1
|
Alkhatib R, Gaede KI. Data Management in Biobanking: Strategies, Challenges, and Future Directions. BIOTECH 2024; 13:34. [PMID: 39311336 PMCID: PMC11417763 DOI: 10.3390/biotech13030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/26/2024] Open
Abstract
Biobanking plays a pivotal role in biomedical research by providing standardized processing, precise storing, and management of biological sample collections along with the associated data. Effective data management is a prerequisite to ensure the integrity, quality, and accessibility of these resources. This review provides a current landscape of data management in biobanking, discussing key challenges, existing strategies, and potential future directions. We explore multiple aspects of data management, including data collection, storage, curation, sharing, and ethical considerations. By examining the evolving technologies and methodologies in biobanking, we aim to provide insights into addressing the complexities and maximizing the utility of biobank data for research and clinical applications.
Collapse
Affiliation(s)
- Ramez Alkhatib
- Biomaterial Bank Nord, Research Center Borstel Leibniz Lung Center, Parkallee 35, 23845 Borstel, Germany;
- German Centre for Lung Research (DZL), Airway Research Centre North (ARCN), 22927 Großhansdorf, Germany
| | - Karoline I. Gaede
- Biomaterial Bank Nord, Research Center Borstel Leibniz Lung Center, Parkallee 35, 23845 Borstel, Germany;
- German Centre for Lung Research (DZL), Airway Research Centre North (ARCN), 22927 Großhansdorf, Germany
- PopGen 2.0 Biobanking Network (P2N), University Hospital Schleswig-Holstein, Campus Kiel, Kiel University, 24105 Kiel, Germany
| |
Collapse
|
2
|
Shao HC, Mengke T, Deng J, Zhang Y. 3D cine-magnetic resonance imaging using spatial and temporal implicit neural representation learning (STINR-MR). Phys Med Biol 2024; 69:095007. [PMID: 38479004 PMCID: PMC11017162 DOI: 10.1088/1361-6560/ad33b7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Objective. 3D cine-magnetic resonance imaging (cine-MRI) can capture images of the human body volume with high spatial and temporal resolutions to study anatomical dynamics. However, the reconstruction of 3D cine-MRI is challenged by highly under-sampled k-space data in each dynamic (cine) frame, due to the slow speed of MR signal acquisition. We proposed a machine learning-based framework, spatial and temporal implicit neural representation learning (STINR-MR), for accurate 3D cine-MRI reconstruction from highly under-sampled data.Approach. STINR-MR used a joint reconstruction and deformable registration approach to achieve a high acceleration factor for cine volumetric imaging. It addressed the ill-posed spatiotemporal reconstruction problem by solving a reference-frame 3D MR image and a corresponding motion model that deforms the reference frame to each cine frame. The reference-frame 3D MR image was reconstructed as a spatial implicit neural representation (INR) network, which learns the mapping from input 3D spatial coordinates to corresponding MR values. The dynamic motion model was constructed via a temporal INR, as well as basis deformation vector fields (DVFs) extracted from prior/onboard 4D-MRIs using principal component analysis. The learned temporal INR encodes input time points and outputs corresponding weighting factors to combine the basis DVFs into time-resolved motion fields that represent cine-frame-specific dynamics. STINR-MR was evaluated using MR data simulated from the 4D extended cardiac-torso (XCAT) digital phantom, as well as two MR datasets acquired clinically from human subjects. Its reconstruction accuracy was also compared with that of the model-based non-rigid motion estimation method (MR-MOTUS) and a deep learning-based method (TEMPEST).Main results. STINR-MR can reconstruct 3D cine-MR images with high temporal (<100 ms) and spatial (3 mm) resolutions. Compared with MR-MOTUS and TEMPEST, STINR-MR consistently reconstructed images with better image quality and fewer artifacts and achieved superior tumor localization accuracy via the solved dynamic DVFs. For the XCAT study, STINR reconstructed the tumors to a mean ± SD center-of-mass error of 0.9 ± 0.4 mm, compared to 3.4 ± 1.0 mm of the MR-MOTUS method. The high-frame-rate reconstruction capability of STINR-MR allows different irregular motion patterns to be accurately captured.Significance. STINR-MR provides a lightweight and efficient framework for accurate 3D cine-MRI reconstruction. It is a 'one-shot' method that does not require external data for pre-training, allowing it to avoid generalizability issues typically encountered in deep learning-based methods.
Collapse
Affiliation(s)
- Hua-Chieh Shao
- The Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Tielige Mengke
- The Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Jie Deng
- The Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - You Zhang
- The Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| |
Collapse
|
3
|
Brancato V, Esposito G, Coppola L, Cavaliere C, Mirabelli P, Scapicchio C, Borgheresi R, Neri E, Salvatore M, Aiello M. Standardizing digital biobanks: integrating imaging, genomic, and clinical data for precision medicine. J Transl Med 2024; 22:136. [PMID: 38317237 PMCID: PMC10845786 DOI: 10.1186/s12967-024-04891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
Advancements in data acquisition and computational methods are generating a large amount of heterogeneous biomedical data from diagnostic domains such as clinical imaging, pathology, and next-generation sequencing (NGS), which help characterize individual differences in patients. However, this information needs to be available and suitable to promote and support scientific research and technological development, supporting the effective adoption of the precision medicine approach in clinical practice. Digital biobanks can catalyze this process, facilitating the sharing of curated and standardized imaging data, clinical, pathological and molecular data, crucial to enable the development of a comprehensive and personalized data-driven diagnostic approach in disease management and fostering the development of computational predictive models. This work aims to frame this perspective, first by evaluating the state of standardization of individual diagnostic domains and then by identifying challenges and proposing a possible solution towards an integrative approach that can guarantee the suitability of information that can be shared through a digital biobank. Our analysis of the state of the art shows the presence and use of reference standards in biobanks and, generally, digital repositories for each specific domain. Despite this, standardization to guarantee the integration and reproducibility of the numerical descriptors generated by each domain, e.g. radiomic, pathomic and -omic features, is still an open challenge. Based on specific use cases and scenarios, an integration model, based on the JSON format, is proposed that can help address this problem. Ultimately, this work shows how, with specific standardization and promotion efforts, the digital biobank model can become an enabling technology for the comprehensive study of diseases and the effective development of data-driven technologies at the service of precision medicine.
Collapse
Affiliation(s)
| | - Giuseppina Esposito
- Bio Check Up S.R.L, 80121, Naples, Italy
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131, Naples, Italy
| | | | | | - Peppino Mirabelli
- UOS Laboratori di Ricerca e Biobanca, AORN Santobono-Pausilipon, Via Teresa Ravaschieri, 8, 80122, Naples, Italy
| | - Camilla Scapicchio
- Academic Radiology, Department of Translational Research, University of Pisa, via Roma, 67, 56126, Pisa, Italy
| | - Rita Borgheresi
- Academic Radiology, Department of Translational Research, University of Pisa, via Roma, 67, 56126, Pisa, Italy
| | - Emanuele Neri
- Academic Radiology, Department of Translational Research, University of Pisa, via Roma, 67, 56126, Pisa, Italy
| | | | | |
Collapse
|
4
|
Hanekamp BA, Viktil E, Slørdahl KS, Dormagen JB, Kløw NE, Malinen E, Brunborg C, Guren MG, Schulz A. Magnetic resonance imaging of anal cancer: tumor characteristics and early prediction of treatment outcome. Strahlenther Onkol 2024; 200:19-27. [PMID: 37429949 PMCID: PMC10784345 DOI: 10.1007/s00066-023-02114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/18/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE To analyze tumor characteristics derived from pelvic magnetic resonance imaging (MRI) of patients with squamous cell carcinoma of the anus (SCCA) before and during chemoradiotherapy (CRT), and to compare the changes in these characteristics between scans of responders vs. nonresponders to CRT. METHODS We included 52 patients with a pelvic 3T MRI scan prior to CRT (baseline scan); 39 of these patients received an additional scan during week 2 of CRT (second scan). Volume, diameter, extramural tumor depth (EMTD), and external anal sphincter infiltration (EASI) of the tumor were assessed. Mean, kurtosis, skewness, standard deviation (SD), and entropy values were extracted from apparent diffusion coefficient (ADC) histograms. The main outcome was locoregional treatment failure. Correlations were evaluated with Wilcoxon's signed rank-sum test and Pearson's correlation coefficient, quantile regression, univariate logistic regression, and area under the ROC curve (AUC) analyses. RESULTS In isolated analyses of the baseline and second MRI scans, none of the characteristics were associated with outcome. Comparison between the scans showed significant changes in several characteristics: volume, diameter, EMTD, and ADC skewness decreased in the second scan, although the mean ADC increased. Small decreases in volume and diameter were associated with treatment failure, and these variables had the highest AUC values (0.73 and 0.76, respectively) among the analyzed characteristics. CONCLUSION Changes in tumor volume and diameter in an early scan during CRT could represent easily assessable imaging-based biomarkers to eliminate the need for analysis of more complex MRI characteristics.
