1
|
De A, Grenier J, Wilman AH. Simultaneous time-of-flight MR angiography and quantitative susceptibility mapping with key time-of-flight features. NMR IN BIOMEDICINE 2024; 37:e5079. [PMID: 38054247 DOI: 10.1002/nbm.5079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
A technique for combined time-of-flight (TOF) MR angiography (MRA) and quantitative susceptibility mapping (QSM) was developed with key features of standard three-dimensional (3D) TOF acquisitions, including multiple overlapping thin slab acquisition (MOTSA), ramped RF excitation, and venous saturation. The developed triple-echo 3D TOF-QSM sequence enabled TOF-MRA, susceptibility-weighted imaging (SWI), QSM, and R2* mapping. The effects of ramped RF, resolution, flip angle, venous saturation, and MOTSA were studied on QSM. Six volunteers were scanned at 3 T with the developed sequence, conventional TOF-MRA, and conventional SWI. Quantitative comparison of susceptibility values on QSM and normalized arterial and venous vessel-to-background contrasts on TOF and SWI were performed. The ramped RF excitation created an inherent phase variation in the raw phase. A generic correction factor was computed to remove the phase variation to obtain QSM without artifacts from the TOF-QSM sequence. No statistically significant difference was observed between the developed and standard QSM sequence for susceptibility values. However, maintaining standard TOF features led to compromises in signal-to-noise ratio for QSM and SWI, arising from the use of MOTSA rather than one large 3D slab, higher TOF spatial resolution, increased TOF background suppression due to larger flip angles, and reduced venous signal from venous saturation. In terms of vessel contrast, veins showed higher normalized contrast on SWI derived from TOF-QSM than the standard SWI sequence. While fast flowing arteries had reduced contrast compared with standard TOF-MRA, no statistical difference was observed for slow flowing arteries. Arterial contrast differences largely arise from the longer TR used in TOF-QSM over standard TOF-MRA to accommodate additional later echoes for SWI. In conclusion, although the sequence has a longer TR and slightly lower arterial contrast, provided an adequate correction is made for ramped RF excitation effects on phase, QSM may be performed from a multiecho sequence that includes all key TOF features, thus enabling simultaneous TOF-MRA, SWI, QSM, and R2* map computation.
Collapse
Affiliation(s)
- Ashmita De
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Justin Grenier
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Natsumeda M, Matsuzawa H, Watanabe M, Motohashi K, Gabdulkhaev R, Tsukamoto Y, Kanemaru Y, Watanabe J, Ogura R, Okada M, Kurabe S, Okamoto K, Kakita A, Igarashi H, Fujii Y. SWI by 7T MR Imaging for the Microscopic Imaging Diagnosis of Astrocytic and Oligodendroglial Tumors. AJNR Am J Neuroradiol 2022; 43:1575-1581. [PMID: 36229164 PMCID: PMC9731250 DOI: 10.3174/ajnr.a7666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 08/21/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE Despite advances in molecular imaging, preoperative diagnosis of astrocytomas and oligodendrogliomas can be challenging. In the present study, we assessed whether 7T SWI can be used to distinguish astrocytomas and oligodendrogliomas and whether malignant grading of gliomas is possible. MATERIALS AND METHODS 7T SWI was performed on 21 patients with gliomas before surgery with optimization for sharp visualization of the corticomedullary junction. Scoring for cortical thickening and displacement of medullary vessels, characteristic of oligodendroglial tumors, and cortical tapering, characteristic of astrocytic tumors, was performed. Additionally, characteristics of malignancy, including thickening of the medullary veins, the presence of microbleeds, and/or necrosis were scored. RESULTS Scoring for oligodendroglial (highest possible score, +3) and astrocytic (lowest score possible, -3) characteristics yielded a significant difference between astrocytomas and oligodendrogliomas (mean, -1.93 versus +1.71, P < .01). Scoring for malignancy was significantly different among the World Health Organization grade II (n = 10), grade III (n = 4), and grade IV (n = 7) tumors (mean, 0.20 versus 1.38 versus 2.79). Cortical thickening was observed significantly more frequently in oligodendrogliomas (P < .02), with a sensitivity of 71.4% and specificity of 85.7%; observation of tapering of the cortex was higher in astrocytomas (P < .01) with a sensitivity of 85.7% and specificity of 100%. CONCLUSIONS Visualization of the corticomedullary junction by 7T SWI was useful in distinguishing astrocytomas and oligodendrogliomas. Observation of tapering of the cortex was most sensitive and specific for diagnosing astrocytomas. Reliably predicting malignant grade was also possible by 7T SWI.
