1
|
Ouyang T, Tang Y, Klimes F, Vogel-Claussen J, Voskrebenzev A, Yang Q. Phase-resolved Functional Lung (PREFUL) MRI May Reveal Distinct Pulmonary Perfusion Defects in Postacute COVID-19 Syndrome: Sex, Hospitalization, and Dyspnea Heterogeneity. J Magn Reson Imaging 2025; 61:851-862. [PMID: 38887850 DOI: 10.1002/jmri.29458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Pulmonary perfusion defects have been observed in patients with coronavirus disease 2019 (COVID-19). Currently, there is a need for further data on non-contrast-enhanced MRI in COVID patients. The early identification of heterogeneity in pulmonary perfusion defects among COVID-19 patients is beneficial for their timely clinical intervention and management. PURPOSE To investigate the utility of phase-resolved functional lung (PREFUL) MRI in detecting pulmonary perfusion disturbances in individuals with postacute COVID-19 syndrome (PACS). STUDY TYPE Prospective. SUBJECTS Forty-four participants (19 females, mean age 64.1 years) with PACS and 44 healthy subjects (19 females, mean age 59.5 years). Moreover, among the 44 patients, there were 19 inpatients and 25 outpatients; 19 were female and 25 were male; 18 with non-dyspnea and 26 with dyspnea. FIELD STRENGTH/SEQUENCE 3-T, two-dimensional (2D) spoiled gradient-echo sequence. ASSESSMENT Ventilation and perfusion-weighted maps were extracted from five coronal slices using PREFUL analysis. Subsequently, perfusion defect percentage (QDP), ventilation defect percentage (VDP), and ventilation-perfusion match healthy (VQM) were calculated based on segmented lung parenchyma ventilation and perfusion-weighted maps. Additionally, clinical features, including demographic data (such as sex and age) and serum biomarkers (such as D-dimer levels), were evaluated. STATISTICAL TESTS Spearman correlation coefficients to explore relationships between clinical features and QDP, VDP, and VQM. Propensity score matching analysis to reduce the confounding bias between patients with PACS and healthy controls. The Mann-Whitney U tests and Chi-squared tests to detect differences between groups. Multivariable linear regression analyses to identify factors related to QDP, VDP, and VQM. A P-value <0.05 was considered statistically significant. RESULTS QDP significantly exceeded that of healthy controls in individuals with PACS (39.8% ± 15.0% vs. 11.0% ± 4.9%) and was significantly higher in inpatients than in outpatients (46.8% ± 17.0% vs. 34.5% ± 10.8%). Moreover, males exhibited pulmonary perfusion defects significantly more frequently than females (43.9% ± 16.8% vs. 34.4% ± 10.2%), and dyspneic participants displayed significantly higher perfusion defects than non-dyspneic patients (44.8% ± 15.8% vs. 32.6% ± 10.3%). QDP showed a significant positive relationship with age (β = 0.50) and D-dimer level (β = 0.72). DATA CONCLUSION PREFUL MRI may show pulmonary perfusion defects in patients with PACS. Furthermore, perfusion impairments may be more pronounced in males, inpatients, and dyspneic patients. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Tao Ouyang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Lab. of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Yichen Tang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Lab. of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Filip Klimes
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Jens Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Andreas Voskrebenzev
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Lab. of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Klimeš F, Kern AL, Voskrebenzev A, Gutberlet M, Grimm R, Müller RA, Behrendt L, Kaireit TF, Glandorf J, Alsady TM, Wacker F, Hohlfeld JM, Vogel-Claussen J. Free-breathing 3D phase-resolved functional lung MRI vs breath-hold hyperpolarized 129Xe ventilation MRI in patients with chronic obstructive pulmonary disease and healthy volunteers. Eur Radiol 2025; 35:943-956. [PMID: 39060494 PMCID: PMC11782336 DOI: 10.1007/s00330-024-10893-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES 3D phase-resolved functional lung (PREFUL) MRI offers evaluation of pulmonary ventilation without inhalation of contrast agent. This study seeks to compare ventilation maps obtained from 3D PREFUL MRI with a direct ventilation measurement derived from 129Xe MRI in both patients with chronic obstructive pulmonary disease (COPD) and healthy volunteers. METHODS Thirty-one patients with COPD and 12 healthy controls underwent free-breathing 3D PREFUL MRI and breath-hold 129Xe MRI at 1.5 T. For both MRI techniques, ventilation defect (VD) maps were determined and respective ventilation defect percentage (VDP) values were computed. All parameters of both techniques were compared by Spearman correlation coefficient (r) and the differences between VDP values were quantified by Bland-Altman analysis and tested for significance using Wilcoxon signed-rank test. In a regional comparison of VD maps, spatial overlap and Sørensen-Dice coefficients of healthy and defect areas were computed. RESULTS On a global level, all 3D PREFUL VDP values correlated significantly to VDP measure derived by 129Xe ventilation imaging (all r > 0.65; all p < 0.0001). 