Collapse
Affiliation(s)
- Bettina A Hanekamp
- Department of Radiology, Oslo University Hospital Ullevål, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Ellen Viktil
- Department of Radiology, Oslo University Hospital Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kathinka S Slørdahl
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital Ullevål, Oslo, Norway
| | | | - Nils E Kløw
- Department of Radiology, Oslo University Hospital Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eirik Malinen
- Department of Physics, University of Oslo, Oslo, Norway
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Marianne G Guren
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Anselm Schulz
- Department of Radiology, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
5
|
Tabrizi-Nezhadi P, MotieGhader H, Maleki M, Sahin S, Nematzadeh S, Torkamanian-Afshar M. Application of Protein-Protein Interaction Network Analysis in Order to Identify Cervical Cancer miRNA and mRNA Biomarkers. ScientificWorldJournal 2023; 2023:6626279. [PMID: 37746664 PMCID: PMC10513823 DOI: 10.1155/2023/6626279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023] Open
Abstract
Cervical cancer (CC) is one of the world's most common and severe cancers. This cancer includes two histological types: squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The current study aims at identifying novel potential candidate mRNA and miRNA biomarkers for SCC based on a protein-protein interaction (PPI) and miRNA-mRNA network analysis. The current project utilized a transcriptome profile for normal and SCC samples. First, the PPI network was constructed for the 1335 DEGs, and then, a significant gene module was extracted from the PPI network. Next, a list of miRNAs targeting module's genes was collected from the experimentally validated databases, and a miRNA-mRNA regulatory network was formed. After network analysis, four driver genes were selected from the module's genes including MCM2, MCM10, POLA1, and TONSL and introduced as potential candidate biomarkers for SCC. In addition, two hub miRNAs, including miR-193b-3p and miR-615-3p, were selected from the miRNA-mRNA regulatory network and reported as possible candidate biomarkers. In summary, six potential candidate RNA-based biomarkers consist of four genes containing MCM2, MCM10, POLA1, and TONSL, and two miRNAs containing miR-193b-3p and miR-615-3p are opposed as potential candidate biomarkers for CC.
Collapse
Affiliation(s)
| | - Habib MotieGhader
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Health Ecosystem, Medical Faculty, Nisantasi University, Istanbul, Turkey
| | - Masoud Maleki
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Soner Sahin
- Department of Health Ecosystem, Medical Faculty, Nisantasi University, Istanbul, Turkey
| | - Sajjad Nematzadeh
- Software Engineering Department, Engineering Faculty, Topkapi University, Istanbul, Turkey
| | - Mahsa Torkamanian-Afshar
- Department of Computer Engineering, Faculty of Engineering and Architecture, Nisantasi University, Istanbul, Turkey
| |
Collapse
|
6
|
Rahman M. Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine. Nanotheranostics 2023; 7:424-449. [PMID: 37650011 PMCID: PMC10464520 DOI: 10.7150/ntno.86467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
Medical imaging is an important factor for diagnosis. It can be used to diagnose patients, differentiate disease stages, and monitor treatment regimens. Although different imaging technologies are available, MRI is sensitive over other imaging modalities as it is capable of deep tissue penetration allowing to image the anatomical, structural, and molecular level of diseased organs. Thus, it can be used as screening tool for disease staging. One of the important components of imaging is contrast agents which are used to increase the sensitivity of MRI technology. While different types of contrast agents are available, iron-oxide based nanoparticles (IONPS) are widely used as these are easy to formulate, functionalize, biocompatible and cost effective. In addition to its use as contrast agents, these have been used as drug carriers for the treatment of different types of diseases ranging from cancer, cardiovascular diseases, neurological disorders, autoimmune diseases, and infectious diseases. For the last two decades, there has been advancement in nanotheranostics, where IONPs are formulated to carry drug and be used as contrast agents in one system so that these can be used for image-guided therapy and monitor real-life treatment response in diseased tissue. This technology can be used to stratify patients into responders and non-responders and reduce adverse drug toxicity and lead to a tailored treatment. However, success of nanotheranostics depends on several factor, including identification of disease associated biomarkers that can be targeted on IONPs during formulation. While many challenges exist for the clinical translation of nanotheranostics, it still has the potential to be implemented in personalized treatment strategy. In this review article, we discussed the use of MRI technology and IONPs in relation to their application in disease diagnosis and nanotheranostics application in personalized medicine.
Collapse
Affiliation(s)
- Mahbuba Rahman
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Shao HC, Mengke T, Deng J, Zhang Y. 3D cine-magnetic resonance imaging using spatial and temporal implicit neural representation learning (STINR-MR). ARXIV 2023:arXiv:2308.09771v1. [PMID: 37645038 PMCID: PMC10462175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Objective 3D cine-magnetic resonance imaging (cine-MRI) can capture images of the human body volume with high spatial and temporal resolutions to study the anatomical dynamics. However, the reconstruction of 3D cine-MRI is challenged by highly undersampled k-space data in each dynamic (cine) frame, due to the slow speed of MR signal acquisition. We proposed a machine learning-based framework, spatial and temporal implicit neural representation learning (STINR-MR), for accurate 3D cine-MRI reconstruction from highly undersampled data. Approach STINR-MR used a joint reconstruction and deformable registration approach to achieve a high acceleration factor for cine volumetric imaging. It addressed the ill-posed spatiotemporal reconstruction problem by solving a reference-frame 3D MR image and a corresponding motion model which deforms the reference frame to each cine frame. The reference-frame 3D MR image was reconstructed as a spatial implicit neural representation (INR) network, which learns the mapping from input 3D spatial coordinates to corresponding MR values. The dynamic motion model was constructed via a temporal INR, as well as basis deformation vector fields (DVFs) extracted from prior/onboard 4D-MRIs using principal component analysis (PCA). The learned temporal INR encodes input time points and outputs corresponding weighting factors to combine the basis DVFs into time-resolved motion fields that represent cine-frame-specific dynamics. STINR-MR was evaluated using MR data simulated from the 4D extended cardiac-torso (XCAT) digital phantom, as well as MR data acquired clinically from a healthy human subject. Its reconstruction accuracy was also compared with that of the model-based non-rigid motion estimation method (MR-MOTUS). Main results STINR-MR can reconstruct 3D cine-MR images with high temporal (<100 ms) and spatial (3 mm) resolutions. Compared with MR-MOTUS, STINR-MR consistently reconstructed images with better image quality and fewer artifacts and achieved superior tumor localization accuracy via the solved dynamic DVFs. For the XCAT study, STINR reconstructed the tumors to a mean±S.D. center-of-mass error of 1.0±0.4 mm, compared to 3.4±1.0 mm of the MR-MOTUS method. The high-frame-rate reconstruction capability of STINR-MR allows different irregular motion patterns to be accurately captured. Significance STINR-MR provides a lightweight and efficient framework for accurate 3D cine-MRI reconstruction. It is a 'one-shot' method that does not require external data for pre-training, allowing it to avoid generalizability issues typically encountered in deep learning-based methods.
