1
|
Loai S, Cheng HLM. Abnormal skeletal muscle and myocardial vasoreactivity manifests prior to heart failure in a diabetic cardiomyopathy rat model. DISCOVER MEDICINE 2025; 2:2. [PMID: 39781423 PMCID: PMC11703989 DOI: 10.1007/s44337-025-00192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
Background Microvascular dysfunction (MVD) is a recognized sign of disease in heart failure progression. Intact blood vessels exhibit abnormal vasoreactivity in early stage, subsequently deteriorating to rarefaction and reduced perfusion. In managing heart failure with preserved ejection fraction (HFpEF), earlier diagnosis is key to improving management. In this study, we applied a steady-state blood-pool magnetic resonance imaging (MRI) method to investigate if it can sensitively detect abnormal leg muscle vasoreactivity, a sign of MVD, posited to manifest before structural and functional cardiac changes emerge in a diabetes model of HFpEF. Methods Male and female Sprague-Dawley rats were maintained on either a high-fat, high-sugar diet or a control diet for 6 months after the induction of diabetes (n = 5 per group). Beginning at month 1 or 2 post-diabetes and every 2 months thereafter, rats underwent steady-state blood-pool MRI to assess vasoreactivity in the heart or skeletal muscle, respectively. A T1-reducing blood-pool agent was administered and the T1 relaxation time dynamically measured as animals breathed in elevated CO2 levels to modulate vessels. Results In male rats, the normally unresponsive heart to 10% CO2 revealed a pro-vasoconstriction response beginning at 5 months post-diabetes. Abnormal leg skeletal muscle vasoreactivity appeared even earlier, at 2 months: the usual vasodilatory response to 5% CO2 was interrupted with periods of vasoconstriction in diseased rats. In female rats, differences were observed between healthy and diseased animals only in the first 2 months post-diabetes and not later. In the heart, vasodilation to 10% CO2 seen in healthy females was abolished in diabetic females. In skeletal muscle, 5% CO2 was suboptimal in inducing reproducible vasoreactivity, but young diabetic females responded by vasodilation only. Conclusions Abnormal vasoreactivity presented earlier than overt functional changes in both heart and skeletal muscle in diabetic cardiomyopathy, and steady-state blood-pool MRI offered early diagnosis of microvascular dysfunction.
Collapse
Affiliation(s)
- Sadi Loai
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Room 1433, Toronto, ON M5G 1M1 Canada
| | - Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Room 1433, Toronto, ON M5G 1M1 Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
| |
Collapse
|
2
|
Loai S, Qiang B, Laflamme MA, Cheng HLM. Blood-pool MRI assessment of myocardial microvascular reactivity. Front Cardiovasc Med 2023; 10:1216587. [PMID: 38028477 PMCID: PMC10646425 DOI: 10.3389/fcvm.2023.1216587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose The ability to non-invasively image myocardial microvascular dilation and constriction is essential to assessing intact function and dysfunction. Yet, conventional measurements based on blood oxygenation are not specific to changes in blood volume. The purpose of this study was to extend to the heart a blood-pool MRI approach for assessing vasomodulation in the presence of blood gas changes and investigate if sex-related differences exist. Methods Animals [five male and five female healthy Sprague Dawley rats (200-500 g)] were intubated, ventilated, and cycled through room air (normoxia) and hypercapnia (10% CO2) in 10-minute cycles after i.v. injection of blood-pool agent Ablavar (0.3 mmol/kg). Pre-contrast T1 maps and T1-weighted 3D CINE were acquired on a 3 Tesla preclinical MRI scanner, followed by repeated 3D CINE every 5 min until the end of the gas regime. Invasive laser Doppler flowmetry of myocardial perfusion was performed to corroborate MRI results. Results Myocardial microvascular dilation to hypercapnia and constriction to normoxia were readily visualized on T1 maps. Over 10 min of hypercapnia, female myocardial T1 reduced by 20% (vasodilation), while no significant change was observed in the male myocardium. After return to normoxia, myocardial T1 increased (vasoconstriction) in both sexes (18% in females and 16% in males). Laser Doppler perfusion measurements confirmed vasomodulatory responses observed on MRI. Conclusion Blood-pool MRI is sensitive and specific to vasomodulation in the myocardial microcirculation. Sex-related differences exist in the healthy myocardium in response to mild hypercapnic stimuli.