129Xe VDP was significantly greater than 3D PREFUL derived VDPRVent (mean bias = 10.5%, p < 0.001) and VDPFVL-CM (mean bias = 11.3%, p < 0.0001) but not for VDPCombined (mean bias = 1.7%, p = 0.70). The total regional agreement of 129Xe and 3D PREFUL VD maps ranged between 60% and 63%. CONCLUSIONS Free-breathing 3D PREFUL MRI showed a strong correlation with breath-hold hyperpolarized 129Xe MRI regarding the VDP values and modest differences in the detection of VDs on a regional level. CLINICAL RELEVANCE STATEMENT 3D PREFUL MRI correlated with 129Xe MRI, unveiling regional differences in COPD defect identification. This proposes 3D PREFUL MRI as a ventilation mapping surrogate, eliminating the need for extra hardware or inhaled gases. KEY POINTS Current non-invasive evaluation techniques for lung diseases have drawbacks; 129Xe MRI is limited by cost and availability. 3D PREFUL MRI correlated with 129Xe MRI, with regional differences in identifying COPD defects. 3D PREFUL MRI can provide ventilation mapping without the need for additional hardware or inhaled gases.
Collapse
Affiliation(s)
- Filip Klimeš
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Agilo Luitger Kern
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Andreas Voskrebenzev
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Marcel Gutberlet
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthineers AG, Erlangen, Germany
| | - Robin Aaron Müller
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Lea Behrendt
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Till Frederik Kaireit
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Julian Glandorf
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Tawfik Moher Alsady
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Jens M Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
- Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hanover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hanover, Germany
| | - Jens Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany.
| |
Collapse
|
3
|
Konietzke P, Weinheimer O, Triphan SMF, Nauck S, Wuennemann F, Konietzke M, Jobst BJ, Jörres RA, Vogelmeier CF, Heussel CP, Kauczor HU, Wielpütz MO, Biederer J. GOLD grade-specific characterization of COPD in the COSYCONET multi-center trial: comparison of semiquantitative MRI and quantitative CT. Eur Radiol 2025:10.1007/s00330-024-11269-3. [PMID: 39779513 DOI: 10.1007/s00330-024-11269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/06/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVES We hypothesized that semiquantitative visual scoring of lung MRI is suitable for GOLD-grade specific characterization of parenchymal and airway disease in COPD and that MRI scores correlate with quantitative CT (QCT) and pulmonary function test (PFT) parameters. METHODS Five hundred ninety-eight subjects from the COSYCONET study (median age = 67 (60-72)) at risk for COPD or with GOLD1-4 underwent PFT, same-day paired inspiratory/expiratory CT, and structural and contrast-enhanced MRI. QCT assessed total lung volume (TLV), emphysema, and air trapping by parametric response mapping (PRMEmph, PRMfSAD) and airway disease by wall percentage (WP). MRI was analyzed using a semiquantitative visual scoring system for parenchymal defects, perfusion defects, and airway abnormalities. Descriptive statistics, Spearman correlations, and ANOVA analyses were performed. RESULTS TLV, PRMEmph, and MRI scores for parenchymal and perfusion defects were all higher with each GOLD grade, reflecting the extension of emphysema (all p < 0.001). Airway analysis showed the same trends with higher WP and higher MRI large airway disease scores in GOLD3 and lower WP and MRI scores in GOLD4 (p = 0.236 and p < 0.001). Regional heterogeneity was less evident on MRI, while PRMEmph and MRI perfusion defect scores were higher in the upper lobes, and WP and MRI large airway disease scores were higher in the lower lobes. MRI parenchymal and perfusion scores correlated moderately with PRMEmph (r = 0.61 and r = 0.60) and moderately with FEV1/FVC (r = -0.56). CONCLUSION Multi-center semiquantitative MRI assessments of parenchymal and airway disease in COPD matched GOLD grade-specific imaging features on QCT and detected regional disease heterogeneity. MRI parenchymal disease scores were correlated with QCT and lung function parameters. KEY POINTS Question Do MRI-based scores correlate with QCT and PFT parameters for GOLD-grade specific disease characterization of COPD? Findings MRI can visualize the parenchymal and airway disease features of COPD. Clinical relevance Lung MRI is suitable for GOLD-grade specific disease characterization of COPD and may serve as a radiation-free imaging modality in scientific and clinical settings, given careful consideration of its potential and limitations.