Collapse
Affiliation(s)
- Hua-Chieh Shao
- The Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tielige Mengke
- The Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jie Deng
- The Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - You Zhang
- The Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Bukkuri A, Adler FR. Biomarkers or biotargets? Using competition to lure cancer cells into evolutionary traps. Evol Med Public Health 2023; 11:264-276. [PMID: 37599857 PMCID: PMC10439788 DOI: 10.1093/emph/eoad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/23/2023] [Indexed: 08/22/2023] Open
Abstract
Background and Objectives Cancer biomarkers provide information on the characteristics and extent of cancer progression and help inform clinical decision-making. However, they can also play functional roles in oncogenesis, from enabling metastases and inducing angiogenesis to promoting resistance to chemotherapy. The resulting evolution could bias estimates of cancer progression and lead to suboptimal treatment decisions. Methodology We create an evolutionary game theoretic model of cell-cell competition among cancer cells with different levels of biomarker production. We design and simulate therapies on top of this pre-existing game and examine population and biomarker dynamics. Results Using total biomarker as a proxy for population size generally underestimates chemotherapy efficacy and overestimates targeted therapy efficacy. If biomarker production promotes resistance and a targeted therapy against the biomarker exists, this dynamic can be used to set an evolutionary trap. After chemotherapy selects for a high biomarker-producing cancer cell population, targeted therapy could be highly effective for cancer extinction. Rather than using the most effective therapy given the cancer's current biomarker level and population size, it is more effective to 'overshoot' and utilize an evolutionary trap when the aim is extinction. Increasing cell-cell competition, as influenced by biomarker levels, can help prime and set these traps. Conclusion and Implications Evolution of functional biomarkers amplify the limitations of using total biomarker levels as a measure of tumor size when designing therapeutic protocols. Evolutionarily enlightened therapeutic strategies may be highly effective, assuming a targeted therapy against the biomarker is available.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Frederick R Adler
- Department of Mathematics, University of Utah, Salt Lake City, UT, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
9
|
Chan TH, Haworth A, Wang A, Osanlouy M, Williams S, Mitchell C, Hofman MS, Hicks RJ, Murphy DG, Reynolds HM. Detecting localised prostate cancer using radiomic features in PSMA PET and multiparametric MRI for biologically targeted radiation therapy. EJNMMI Res 2023; 13:34. [PMID: 37099047 PMCID: PMC10133419 DOI: 10.1186/s13550-023-00984-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Prostate-Specific Membrane Antigen (PSMA) PET/CT and multiparametric MRI (mpMRI) are well-established modalities for identifying intra-prostatic lesions (IPLs) in localised prostate cancer. This study aimed to investigate the use of PSMA PET/CT and mpMRI for biologically targeted radiation therapy treatment planning by: (1) analysing the relationship between imaging parameters at a voxel-wise level and (2) assessing the performance of radiomic-based machine learning models to predict tumour location and grade. METHODS PSMA PET/CT and mpMRI data from 19 prostate cancer patients were co-registered with whole-mount histopathology using an established registration framework. Apparent Diffusion Coefficient (ADC) maps were computed from DWI and semi-quantitative and quantitative parameters from DCE MRI. Voxel-wise correlation analysis was conducted between mpMRI parameters and PET Standardised Uptake Value (SUV) for all tumour voxels. Classification models were built using radiomic and clinical features to predict IPLs at a voxel level and then classified further into high-grade or low-grade voxels. RESULTS Perfusion parameters from DCE MRI were more highly correlated with PET SUV than ADC or T2w. IPLs were best detected with a Random Forest Classifier using radiomic features from PET and mpMRI rather than either modality alone (sensitivity, specificity and area under the curve of 0.842, 0.804 and 0.890, respectively). The tumour grading model had an overall accuracy ranging from 0.671 to 0.992. CONCLUSIONS Machine learning classifiers using radiomic features from PSMA PET and mpMRI show promise for predicting IPLs and differentiating between high-grade and low-grade disease, which could be used to inform biologically targeted radiation therapy planning.
Collapse
Affiliation(s)
- Tsz Him Chan
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Alan Wang
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Centre for Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Mahyar Osanlouy
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Scott Williams
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Michael S Hofman
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rodney J Hicks
- Department of Medicine, St Vincent's Hospital Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Declan G Murphy
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Hayley M Reynolds
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
10
|
Wijethilake N, MacCormac O, Vercauteren T, Shapey J. Imaging biomarkers associated with extra-axial intracranial tumors: a systematic review. Front Oncol 2023; 13:1131013. [PMID: 37182138 PMCID: PMC10167010 DOI: 10.3389/fonc.2023.1131013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Extra-axial brain tumors are extra-cerebral tumors and are usually benign. The choice of treatment for extra-axial tumors is often dependent on the growth of the tumor, and imaging plays a significant role in monitoring growth and clinical decision-making. This motivates the investigation of imaging biomarkers for these tumors that may be incorporated into clinical workflows to inform treatment decisions. The databases from Pubmed, Web of Science, Embase, and Medline were searched from 1 January 2000 to 7 March 2022, to systematically identify relevant publications in this area. All studies that used an imaging tool and found an association with a growth-related factor, including molecular markers, grade, survival, growth/progression, recurrence, and treatment outcomes, were included in this review. We included 42 studies, comprising 22 studies (50%) of patients with meningioma; 17 studies (38.6%) of patients with pituitary tumors; three studies (6.8%) of patients with vestibular schwannomas; and two studies (4.5%) of patients with solitary fibrous tumors. The included studies were explicitly and narratively analyzed according to tumor type and imaging tool. The risk of bias and concerns regarding applicability were assessed using QUADAS-2. Most studies (41/44) used statistics-based analysis methods, and a small number of studies (3/44) used machine learning. Our review highlights an opportunity for future work to focus on machine learning-based deep feature identification as biomarkers, combining various feature classes such as size, shape, and intensity. Systematic Review Registration: PROSPERO, CRD42022306922.
Collapse
Affiliation(s)
- Navodini Wijethilake
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Oscar MacCormac
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jonathan Shapey
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
11
|
Chiu FY, Yen Y. Imaging biomarkers for clinical applications in neuro-oncology: current status and future perspectives. Biomark Res 2023; 11:35. [PMID: 36991494 DOI: 10.1186/s40364-023-00476-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Biomarker discovery and development are popular for detecting the subtle diseases. However, biomarkers are needed to be validated and approved, and even fewer are ever used clinically. Imaging biomarkers have a crucial role in the treatment of cancer patients because they provide objective information on tumor biology, the tumor's habitat, and the tumor's signature in the environment. Tumor changes in response to an intervention complement molecular and genomic translational diagnosis as well as quantitative information. Neuro-oncology has become more prominent in diagnostics and targeted therapies. The classification of tumors has been actively updated, and drug discovery, and delivery in nanoimmunotherapies are advancing in the field of target therapy research. It is important that biomarkers and diagnostic implements be developed and used to assess the prognosis or late effects of long-term survivors. An improved realization of cancer biology has transformed its management with an increasing emphasis on a personalized approach in precision medicine. In the first part, we discuss the biomarker categories in relation to the courses of a disease and specific clinical contexts, including that patients and specimens should both directly reflect the target population and intended use. In the second part, we present the CT perfusion approach that provides quantitative and qualitative data that has been successfully applied to the clinical diagnosis, treatment and application. Furthermore, the novel and promising multiparametric MR imageing approach will provide deeper insights regarding the tumor microenvironment in the immune response. Additionally, we briefly remark new tactics based on MRI and PET for converging on imaging biomarkers combined with applications of bioinformatics in artificial intelligence. In the third part, we briefly address new approaches based on theranostics in precision medicine. These sophisticated techniques merge achievable standardizations into an applicatory apparatus for primarily a diagnostic implementation and tracking radioactive drugs to identify and to deliver therapies in an individualized medicine paradigm. In this article, we describe the critical principles for imaging biomarker characterization and discuss the current status of CT, MRI and PET in finiding imaging biomarkers of early disease.
Collapse
Affiliation(s)
- Fang-Ying Chiu
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, 970374, Taiwan.
- Center for Brain and Neurobiology Research, Tzu Chi University, Hualien City, 970374, Taiwan.
- Teaching and Research Headquarters for Sustainable Development Goals, Tzu Chi University, Hualien City, 970374, Taiwan.
| | - Yun Yen
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, 970374, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei City, 110301, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, 110301, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City, 110301, Taiwan.
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei City, 116081, Taiwan.
| |
Collapse
|
12
|
Thangudu S, Lin WC, Lee CL, Liao MC, Yu CC, Wang YM, Su CH. Ligand free FeSn 2 alloy nanoparticles for safe T2-weighted MR imaging of in vivo lung tumors. Biomater Sci 2023; 11:2177-2185. [PMID: 36740962 DOI: 10.1039/d2bm01517j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biosafety is a critical issue for the successful translocation of nanomaterial-based therapeutic/diagnostic agents from bench to bedside. For instance, after the withdrawal of clinically approved magnetic resonance (MR) imaging contrast agents (CAs) due to their biosafety issues, there is a massive demand for alternative, efficient, and biocompatible MR contrast agents for future MRI clinical applications. To this end, here we successfully demonstrate the in vivo MR contrast abilities and biocompatibilities of ligand-free FeSn2 alloy NPs for tracking in vivo lung tumors. In vitro and in vivo results reveal the FeSn2 alloy NPs acting as appreciable T2 weighted MR contrast agents to locate tumors. The construction of iron (Fe) on biocompatible tin (Sn) greatly facilitates the reduction of the intrinsic toxicities of Fe in vivo resulting in no significant abnormalities in liver and kidney functions. Therefore, we envision that constructing ligand-free alloy NPs will be a promising candidate for tracking in vivo tumors in future clinical applications.
Collapse
Affiliation(s)
- Suresh Thangudu
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan. .,Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chin-Lai Lee
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Min-Chiao Liao
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Chun-Chieh Yu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yu-Ming Wang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan. .,Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.,Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan. .,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
13
|
Bodaghi A, Fattahi N, Ramazani A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon 2023; 9:e13323. [PMID: 36744065 PMCID: PMC9884646 DOI: 10.1016/j.heliyon.2023.e13323] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The use of biomarkers as early warning systems in the evaluation of disease risk has increased markedly in the last decade. Biomarkers are indicators of typical biological processes, pathogenic processes, or pharmacological reactions to therapy. The application and identification of biomarkers in the medical and clinical fields have an enormous impact on society. In this review, we discuss the history, various definitions, classifications, characteristics, and discovery of biomarkers. Furthermore, the potential application of biomarkers in the diagnosis, prognosis, and treatment of various diseases over the last decade are reviewed. The present review aims to inspire readers to explore new avenues in biomarker research and development.