Collapse
Affiliation(s)
- Sadi Loai
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Beiping Qiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Cheng HLM. Emerging MRI techniques for molecular and functional phenotyping of the diseased heart. Front Cardiovasc Med 2022; 9:1072828. [PMID: 36545017 PMCID: PMC9760746 DOI: 10.3389/fcvm.2022.1072828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Recent advances in cardiac MRI (CMR) capabilities have truly transformed its potential for deep phenotyping of the diseased heart. Long known for its unparalleled soft tissue contrast and excellent depiction of three-dimensional (3D) structure, CMR now boasts a range of unique capabilities for probing disease at the tissue and molecular level. We can look beyond coronary vessel blockages and detect vessel disease not visible on a structural level. We can assess if early fibrotic tissue is being laid down in between viable cardiac muscle cells. We can measure deformation of the heart wall to determine early presentation of stiffening. We can even assess how cardiomyocytes are utilizing energy, where abnormalities are often precursors to overt structural and functional deficits. Finally, with artificial intelligence gaining traction due to the high computing power available today, deep learning has proven itself a viable contender with traditional acceleration techniques for real-time CMR. In this review, we will survey five key emerging MRI techniques that have the potential to transform the CMR clinic and permit early detection and intervention. The emerging areas are: (1) imaging microvascular dysfunction, (2) imaging fibrosis, (3) imaging strain, (4) imaging early metabolic changes, and (5) deep learning for acceleration. Through a concerted effort to develop and translate these areas into the CMR clinic, we are committing ourselves to actualizing early diagnostics for the most intractable heart disease phenotypes.
Collapse
Affiliation(s)
- Hai-Ling Margaret Cheng
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, Toronto, ON, Canada
| |
Collapse
|
4
|
Probing Vasoreactivity and Hypoxic Phenotype in Different Tumor Grafts Grown on the Chorioallantoic Membrane of the Chicken Embryo In Ovo Using MRI. Cancers (Basel) 2022; 14:cancers14133114. [PMID: 35804886 PMCID: PMC9265041 DOI: 10.3390/cancers14133114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Fertilized chicken eggs can be used to study tumors. During their development, chicken eggshells are fenestrated, and the chicken embryo that is enwrapped by a highly vascularized membrane becomes accessible. Tumor cells are then planted onto this membrane, which supports tumor growth and, after one week, the tumor graft is studied using magnetic resonance imaging. To characterize the tumor in living chicken embryos, a gas tube can be fixed into the eggshell window and the chicken embryo and hence, the tumor graft is exposed to air, carbon dioxide-enriched air, or oxygen enriched with carbon dioxide. Different tumor types react differently to such gas challenges, which can be quantitatively measured and related to the tumor grafts’ vascular functioning and oxygenation. Abstract Tumor grafts grown on the chorioallantoic membrane (CAM) of chicken embryos represent a transition between cell culture and mammalian in vivo models. Magnetic resonance imaging (MRI) started to harness this potential. Functional gas challenge is feasible on the CAM. Using quantitative T1 and T2* mapping, we characterized the response of MC-38 colon, A549, and H460 adeno-carcinoma cell grafts to hypercapnic (HC) and hypercapnic-hyperoxic (HCHO) gas challenges, pertaining to the grafts’ vascular and oxygenation phenotypes. MR imaging revealed that larger T1 and T2* were located in the center of H460 and MC-38 tumors. Quantitative analysis showed a significant reduction in T1 and a significant increase in T2* in response to HCHO for A549 grafts, while H460 and MC-38 tumors did not respond to either gas challenge. Different tumor grafts respond differentially to HC and HCHO conditions. A549 tumor grafts, with higher vessel density and smaller tumor diameter compared with H460 and MC-38 grafts, had a significant response in T1 for HCHO and T2* increased slightly during HC and significantly under HCHO, consistent with a normoxic phenotype and functional vasoreactivity. Therefore, gas challenges enable differential characterization of tumor grafts with respect to their vascular and oxygenation status.
