status between baseline and follow-up. Strain-encoded CMR with DENSE has the potential to provide clinically useful information on contractility and its recovery over time in patients with MI.
Collapse
Affiliation(s)
- Christie McComb
- Clinical Physics, NHS Greater Glasgow and Clyde, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Collins JD. Global and regional functional assessment of ischemic heart disease with cardiac MR imaging. Radiol Clin North Am 2015; 53:369-95. [PMID: 25727001 DOI: 10.1016/j.rcl.2014.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiac MR imaging (CMR) combines assessment of myocardial function and tissue characterization, and is therefore ideally suited to evaluating patients with ischemic heart disease (IHD). This article discusses evaluation of left ventricular global function at CMR, reviewing the literature supporting global parameters in risk stratification and assessment of treatment response in IHD. Techniques for assessment of regional myocardial function are reviewed, and normal myocardial motion and fiber arrangement discussed. Despite barriers to clinical adoption, integration of this assessment into clinical routine should improve the ability to detect functional consequences of early myocardial structural alterations in patients with IHD.
Collapse
Affiliation(s)
- Jeremy D Collins
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue, Suite 1600, Chicago, IL 60611, USA.
| |
Collapse
|
44
|
Paul J, Wundrak S, Bernhardt P, Rottbauer W, Neumann H, Rasche V. Self‐gated tissue phase mapping using golden angle radial sparse SENSE. Magn Reson Med 2015; 75:789-800. [DOI: 10.1002/mrm.25669] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/13/2015] [Accepted: 02/02/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Paul
- Department of Internal Medicine IIUniversity Hospital of Ulm Germany
| | - Stefan Wundrak
- Department of Internal Medicine IIUniversity Hospital of Ulm Germany
| | - Peter Bernhardt
- Department of Internal Medicine IIUniversity Hospital of Ulm Germany
| | | | - Heiko Neumann
- Institute of Neural Information Processing, University of Ulm Germany
| | - Volker Rasche
- Department of Internal Medicine IIUniversity Hospital of Ulm Germany
| |
Collapse
|
45
|
Relation of strain by feature tracking and clinical outcome in children, adolescents, and young adults with hypertrophic cardiomyopathy. Am J Cardiol 2014; 114:1275-80. [PMID: 25159233 DOI: 10.1016/j.amjcard.2014.07.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 11/21/2022]
Abstract
Evaluation of hypertrophic cardiomyopathy (HC) in young patients is limited by lack of age-specific norms for wall thickness on cardiovascular magnetic resonance (CMR) images. Left ventricular strain may have a role in identifying and risk stratifying patients with HC, but few data exist for strain measurement on CMR images. In 30 patients (14.1 ± 3.2 years) with clinically diagnosed HC and 24 controls (15.6 ± 2.8 years), strain (radial, longitudinal, and circumferential) was evaluated by 2 experienced readers using CMR feature tracking. In patients with HC, hypertrophied segments had decreased radial (28.0 ± 5.2% vs 58.6 ± 3.9%, p = 0.0002), circumferential (-23.7 ± 1.1% vs -28.3 ± 0.8%, p = 0.004), and longitudinal (-11.2 ± 1.2% vs -21.7 ± 0.8%, p <0.0001) strains versus control segments. Hypertrophied segments had decreased longitudinal (basal segments -12.2 ± 1.9% vs -22.6 ± 1.2%, p = 0.0002), radial (basal segments 22.7 ± 10.8% vs 78.8 ± 7.2%, p = 0.0001), and circumferential (basal segments -22.4 ± 1.7% vs -30.6 ± 1%, p = 0.0004) strains versus nonhypertrophied segments in patients with HC. Longitudinal strain had the lowest intraobserver and interobserver variabilities (coefficient of variability -15.7% and -18.5%). After a median follow-up of 28.1 months (interquartile range [IQR] 4.2 to 33.1), 7 patients with HC with an adverse event outcome (5 ventricular tachycardia, 1 appropriate implantable cardioverter-defibrillator discharge, and 1 death) had reduced global radial (median 39.7%, IQR 39.6% to 46.6% vs 65.4%, IQR 46.1% to 83.4%, p = 0.01) and longitudinal strains (median -16.5%, IQR -18.7% to -15.5% vs -19.7%, IQR -23.8% to -17.5%, p = 0.046) compared with patients with HC without an event. In conclusion, CMR feature tracking detects differences in global and segmental strains and may represent a novel method to predict clinical outcome in patients with HC. Further study is necessary to evaluate longitudinal changes in this population.