Collapse
Affiliation(s)
- Philip Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany.
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Simon M F Triphan
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Sebastian Nauck
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Felix Wuennemann
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Marilisa Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Bertram J Jobst
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Rudolf A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Claus P Heussel
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
- Diagnostic Radiology and Neuroradiology, Greifswald University Hospital, Ferdinand-Sauerbruch-Strasse 1, Greifswald, Germany
| | - Jürgen Biederer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
4
|
Neder JA, Santyr G, Zanette B, Kirby M, Pourafkari M, James MD, Vincent SG, Ferguson C, Wang CY, Domnik NJ, Phillips DB, Porszasz J, Stringer WW, O'Donnell DE. Beyond Spirometry: Linking Wasted Ventilation to Exertional Dyspnea in the Initial Stages of COPD. COPD 2024; 21:2301549. [PMID: 38348843 DOI: 10.1080/15412555.2023.2301549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024]
Abstract
Exertional dyspnea, a key complaint of patients with chronic obstructive pulmonary disease (COPD), ultimately reflects an increased inspiratory neural drive to breathe. In non-hypoxemic patients with largely preserved lung mechanics - as those in the initial stages of the disease - the heightened inspiratory neural drive is strongly associated with an exaggerated ventilatory response to metabolic demand. Several lines of evidence indicate that the so-called excess ventilation (high ventilation-CO2 output relationship) primarily reflects poor gas exchange efficiency, namely increased physiological dead space. Pulmonary function tests estimating the extension of the wasted ventilation and selected cardiopulmonary exercise testing variables can, therefore, shed unique light on the genesis of patients' out-of-proportion dyspnea. After a succinct overview of the basis of gas exchange efficiency in health and inefficiency in COPD, we discuss how wasted ventilation translates into exertional dyspnea in individual patients. We then outline what is currently known about the structural basis of wasted ventilation in "minor/trivial" COPD vis-à-vis the contribution of emphysema versus a potential impairment in lung perfusion across non-emphysematous lung. After summarizing some unanswered questions on the field, we propose that functional imaging be amalgamated with pulmonary function tests beyond spirometry to improve our understanding of this deeply neglected cause of exertional dyspnea. Advances in the field will depend on our ability to develop robust platforms for deeply phenotyping (structurally and functionally), the dyspneic patients showing unordinary high wasted ventilation despite relatively preserved FEV1.
Collapse
Affiliation(s)
- J Alberto Neder
- Respiratory Investigation Unit, Division of Respirology, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
| | - Giles Santyr
- Translational Medicine Department, Faculty of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada
| | - Brandon Zanette
- Translational Medicine Department, Faculty of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada
| | - Miranda Kirby
- Department of Physics, Faculty of Science, Toronto Metropolitan University, Toronto, Canada
| | - Marina Pourafkari
- Department of Radiology and Diagnostic Imaging, Kingston Health Sciences Centre, Kingston, Canada
| | - Matthew D James
- Respiratory Investigation Unit, Division of Respirology, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
| | - Sandra G Vincent
- Respiratory Investigation Unit, Division of Respirology, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
| | - Carrie Ferguson
- The Lundquist Institute for Biomedical Innovation, Harbor U.C.L.A Medical Centre, Torrance, CA, USA
| | - Chu-Yi Wang
- The Lundquist Institute for Biomedical Innovation, Harbor U.C.L.A Medical Centre, Torrance, CA, USA
| | - Nicolle J Domnik
- Respiratory Investigation Unit, Division of Respirology, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Devin B Phillips
- School of Kinesiology and Health Science, York University, Toronto, Canada
| | - Janos Porszasz
- The Lundquist Institute for Biomedical Innovation, Harbor U.C.L.A Medical Centre, Torrance, CA, USA
| | - William W Stringer
- The Lundquist Institute for Biomedical Innovation, Harbor U.C.L.A Medical Centre, Torrance, CA, USA
| | - Denis E O'Donnell
- Respiratory Investigation Unit, Division of Respirology, Department of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
| |
Collapse
|
5
|
Ning Y, Yuwen Zhou I, Caravan P. Quantitative in Vivo Molecular MRI. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407262. [PMID: 39279542 PMCID: PMC11530320 DOI: 10.1002/adma.202407262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/29/2024] [Indexed: 09/18/2024]
Abstract
Molecular magnetic resonance imaging (MRI) combines chemistry, chemical biology, and imaging techniques to track molecular events non-invasively. Quantitative molecular MRI aims to provide meaningful, reproducible numerical measurements of molecular processes or biochemical targets within the body. In this review, the classifications of molecular MRI probes based on their signal-generating mechanism and functionality are first described. From there, the primary considerations for in vitro characterization and in vivo validation of molecular MRI probes, including how to avoid pitfalls and biases are discussed. Then, recommendations on imaging acquisition protocols and analysis methods to establish quantitative relationships between MRI signal change induced by the probes and the molecular processes of interest are provided. Finally, several representative case studies are highlighted that incorporate these features. Quantitative molecular MRI is a multidisciplinary research area incorporating expertise in chemical biology, inorganic chemistry, molecular probes, imaging physics, drug development, pathobiology, and medicine. The purpose of this review is to provide guidance to chemists developing MR imaging probes and methods in terms of in vitro and in vivo validation to accelerate the translation of these new quantitative tools for non-invasive imaging of biological processes.