Collapse
Affiliation(s)
- M Natsumeda
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - H Matsuzawa
- Center for Integrated Human Brain Science (H.M., M.W., H.I.)
| | - M Watanabe
- Center for Integrated Human Brain Science (H.M., M.W., H.I.)
| | - K Motohashi
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | | | - Y Tsukamoto
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - Y Kanemaru
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - J Watanabe
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - R Ogura
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - M Okada
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - S Kurabe
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - K Okamoto
- Department of Translational Research (K.O.), Brain Research Institute, Niigata University, Niigata, Japan
| | - A Kakita
- Department of Pathology (R.G., A.K.)
| | - H Igarashi
- Center for Integrated Human Brain Science (H.M., M.W., H.I.)
| | - Y Fujii
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| |
Collapse
|
3
|
Morrison MA, Walter S, Mueller S, Felton E, Jakary A, Stoller S, Molinaro AM, Braunstein SE, Hess CP, Lupo JM. Functional network alterations in young brain tumor patients with radiotherapy-induced memory impairments and vascular injury. Front Neurol 2022; 13:921984. [PMID: 36172034 PMCID: PMC9511024 DOI: 10.3389/fneur.2022.921984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022] Open
Abstract
Background Cognitive impairment and cerebral microbleeds (CMBs) are long-term side-effects of cranial radiation therapy (RT). Previously we showed that memory function is disrupted in young patients and that the rate of cognitive decline correlates with CMB development. However, vascular injury alone cannot explain RT-induced cognitive decline. Here we use resting-state functional MRI (rsfMRI) to further investigate the complex mechanisms underlying memory impairment after RT. Methods Nineteen young patients previously treated with or without focal or whole-brain RT for a brain tumor underwent cognitive testing followed by 7T rsfMRI and susceptibility-weighted imaging for CMB detection. Global brain modularity and efficiency, and rsfMRI signal variability within the dorsal attention, salience, and frontoparietal networks were computed. We evaluated whether MR metrics could distinguish age- and sex-matched controls (N = 19) from patients and differentiate patients based on RT exposure and aggressiveness. We also related MR metrics with memory performance, CMB burden, and risk factors for cognitive decline after RT. Results Compared to controls, patients exhibited widespread hyperconnectivity, similar modularity, and significantly increased efficiency (p < 0.001) and network variability (p < 0.001). The most abnormal values were detected in patients treated with high dose whole-brain RT, having supratentorial tumors, and who did not undergo RT but had hydrocephalus. MR metrics and memory performance were correlated (R = 0.34–0.53), though MR metrics were more strongly related to risk factors for cognitive worsening and CMB burden with evidence of functional recovery. Conclusions MR metrics describing brain connectivity and variability represent promising candidate imaging biomarkers for monitoring of long-term cognitive side-effects after RT.
Collapse
Affiliation(s)
- Melanie A. Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Melanie A. Morrison
| | - Sadie Walter
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- College of Osteopathic Medicine, Pacific Northwest University of Health Sciences, Yakima, WA, United States
| | - Sabine Mueller
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Erin Felton
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Schuyler Stoller
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Annette M. Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Steve E. Braunstein
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher P. Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Janine M. Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Morrison MA, Lupo JM. 7-T Magnetic Resonance Imaging in the Management of Brain Tumors. Magn Reson Imaging Clin N Am 2021; 29:83-102. [PMID: 33237018 DOI: 10.1016/j.mric.2020.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article provides an overview of the current status of ultrahigh-field 7-T magnetic resonance (MR) imaging in neuro-oncology, specifically for the management of patients with brain tumors. It includes a discussion of areas across the pretherapeutic, peritherapeutic, and posttherapeutic stages of patient care where 7-T MR imaging is currently being exploited and holds promise. This discussion includes existing technical challenges, barriers to clinical integration, as well as our impression of the future role of 7-T MR imaging as a clinical tool in neuro-oncology.
Collapse
Affiliation(s)
- Melanie A Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
5
|
Relationship between 7T MR-angiography features of vascular injury and cognitive decline in young brain tumor patients treated with radiation therapy. J Neurooncol 2021; 153:143-152. [PMID: 33893923 DOI: 10.1007/s11060-021-03753-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Although radiation therapy (RT) is a common treatment for pediatric brain tumors, it is associated with detrimental long-term effects such as impaired cognition, vascular injury, and increased stroke risk. This study aimed to develop metrics that describe vascular injury and relate them to the presence of cerebral microbleeds (CMBs) and cognitive performance scores. METHODS Twenty-five young adult survivors of pediatric brain tumors treated with either whole-brain (n = 12), whole-ventricular (n = 7), or no RT (n = 6) underwent 7T MRI and neurocognitive testing. Simultaneously acquired MR angiography and susceptibility-weighted images were used to segment CMBs and vessels and quantify their radii and volume. RESULTS Patients treated with whole-brain RT had significantly lower arterial volumes (p = 0.003) and a higher proportion of smaller vessels (p = 0.003) compared to the whole-ventricular RT and non-irradiated control patients. Normalized arterial volume decreased with increasing CMB count (R = - 0.66, p = 0.003), and decreasing trends were observed with time since RT and at longitudinal follow-up. Global cognition and verbal memory significantly decreased with smaller normalized arterial volume (p ≤ 0.05). CONCLUSIONS Arterial volume is reduced with increasing CMB presence and is influenced by the total brain volume exposed to radiation. This work highlights the potential use of vascular-derived metrics as non-invasive markers of treatment-induced injury and cognitive impairment in pediatric brain tumor patients.