Collapse
Affiliation(s)
- Ali Bodaghi
- Department of Chemistry, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
| | - Nadia Fattahi
- Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran,Trita Nanomedicine Research and Technology Development Center (TNRTC), Zanjan Health Technology Park, 45156-13191, Zanjan, Iran
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran,Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan, 45371-38791, Iran,Corresponding author. Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran.;
| |
Collapse
|
14
|
Reynolds HM, Tadimalla S, Wang YF, Montazerolghaem M, Sun Y, Williams S, Mitchell C, Finnegan ME, Murphy DG, Haworth A. Semi-quantitative and quantitative dynamic contrast-enhanced (DCE) MRI parameters as prostate cancer imaging biomarkers for biologically targeted radiation therapy. Cancer Imaging 2022; 22:71. [PMID: 36536464 PMCID: PMC9762110 DOI: 10.1186/s40644-022-00508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Biologically targeted radiation therapy treatment planning requires voxel-wise characterisation of tumours. Dynamic contrast enhanced (DCE) DCE MRI has shown promise in defining voxel-level biological characteristics. In this study we consider the relative value of qualitative, semi-quantitative and quantitative assessment of DCE MRI compared with diffusion weighted imaging (DWI) and T2-weighted (T2w) imaging to detect prostate cancer at the voxel level. METHODS Seventy prostate cancer patients had multiparametric MRI prior to radical prostatectomy, including T2w, DWI and DCE MRI. Apparent Diffusion Coefficient (ADC) maps were computed from DWI, and semi-quantitative and quantitative parameters computed from DCE MRI. Tumour location and grade were validated with co-registered whole mount histology. Kolmogorov-Smirnov tests were applied to determine whether MRI parameters in tumour and benign voxels were significantly different. Cohen's d was computed to quantify the most promising biomarkers. The Parker and Weinmann Arterial Input Functions (AIF) were compared for their ability to best discriminate between tumour and benign tissue. Classifier models were used to determine whether DCE MRI parameters improved tumour detection versus ADC and T2w alone. RESULTS All MRI parameters had significantly different data distributions in tumour and benign voxels. For low grade tumours, semi-quantitative DCE MRI parameter time-to-peak (TTP) was the most discriminating and outperformed ADC. For high grade tumours, ADC was the most discriminating followed by DCE MRI parameters Ktrans, the initial rate of enhancement (IRE), then TTP. Quantitative parameters utilising the Parker AIF better distinguished tumour and benign voxel values than the Weinmann AIF. Classifier models including DCE parameters versus T2w and ADC alone, gave detection accuracies of 78% versus 58% for low grade tumours and 85% versus 72% for high grade tumours. CONCLUSIONS Incorporating DCE MRI parameters with DWI and T2w gives improved accuracy for tumour detection at a voxel level. DCE MRI parameters should be used to spatially characterise tumour biology for biologically targeted radiation therapy treatment planning.
Collapse
Affiliation(s)
- Hayley M Reynolds
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | | | - Yu-Feng Wang
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | | | - Yu Sun
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Scott Williams
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mary E Finnegan
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Declan G Murphy
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Annette Haworth
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Kulabhusan PK, Ray R, Ramachandra SG, Srinivasulu M, Hariharan A, Balaji K, Mani NK. Coalescing aptamers and liquid-crystals for sensing applications. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Croci D, Santalla Méndez R, Temme S, Soukup K, Fournier N, Zomer A, Colotti R, Wischnewski V, Flögel U, van Heeswijk RB, Joyce JA. Multispectral fluorine-19 MRI enables longitudinal and noninvasive monitoring of tumor-associated macrophages. Sci Transl Med 2022; 14:eabo2952. [PMID: 36260692 DOI: 10.1126/scitranslmed.abo2952] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
High-grade gliomas, the most common and aggressive primary brain tumors, are characterized by a complex tumor microenvironment (TME). Among the immune cells infiltrating the glioma TME, tumor-associated microglia and macrophages (TAMs) constitute the major compartment. In patients with gliomas, increased TAM abundance is associated with more aggressive disease. Alterations in TAM phenotypes and functions have been reported in preclinical models of multiple cancers during tumor development and after therapeutic interventions, including radiotherapy and molecular targeted therapies. These findings indicate that it is crucial to evaluate TAM abundance and dynamics over time. Current techniques to quantify TAMs in patients rely mainly on histological staining of tumor biopsies. Although informative, these techniques require an invasive procedure to harvest the tissue sample and typically only result in a snapshot of a small region at a single point in time. Fluorine isotope 19 MRI (19F MRI) represents a powerful means to noninvasively and longitudinally monitor myeloid cells in pathological conditions by intravenously injecting perfluorocarbon-containing nanoparticles (PFC-NP). In this study, we demonstrated the feasibility and power of 19F MRI in preclinical models of gliomagenesis, breast-to-brain metastasis, and breast cancer and showed that the major cellular source of 19F signal consists of TAMs. Moreover, multispectral 19F MRI with two different PFC-NP allowed us to identify spatially and temporally distinct TAM niches in radiotherapy-recurrent murine gliomas. Together, we have imaged TAMs noninvasively and longitudinally with integrated cellular, spatial, and temporal resolution, thus revealing important biological insights into the critical functions of TAMs, including in disease recurrence.
Collapse
Affiliation(s)
- Davide Croci
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Rui Santalla Méndez
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Sebastian Temme
- Department of Anesthesiology, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany.,Experimental Cardiovascular Imaging, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany
| | - Klara Soukup
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Center, Lausanne 1011, Switzerland.,Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Anoek Zomer
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Roberto Colotti
- In Vivo Imaging Facility (IVIF), Department of Research and Training, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Vladimir Wischnewski
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany.,Institute for Molecular Cardiology, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Ruud B van Heeswijk
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| |
Collapse
|
17
|
Kayal EB, Alampally JT, Sharma R, Bakhshi S, Mehndiratta A, Kumar R, Chandrashekhara SH, Jana M, Bhalla AS, Sharma MC, Mridha AR, Vishnubhatla S, Kandasamy D. Chemotherapy response evaluation using diffusion weighted MRI in Ewing Sarcoma: A single center experience. Acta Radiol 2022; 64:1508-1517. [PMID: 36071615 DOI: 10.1177/02841851221124669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Non-invasive biomarkers for early chemotherapeutic response in Ewing sarcoma family of tumors (ESFT) are useful for optimizing existing treatment protocol. PURPOSE To assess the role of diffusion-weighted magnetic resonance imaging (MRI) in the early evaluation of chemotherapeutic response in ESFT. MATERIAL AND METHODS A total of 28 patients (mean age = 17.2 ± 5.6 years) with biopsy proven ESFT were analyzed prospectively. Patients underwent MRI acquisition on a 1.5-T scanner at three time points: before starting neoadjuvant chemotherapy (baseline), after first cycle chemotherapy (early time point), and after completion of chemotherapy (last time point). RECIST 1.1 criteria was used to evaluate the response to chemotherapy and patients were categorized as responders (complete and partial response) and non-responders (stable and progressive disease). Tumor diameter, absolute apparent diffusion coefficient (ADC), and normalized ADC (nADC) values in the tumor were measured. Baseline parameters and relative percentage change of parameters after first cycle chemotherapy were assessed for early detection of chemotherapy response. RESULTS The responder:non-responder ratio was 21:7. At baseline, ADC ([0.864 ± 0.266 vs. 0.977 ± 0.246]) × 10-3mm2/s; P = 0.205) and nADC ([0.740 ± 0.254 vs. 0.925 ± 0.262] × 10-3mm2/s; P = 0.033) among responders was lower than the non-responders and predicted response to chemotherapy with AUCs of 0.6 and 0.735, respectively. At the early time point, tumor diameter (27% ± 14% vs. 4.6% ± 10%; P = 0.002) showed a higher reduction and ADC (75% ± 44% vs. 52% ± 72%; P = 0.039) and nADC (81% ± 44% vs. 48% ± 67%; P = 0.008) showed a higher increase in mean values among responders than the non-responders and identified chemotherapy response with AUC of 0.890, 0.723, and 0.756, respectively. CONCLUSION Baseline nADC and its change after the first cycle of chemotherapy can be used as non-invasive surrogate markers of early chemotherapeutic response in patients with ESFT.