Collapse
Affiliation(s)
- Yingying Ning
- Spin-X Institute, School of Chemistry and Chemical Engineering, School of Biomedical Sciences and Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, China
| | - Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
6
|
Hahn JJ, Voskrebenzev A, Behrendt L, Klimeš F, Pöhler GH, Wacker F, Vogel-Claussen J. Sequence comparison of spoiled gradient echo and balanced steady-state free precession for pulmonary free-breathing proton MRI in patients and healthy volunteers: Correspondence, repeatability, and validation with dynamic contrast-enhanced MRI. NMR IN BIOMEDICINE 2024; 37:e5209. [PMID: 38994704 DOI: 10.1002/nbm.5209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
Phase-resolved functional lung (PREFUL) MRI is a proton-based, contrast agent-free technique derived from the Fourier decomposition approach to measure regional ventilation and perfusion dynamics during free-breathing. Besides the necessity of extensive PREFUL postprocessing, the utilized MRI sequence must fulfill specific requirements. This study investigates the impact of sequence selection on PREFUL-MRI-derived functional parameters by comparing the standard spoiled gradient echo (SPGRE) sequence with a lung-optimized balanced steady-state free precession (bSSFP) sequence, thereby facilitating PREFULs clinical application in pulmonary disease assessment. This study comprised a prospective dataset of healthy volunteers and a retrospective dataset of patients with suspected chronic thromboembolic pulmonary hypertension. Both cohorts underwent PREFUL-MRI with both sequences to assess the correspondence of PREFUL ventilation and perfusion parameters (A). Additionally, healthy subjects were scanned a second time to evaluate repeatability (B), whereas patients received dynamic contrast-enhanced (DCE)-MRI, considered the perfusion gold standard for comparison with PREFUL-MRI (C). Signal-to-noise ratio (SNR), calculated from the unprocessed images, was compared alongside median differences of PREFUL-MRI-derived parameters using a paired Wilcoxon signed rank test. Further evaluations included calculation of the Pearson correlation, intraclass-correlation coefficient for repeatability assessment, and spatial overlap (SO) for regional comparison of PREFUL-MRI and DCE-MRI. bSSFP showed a clear SNR advantage over SPGRE (median: 23 vs. 9, p < 0.001). (A) Despite significant differences, parameter values were strongly correlated (r ≥ 0.75). After thresholding, binary maps showed high healthy overlap across both cohorts (SOHealthy > 86%) and high defect overlap in the patient cohort (SODefect ≥ 48%). (B) bSSFP demonstrated slightly higher repeatability across most parameters. (C) Both sequences demonstrated comparable correspondence to DCE-MRI, with SPGRE excelling in absolute quantification and bSSFP in spatial agreement. Although bSSFP showed superior SNR results, both sequences displayed spatial defect concordance and highly correlated PREFUL parameters with deviations regarding repeatability and alignment with DCE-MRI.