Collapse
|
6
|
Morrison MA, Mueller S, Felton E, Jakary A, Stoller S, Avadiappan S, Yuan J, Molinaro AM, Braunstein S, Banerjee A, Hess CP, Lupo JM. Rate of radiation-induced microbleed formation on 7T MRI relates to cognitive impairment in young patients treated with radiation therapy for a brain tumor. Radiother Oncol 2020; 154:145-153. [PMID: 32966846 DOI: 10.1016/j.radonc.2020.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/04/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Radiation therapy (RT) is essential to the management of many brain tumors, but has been known to lead to cognitive decline and vascular injury in the form of cerebral microbleeds (CMBs). PURPOSE In a subset of children, adolescents, and young adults recruited from a larger trial investigating arteriopathy and stroke risk after RT, we evaluated the prevalence of CMBs after RT, examined risk factors for CMBs and cognitive impairment, and related their longitudinal development to cognitive performance changes. METHODS Twenty-five patients (mean 17 years, range: 10-25 years) underwent 7-Tesla MRI and cognitive assessment. Nineteen patients were treated with whole-brain or focal RT 1-month to 20-years prior, while 6 non-irradiated patients with posterior-fossa tumors served as controls. CMBs were detected on 7T susceptibility-weighted imaging (SWI) using semi-automated software, a first use in this population. RESULTS CMB detection sensitivity with 7T SWI was higher than previously reported at lower field strengths, with one or more CMBs detected in 100% of patients treated with RT at least 1-year prior. CMBs were localized to dose-targeted brain volumes with risk factors including whole-brain RT (p = 0.05), a higher RT dose (p = 0.01), increasing time since RT (p = 0.03), and younger age during RT (p = 0.01). Apart from RT dose, these factors were associated with impaired memory performance. Follow-up data in a subset of patients revealed a proportional increase in CMB count with worsening verbal memory performance (r = -0.85, p = 0.03). CONCLUSIONS Treatment with RT during youth is associated with the chronic development of CMBs that evolve with memory impairment over time.
Collapse
Affiliation(s)
- Melanie A Morrison
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Sabine Mueller
- Department of Neurology, University of California San Francisco, USA
| | - Erin Felton
- Department of Neurology, University of California San Francisco, USA
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Schuyler Stoller
- Department of Neurology, University of California San Francisco, USA
| | - Sivakami Avadiappan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Justin Yuan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, USA; Department of Epidemiology & Biostatistics, University of California San Francisco, USA
| | - Steve Braunstein
- Department of Radiation Oncology, University of California San Francisco, USA
| | - Anu Banerjee
- Department of Neurology, University of California San Francisco, USA
| | - Christopher P Hess
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA; Department of Neurology, University of California San Francisco, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA.
| |
Collapse
|
7
|
Avadiappan S, Payabvash S, Morrison MA, Jakary A, Hess CP, Lupo JM. A Fully Automated Method for Segmenting Arteries and Quantifying Vessel Radii on Magnetic Resonance Angiography Images of Varying Projection Thickness. Front Neurosci 2020; 14:537. [PMID: 32612496 PMCID: PMC7308498 DOI: 10.3389/fnins.2020.00537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/01/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Precise quantification of cerebral arteries can help with differentiation and prognostication of cerebrovascular disease. Existing image processing and segmentation algorithms for magnetic resonance angiography (MRA) are limited to the analysis of either 2D maximum intensity projection images or the entire 3D volume. The goal of this study was to develop a fully automated, hybrid 2D-3D method for robust segmentation of arteries and accurate quantification of vessel radii using MRA at varying projection thicknesses. METHODS A novel algorithm that employs an adaptive Frangi filter for segmentation of vessels followed by estimation of vessel radii is presented. The method was evaluated on MRA datasets and corresponding manual segmentations from three healthy subjects for various projection thicknesses. In addition, the vessel metrics were computed in four additional subjects. Three synthetically generated angiographic datasets resembling brain vasculature were also evaluated under different noise levels. Dice similarity coefficient, Jaccard Index, F-score, and concordance correlation coefficient were used to measure the segmentation accuracy of manual versus automatic segmentation. RESULTS Our new adaptive filter rendered accurate representations of vessels, maintained accurate vessel radii, and corresponded better to manual segmentation at different projection thicknesses than prior methods. Validation with synthetic datasets under low contrast and noisy conditions revealed accurate quantification of vessels without distortions. CONCLUSION We have demonstrated a method for automatic segmentation of vascular trees and the subsequent generation of a vessel radii map. This novel technique can be applied to analyze arterial structures in healthy and diseased populations and improve the characterization of vascular integrity.