Collapse
|
46
|
Bernard M, Jacquier A, Kober F. Cardiovascular magnetic resonance in ischemic heart disease. Future Cardiol 2014; 10:487-96. [PMID: 25301312 DOI: 10.2217/fca.14.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ischemic heart disease is the major cause of death in developed countries. Recently, cardiovascular magnetic resonance (CMR) has appeared as a powerful technique for diagnosis and prognosis of ischemia, as well as for postischemic therapy follow-up. The objective of this chapter is to provide an overview of the role of CMR in assessing ischemic myocardium. It reviews the most recent studies in this field and includes CMR parameters that are already well established in the clinical setting as well as promising or emerging parameters in clinical use.
Collapse
Affiliation(s)
- Monique Bernard
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Faculté de Médecine, 27 Bd Jean Moulin 13385 Marseille, Cedex 5, France
| | | | | |
Collapse
|
47
|
Heermann P, Hedderich DM, Paul M, Schülke C, Kroeger JR, Baeßler B, Wichter T, Maintz D, Waltenberger J, Heindel W, Bunck AC. Biventricular myocardial strain analysis in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) using cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson 2014; 16:75. [PMID: 25315082 PMCID: PMC4189682 DOI: 10.1186/s12968-014-0075-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fibrofatty degeneration of myocardium in ARVC is associated with wall motion abnormalities. The aim of this study was to examine whether Cardiovascular Magnetic Resonance (CMR) based strain analysis using feature tracking (FT) can serve as a quantifiable measure to confirm global and regional ventricular dysfunction in ARVC patients and support the early detection of ARVC. METHODS We enrolled 20 patients with ARVC, 30 with borderline ARVC and 22 subjects with a positive family history but no clinical signs of a manifest ARVC. 10 healthy volunteers (HV) served as controls. 15 ARVC patients received genotyping for Plakophilin-2 mutation (PKP-2), of which 7 were found to be positive. Cine MR datasets of all subjects were assessed for myocardial strain using FT (TomTec Diogenes Software). Global strain and strain rate in radial, circumferential and longitudinal mode were assessed for the right and left ventricle. In addition strain analysis at a segmental level was performed for the right ventricular free wall. RESULTS RV global longitudinal strain rates in ARVC (-0.68 ± 0.36 sec⁻¹) and borderline ARVC (-0.85 ± 0.36 sec⁻¹) were significantly reduced in comparison with HV (-1.38 ± 0.52 sec⁻¹, p ≤ 0.05). Furthermore, in ARVC patients RV global circumferential strain and strain rates at the basal level were significantly reduced compared with HV (strain: -5.1 ± 2.7 vs. -9.2 ± 3.6%; strain rate: -0.31 ± 0.13 sec(-1) vs. -0.61 ± 0.21 sec⁻¹). Even for patients with ARVC or borderline ARVC and normal RV ejection fraction (n=30) global longitudinal strain rate proved to be significantly reduced compared with HV (-0.9 ± 0.3 vs. -1.4 ± 0.5 sec(-1); p < 0.005). In ARVC patients with PKP-2 mutation there was a clear trend towards a more pronounced impairment in RV global longitudinal strain rate. On ROC analysis RV global longitudinal strain rate and circumferential strain rate at the basal level proved to be the best discriminators between ARVC patients and HV (AUC: 0.9 and 0.92, respectively). CONCLUSION CMR based strain analysis using FT is an objective and useful measure for quantification of wall motion abnormalities in ARVC. It allows differentiation between manifest or borderline ARVC and HV, even if ejection fraction is still normal.
Collapse
Affiliation(s)
- Philipp Heermann
- Department of Clinical Radiology, University Hospital of Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Dennis M Hedderich
- Department of Radiology, University Hospital of Cologne, Cologne, Germany.
| | - Matthias Paul
- Department of Cardiology, University Hospital of Muenster, Münster, Germany.
| | - Christoph Schülke
- Department of Clinical Radiology, University Hospital of Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Jan Robert Kroeger
- Department of Radiology, University Hospital of Cologne, Cologne, Germany.
| | - Bettina Baeßler
- Department of Radiology, University Hospital of Cologne, Cologne, Germany.
| | - Thomas Wichter
- Department of Cardiology, Niels-Stensen-Kliniken, Marienhospital Osnabrueck, Osnabrueck, Germany.