Collapse
|
5
|
Troy AM, Cheng HM. Human microvascular reactivity: a review of vasomodulating stimuli and non-invasive imaging assessment. Physiol Meas 2021; 42. [PMID: 34325417 DOI: 10.1088/1361-6579/ac18fd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022]
Abstract
The microvasculature serves an imperative function in regulating perfusion and nutrient exchange throughout the body, adaptively altering blood flow to preserve hemodynamic and metabolic homeostasis. Its normal functioning is vital to tissue health, whereas its dysfunction is present in many chronic conditions, including diabetes, heart disease, and cognitive decline. As microvascular dysfunction often appears early in disease progression, its detection can offer early diagnostic information. To detect microvascular dysfunction, one uses imaging to probe the microvasculature's ability to react to a stimulus, also known as microvascular reactivity (MVR). An assessment of MVR requires an integrated understanding of vascular physiology, techniques for stimulating reactivity, and available imaging methods to capture the dynamic response. Practical considerations, including compatibility between the selected stimulus and imaging approach, likewise require attention. In this review, we provide a comprehensive foundation necessary for informed imaging of MVR, with a particular focus on the challenging endeavor of assessing microvascular function in deep tissues.
Collapse
Affiliation(s)
- Aaron M Troy
- Institute of Biomedical Engineering, University of Toronto, Toronto, CANADA
| | | |
Collapse
|
6
|
Suo S, Tang H, Lu Q, Zhang L, Ni Q, Cao M, Chen Z, Zhao H, Sun B, Xu J. Blood oxygenation level-dependent cardiovascular magnetic resonance of the skeletal muscle in healthy adults: Different paradigms for provoking signal alterations. Magn Reson Med 2020; 85:1590-1601. [PMID: 32936484 DOI: 10.1002/mrm.28495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/07/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Stress blood oxygenation level-dependent (BOLD) cardiovascular magnetic resonance allows for quantitative evaluation of blood flow reserve in skeletal muscles. This study aimed to prospectively compare three commonly used skeletal BOLD cardiovascular magnetic resonance paradigms in healthy adults: gas inhalation, cuff compression-induced ischemia and postocclusive reactive hyperemia, and exercise. METHODS Twelve young (22 ± 0.9 years) and 10 elderly (58 ± 5.0 years) healthy subjects underwent BOLD cardiovascular magnetic resonance under the three paradigms. T 2 ∗ signal intensity time curves were generated and quantitative parameters were calculated. Meanwhile, stress transcutaneous oxygen pressure measurements were obtained as comparison. Measurement reproducibility was assessed with intraclass correlation coefficients. Differences in the T 2 ∗ BOLD variation, the correlation with transcutaneous oxygen pressure, and the age-related change between paradigms were statistically analyzed. RESULTS Minimum ischemic value and maximum hyperemic peak value showed the highest interobserver and interscan reproducibilities (intraclass correlation coefficient >0.90). The plantar dorsiflexion exercise paradigm elicited the largest T 2 ∗ BOLD variation (15.48% ± 10.56%), followed by ischemia (8.30% ± 6.33%). Negligible to weak changes were observed during gas inhalation. Correlations with transcutaneous oxygen pressure measurements were found in the ischemic phase (r = 0.966; P < .001) and in the postexercise phase (r = -0.936; P < .001). Minimum ischemic value, maximum hyperemic peak value, maximum postexercise value, and slope of postexercise signal decay showed significant differences between young and elderly subjects (P < .01). CONCLUSION Ischemia and reactive hyperemia have superior reproducibility, and exercise could induce the largest T 2 ∗ variation. Key parameters from the two paradigms show age-related differences.