Collapse
Affiliation(s)
- Sivakami Avadiappan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Melanie A. Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher P. Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Janine M. Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
Chen Y, Villanueva-Meyer JE, Morrison MA, Lupo JM. Toward Automatic Detection of Radiation-Induced Cerebral Microbleeds Using a 3D Deep Residual Network. J Digit Imaging 2019; 32:766-772. [PMID: 30511280 PMCID: PMC6737152 DOI: 10.1007/s10278-018-0146-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Cerebral microbleeds, which are small focal hemorrhages in the brain that are prevalent in many diseases, are gaining increasing attention due to their potential as surrogate markers of disease burden, clinical outcomes, and delayed effects of therapy. Manual detection is laborious and automatic detection and labeling of these lesions is challenging using traditional algorithms. Inspired by recent successes of deep convolutional neural networks in computer vision, we developed a 3D deep residual network that can distinguish true microbleeds from false positive mimics of a previously developed technique based on traditional algorithms. A dataset of 73 patients with radiation-induced cerebral microbleeds scanned at 7 T with susceptibility-weighted imaging was used to train and evaluate our model. With the resulting network, we maintained 95% of the true microbleeds in 12 test patients and the average number of false positives was reduced by 89%, achieving a detection precision of 71.9%, higher than existing published methods. The likelihood score predicted by the network was also evaluated by comparing to a neuroradiologist's rating, and good correlation was observed.
Collapse
Affiliation(s)
- Yicheng Chen
- UCSF-UC Berkeley Graduate Program in Bioengineering, San Francisco, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Melanie A Morrison
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Janine M Lupo
- UCSF-UC Berkeley Graduate Program in Bioengineering, San Francisco, USA.
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA.
| |
Collapse
|
9
|
Morrison MA, Hess CP, Clarke JL, Butowski N, Chang SM, Molinaro AM, Lupo JM. Risk factors of radiotherapy-induced cerebral microbleeds and serial analysis of their size compared with white matter changes: A 7T MRI study in 113 adult patients with brain tumors. J Magn Reson Imaging 2019; 50:868-877. [PMID: 30663150 DOI: 10.1002/jmri.26651] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Although radiation therapy (RT) contributes to survival benefit in many brain tumor patients, it has also been associated with long-term brain injury. Cerebral microbleeds (CMBs) represent an important manifestation of radiation-related injury. PURPOSE To characterize the change in size and number of CMBs over time and to evaluate their relationship to white matter structural integrity as measured using diffusion MRI indices. STUDY TYPE Longitudinal, retrospective, human cohort. POPULATION In all, 113 brain tumor patients including patients treated with focal RT (n = 91, 80.5%) and a subset of nonirradiated controls (n = 22, 19.5%). FIELD STRENGTH/SEQUENCE Single and multiecho susceptibility-weighted imaging (SWI) and multiband, shell, and direction diffusion tensor imaging (DTI) at 7 T. ASSESSMENT Patients were scanned either once or serially. CMBs were detected and quantified on SWI images using a semiautomated approach. Local and global fractional anisotropy (FA) were measured from DTI data for a subset of 35 patients. STATISTICAL TESTS Potential risk factors for CMB development were determined by multivariate linear regression and using linear mixed-effect models. Longitudinal FA was quantitatively and qualitatively evaluated for trends. RESULTS All patients scanned at 1 or more years post-RT had CMBs. A history of multiple surgical resections was a risk factor for development of CMBs. The total number and volume of CMBs increased by 18% and 11% per year, respectively, although individual CMBs decreased in volume over time. Simultaneous to these microvascular changes, FA decreased by a median of 6.5% per year. While the majority of nonirradiated controls had no CMBs, four control patients presented with fewer than five CMBs. DATA CONCLUSION Identifying patients who are at the greatest risk for CMB development, with its likely associated long-term cognitive impairment, is an important step towards developing and piloting preventative and/or rehabilitative measures for patients undergoing RT. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2019;50:868-877.
Collapse
Affiliation(s)
- Melanie A Morrison
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Christopher P Hess
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA.,UCSF/UCB Graduate Group in Bioengineering, San Francisco, California, USA
| |
Collapse
|
10
|
Do WJ, Choi SH, Park SH. Simultaneous Variable-Slab Dual-Echo TOF MR Angiography and Susceptibility-Weighted Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1632-1640. [PMID: 29969414 DOI: 10.1109/tmi.2018.2789923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, we propose a new 3-D dual-echo method for simultaneous multislab time-of-flight MR angiography (TOF MRA) and single-slab susceptibility-weighted imaging (SWI). The previous echo-specific k-space reordering scheme for compatible dual-echo arteriovenography (CODEA) was advanced to applying excitation RF pulses for multiple thin slabs and a single thick slab to the first (TOF MRA) and second (SWI) echoes, respectively. Single-slab CODEA and multislab CODEA (fixed-slab CODEAs) were additionally acquired as comparison reference to the proposed variable-slab CODEA. Parallel imaging was also tested for feasibility of accelerating the proposed method. TOF MRA and SWI from the proposed variable-slab CODEA were visually and quantitatively comparable to multislab TOF MRA and single-slab SWI, respectively, separately acquired from the fixed-slab CODEAs. The parallel imaging reduced the scan time from 10.3 to 5.6 min. Furthermore, the proposed variable-slab approach improved the vessel continuities at slab boundaries of TOF MRA for CODEA as well as for the conventional single echo method. The proposed variable-slab CODEA provided multislab TOF MRA and single-slab SWI simultaneously in a clinically reasonable scan time of ~5 min with minimal impact on image qualities, while suppressing slab boundary artifacts in TOF MRA.