Collapse
Affiliation(s)
- Esha Baidya Kayal
- Centre for Biomedical Engineering, 28817Indian Institute of Technology Delhi, New Delhi, India
| | | | - Raju Sharma
- Department of Radiodiagnosis, 28730All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr B.R. Ambedkar Institute-Rotary Cancer Hospital (IRCH), 28730All India Institute of Medical Sciences, New Delhi, India
| | - Amit Mehndiratta
- Centre for Biomedical Engineering, 28817Indian Institute of Technology Delhi, New Delhi, India.,Department of Biomedical Engineering, 28730All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Kumar
- Department of Nuclear Medicine, 28730All India Institute of Medical Sciences, New Delhi, India
| | - S H Chandrashekhara
- Department of Medical Radiodiagnosis, Dr B.R. Ambedkar Institute-Rotary Cancer Hospital (IRCH), 28730All India Institute of Medical Sciences, New Delhi, India
| | - Manisha Jana
- Department of Radiodiagnosis, 28730All India Institute of Medical Sciences, New Delhi, India
| | - Ashu Seith Bhalla
- Department of Radiodiagnosis, 28730All India Institute of Medical Sciences, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, 28730All India Institute of Medical Sciences, New Delhi, India
| | - Asit Ranjan Mridha
- Department of Pathology, 28730All India Institute of Medical Sciences, New Delhi, India
| | - Sreenivas Vishnubhatla
- Department of Biostatistics, 28730All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
18
|
Carr ME, Keenan KE, Rai R, Boss MA, Metcalfe P, Walker A, Holloway L. Conformance of a 3T Radiotherapy MRI Scanner to the QIBA Diffusion Profile. Med Phys 2022; 49:4508-4517. [PMID: 35365884 PMCID: PMC9543906 DOI: 10.1002/mp.15645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose To assess the technical performance of the apparent diffusion coefficient (ADC) on a dedicated 3T radiotherapy scanner, using a standardized phantom and sequences. Investigations into factors that could impact the technical performance of ADC in the clinic were also completed, including changing the slice‐encoded imaging direction and the reference sample ADC value. Methods ADC acquisitions were performed monthly on an isotropic diffusion phantom over 1 year. Measurements of ADC %bias, coefficients of variation for short‐/long‐term repeatability and precision (CVST/CVLT and CVP), and b‐value dependency (Depb) were calculated. The measurements were then assessed according to the Quantitative Imaging Biomarker Alliance (QIBA) Diffusion Profile specifications. Results The average of all measurements over the year was within Profile recommended ranges. This included when testing was performed in different imaging directions, and on samples that had different ADC reference values (0.4–1.1 μm2/ms). Results in the axial plane for the central water vial included a bias of +0.05%, CVST /CVLT/CVP = 0.1%/ 0.9%/0.4% and Depb = 0.4%. Conclusions The technical performance of ADC on a radiotherapy dedicated MRI scanner over the course of 12 months was considered conformant to the QIBA Profile. Quantifying these metrics and factors that may affect the performance is essential in progressing the use of ADC clinically: ensuring that the observed change of ADC in a tissue is due to a physiological response and not measurement variability.
Collapse
Affiliation(s)
- Madeline E Carr
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, Australia.,Ingham Institute for Applied Medical Research, Liverpool, Australia.,Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | - Kathryn E Keenan
- National Institute of Standards and Technology, Boulder, United States
| | - Robba Rai
- Ingham Institute for Applied Medical Research, Liverpool, Australia.,Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia.,Institute of Medical Physics, University of Sydney, Camperdown, Australia
| | - Michael A Boss
- American College of Radiology, Philadelphia, United States
| | - Peter Metcalfe
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, Australia.,Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Amy Walker
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, Australia.,Ingham Institute for Applied Medical Research, Liverpool, Australia.,Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia.,Institute of Medical Physics, University of Sydney, Camperdown, Australia
| | - Lois Holloway
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, Australia.,Ingham Institute for Applied Medical Research, Liverpool, Australia.,Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia.,Institute of Medical Physics, University of Sydney, Camperdown, Australia.,South Western Sydney Clinical School, University of New South Wales, Liverpool, Australia
| |
Collapse
|
19
|
Ortner VK, Mandel VD, Bertugno S, Philipsen PA, Haedersdal M. Imaging of the Nail Unit in Psoriatic Patients - a Systematic Scoping Review of Techniques and Terminology. Exp Dermatol 2022; 31:828-840. [PMID: 35353919 PMCID: PMC9323418 DOI: 10.1111/exd.14572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/14/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022]
Abstract
Background The growing interest in the visualization of psoriatic nail unit changes has led to the discovery of an abundance of image characteristics across various modalities. Objective To identify techniques for non‐invasive imaging of nail unit structures in psoriatic patients and review extracted image features to unify the diverse terminology. Methods For this systematic scoping review, we included studies available on PubMed and Embase, independently extracted image characteristics, and semantically grouped the identified features to suggest a preferred terminology for each technique. Results After screening 753 studies, 67 articles on the visualization of clinical and subclinical psoriatic changes in the nail plate, matrix, bed, folds and hyponychium were included. We identified 4 optical and 3 radiological imaging techniques for the assessment of surface (dermoscopy [n = 16], capillaroscopy [n = 12]), sub‐surface (ultrasound imaging [n = 36], optical coherence tomography [n = 4], fluorescence optical imaging [n = 3]), and deep‐seated psoriatic changes (magnetic resonance imaging [n = 2], positron emission tomography‐computed tomography [n = 1]). By condensing 244 image feature descriptions into a glossary of 82 terms, overall redundancy was cut by 66.4% (37.5%–77.1%). More than 75% of these image features provide additional disease‐relevant information that is not captured using conventional clinical assessment scales. Conclusions This review has identified, unified, and contextualized image features and related terminology for non‐invasive imaging of the nail unit in patients with psoriatic conditions. The suggested glossary could facilitate the integrative use of non‐invasive imaging techniques for the detailed examination of psoriatic nail unit structures in research and clinical practice.
Collapse
Affiliation(s)
- V K Ortner
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg and Frederiskberg, Denmark
| | - V D Mandel
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.,Porphyria and Rare Diseases Unit, San Gallicano Dermatological Institute - IRCCS, Rome, Italy
| | - S Bertugno
- Radiology Unit, Bernardino Ramazzini Hospital, Carpi, Italy
| | - P A Philipsen
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg and Frederiskberg, Denmark
| | - M Haedersdal
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg and Frederiskberg, Denmark
| |
Collapse
|
20
|
Baidya Kayal E, Sharma N, Sharma R, Bakhshi S, Kandasamy D, Mehndiratta A. T1 mapping as a surrogate marker of chemotherapy response evaluation in patients with osteosarcoma. Eur J Radiol 2022; 148:110170. [DOI: 10.1016/j.ejrad.2022.110170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/25/2022]
|
21
|
Bak SH, Kim C, Kim CH, Ohno Y, Lee HY. Magnetic resonance imaging for lung cancer: a state-of-the-art review. PRECISION AND FUTURE MEDICINE 2022. [DOI: 10.23838/pfm.2021.00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Mikdadi D, O'Connell KA, Meacham PJ, Dugan MA, Ojiere MO, Carlson TB, Klenk JA. Applications of artificial intelligence (AI) in ovarian cancer, pancreatic cancer, and image biomarker discovery. Cancer Biomark 2022; 33:173-184. [PMID: 35213360 DOI: 10.3233/cbm-210301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Artificial intelligence (AI), including machine learning (ML) and deep learning, has the potential to revolutionize biomedical research. Defined as the ability to "mimic" human intelligence by machines executing trained algorithms, AI methods are deployed for biomarker discovery. OBJECTIVE We detail the advancements and challenges in the use of AI for biomarker discovery in ovarian and pancreatic cancer. We also provide an overview of associated regulatory and ethical considerations. METHODS We conducted a literature review using PubMed and Google Scholar to survey the published findings on the use of AI in ovarian cancer, pancreatic cancer, and cancer biomarkers. RESULTS Most AI models associated with ovarian and pancreatic cancer have yet to be applied in clinical settings, and imaging data in many studies are not publicly available. Low disease prevalence and asymptomatic disease limits data availability required for AI models. The FDA has yet to qualify imaging biomarkers as effective diagnostic tools for these cancers. CONCLUSIONS Challenges associated with data availability, quality, bias, as well as AI transparency and explainability, will likely persist. Explainable and trustworthy AI efforts will need to continue so that the research community can better understand and construct effective models for biomarker discovery in rare cancers.