Collapse
Affiliation(s)
- Shiteng Suo
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Tang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lan Zhang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qihong Ni
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengqiu Cao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zengai Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huilin Zhao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Beibei Sun
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianrong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Zhao K, Pohlmann A, Feng Q, Mei Y, Yang G, Yi P, Feng Q, Chen W, Zhou L, Wu EX, Seeliger E, Niendorf T, Feng Y. Physiological system analysis of the kidney by high-temporal-resolution T 2 ∗ monitoring of an oxygenation step response. Magn Reson Med 2020; 85:334-345. [PMID: 32710578 DOI: 10.1002/mrm.28399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/21/2020] [Accepted: 06/08/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE Examine the feasibility of characterizing the regulation of renal oxygenation using high-temporal-resolution monitoring of the T 2 ∗ response to a step-like oxygenation stimulus. METHODS For T 2 ∗ mapping, multi-echo gradient-echo imaging was used (temporal resolution = 9 seconds). A step-like renal oxygenation challenge was applied involving sequential exposure to hyperoxia (100% O2 ), hypoxia (10% O2 + 90% N2 ), and hyperoxia (100% O2 ). In vivo experiments were performed in healthy rats (N = 10) and in rats with bilateral ischemia-reperfusion injury (N = 4). To assess the step response of renal oxygenation, a second-order exponential model was used (model parameters: amplitude [A], time delay [Δt], damping constant [D], and period of the oscillation [T]) for renal cortex, outer stripe of the outer medulla, inner stripe of the outer medulla, and inner medulla. RESULTS The second-order exponential model permitted us to model the exponential T 2 ∗ recovery and the superimposed T 2 ∗ oscillation following renal oxygenation stimulus. The in vivo experiments revealed a difference in Douter medulla between healthy controls (D < 1, indicating oscillatory recovery) and ischemia-reperfusion injury (D > 1, reflecting aperiodic recovery). The increase in Douter medulla by a factor of 3.7 (outer stripe of the outer medulla) and 10.0 (inner stripe of the outer medulla) suggests that this parameter might be rather sensitive to (patho)physiological oxygenation changes. CONCLUSION This study demonstrates the feasibility of monitoring the dynamic oxygenation response of renal tissues to a step-like oxygenation challenge using high-temporal-resolution T 2 ∗ mapping. Our results suggest that the implemented system analysis approach may help to unlock questions regarding regulation of renal oxygenation, with the ultimate goal of providing imaging means for diagnostics and therapy of renal diseases.
Collapse
Affiliation(s)
- Kaixuan Zhao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Qijian Feng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingjie Mei
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.,Philips Healthcare, Guangzhou, China
| | - Guixiang Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Peiwei Yi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Wufang Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China
| | - Erdmann Seeliger
- Center for Cardiovascular Research, Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
A novel MRI analysis for assessment of microvascular vasomodulation in low-perfusion skeletal muscle. Sci Rep 2020; 10:4705. [PMID: 32170106 PMCID: PMC7070083 DOI: 10.1038/s41598-020-61682-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/02/2020] [Indexed: 11/24/2022] Open
Abstract
Compromised microvascular reactivity underlies many conditions and injuries, but its assessment remains difficult, particularly in low perfusion tissues. In this paper, we develop a new mathematical model for the assessment of vasomodulation in low perfusion settings. A first-order model was developed to approximate changes in T1 relaxation times as a result of vasomodulation. Healthy adult rats (N = 6) were imaged on a 3-Tesla clinical MRI scanner, and vasoactive response was probed on gadofosveset using hypercapnic gases at 20% and 5% CO2 to induce vasoconstriction and vasodilation, respectively. MRI included dynamic 3D T1 mapping and T1-weighted images during gas challenge; heart rate was continuously monitored. Laser Doppler perfusion measurements were performed to corroborate MRI findings. The model was able to identify hypercapnia-mediated vasoconstriction and vasodilation through the partial derivative \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{\partial {T}_{1}}{\partial t}$$\end{document}∂T1∂t. MRI on animals revealed gradual vasoconstriction in the skeletal muscle bed in response to 20% CO2 followed by gradual vasodilation on transitioning to 5% CO2. These trends were confirmed on laser Doppler perfusion measurements. Our new mathematical model has the potential for detecting microvascular dysfunction that manifests in the early stages across multiple metabolic and ischemic pathologies.
Collapse
|
9
|
Yang DM, Arai TJ, Campbell JW, Gerberich JL, Zhou H, Mason RP. Oxygen-sensitive MRI assessment of tumor response to hypoxic gas breathing challenge. NMR IN BIOMEDICINE 2019; 32:e4101. [PMID: 31062902 PMCID: PMC6581571 DOI: 10.1002/nbm.4101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/16/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Oxygen-sensitive MRI has been extensively used to investigate tumor oxygenation based on the response (R2 * and/or R1 ) to a gas breathing challenge. Most studies have reported response to hyperoxic gas indicating potential biomarkers of hypoxia. Few studies have examined hypoxic gas breathing and we have now evaluated acute dynamic changes in rat breast tumors. Rats bearing syngeneic subcutaneous (n = 15) or orthotopic (n = 7) 13762NF breast tumors were exposed to a 16% O2 gas breathing challenge and monitored using blood oxygen level dependent (BOLD) R2 * and tissue oxygen level dependent (TOLD) T1 -weighted measurements at 4.7 T. As a control, we used a traditional hyperoxic gas breathing challenge with 100% O2 on a subset of the subcutaneous tumor bearing rats (n = 6). Tumor subregions identified as responsive on the basis of R2 * dynamics coincided with the viable tumor area as judged by subsequent H&E staining. As expected, R2 * decreased and T1 -weighted signal increased in response to 100% O2 breathing challenge. Meanwhile, 16% O2 breathing elicited an increase in R2 *, but divergent response (increase or decrease) in T1 -weighted signal. The T1 -weighted signal increase may signify a dominating BOLD effect triggered by 16% O2 in the relatively more hypoxic tumors, whereby the influence of increased paramagnetic deoxyhemoglobin outweighs decreased pO2 . The results emphasize the importance of combined BOLD and TOLD measurements for the correct interpretation of tumor oxygenation properties.