Collapse
Affiliation(s)
- Jonah J Hahn
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
| | - Andreas Voskrebenzev
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Lea Behrendt
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Filip Klimeš
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Gesa H Pöhler
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Frank Wacker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Jens Vogel-Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| |
Collapse
|
7
|
Ouyang T, Tang Y, Zhang C, Yang Q. Phase-resolved MRI for measurement of pulmonary perfusion and ventilation defects in comparison with dynamic contrast-enhanced MRI and 129Xe MRI. BMJ Open Respir Res 2024; 11:e002198. [PMID: 39117397 PMCID: PMC11423719 DOI: 10.1136/bmjresp-2023-002198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION This meta-analysis aims to evaluate the agreement and correlation between phase-resolved functional lung MRI (PREFUL MRI) and dynamic contrast-enhanced (DCE) MRI in evaluating perfusion defect percentage (QDP), as well as the agreement between PREFUL MRI and 129Xe MRI in assessing ventilation defect percentage (VDP). METHOD A systematic search was conducted in the Medline, Embase and Cochrane Library databases to identify relevant studies comparing QDP and VDP measured by DCE MRI and 129Xe MRI compared with PREFUL MRI. Meta-analytical techniques were applied to calculate the pooled weighted bias, limits of agreement (LOA) and correlation coefficient. The publication bias was assessed using Egger's regression test, while heterogeneity was assessed using Cochran's Q test and Higgins I2 statistic. RESULTS A total of 399 subjects from 10 studies were enrolled. The mean difference and LOA were -2.31% (-8.01% to 3.40%) for QDP and 0.34% (-4.94% to 5.62%) for VDP. The pooled correlations (95% CI) were 0.65 (0.55 to 0.73) for QDP and 0.72 (0.61 to 0.80) for VDP. Furthermore, both QDP and VDP showed a negative correlation with forced expiratory volume in 1 s (FEV1). The pooled correlation between QDP and FEV1 was -0.51 (-0.74 to -0.18), as well as between VDP and FEV1 was -0.60 (-0.73 to -0.44). CONCLUSIONS PREFUL MRI is a promising imaging for the assessment of lung function, as it demonstrates satisfactory deviations and LOA when compared with DEC MRI and 129Xe MRI. PROSPERO REGISTRATION NUMBER CRD42023430847.
Collapse
Affiliation(s)
- Tao Ouyang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Yichen Tang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Chen Zhang
- MR Research Collaboration, Siemens Healthineers, Beijing, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Moher Alsady T, Voskrebenzev A, Behrendt L, Olsson K, Heußel CP, Gruenig E, Gall H, Ghofrani A, Roller F, Harth S, Marshall H, Hughes PJC, Wild J, Swift AJ, Kiely DG, Behr J, Dinkel J, Beitzke D, Lang IM, Schmidt KH, Kreitner KF, Frauenfelder T, Ulrich S, Hamer OW, Vogel-Claussen J. Multicenter Standardization of Phase-Resolved Functional Lung MRI in Patients With Suspected Chronic Thromboembolic Pulmonary Hypertension. J Magn Reson Imaging 2024; 59:1953-1964. [PMID: 37732541 DOI: 10.1002/jmri.28995] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Detection of pulmonary perfusion defects is the recommended approach for diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). This is currently achieved in a clinical setting using scintigraphy. Phase-resolved functional lung (PREFUL) magnetic resonance imaging (MRI) is an alternative technique for evaluating regional ventilation and perfusion without the use of ionizing radiation or contrast media. PURPOSE To assess the feasibility and image quality of PREFUL-MRI in a multicenter setting in suspected CTEPH. STUDY TYPE This is a prospective cohort sub-study. POPULATION Forty-five patients (64 ± 16 years old) with suspected CTEPH from nine study centers. FIELD STRENGTH/SEQUENCE 1.5 T and 3 T/2D spoiled gradient echo/bSSFP/T2 HASTE/3D MR angiography (TWIST). ASSESSMENT Lung signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between study centers with different MRI machines. The contrast between normally and poorly perfused lung areas was examined on PREFUL images. The perfusion defect percentage calculated using PREFUL-MRI (QDPPREFUL) was compared to QDP from the established dynamic contrast-enhanced MRI technique (QDPDCE). Furthermore, QDPPREFUL was compared between a patient subgroup with confirmed CTEPH or chronic thromboembolic disease (CTED) to other clinical subgroups. STATISTICAL TESTS t-Test, one-way analysis of variance (ANOVA), Pearson's correlation. Significance level was 5%. RESULTS Significant differences in lung SNR and CNR were present between study centers. However, PREFUL perfusion images showed a significant contrast between normally and poorly perfused lung areas (mean delta of normalized perfusion -4.2% SD 3.3) with no differences between study sites (ANOVA: P = 0.065). QDPPREFUL was significantly correlated with QDPDCE (r = 0.66), and was significantly higher in 18 patients with confirmed CTEPH or CTED (57.9 ± 12.2%) compared to subgroups with other causes of PH or with excluded PH (in total 27 patients with mean ± SD QDPPREFUL = 33.9 ± 17.2%). DATA CONCLUSION PREFUL-MRI could be considered as a non-invasive method for imaging regional lung perfusion in multicenter studies. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Tawfik Moher Alsady
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
| | - Lea Behrendt
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
| | - Karen Olsson
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | | | - Ekkehard Gruenig