| | - David Maintz
- Department of Clinical Radiology, University Hospital of Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
- Department of Radiology, University Hospital of Cologne, Cologne, Germany.
| | | | - Walter Heindel
- Department of Clinical Radiology, University Hospital of Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Alexander C Bunck
- Department of Clinical Radiology, University Hospital of Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
- Department of Radiology, University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
48
|
Simpson R, Keegan J, Gatehouse P, Hansen M, Firmin D. Spiral tissue phase velocity mapping in a breath-hold with non-cartesian SENSE. Magn Reson Med 2014; 72:659-68. [PMID: 24123135 PMCID: PMC3979503 DOI: 10.1002/mrm.24971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/23/2013] [Accepted: 09/05/2013] [Indexed: 11/07/2022]
Abstract
PURPOSE Tissue phase velocity mapping (TPVM) is capable of reproducibly measuring regional myocardial velocities. However acquisition durations of navigator gated techniques are long and unpredictable while current breath-hold techniques have low temporal resolution. This study presents a spiral TPVM technique which acquires high resolution data within a clinically acceptable breath-hold duration. METHODS Ten healthy volunteers are scanned using a spiral sequence with temporal resolution of 24 ms and spatial resolution of 1.7 × 1.7 mm. Retrospective cardiac gating is used to acquire data over the entire cardiac cycle. The acquisition is accelerated by factors of 2 and 3 by use of non-Cartesian SENSE implemented on the Gadgetron GPU system resulting in breath-holds of 17 and 13 heartbeats, respectively. Systolic, early diastolic, and atrial systolic global and regional longitudinal, circumferential, and radial velocities are determined. RESULTS Global and regional velocities agree well with those previously reported. The two acceleration factors show no significant differences for any quantitative parameter and the results also closely match previously acquired higher spatial resolution navigator-gated data in the same subjects. CONCLUSION By using spiral trajectories and non-Cartesian SENSE high resolution, TPVM data can be acquired within a clinically acceptable breath-hold.
Collapse
Affiliation(s)
- R. Simpson
- NIHR Royal Brompton Cardiovascular Biomedical Research Unit, London, UK
- Imperial College, London
| | - J. Keegan
- NIHR Royal Brompton Cardiovascular Biomedical Research Unit, London, UK
- Imperial College, London
| | - P. Gatehouse
- NIHR Royal Brompton Cardiovascular Biomedical Research Unit, London, UK
| | - M. Hansen
- National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - D. Firmin
- NIHR Royal Brompton Cardiovascular Biomedical Research Unit, London, UK
- Imperial College, London
| |
Collapse
|
49
|
Images as drivers of progress in cardiac computational modelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:198-212. [PMID: 25117497 PMCID: PMC4210662 DOI: 10.1016/j.pbiomolbio.2014.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/02/2014] [Indexed: 11/28/2022]
Abstract
Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.
Collapse
|
50
|
Scott AD, Wylezinska M, Birch MJ, Miquel ME. Speech MRI: morphology and function. Phys Med 2014; 30:604-18. [PMID: 24880679 DOI: 10.1016/j.ejmp.2014.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/24/2014] [Accepted: 05/01/2014] [Indexed: 11/27/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) plays an increasing role in the study of speech. This article reviews the MRI literature of anatomical imaging, imaging for acoustic modelling and dynamic imaging. It describes existing imaging techniques attempting to meet the challenges of imaging the upper airway during speech and examines the remaining hurdles and future research directions.
Collapse
Affiliation(s)
- Andrew D Scott
- Clinical Physics, Barts Health NHS Trust, London EC1A 7BE, United Kingdom; NIHR Cardiovascular Biomedical Research Unit, The Royal Brompton Hospital, Sydney Street, London SW3 6NP, United Kingdom
| | - Marzena Wylezinska
- Clinical Physics, Barts Health NHS Trust, London EC1A 7BE, United Kingdom; Barts and The London NIHR CVBRU, London Chest Hospital, London E2 9JX, United Kingdom
| | - Malcolm J Birch
- Clinical Physics, Barts Health NHS Trust, London EC1A 7BE, United Kingdom
| | - Marc E Miquel
- Clinical Physics, Barts Health NHS Trust, London EC1A 7BE, United Kingdom; Barts and The London NIHR CVBRU, London Chest Hospital, London E2 9JX, United Kingdom.
| |
Collapse
|