Collapse
Affiliation(s)
- Donghan M Yang
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Tatsuya J Arai
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - James W Campbell
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Heling Zhou
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ralph P Mason
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Cox EF, Palaniyappan N, Aithal GP, Guha IN, Francis ST. Using MRI to study the alterations in liver blood flow, perfusion, and oxygenation in response to physiological stress challenges: Meal, hyperoxia, and hypercapnia. J Magn Reson Imaging 2018; 49:1577-1586. [PMID: 30353969 DOI: 10.1002/jmri.26341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Noninvasive assessment of dynamic changes in liver blood flow, perfusion, and oxygenation using MRI may allow detection of subtle hemodynamic alterations in cirrhosis. PURPOSE To assess the feasibility of measuring dynamic liver blood flow, perfusion, and T2 * alterations in response to meal, hypercapnia, and hyperoxia challenges. STUDY TYPE Prospective. SUBJECTS Ten healthy volunteers (HV) and 10 patients with compensated cirrhosis (CC). FIELD STRENGTH/SEQUENCE 3T; phase contrast, arterial spin labeling, and T 2 * mapping. ASSESSMENT Dynamic changes in portal vein and hepatic artery blood flow (using phase contrast MRI), liver perfusion (using arterial spin labeling), and blood oxygenation ( T 2 * mapping) following a meal challenge (660 kcal), hyperoxia (target PET O2 of 500 mmHg), and hypercapnia (target increase PET CO2 of ∼6 mmHg). STATISTICAL TESTS Tests between baseline and each challenge were performed using a paired two-tailed t-test (parametric) or Wilcoxon-signed-ranks test (nonparametric). Repeatability and reproducibility were determined by the coefficient of variation (CoV). RESULTS Portal vein velocity increased following the meal (70 ± 9%, P < 0.001) and hypercapnic (7 (5-11)%, P = 0.029) challenge, while hepatic artery flow decreased (-30 ± 18%, P = 0.005) following the meal challenge in HV. In CC patients, portal vein velocity increased (37 ± 13%, P = 0.012) without the decrease in hepatic artery flow following the meal. In both groups, the meal increased liver perfusion (HV: 82 ± 50%, P < 0.0001; CC: 27 (16-42)%, P = 0.011) with faster arrival time of blood (HV: -54 (-56-30)%, P = 0.074; CC: -42 ± 32%, P = 0.005). In HVs, T 2 * increased after the meal and in response to hyperoxia, with a decrease in hypercapnia (6 ± 8% P = 0.052; 3 ± 5%, P = 0.075; -5 ± 6%, P = 0.073, respectively), but no change in CC patients. Baseline between-session CoV <15% for blood flow and <10% for T 2 * measures. DATA CONCLUSION Dynamic changes in liver perfusion, blood flow, and oxygenation following a meal, hyperoxic, and hypercapnic challenges can be measured using noninvasive MRI and potentially be used to stratify patients with cirrhosis. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:1577-1586.