Collapse
|
11
|
Lecler A, Charbonneau F, Psimaras D, Metten MA, Gueguen A, Hoang Xuan K, Feuvret L, Savatovsky J. Remote brain microhaemorrhages may predict haematoma in glioma patients treated with radiation therapy. Eur Radiol 2018; 28:4324-4333. [PMID: 29651771 DOI: 10.1007/s00330-018-5356-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/03/2018] [Accepted: 01/26/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To evaluate the prevalence of cerebral remote microhaemorrhages (RMH) and remote haematomas (RH) using magnetic resonance susceptibility-weighted imaging (SWI) among patients treated for gliomas during follow-up. METHODS We conducted a retrospective single centre longitudinal study on 58 consecutive patients treated for gliomas from January 2009 through December 2010. Our institutional review board approved this study. We evaluated the presence and number of RMH and RH found outside the brain tumour on follow-up MR imaging. We performed univariate and bivariate analyses to identify predictors for RMH and RH and Kaplan-Meier survival analysis techniques. RESULTS Twenty-five (43%) and four patients (7%) developed at least one RMH or RH, respectively, during follow-up. The risk was significantly higher for patients who received radiation therapy (49% and 8% versus 0%) (p = 0.02). The risk of developing RH was significantly higher in patients with at least one RMH and a high burden of RMH. The mean age of those presenting with at least one RMH or RH was significantly lower. CONCLUSIONS RMH were common in adult survivors of gliomas who received radiation therapy and may predict the onset of RH during follow-up, mainly in younger patients. KEY POINTS • Brain RMH and RH are significantly more likely to occur after RT. • RMH occur in almost half of the patients treated with RT. • RMH and RH are significantly more frequent in younger patients. • RH occur only in patients with RMH.
Collapse
Affiliation(s)
- Augustin Lecler
- Department of Radiology, Fondation Ophtalmologique Adolphe de Rothschild, 25 rue Manin, 75019, Paris, France.
| | - Frédérique Charbonneau
- Department of Radiology, Fondation Ophtalmologique Adolphe de Rothschild, 25 rue Manin, 75019, Paris, France
| | - Dimitri Psimaras
- Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marie-Astrid Metten
- Clinical Research Unit, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Antoine Gueguen
- Department of Neurology, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Khe Hoang Xuan
- Department of Neurooncology, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Loic Feuvret
- Department of Radiotherapy, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Julien Savatovsky
- Department of Radiology, Fondation Ophtalmologique Adolphe de Rothschild, 25 rue Manin, 75019, Paris, France.,Imagerie Medicale Paris 13, Paris, France
| |
Collapse
|
12
|
Advances in MR angiography with 7T MRI: From microvascular imaging to functional angiography. Neuroimage 2018; 168:269-278. [DOI: 10.1016/j.neuroimage.2017.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 01/15/2023] Open
|
13
|
Vargas MI, Martelli P, Xin L, Ipek O, Grouiller F, Pittau F, Trampel R, Gruetter R, Vulliemoz S, Lazeyras F. Clinical Neuroimaging Using 7 T MRI: Challenges and Prospects. J Neuroimaging 2017; 28:5-13. [PMID: 29205628 DOI: 10.1111/jon.12481] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/02/2017] [Indexed: 01/19/2023] Open
Abstract
The aim of this article is to illustrate the principal challenges, from the medical and technical point of view, associated with the use of ultrahigh field (UHF) scanners in the clinical setting and to present available solutions to circumvent these limitations. We would like to show the differences between UHF scanners and those used routinely in clinical practice, the principal advantages, and disadvantages, the different UHFs that are ready be applied to routine clinical practice such as susceptibility-weighted imaging, fluid-attenuated inversion recovery, 3-dimensional time of flight, magnetization-prepared rapid acquisition gradient echo, magnetization-prepared 2 rapid acquisition gradient echo, and diffusion-weighted imaging, the technical principles of these sequences, and the particularities of advanced techniques such as diffusion tensor imaging, spectroscopy, and functional imaging at 7TMR. Finally, the main clinical applications in the field of the neuroradiology are discussed and the side effects are reported.