Collapse
Affiliation(s)
- Dina Mikdadi
- Biomedical Data Science Lab, Deloitte Consulting LLP, Arlington, VA, USA
| | - Kyle A O'Connell
- Biomedical Data Science Lab, Deloitte Consulting LLP, Arlington, VA, USA.,Department of Biology, George Washington University, Washington, DC, USA
| | - Philip J Meacham
- Biomedical Data Science Lab, Deloitte Consulting LLP, Arlington, VA, USA
| | - Madeleine A Dugan
- Biomedical Data Science Lab, Deloitte Consulting LLP, Arlington, VA, USA
| | - Michael O Ojiere
- Biomedical Data Science Lab, Deloitte Consulting LLP, Arlington, VA, USA
| | - Thaddeus B Carlson
- Biomedical Data Science Lab, Deloitte Consulting LLP, Arlington, VA, USA
| | - Juergen A Klenk
- Biomedical Data Science Lab, Deloitte Consulting LLP, Arlington, VA, USA
| |
Collapse
|
23
|
Vivoda Tomšič M, Korošec P, Kovač V, Bisdas S, Šurlan Popovič K. Dynamic contrast-enhanced MRI in malignant pleural mesothelioma: prediction of outcome based on DCE-MRI measurements in patients undergoing cytotoxic chemotherapy. BMC Cancer 2022; 22:191. [PMID: 35184730 PMCID: PMC8859879 DOI: 10.1186/s12885-022-09277-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/09/2022] [Indexed: 11/22/2022] Open
Abstract
Background The malignant pleural mesothelioma (MPM) response rate to chemotherapy is low. The identification of imaging biomarkers that could help guide the most effective therapy approach for individual patients is highly desirable. Our aim was to investigate the dynamic contrast-enhanced (DCE) MR parameters as predictors for progression-free (PFS) and overall survival (OS) in patients with MPM treated with cisplatin-based chemotherapy. Methods Thirty-two consecutive patients with MPM were enrolled in this prospective study. Pretreatment and intratreatment DCE-MRI were scheduled in each patient. The DCE parameters were analyzed using the extended Tofts (ET) and the adiabatic approximation tissue homogeneity (AATH) model. Comparison analysis, logistic regression and ROC analysis were used to identify the predictors for the patient’s outcome. Results Patients with higher pretreatment ET and AATH-calculated Ktrans and ve values had longer OS (P≤.006). Patients with a more prominent reduction in ET-calculated Ktrans and kep values during the early phase of chemotherapy had longer PFS (P =.008). No parameter was identified to predict PFS. Pre-treatment ET-calculated Ktrans was found to be an independent predictive marker for longer OS (P=.02) demonstrating the most favourable discrimination performance compared to other DCE parameters with an estimated sensitivity of 89% and specificity of 78% (AUC 0.9, 95% CI 0.74-0.98, cut off > 0.08 min-1). Conclusions In the present study, higher pre-treatment ET-calculated Ktrans values were associated with longer OS. The results suggest that DCE-MRI might provide additional information for identifying MPM patients that may respond to chemotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09277-x.
Collapse
|
24
|
Kim B, Kim H, Kim S, Hwang YR. A brief review of non-invasive brain imaging technologies and the near-infrared optical bioimaging. Appl Microsc 2021; 51:9. [PMID: 34170436 PMCID: PMC8227874 DOI: 10.1186/s42649-021-00058-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Brain disorders seriously affect life quality. Therefore, non-invasive neuroimaging has received attention to monitoring and early diagnosing neural disorders to prevent their progress to a severe level. This short review briefly describes the current MRI and PET/CT techniques developed for non-invasive neuroimaging and the future direction of optical imaging techniques to achieve higher resolution and specificity using the second near-infrared (NIR-II) region of wavelength with organic molecules.
Collapse
Affiliation(s)
- Beomsue Kim
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea.
| | - Hongmin Kim
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Songhui Kim
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Young-Ran Hwang
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| |
Collapse
|
25
|
Hajjo R, Sabbah DA, Bardaweel SK, Tropsha A. Identification of Tumor-Specific MRI Biomarkers Using Machine Learning (ML). Diagnostics (Basel) 2021; 11:742. [PMID: 33919342 PMCID: PMC8143297 DOI: 10.3390/diagnostics11050742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
The identification of reliable and non-invasive oncology biomarkers remains a main priority in healthcare. There are only a few biomarkers that have been approved as diagnostic for cancer. The most frequently used cancer biomarkers are derived from either biological materials or imaging data. Most cancer biomarkers suffer from a lack of high specificity. However, the latest advancements in machine learning (ML) and artificial intelligence (AI) have enabled the identification of highly predictive, disease-specific biomarkers. Such biomarkers can be used to diagnose cancer patients, to predict cancer prognosis, or even to predict treatment efficacy. Herein, we provide a summary of the current status of developing and applying Magnetic resonance imaging (MRI) biomarkers in cancer care. We focus on all aspects of MRI biomarkers, starting from MRI data collection, preprocessing and machine learning methods, and ending with summarizing the types of existing biomarkers and their clinical applications in different cancer types.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan;
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27599, USA;
- National Center for Epidemics and Communicable Disease Control, Amman 11118, Jordan
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan;
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan;
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
26
|
Duron L, Heraud A, Charbonneau F, Zmuda M, Savatovsky J, Fournier L, Lecler A. A Magnetic Resonance Imaging Radiomics Signature to Distinguish Benign From Malignant Orbital Lesions. Invest Radiol 2021; 56:173-180. [PMID: 32932375 DOI: 10.1097/rli.0000000000000722] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Distinguishing benign from malignant orbital lesions remains challenging both clinically and with imaging, leading to risky biopsies. The objective was to differentiate benign from malignant orbital lesions using radiomics on 3 T magnetic resonance imaging (MRI) examinations. MATERIALS AND METHODS This institutional review board-approved prospective single-center study enrolled consecutive patients presenting with an orbital lesion undergoing a 3 T MRI prior to surgery from December 2015 to July 2019. Radiomics features were extracted from 6 MRI sequences (T1-weighted images [WIs], DIXON-T2-WI, diffusion-WI, postcontrast DIXON-T1-WI) using the Pyradiomics software. Features were selected based on their intraobserver and interobserver reproducibility, nonredundancy, and with a sequential step forward feature selection method. Selected features were used to train and optimize a Random Forest algorithm on the training set (75%) with 5-fold cross-validation. Performance metrics were computed on a held-out test set (25%) with bootstrap 95% confidence intervals (95% CIs). Five residents, 4 general radiologists, and 3 expert neuroradiologists were evaluated on their ability to visually distinguish benign from malignant lesions on the test set. Performance comparisons between reader groups and the model were performed using McNemar test. The impact of clinical and categorizable imaging data on algorithm performance was also assessed. RESULTS A total of 200 patients (116 [58%] women and 84 [42%] men; mean age, 53.0 ± 17.9 years) with 126 of 200 (63%) benign and 74 of 200 (37%) malignant orbital lesions were included in the study. A total of 606 radiomics features were extracted. The best performing model on the training set was composed of 8 features including apparent diffusion coefficient mean value, maximum diameter on T1-WIs, and texture features. Area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity on the test set were respectively 0.869 (95% CI, 0.834-0.898), 0.840 (95% CI, 0.806-0.874), 0.684 (95% CI, 0.615-0.751), and 0.935 (95% CI, 0.905-0.961). The radiomics model outperformed all reader groups, including expert neuroradiologists (P < 0.01). Adding clinical and categorizable imaging data did not significantly impact the algorithm performance (P = 0.49). CONCLUSIONS An MRI radiomics signature is helpful in differentiating benign from malignant orbital lesions and may outperform expert radiologists.
Collapse
Affiliation(s)
| | | | | | - Mathieu Zmuda
- Department of Orbitopalpebral Surgery, Fondation Adolphe de Rothschild Hospital
| | | | | | | |
Collapse
|
27
|
Dmytriw AA, Hui N, Singh T, Nguyen D, Omid-Fard N, Phan K, Kapadia A. Bibliometric evaluation of systematic review and meta analyses published in the top 5 "high-impact" radiology journals. Clin Imaging 2020; 71:52-62. [PMID: 33171368 DOI: 10.1016/j.clinimag.2020.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/11/2020] [Accepted: 11/02/2020] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Meta-analyses provide high-level evidence and understanding their trends may provide understanding of the field as a whole. Bibliometric analysis was undertaken to understand research trends in a particular field or subfield and to assess citation as a measure of impact. METHODS All journals categorised as "Radiology, Nuclear Medicine & Medical Imaging" under the Web of Science subject category were included. After analyzing impact factors of the journals in up to 2018, the top five journals were identified. The retrieved results were ordered by citation count based on Web of Science and Scopus. Specific parameters regarding the title, journal, publication year, authors, country of origin, institution and university, field of study and funding sources were analyzed. RESULTS A total of 139 articles were identified. The mean number of citations per article was 25.3 and 22.6 in Scopus and Web of Science respectively, with four articles receiving 100 or more citations. European Radiology had the greatest number of top cited articles (n = 68; 49%). Most number of articles originated from South Korea (n = 60; 43%) and the commonest field of focus with the most common being oncology (n = 51; 27%). CONCLUSION The top 5 high impact journals published a large number of meta-analysis and systematic reviews. The greatest number of top-cited articles were from South Korea, shifting away from the United States. Large number of studies focused on oncologic imaging, consistent with recent trends towards development of imaging biomarkers and personalized medicine. Author H index did not predict citation number or density.