Collapse
Affiliation(s)
- Eleanor F Cox
- Sir Peter Mansfield Imaging Centre, School of Physics & Astronomy, University of Nottingham, Nottingham, UK
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Naaventhan Palaniyappan
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Guruprasad P Aithal
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - I Neil Guha
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics & Astronomy, University of Nottingham, Nottingham, UK
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
11
|
Featherstone AK, O'Connor JP, Little RA, Watson Y, Cheung S, Babur M, Williams KJ, Matthews JC, Parker GJ. Data-driven mapping of hypoxia-related tumor heterogeneity using DCE-MRI and OE-MRI. Magn Reson Med 2018; 79:2236-2245. [PMID: 28856728 PMCID: PMC5836865 DOI: 10.1002/mrm.26860] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 01/06/2023]
Abstract
PURPOSE Previous work has shown that combining dynamic contrast-enhanced (DCE)-MRI and oxygen-enhanced (OE)-MRI binary enhancement maps can identify tumor hypoxia. The current work proposes a novel, data-driven method for mapping tissue oxygenation and perfusion heterogeneity, based on clustering DCE/OE-MRI data. METHODS DCE-MRI and OE-MRI were performed on nine U87 (glioblastoma) and seven Calu6 (non-small cell lung cancer) murine xenograft tumors. Area under the curve and principal component analysis features were calculated and clustered separately using Gaussian mixture modelling. Evaluation metrics were calculated to determine the optimum feature set and cluster number. Outputs were quantitatively compared with a previous non data-driven approach. RESULTS The optimum method located six robustly identifiable clusters in the data, yielding tumor region maps with spatially contiguous regions in a rim-core structure, suggesting a biological basis. Mean within-cluster enhancement curves showed physiologically distinct, intuitive kinetics of enhancement. Regions of DCE/OE-MRI enhancement mismatch were located, and voxel categorization agreed well with the previous non data-driven approach (Cohen's kappa = 0.61, proportional agreement = 0.75). CONCLUSION The proposed method locates similar regions to the previous published method of binarization of DCE/OE-MRI enhancement, but renders a finer segmentation of intra-tumoral oxygenation and perfusion. This could aid in understanding the tumor microenvironment and its heterogeneity. Magn Reson Med 79:2236-2245, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Adam K. Featherstone
- Division of Informatics, Imaging & Data SciencesThe University of ManchesterManchesterUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and ManchesterUK
| | - James P.B. O'Connor
- CRUK & EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and ManchesterUK
- Division of Cancer StudiesThe University of ManchesterManchesterUK
- Department of RadiologyChristie NHS Foundation TrustManchesterUK
| | - Ross A. Little
- Division of Informatics, Imaging & Data SciencesThe University of ManchesterManchesterUK
| | - Yvonne Watson
- Division of Informatics, Imaging & Data SciencesThe University of ManchesterManchesterUK
| | - Sue Cheung
- Division of Informatics, Imaging & Data SciencesThe University of ManchesterManchesterUK
| | - Muhammad Babur
- Division of Pharmacy & OptometryThe University of ManchesterManchesterUK
| | - Kaye J. Williams
- CRUK & EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and ManchesterUK
- Division of Pharmacy & OptometryThe University of ManchesterManchesterUK
| | - Julian C. Matthews
- Division of Informatics, Imaging & Data SciencesThe University of ManchesterManchesterUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and ManchesterUK
| | - Geoff J.M. Parker
- Division of Informatics, Imaging & Data SciencesThe University of ManchesterManchesterUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and ManchesterUK
- Bioxydyn LtdManchesterUK
| |
Collapse
|
12
|
Puri BK, Monro JA. The relationship between plasma vascular endothelial growth factor and erythrocyte 2,3-bisphosphoglycerate: The putative role of chronic hypoxia. Med Hypotheses 2018; 112:60-62. [PMID: 29447940 DOI: 10.1016/j.mehy.2018.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/23/2018] [Indexed: 11/29/2022]
Abstract
The non-invasive assessment of chronic tissue hypoxia is difficult. Pulse oximetry only allows the peripheral oxygen saturation to be measured, while the detection of hyperlactataemia needs to take into account the fact that the accumulation of lactic acid may result from several causes other than prolonged tissue hypoxia. Arterial blood oxygen measurement is invasive and often does not give a good indication of the level of tissue hypoxia. Other suggested methods include the use of positron emission tomography, magnetic resonance T2∗ relaxation time measurement, photoacoustics and high-frequency ultrasound. Tissue hypoxia leads to increased levels of hypoxia-inducible factor-1α, which in turn upregulates VEGFA, leading to increased levels of vascular endothelial growth factor (VEGF), which promote angiogenesis. Hypoxia lasting for more than a few hours is associated with increased synthesis in erythrocytes of 2,3-bisphosphoglycerate (BPG), a powerful regulator of the allosteric properties of haemoglobin, via the Rapoport-Luebering phosphoglycerate cycle. We therefore hypothesised that plasma VEGF and erythrocyte BPG levels should be positively correlated. Venous blood samples from 34 patients (18 male, mean age (standard error) 43.4 (3.2) y) were analysed; plasma VEGF was measured using an enzyme-linked immunosorbent assay while the erythrocyte BPG was assessed by quantitative Fourier transform infrared spectrometry following gel electrophoresis. The Pearson product-moment correlation between the two variables was 0.622 (p < 0.0001). Based on our findings, we suggest that it may be useful to measure both erythrocyte BPG and plasma VEGF, together, when assessing chronic hypoxia; elevated levels of both are likely to indicate hypoxia.