Collapse
Affiliation(s)
- Maria Isabel Vargas
- Division of Neuroradiology of Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Pascal Martelli
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ozlem Ipek
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Frederic Grouiller
- CIBM, Department of Radiology and Medical Informatics, Geneva Hospitals and University of Geneva, Geneva, Switzerland
| | - Francesca Pittau
- Division of Neurology, Epileptology Unit, Geneva University Hospitals, Geneva, Switzerland
| | - Robert Trampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Rolf Gruetter
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Serge Vulliemoz
- Division of Neurology, Epileptology Unit, Geneva University Hospitals, Geneva, Switzerland
| | - Francois Lazeyras
- CIBM, Department of Radiology and Medical Informatics, Geneva Hospitals and University of Geneva, Geneva, Switzerland.,Division of Radiology of Geneva University Hospitals and CIBM, Geneva, Switzerland
| |
Collapse
|
14
|
Belliveau JG, Bauman GS, Tay KY, Ho D, Menon RS. Initial Investigation into Microbleeds and White Matter Signal Changes following Radiotherapy for Low-Grade and Benign Brain Tumors Using Ultra-High-Field MRI Techniques. AJNR Am J Neuroradiol 2017; 38:2251-2256. [PMID: 28970242 DOI: 10.3174/ajnr.a5395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 07/24/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE External beam radiation therapy is a common treatment for many brain neoplasms. While external beam radiation therapy adheres to dose limits to protect the uninvolved brain, areas of high dose to normal tissue still occur. Patients treated with chemoradiotherapy can have adverse effects such as microbleeds and radiation necrosis, but few studies exist of patients treated without chemotherapy. MATERIALS AND METHODS Ten patients were treated for low-grade or benign neoplasms with external beam radiation therapy only and scanned within 12-36 months following treatment with a 7T MR imaging scanner. A multiecho gradient-echo sequence was acquired and postprocessed into SWI, quantitative susceptibility mapping, and apparent transverse relaxation maps. Six patients returned for follow-up imaging approximately 18 months following their first research scan and were imaged with the same techniques. RESULTS At the first visit, 7/10 patients had microbleeds evident on SWI, quantitative susceptibility mapping, and apparent transverse relaxation. All microbleeds were within a dose region of >45 Gy. Additionally, 4/10 patients had asymptomatic WM signal changes evident on standard imaging. Further analysis with our technique revealed that these lesions were venocentric, suggestive of a neuroinflammatory process. CONCLUSIONS There exists a potential for microbleeds in patients treated with external beam radiation therapy without chemotherapy. This finding is of clinical relevance because it could be a precursor of future neurovascular disease and indicates that additional care should be taken when using therapies such as anticoagulants. Additionally, the appearance of venocentric WM lesions could be suggestive of a neuroinflammatory mechanism that has been suggested in diseases such as MS. Both findings merit further investigation in a larger population set.
Collapse
Affiliation(s)
- J-G Belliveau
- From the Departments of Medical Biophysics (J.-G.B., G.S.B., R.S.M.).,Centre for Functional and Metabolic Mapping (J.-G.B., R.S.M.), Robarts Research Institute, London, Ontario, Canada
| | - G S Bauman
- From the Departments of Medical Biophysics (J.-G.B., G.S.B., R.S.M.).,Oncology (G.S.B.).,London Regional Cancer Program (G.S.B.), London, Ontario, Canada
| | - K Y Tay
- Medical Imaging (K.Y.T.), University of Western Ontario, London, Ontario, Canada
| | - D Ho
- Department of Radiology (D.H.), Woodstock General Hospital, Woodstock, Ontario, Canada
| | - R S Menon
- From the Departments of Medical Biophysics (J.-G.B., G.S.B., R.S.M.) .,Centre for Functional and Metabolic Mapping (J.-G.B., R.S.M.), Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Magnetic resonance imaging (MRI) is routinely employed in the diagnosis and clinical management of brain tumors. This review provides an overview of the advancements in the field of MRI, with a particular focus on the quantitative assessment by advanced physiological magnetic resonance techniques in light of the new molecular classification of brain tumor. RECENT FINDINGS Understanding how molecular phenotypes of brain tumors are reflected in noninvasive imaging is the goal of radiogenomics, which aims at determining the association between imaging features and molecular markers in neuro-oncology. Advanced MRI techniques such as diffusion magnetic resonance imaging and perfusion-weighted imaging add important structural, hemodynamic, and physiological information for tumor diagnosis and classification, as well as to stratify tumor response. Magnetic resonance spectroscopy is able to depict with unprecedented accuracy metabolic biomarkers, which are relevant for molecular subtyping. Ultra-high-field imaging enhances anatomical detail and enables to explore new horizon in tumor imaging. SUMMARY The noninvasive MRI-based assessment of tumor malignancy and molecular status may offer the opportunity to predict prognosis and to select patients who may be candidates for individualized targeted therapies, providing more sensitive tools for their follow-up.