- Thoraxklinik, University Hospital of Heidelberg, Heidelberg, Germany
| | - Henning Gall
- Department of Internal Medicine, University Hospital Giessen, Giessen, Germany
| | - Ardeschir Ghofrani
- Department of Internal Medicine, University Hospital Giessen, Giessen, Germany
| | - Fritz Roller
- Department of Diagnostic and Interventional Radiology, University Hospital Giessen, Giessen, Germany
| | - Sebastian Harth
- Department of Diagnostic and Interventional Radiology, University Hospital Giessen, Giessen, Germany
| | - Helen Marshall
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul J C Hughes
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jim Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, NIHR Biomedical Research Centre Sheffield, Sheffield, UK
| | - Jürgen Behr
- Department of Medicine V, University Hospital of Munich, Munich, Germany
| | - Julien Dinkel
- Department of Radiology, University Hospital of Munich, Munich, Germany
| | - Dietrich Beitzke
- Department of Biomedical Engineering and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Irene M Lang
- Internal Medicine II, AKH-Vienna, Medical University of Vienna, Vienna, Austria
| | - Kai Helge Schmidt
- Cardiology I, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Karl Friedrich Kreitner
- Department of Diagnostic and Interventional Radiology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Frauenfelder
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Silvia Ulrich
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Okka W Hamer
- Institute for Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
| |
Collapse
|
9
|
Elbehairy AF, Marshall H, Naish JH, Wild JM, Parraga G, Horsley A, Vestbo J. Advances in COPD imaging using CT and MRI: linkage with lung physiology and clinical outcomes. Eur Respir J 2024; 63:2301010. [PMID: 38548292 DOI: 10.1183/13993003.01010-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/16/2024] [Indexed: 05/04/2024]
Abstract
Recent years have witnessed major advances in lung imaging in patients with COPD. These include significant refinements in images obtained by computed tomography (CT) scans together with the introduction of new techniques and software that aim for obtaining the best image whilst using the lowest possible radiation dose. Magnetic resonance imaging (MRI) has also emerged as a useful radiation-free tool in assessing structural and more importantly functional derangements in patients with well-established COPD and smokers without COPD, even before the existence of overt changes in resting physiological lung function tests. Together, CT and MRI now allow objective quantification and assessment of structural changes within the airways, lung parenchyma and pulmonary vessels. Furthermore, CT and MRI can now provide objective assessments of regional lung ventilation and perfusion, and multinuclear MRI provides further insight into gas exchange; this can help in structured decisions regarding treatment plans. These advances in chest imaging techniques have brought new insights into our understanding of disease pathophysiology and characterising different disease phenotypes. The present review discusses, in detail, the advances in lung imaging in patients with COPD and how structural and functional imaging are linked with common resting physiological tests and important clinical outcomes.
Collapse
Affiliation(s)
- Amany F Elbehairy
- Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Helen Marshall
- POLARIS, Imaging, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Josephine H Naish
- MCMR, Manchester University NHS Foundation Trust, Manchester, UK
- Bioxydyn Limited, Manchester, UK
| | - Jim M Wild
- POLARIS, Imaging, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Insigneo Institute for in silico Medicine, Sheffield, UK
| | - Grace Parraga
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Division of Respirology, Western University, London, ON, Canada
| | - Alexander Horsley
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
10
|
Triphan SMF, Bauman G, Konietzke P, Konietzke M, Wielpütz MO. Magnetic Resonance Imaging of Lung Perfusion. J Magn Reson Imaging 2024; 59:784-796. [PMID: 37466278 DOI: 10.1002/jmri.28912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
"Lung perfusion" in the context of imaging conventionally refers to the delivery of blood to the pulmonary capillary bed through the pulmonary arteries originating from the right ventricle required for oxygenation. The most important physiological mechanism in the context of imaging is the so-called hypoxic pulmonary vasoconstriction (HPV, also known as "Euler-Liljestrand-Reflex"), which couples lung perfusion to lung ventilation. In obstructive airway diseases such as asthma, chronic-obstructive pulmonary disease (COPD), cystic fibrosis (CF), and asthma, HPV downregulates pulmonary perfusion in order to redistribute blood flow to functional lung areas in order to conserve optimal oxygenation. Imaging of lung perfusion can be seen as a reflection of lung ventilation in obstructive airway diseases. Other conditions that primarily affect lung perfusion are pulmonary vascular diseases, pulmonary hypertension, or (chronic) pulmonary embolism, which also lead to inhomogeneity in pulmonary capillary blood distribution. Several magnetic resonance imaging (MRI) techniques either dependent on exogenous contrast materials, exploiting periodical lung signal variations with cardiac action, or relying on intrinsic lung voxel attributes have been demonstrated to visualize lung perfusion. Additional post-processing may add temporal information and provide quantitative information related to blood flow. The most widely used and robust technique, dynamic-contrast enhanced MRI, is available in clinical routine assessment of COPD, CF, and pulmonary vascular disease. Non-contrast techniques are important research tools currently requiring clinical validation and cross-correlation in the absence of a viable standard of reference. First data on many of these techniques in the context of observational studies assessing therapy effects have just become available. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Simon M F Triphan