Collapse
Affiliation(s)
- B K Puri
- Department of Medicine, Imperial College London, UK.
| | - J A Monro
- Breakspear Medical Group, Hemel Hempstead, Hertfordshire, UK
| |
Collapse
|
13
|
Cox EF, Buchanan CE, Bradley CR, Prestwich B, Mahmoud H, Taal M, Selby NM, Francis ST. Multiparametric Renal Magnetic Resonance Imaging: Validation, Interventions, and Alterations in Chronic Kidney Disease. Front Physiol 2017; 8:696. [PMID: 28959212 PMCID: PMC5603702 DOI: 10.3389/fphys.2017.00696] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Background: This paper outlines a multiparametric renal MRI acquisition and analysis protocol to allow non-invasive assessment of hemodynamics (renal artery blood flow and perfusion), oxygenation (BOLD T2*), and microstructure (diffusion, T1 mapping). Methods: We use our multiparametric renal MRI protocol to provide (1) a comprehensive set of MRI parameters [renal artery and vein blood flow, perfusion, T1, T2*, diffusion (ADC, D, D*, fp), and total kidney volume] in a large cohort of healthy participants (127 participants with mean age of 41 ± 19 years) and show the MR field strength (1.5 T vs. 3 T) dependence of T1 and T2* relaxation times; (2) the repeatability of multiparametric MRI measures in 11 healthy participants; (3) changes in MRI measures in response to hypercapnic and hyperoxic modulations in six healthy participants; and (4) pilot data showing the application of the multiparametric protocol in 11 patients with Chronic Kidney Disease (CKD). Results: Baseline measures were in-line with literature values, and as expected, T1-values were longer at 3 T compared with 1.5 T, with increased T1 corticomedullary differentiation at 3 T. Conversely, T2* was longer at 1.5 T. Inter-scan coefficients of variation (CoVs) of T1 mapping and ADC were very good at <2.9%. Intra class correlations (ICCs) were high for cortex perfusion (0.801), cortex and medulla T1 (0.848 and 0.997 using SE-EPI), and renal artery flow (0.844). In response to hypercapnia, a decrease in cortex T2* was observed, whilst no significant effect of hyperoxia on T2* was found. In CKD patients, renal artery and vein blood flow, and renal perfusion was lower than for healthy participants. Renal cortex and medulla T1 was significantly higher in CKD patients compared to healthy participants, with corticomedullary T1 differentiation reduced in CKD patients compared to healthy participants. No significant difference was found in renal T2*. Conclusions: Multiparametric MRI is a powerful technique for the assessment of changes in structure, hemodynamics, and oxygenation in a single scan session. This protocol provides the potential to assess the pathophysiological mechanisms in various etiologies of renal disease, and to assess the efficacy of drug treatments.