Collapse
|
16
|
Abstract
This review examines four imaging modalities; ultrasound (US), digital subtraction angiography (DSA), magnetic resonance imaging (MRI) and computed tomography (CT), that have common or potential applications in vascular access (VA). The four modalities are reviewed under their primary uses, techniques, advantages and disadvantages, and future directions that are specific to VA. Currently, US is the most commonly used modality in VA because it is cheaper (relative to other modalities), accessible, non-ionising, and does not require the use of contrast agents. DSA is predominantly only performed when an intervention is indicated. MRI is limited by its cost and the time required for image acquisition that mainly confines it to the realm of research where high resolution is required. CT’s short acquisition times and high resolution make it useful as a problem-solving tool in complex cases, although accessibility can be an issue. All four imaging modalities have advantages and disadvantages that limit their use in this particular patient cohort. Current imaging in VA comprises an integrated approach with each modality providing particular uses dependent on their capabilities. MRI and CT, which currently have limited use, may have increasingly important future roles in complex cases where detailed analysis is required.
Collapse
|
17
|
Ungvari Z, Tarantini S, Kirkpatrick AC, Csiszar A, Prodan CI. Cerebral microhemorrhages: mechanisms, consequences, and prevention. Am J Physiol Heart Circ Physiol 2017; 312:H1128-H1143. [PMID: 28314762 PMCID: PMC5495931 DOI: 10.1152/ajpheart.00780.2016] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
The increasing prevalence of multifocal cerebral microhemorrhages (CMHs, also known as "cerebral microbleeds") is a significant, newly recognized problem in the aging population of the Western world. CMHs are associated with rupture of small intracerebral vessels and are thought to progressively impair neuronal function, potentially contributing to cognitive decline, geriatric psychiatric syndromes, and gait disorders. Clinical studies show that aging and hypertension significantly increase prevalence of CMHs. CMHs are also now recognized by the National Institutes of Health as a major factor in Alzheimer's disease pathology. Moreover, the presence of CMHs is an independent risk factor for subsequent larger intracerebral hemorrhages. In this article, we review the epidemiology, detection, risk factors, clinical significance, and pathogenesis of CMHs. The potential age-related cellular mechanisms underlying the development of CMHs are discussed, with a focus on the structural determinants of microvascular fragility, age-related alterations in cerebrovascular adaptation to hypertension, the role of oxidative stress and matrix metalloproteinase activation, and the deleterious effects of arterial stiffening, increased pulse pressure, and impaired myogenic autoregulatory protection on the brain microvasculature. Finally, we examine potential treatments for the prevention of CMHs based on the proposed model of aging- and hypertension-dependent activation of the reactive oxygen species-matrix metalloproteinases axis, and we discuss critical questions to be addressed by future studies.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; .,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, Oklahoma.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Calin I Prodan
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
18
|
Barrett TF, Sarkiss CA, Dyvorne HA, Lee J, Balchandani P, Shrivastava RK. Application of Ultrahigh Field Magnetic Resonance Imaging in the Treatment of Brain Tumors: A Meta-Analysis. World Neurosurg 2015; 86:450-65. [PMID: 26409071 DOI: 10.1016/j.wneu.2015.09.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) is the imaging modality of choice for the clinical management of brain tumors, and the majority of scanners operate with static magnetic field strengths of 1.5 or 3.0 Tesla (T). During the past decade, ultrahigh field (UHF) MRI has been investigated for its clinical applicability. This meta-analysis evaluates studies pertaining to the application of UHF MRI to patients with brain tumors. METHODS The authors performed a systematic review of the literature. Articles relating to application of UHF MRI to brain anatomy and brain tumors with living subjects were included. Studies were grouped into 1 of 3 categories based on area of focus: "Anatomical Structures Involved with Brain Tumors," "Tumor characterization," and "Treatment Monitoring." Comparison studies with extractable outcomes measure data were analyzed for performance of UHF MRI versus clinical field strengths (1.5 T and 3 T). RESULTS Twenty-four studies (361 subjects) met inclusion criteria. The field of study was heterogeneous and rigorous statistical analysis was not possible. Overall, 279 patients with brain tumors scanned at UHF MRI have been reported. Of these, glioma and glioblastoma multiforme are the most commonly studied lesions (38.9% and 24.4%, respectively). In comparison studies between UHF MRI and clinical field strengths, 24 of 51 patients had outcome measures that were better with UHF MRI, 17 of 24 were equivalent at both field strengths, and 9 were worse at UHF MRI. The most common causes of a worse performance were susceptibility artifacts and magnetic field inhomogeneities (3 of 9). Imaging of the pituitary gland, pineal gland veins, cranial nerves, and tumor microvasculature were all shown to be feasible. CONCLUSIONS UHF MRI shows promise to improve detection and characterization of brain tumors, preoperative planning for neurosurgical resection, and longitudinal monitoring of the effects of radiation and antibody-based therapies. Technical innovations are needed to overcome field inhomogeneity and susceptibility artifacts in certain regions of the skull. Finally, larger studies comparing 1.5 T, 3.0 T, and 7.0 T or greater will determine whether UHF MRI gains acceptance as a clinical standard.