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Philip Konietzke
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Marilisa Konietzke
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Mark O Wielpütz
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Kay FU, Madhuranthakam AJ. MR Perfusion Imaging of the Lung. Magn Reson Imaging Clin N Am 2024; 32:111-123. [PMID: 38007274 DOI: 10.1016/j.mric.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Lung perfusion assessment is critical for diagnosing and monitoring a variety of respiratory conditions. MRI perfusion provides a radiation-free technique, making it an ideal choice for longitudinal imaging in younger populations. This review focuses on the techniques and applications of MRI perfusion, including contrast-enhanced (CE) MRI and non-CE methods such as arterial spin labeling (ASL), fourier decomposition (FD), and hyperpolarized 129-Xenon (129-Xe) MRI. ASL leverages endogenous water protons as tracers for a non-invasive measure of lung perfusion, while FD offers simultaneous measurements of lung perfusion and ventilation, enabling the generation of ventilation/perfusion mapsHyperpolarized 129-Xe MRI emerges as a novel tool for assessing regional gas exchange in the lungs. Despite the promise of MRI perfusion techniques, challenges persist, including competition with other imaging techniques and the need for additional validation and standardization. In conditions such as cystic fibrosis and lung cancer, MRI has displayed encouraging results, whereas in diseases like chronic obstructive pulmonary disease, further validation remains necessary. In conclusion, while MRI perfusion techniques hold immense potential for a comprehensive, non-invasive assessment of lung function and perfusion, their broader clinical adoption hinges on technological advancements, collaborative research, and rigorous validation.
Collapse
Affiliation(s)
- Fernando U Kay
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Ananth J Madhuranthakam
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, North Campus 2201 Inwood Road, Dallas, TX 75390-8568, USA
| |
Collapse
|
12
|
Triphan SMF, Konietzke M, Biederer J, Eichinger M, Vogelmeier CF, Jörres RA, Kauczor HU, Heußel CP, Jobst BJ, Wielpütz MO. Echo time-dependent observed T1 and quantitative perfusion in chronic obstructive pulmonary disease using magnetic resonance imaging. Front Med (Lausanne) 2024; 10:1254003. [PMID: 38249975 PMCID: PMC10797117 DOI: 10.3389/fmed.2023.1254003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Due to hypoxic vasoconstriction, perfusion is interesting in the lungs. Magnetic Resonance Imaging (MRI) perfusion imaging based on Dynamic Contrast Enhancement (DCE) has been demonstrated in patients with Chronic Obstructive Pulmonary Diseases (COPD) using visual scores, and quantification methods were recently developed further. Inter-patient correlations of echo time-dependent observed T1 [T1(TE)] have been shown with perfusion scores, pulmonary function testing, and quantitative computed tomography. Here, we examined T1(TE) quantification and quantitative perfusion MRI together and investigated both inter-patient and local correlations between T1(TE) and quantitative perfusion. Methods 22 patients (age 68.0 ± 6.2) with COPD were examined using morphological MRI, inversion recovery multi-echo 2D ultra-short TE (UTE) in 1-2 slices for T1(TE) mapping, and 4D Time-resolved angiography With Stochastic Trajectories (TWIST) for DCE. T1(TE) maps were calculated from 2D UTE at five TEs from 70 to 2,300 μs. Pulmonary Blood Flow (PBF) and perfusion defect (QDP) maps were produced from DCE measurements. Lungs were automatically segmented on UTE images and morphological MRI and these segmentations registered to DCE images. DCE images were separately registered to UTE in corresponding slices and divided into corresponding subdivisions. Spearman's correlation coefficients were calculated for inter-patient correlations using the entire segmented slices and for local correlations separately using registered images and subdivisions for each TE. Median T1(TE) in normal and defect areas according to QDP maps were compared. Results Inter-patient correlations were strongest on average at TE2 = 500 μs, reaching up to |ρ| = 0.64 for T1 with PBF and |ρ| = 0.76 with QDP. Generally, local correlations of T1 with PBF were weaker at TE2 than at TE1 or TE3 and with maximum values of |ρ| = 0.66 (from registration) and |ρ| = 0.69 (from subdivision). In 18 patients, T1 was shorter in defect areas than in normal areas, with the relative difference smallest at TE2. Discussion The inter-patient correlations of T1 with PBF and QDP found show similar strength and TE-dependence as those previously reported for visual perfusion scores and quantitative computed tomography. The local correlations and median T1 suggest that not only base T1 but also the TE-dependence of observed T1 in normal areas is closer to that found previously in healthy volunteers than in defect areas.