Collapse
Affiliation(s)
- Adam A Dmytriw
- Sunnybrook Health Sciences Centre, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; Neurointervention & Neuroradiology Service, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America.
| | - Nicholas Hui
- NeuroSpine Research Group (NSURG), University of New South Wales, Sydney, NSW, Australia
| | - Telvinderjit Singh
- NeuroSpine Research Group (NSURG), University of New South Wales, Sydney, NSW, Australia
| | - Damian Nguyen
- NeuroSpine Research Group (NSURG), University of New South Wales, Sydney, NSW, Australia
| | - Nima Omid-Fard
- Department of Radiology, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Kevin Phan
- NeuroSpine Research Group (NSURG), University of New South Wales, Sydney, NSW, Australia
| | - Anish Kapadia
- Sunnybrook Health Sciences Centre, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Lorza AMA, Ravi H, Philip RC, Galons JP, Trouard TP, Parra NA, Von Hoff DD, Read WL, Tibes R, Korn RL, Raghunand N. Dose-response assessment by quantitative MRI in a phase 1 clinical study of the anti-cancer vascular disrupting agent crolibulin. Sci Rep 2020; 10:14449. [PMID: 32879326 PMCID: PMC7468301 DOI: 10.1038/s41598-020-71246-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
The vascular disrupting agent crolibulin binds to the colchicine binding site and produces anti-vascular and apoptotic effects. In a multisite phase 1 clinical study of crolibulin (NCT00423410), we measured treatment-induced changes in tumor perfusion and water diffusivity (ADC) using dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI), and computed correlates of crolibulin pharmacokinetics. 11 subjects with advanced solid tumors were imaged by MRI at baseline and 2–3 days post-crolibulin (13–24 mg/m2). ADC maps were computed from DW-MRI. Pre-contrast T1 maps were computed, co-registered with the DCE-MRI series, and maps of area-under-the-gadolinium-concentration-curve-at-90 s (AUC90s) and the Extended Tofts Model parameters ktrans, ve, and vp were calculated. There was a strong correlation between higher plasma drug \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${C}^{max}$$\end{document}Cmax and a linear combination of (1) reduction in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${AUC}_{90s}>15.8$$\end{document}AUC90s>15.8 mM s, and, (2) increase in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${v}_{e}<0.3$$\end{document}ve<0.3. A higher plasma drug AUC was correlated with a linear combination of (1) increase in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{ADC}} < 1.1 \times 10^{ - 3} \;{\text{mm}}^{2} /{\text{s}}$$\end{document}ADC<1.1×10-3mm2/s, and, (2) increase in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v_{e}<0.3$$\end{document}ve<0.3. These findings are suggestive of cell swelling and decreased tumor perfusion 2–3 days post-treatment with crolibulin. The multivariable linear regression models reported here can inform crolibulin dosing in future clinical studies of crolibulin combined with cytotoxic or immune-oncology agents.
Collapse
Affiliation(s)
- Andres M Arias Lorza
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA
| | - Harshan Ravi
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA
| | - Rohit C Philip
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Theodore P Trouard
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85724, USA
| | - Nestor A Parra
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA
| | - Daniel D Von Hoff
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.,HonorHealth Clinical Research Institute, Scottsdale, AZ, USA
| | - William L Read
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Raoul Tibes
- Department of Internal Medicine II, Julius Maximilians University and Medical Center, Würzburg, Germany
| | | | - Natarajan Raghunand
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA. .,Department of Oncologic Sciences, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
29
|
Meyer-Bäse A, Morra L, Meyer-Bäse U, Pinker K. Current Status and Future Perspectives of Artificial Intelligence in Magnetic Resonance Breast Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:6805710. [PMID: 32934610 PMCID: PMC7474774 DOI: 10.1155/2020/6805710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/17/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Recent advances in artificial intelligence (AI) and deep learning (DL) have impacted many scientific fields including biomedical maging. Magnetic resonance imaging (MRI) is a well-established method in breast imaging with several indications including screening, staging, and therapy monitoring. The rapid development and subsequent implementation of AI into clinical breast MRI has the potential to affect clinical decision-making, guide treatment selection, and improve patient outcomes. The goal of this review is to provide a comprehensive picture of the current status and future perspectives of AI in breast MRI. We will review DL applications and compare them to standard data-driven techniques. We will emphasize the important aspect of developing quantitative imaging biomarkers for precision medicine and the potential of breast MRI and DL in this context. Finally, we will discuss future challenges of DL applications for breast MRI and an AI-augmented clinical decision strategy.
Collapse
Affiliation(s)
- Anke Meyer-Bäse
- Department of Scientific Computing, Florida State University, Tallahassee, Florida 32310-4120, USA
| | - Lia Morra
- Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy
| | - Uwe Meyer-Bäse
- Department of Electrical and Computer Engineering, Florida A&M University and Florida State University, Tallahassee, Florida 32310-4120, USA
| | - Katja Pinker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
30
|
Initial clinical experience of Stereotactic Body Radiation Therapy (SBRT) for liver metastases, primary liver malignancy, and pancreatic cancer with 4D-MRI based online adaptation and real-time MRI monitoring using a 1.5 Tesla MR-Linac. PLoS One 2020; 15:e0236570. [PMID: 32764748 PMCID: PMC7413561 DOI: 10.1371/journal.pone.0236570] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/08/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose/Objectives Recently a 1.5 Tesla MR Linac has been FDA approved and is commercially available. Clinical series describing treatment methods and outcomes for upper abdominal tumors using a 1.5 Tesla MR Linac are lacking. We present the first clinical series of upper abdominal tumors treated using a 1.5 Tesla MR Linac along with the acquisition of intra-treatment quantitative imaging. Materials/Methods 10 patients with abdominal tumors were treated at our institution. Each patient enrolled in an IRB approved advanced imaging protocol. Both daily real-time adaptive and non-adaptive methods were used, and selection criteria are described. Adaptive plans were based on pre-beam motion-averaged or mid-position images derived from respiratory-correlated 4D-MRI. Quantitative intravoxel incoherent motion diffusion-weighted imaging and T2 mapping were acquired during plan adaptation. Real-time motion monitoring using cine MRI was performed during beam-on. Results Median patient age was 68.2, five patients were female. Tumor types included liver metastatic lesions from melanoma and sarcoma, primary liver hepatocellular carcinoma (HCC), and regional abdominal tumors included pancreatic metastatic lesions from renal cell carcinoma (RCC) along with two cases of recurrent pancreatic cancer. Doses included 30 Gy in 6 fractions, 33 Gy in 5 fractions, 50 Gy in 5 fractions, 45 Gy in 3 fractions, and 60 Gy in 3 fractions, depending on the location and clinical circumstances. Treatments were feasible and were successfully completed in all patients without significant acute toxicity, technical complications, or need for back up CT based treatment plans. Conclusions We present a first clinical series of patients treated for pancreatic tumors, primary liver tumors, and secondary liver tumors with a 1.5 Tesla MR Linear accelerator using adapt-to-position and adapt-to-shape strategies. Treatments were well tolerated by all patients. Acquisition of fully quantitative MR imaging was feasible during the course of the treatment delivery workflow without extending overall treatment times.
Collapse
|
31
|
Mehrnahad M, Rostami S, Kimia F, Kord R, Taheri MS, Rad HS, Haghighatkhah H, Moradi A, Kord A. Differentiating glioblastoma multiforme from cerebral lymphoma: application of advanced texture analysis of quantitative apparent diffusion coefficients. Neuroradiol J 2020; 33:428-436. [PMID: 32628089 DOI: 10.1177/1971400920937382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The purpose of this study was to differentiate glioblastoma multiforme from primary central nervous system lymphoma using the customised first and second-order histogram features derived from apparent diffusion coefficients.Methods and materials: A total of 82 patients (57 with glioblastoma multiforme and 25 with primary central nervous system lymphoma) were included in this study. The axial T1 post-contrast and fluid-attenuated inversion recovery magnetic resonance images were used to delineate regions of interest for the tumour and peritumoral oedema. The regions of interest were then co-registered with the apparent diffusion coefficient maps, and the first and second-order histogram features were extracted and compared between glioblastoma multiforme and primary central nervous system lymphoma groups. Receiver operating characteristic curve analysis was performed to calculate a cut-off value and its sensitivity and specificity to differentiate glioblastoma multiforme from primary central nervous system lymphoma. RESULTS Based on the tumour regions of interest, apparent diffusion coefficient mean, maximum, median, uniformity and entropy were higher in the glioblastoma multiforme group than the primary central nervous system lymphoma group (P ≤ 0.001). The most sensitive first and second-order histogram feature to differentiate glioblastoma multiforme from primary central nervous system lymphoma was the maximum of 2.026 or less (95% confidence interval (CI) 75.1-99.9%), and the most specific first and second-order histogram feature was smoothness of 1.28 or greater (84.0% CI 70.9-92.8%). Based on the oedema regions of interest, most of the first and second-order histogram features were higher in the glioblastoma multiforme group compared to the primary central nervous system lymphoma group (P ≤ 0.015). The most sensitive first and second-order histogram feature to differentiate glioblastoma multiforme from primary central nervous system lymphoma was the 25th percentile of 0.675 or less (100% CI 83.2-100%) and the most specific first and second-order histogram feature was the median of 1.28 or less (85.9% CI 66.3-95.8%). CONCLUSIONS Texture analysis using first and second-order histogram features derived from apparent diffusion coefficient maps may be helpful in differentiating glioblastoma multiforme from primary central nervous system lymphoma.