Collapse
Affiliation(s)
- Eleanor F Cox
- Sir Peter Mansfield Imaging Centre, University of NottinghamNottingham, United Kingdom
| | - Charlotte E Buchanan
- Sir Peter Mansfield Imaging Centre, University of NottinghamNottingham, United Kingdom
| | - Christopher R Bradley
- Sir Peter Mansfield Imaging Centre, University of NottinghamNottingham, United Kingdom
| | - Benjamin Prestwich
- Sir Peter Mansfield Imaging Centre, University of NottinghamNottingham, United Kingdom
| | - Huda Mahmoud
- Centre for Kidney Research and Innovation, Royal Derby Hospital, University of NottinghamDerby, United Kingdom
| | - Maarten Taal
- Centre for Kidney Research and Innovation, Royal Derby Hospital, University of NottinghamDerby, United Kingdom
| | - Nicholas M Selby
- Centre for Kidney Research and Innovation, Royal Derby Hospital, University of NottinghamDerby, United Kingdom
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, University of NottinghamNottingham, United Kingdom
| |
Collapse
|
14
|
A non-invasive magnetic resonance imaging approach for assessment of real-time microcirculation dynamics. Sci Rep 2017; 7:7468. [PMID: 28784990 PMCID: PMC5547069 DOI: 10.1038/s41598-017-06983-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/21/2017] [Indexed: 11/17/2022] Open
Abstract
We present a novel, non-invasive magnetic resonance imaging (MRI) technique to assess real-time dynamic vasomodulation of the microvascular bed. Unlike existing perfusion imaging techniques, our method is sensitive only to blood volume and not flow velocity. Using graded gas challenges and a long-life, blood-pool T1-reducing agent gadofosveset, we can sensitively assess microvascular volume response in the liver, kidney cortex, and paraspinal muscle to vasoactive stimuli (i.e. hypercapnia, hypoxia, and hypercapnic hypoxia). Healthy adult rats were imaged on a 3 Tesla scanner and cycled through 10-minute gas intervals to elicit vasoconstriction followed by vasodilatation. Quantitative T1 relaxation time mapping was performed dynamically; heart rate and blood oxygen saturation were continuously monitored. Laser Doppler perfusion measurements confirmed MRI findings: dynamic changes in T1 corresponded with perfusion changes to graded gas challenges. Our new technique uncovered differential microvascular response to gas stimuli in different organs: for example, mild hypercapnia vasodilates the kidney cortex but constricts muscle vasculature. Finally, we present a gas challenge protocol that produces a consistent vasoactive response and can be used to assess vasomodulatory capacity. Our imaging approach to monitor real-time vasomodulation may be extended to other imaging modalities and is valuable for investigating diseases where microvascular health is compromised.
Collapse
|
15
|
Oxygen imaging of living cells and tissues using luminescent molecular probes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Hirakawa Y, Tanaka T, Nangaku M. Renal Hypoxia in CKD; Pathophysiology and Detecting Methods. Front Physiol 2017; 8:99. [PMID: 28270773 PMCID: PMC5318422 DOI: 10.3389/fphys.2017.00099] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem. Accumulating evidence suggests that CKD aggravates renal hypoxia, and in turn, renal hypoxia accelerates CKD progression. To eliminate this vicious cycle, hypoxia-related therapies, such as hypoxia-inducible factor (HIF) activation (prolyl hydroxylase domain inhibition) or NF-E2-related factor 2 activation, are currently under investigation. Clinical studies have revealed heterogeneity in renal oxygenation; therefore, the detection of patients with more hypoxic kidneys can be used to identify likely responders to hypoxia-oriented therapies. In this review, we provide a detailed description of current hypoxia detection methods. HIF degradation correlates with the intracellular oxygen concentration; thus, methods that can detect intracellular oxygen tension changes are desirable. The use of a microelectrode is a classical technique that is superior in quantitative performance; however, its high invasiveness and the fact that it reflects the extracellular oxygen tension are disadvantages. Pimonidazole protein adduct immunohistochemistry and HIF activation detection reflect intracellular oxygen tension, but these techniques yield qualitative data. Blood oxygen level-dependent magnetic resonance imaging has the advantage of low invasiveness, high quantitative performance, and application in clinical use, but its biggest disadvantage is that it measures only deoxyhemoglobin concentrations. Phosphorescence lifetime measurement is a relatively novel in vivo oxygen sensing technique that has the advantage of being quantitative; however, it has several disadvantages, such as toxicity of the phosphorescent dye and the inability to assess deeper tissues. Understanding the advantages and disadvantages of these hypoxia detection methods will help researchers precisely assess renal hypoxia and develop new therapeutics against renal hypoxia-associated CKD.
Collapse
Affiliation(s)
- Yosuke Hirakawa
- Division of Nephrology, The University of Tokyo School of Medicine Hongo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology, The University of Tokyo School of Medicine Hongo, Japan
| | - Masaomi Nangaku
- Division of Nephrology, The University of Tokyo School of Medicine Hongo, Japan
| |
Collapse
|