Collapse
Affiliation(s)
- Thomas F Barrett
- Department of Neurosurgery, The Mount Sinai Hospital, New York, New York, USA
| | | | - Hadrien A Dyvorne
- The Translational and Molecular Imaging Institute, Mount Sinai Health System, New York, New York, USA
| | - James Lee
- Department of Neurosurgery, The Mount Sinai Hospital, New York, New York, USA
| | - Priti Balchandani
- The Translational and Molecular Imaging Institute, Mount Sinai Health System, New York, New York, USA
| | - Raj K Shrivastava
- Department of Neurosurgery, The Mount Sinai Hospital, New York, New York, USA.
| |
Collapse
|
19
|
Lupo JM, Molinaro AM, Essock-Burns E, Butowski N, Chang SM, Cha S, Nelson SJ. The effects of anti-angiogenic therapy on the formation of radiation-induced microbleeds in normal brain tissue of patients with glioma. Neuro Oncol 2015. [PMID: 26206774 DOI: 10.1093/neuonc/nov128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Radiotherapy (RT) is an integral component in managing patients with glioma, but the damage it may cause to healthy brain tissue and quality of life is of concern. Susceptibility-weighted imaging (SWI) is highly sensitive to the detection of microbleeds that occur years after RT. This study's goals were to characterize the evolution of radiation-induced microbleeds in normal-appearing brain and determine whether the administration of an anti-angiogenic agent altered this process. METHODS Serial high-resolution SWI was acquired on 17 patients with high-grade glioma between 8 months and 4.5 years posttreatment with RT and adjuvant chemotherapy. Nine of these patients were also treated with the anti-angiogenic agent enzastaurin. Microbleeds were identified as discrete foci of susceptibility not corresponding to vessels, tumor, or postoperative infarct, and counted in normal-appearing brain. Analysis of covariance was performed to compare slopes of regression of individual patients' microbleed counts over time, Wilcoxon rank-sum tests examined significant differences in rates of microbleed formation between groups, and linear and quadratic mixed-effects models were employed. RESULTS The number of microbleeds increased with time for all patients, with initial onset occurring at 8-22 months. No microbleeds disappeared once formed. The average rate of microbleed formation significantly increased after 2 years post-RT (P < .001). Patients receiving anti-angiogenic therapy exhibited fewer microbleeds overall (P < .05) and a significant reduction in initial rate of microbleed appearance (P = .01). CONCLUSIONS We have demonstrated a dramatic increase in microbleed formation after 2 years post-RT that was decelerated by the concomitant administration of anti-angiogenic therapy, which may aid in determining brain regions susceptible to RT.
Collapse
Affiliation(s)
- Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California (J.M.L., E.E.-B., S.C., S.J.N.); Department of Neurosurgery, University of California San Francisco, San Francisco, California (A.M.M., N.B., S.M.C., S.C.); Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California (A.M.M.); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California (S.J.N.)
| | - Annette M Molinaro
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California (J.M.L., E.E.-B., S.C., S.J.N.); Department of Neurosurgery, University of California San Francisco, San Francisco, California (A.M.M., N.B., S.M.C., S.C.); Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California (A.M.M.); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California (S.J.N.)
| | - Emma Essock-Burns
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California (J.M.L., E.E.-B., S.C., S.J.N.); Department of Neurosurgery, University of California San Francisco, San Francisco, California (A.M.M., N.B., S.M.C., S.C.); Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California (A.M.M.); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California (S.J.N.)
| | - Nicholas Butowski
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California (J.M.L., E.E.-B., S.C., S.J.N.); Department of Neurosurgery, University of California San Francisco, San Francisco, California (A.M.M., N.B., S.M.C., S.C.); Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California (A.M.M.); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California (S.J.N.)
| | - Susan M Chang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California (J.M.L., E.E.-B., S.C., S.J.N.); Department of Neurosurgery, University of California San Francisco, San Francisco, California (A.M.M., N.B., S.M.C., S.C.); Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California (A.M.M.); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California (S.J.N.)
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California (J.M.L., E.E.-B., S.C., S.J.N.); Department of Neurosurgery, University of California San Francisco, San Francisco, California (A.M.M., N.B., S.M.C., S.C.); Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California (A.M.M.); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California (S.J.N.)
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California (J.M.L., E.E.-B., S.C., S.J.N.); Department of Neurosurgery, University of California San Francisco, San Francisco, California (A.M.M., N.B., S.M.C., S.C.); Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California (A.M.M.); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California (S.J.N.)
| |
Collapse
|