Collapse
Affiliation(s)
- Mehrsad Mehrnahad
- Department of Radiology, Shahid Beheshti University of Medical Sciences, Iran
| | - Sara Rostami
- Department of Radiology, University of Illinois College of Medicine, USA
| | - Farnaz Kimia
- Department of Radiology, Shahid Beheshti University of Medical Sciences, Iran
| | - Reza Kord
- Department of Radiology, Shahid Beheshti University of Medical Sciences, Iran
| | | | | | | | - Afshin Moradi
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Iran
| | - Ali Kord
- Department of Radiology, University of Illinois College of Medicine, USA
| |
Collapse
|
32
|
Reig B, Heacock L, Lewin A, Cho N, Moy L. Role of MRI to Assess Response to Neoadjuvant Therapy for Breast Cancer. J Magn Reson Imaging 2020; 52. [DOI: 10.1002/jmri.27145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Beatriu Reig
- Department of Radiology New York University Grossman School of Medicine New York New York USA
- New York University Laura and Isaac Perlmutter Cancer Center New York New York USA
| | - Laura Heacock
- Department of Radiology New York University Grossman School of Medicine New York New York USA
- New York University Laura and Isaac Perlmutter Cancer Center New York New York USA
| | - Alana Lewin
- Department of Radiology New York University Grossman School of Medicine New York New York USA
- New York University Laura and Isaac Perlmutter Cancer Center New York New York USA
| | - Nariya Cho
- Department of Radiology Seoul National University Hospital Seoul Republic of Korea
- Department of Radiology Seoul National University College of Medicine Seoul Republic of Korea
| | - Linda Moy
- Department of Radiology New York University Grossman School of Medicine New York New York USA
- New York University Laura and Isaac Perlmutter Cancer Center New York New York USA
- Bernard and Irene Schwartz Center for Biomedical Imaging Department of Radiology, New York University Grossman School of Medicine New York New York USA
- Center for Advanced Imaging Innovation and Research (CAI2 R) New York University Grossman School of Medicine New York New York USA
| |
Collapse
|
33
|
Capobianco E, Dominietto M. From Medical Imaging to Radiomics: Role of Data Science for Advancing Precision Health. J Pers Med 2020; 10:jpm10010015. [PMID: 32121633 PMCID: PMC7151556 DOI: 10.3390/jpm10010015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Treating disease according to precision health requires the individualization of therapeutic solutions as a cardinal step that is part of a process that typically depends on multiple factors. The starting point is the collection and assembly of data over time to assess the patient’s health status and monitor response to therapy. Radiomics is a very important component of this process. Its main goal is implementing a protocol to quantify the image informative contents by first mining and then extracting the most representative features. Further analysis aims to detect potential disease phenotypes through signs and marks of heterogeneity. As multimodal images hinge on various data sources, and these can be integrated with treatment plans and follow-up information, radiomics is naturally centered on dynamically monitoring disease progression and/or the health trajectory of patients. However, radiomics creates critical needs too. A concise list includes: (a) successful harmonization of intra/inter-modality radiomic measurements to facilitate the association with other data domains (genetic, clinical, lifestyle aspects, etc.); (b) ability of data science to revise model strategies and analytics tools to tackle multiple data types and structures (electronic medical records, personal histories, hospitalization data, genomic from various specimens, imaging, etc.) and to offer data-agnostic solutions for patient outcomes prediction; (c) and model validation with independent datasets to ensure generalization of results, clinical value of new risk stratifications, and support to clinical decisions for highly individualized patient management.
Collapse
Affiliation(s)
- Enrico Capobianco
- Center for Computational Science, University of Miami, FL 33146, USA
- Correspondence:
| | | |
Collapse
|
34
|
Fathi Kazerooni A, Bakas S, Saligheh Rad H, Davatzikos C. Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review. J Magn Reson Imaging 2019; 52:54-69. [PMID: 31456318 DOI: 10.1002/jmri.26907] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, the advent and development of genomic assessment methods and computational approaches have raised the hopes for identifying therapeutic targets that may aid in the treatment of glioblastoma. However, the targeted therapies have barely been successful in their effort to cure glioblastoma patients, leaving them with a grim prognosis. Glioblastoma exhibits high heterogeneity, both spatially and temporally. The existence of different genetic subpopulations in glioblastoma allows this tumor to adapt itself to environmental forces. Therefore, patients with glioblastoma respond poorly to the prescribed therapies, as treatments are directed towards the whole tumor and not to the specific genetic subregions. Genomic alterations within the tumor develop distinct radiographic phenotypes. In this regard, MRI plays a key role in characterizing molecular signatures of glioblastoma, based on regional variations and phenotypic presentation of the tumor. Radiogenomics has emerged as a (relatively) new field of research to explore the connections between genetic alterations and imaging features. Radiogenomics offers numerous advantages, including noninvasive and global assessment of the tumor and its response to therapies. In this review, we summarize the potential role of radiogenomic techniques to stratify patients according to their specific tumor characteristics with the goal of designing patient-specific therapies. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;52:54-69.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hamidreza Saligheh Rad
- Quantitative MR Imaging and Spectroscopy Group (QMISG), Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
García-Figueiras R, Baleato-González S, Padhani AR, Luna-Alcalá A, Vallejo-Casas JA, Sala E, Vilanova JC, Koh DM, Herranz-Carnero M, Vargas HA. How clinical imaging can assess cancer biology. Insights Imaging 2019; 10:28. [PMID: 30830470 PMCID: PMC6399375 DOI: 10.1186/s13244-019-0703-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
Human cancers represent complex structures, which display substantial inter- and intratumor heterogeneity in their genetic expression and phenotypic features. However, cancers usually exhibit characteristic structural, physiologic, and molecular features and display specific biological capabilities named hallmarks. Many of these tumor traits are imageable through different imaging techniques. Imaging is able to spatially map key cancer features and tumor heterogeneity improving tumor diagnosis, characterization, and management. This paper aims to summarize the current and emerging applications of imaging in tumor biology assessment.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- Department of Radiology, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain.
| | - Sandra Baleato-González
- Department of Radiology, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England, HA6 2RN, UK
| | - Antonio Luna-Alcalá
- Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
- MRI Unit, Clínica Las Nieves, Health Time, Jaén, Spain
| | - Juan Antonio Vallejo-Casas
- Unidad de Gestión Clínica de Medicina Nuclear. IMIBIC. Hospital Reina Sofía. Universidad de Córdoba, Córdoba, Spain
| | - Evis Sala
- Department of Radiology and Cancer Research UK Cambridge Center, Cambridge, CB2 0QQ, UK
| | - Joan C Vilanova
- Department of Radiology, Clínica Girona and IDI, Lorenzana 36, 17002, Girona, Spain
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden Hospital & Institute of Cancer Research, Fulham Road, London, SW3 6JJ, UK
| | - Michel Herranz-Carnero
- Nuclear Medicine Department, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Galicia, Spain
- Molecular Imaging Program, IDIS, USC, Santiago de Compostela, Galicia, Spain
| | - Herbert Alberto Vargas
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, Radiology, 1275 York Av. Radiology Academic Offices C-278, New York, NY, 10065, USA
| |
Collapse
|
36
|
Ahlawat S, Fritz J, Morris CD, Fayad LM. Magnetic resonance imaging biomarkers in musculoskeletal soft tissue tumors: Review of conventional features and focus on nonmorphologic imaging. J Magn Reson Imaging 2019; 50:11-27. [DOI: 10.1002/jmri.26659] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Shivani Ahlawat
- The Russell H. Morgan Department of Radiology & Radiological ScienceJohns Hopkins University School of Medicine Baltimore Maryland USA
| | - Jan Fritz
- The Russell H. Morgan Department of Radiology & Radiological ScienceJohns Hopkins University School of Medicine Baltimore Maryland USA
| | - Carol D. Morris
- Department of Orthopaedic SurgeryJohns Hopkins University School of Medicine Baltimore Maryland USA
| | - Laura M. Fayad
- The Russell H. Morgan Department of Radiology & Radiological ScienceJohns Hopkins University School of Medicine Baltimore Maryland USA
- Department of Orthopaedic SurgeryJohns Hopkins University School of Medicine Baltimore Maryland USA
- Department of OncologyJohns Hopkins University School of Medicine Baltimore Maryland USA
| |
Collapse
|