Collapse
Affiliation(s)
- Simon M. F. Triphan
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Marilisa Konietzke
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riß, Germany
| | - Jürgen Biederer
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Claus F. Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, Philipps-University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Rudolf A. Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Claus P. Heußel
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Bertram J. Jobst
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
13
|
Edwards L, Waterton JC, Naish J, Short C, Semple T, Jm Parker G, Tibiletti M. Imaging human lung perfusion with contrast media: A meta-analysis. Eur J Radiol 2023; 164:110850. [PMID: 37178490 DOI: 10.1016/j.ejrad.2023.110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE To pool and summarise published data of pulmonary blood flow (PBF), pulmonary blood volume (PBV) and mean transit time (MTT) of the human lung, obtained with perfusion MRI or CT to provide reliable reference values of healthy lung tissue. In addition, the available data regarding diseased lung was investigated. METHODS PubMed was systematically searched to identify studies that quantified PBF/PBV/MTT in the human lung by injection of contrast agent, imaged by MRI or CT. Only data analysed by 'indicator dilution theory' were considered numerically. Weighted mean (wM), weighted standard deviation (wSD) and weighted coefficient of variance (wCoV) were obtained for healthy volunteers (HV), weighted according to the size of the datasets. Signal to concentration conversion method, breath holding method and presence of 'pre-bolus' were noted. RESULTS PBV was obtained from 313 measurements from 14 publications (wM: 13.97 ml/100 ml, wSD: 4.21 ml/100 ml, wCoV 0.30). MTT was obtained from 188 measurements from 10 publications (wM: 5.91 s, wSD: 1.84 s wCoV 0.31). PBF was obtained from 349 measurements from 14 publications (wM: 246.26 ml/100 ml ml/min, wSD: 93.13 ml/100 ml ml/min, wCoV 0.38). PBV and PBF were higher when the signal was normalised than when it was not. No significant differences were found for PBV and PBF between breathing states or between pre-bolus and no pre-bolus. Data for diseased lung were insufficient for meta-analysis. CONCLUSION Reference values for PBF, MTT and PBV were obtained in HV. The literature data are insufficient to draw strong conclusions regarding disease reference values.
Collapse
Affiliation(s)
- Lucy Edwards
- Bioxydyn Limited, St James Tower, 7 Charlotte Street, Manchester, M1 4DZ, UK
| | - John C Waterton
- Bioxydyn Limited, St James Tower, 7 Charlotte Street, Manchester, M1 4DZ, UK; Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | - Josephine Naish
- Bioxydyn Limited, St James Tower, 7 Charlotte Street, Manchester, M1 4DZ, UK; MCMR, Manchester University NHS Foundation Trust, Wythenshawe, Manchester, UK
| | - Christopher Short
- ECFS CTN - LCI Core Facility, Imperial College London, London, UK; Departments of Imaging, Royal Brompton Hospital, Sydney Street, London SW3 6NP, London, UK
| | - Thomas Semple
- Department of Radiology, The Royal Brompton Hospital, London, UK; National Heart and Lung Institute, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Geoff Jm Parker
- Bioxydyn Limited, St James Tower, 7 Charlotte Street, Manchester, M1 4DZ, UK; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Marta Tibiletti
- Bioxydyn Limited, St James Tower, 7 Charlotte Street, Manchester, M1 4DZ, UK
| |
Collapse
|
14
|
Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10:1060940. [PMID: 37181360 PMCID: PMC10166823 DOI: 10.3389/fmed.2023.1060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability in the world. While early diagnosis is key, this has proven difficult due to the lack of sensitive and non-invasive tools. Computed tomography is regarded as the gold standard for structural lung imaging but lacks functional information and involves significant radiation exposure. Lung magnetic resonance imaging (MRI) has historically been challenging due to its short T2 and low proton density. Hyperpolarised gas MRI is an emerging technique that is able to overcome these difficulties, permitting the functional and microstructural evaluation of the lung. Other novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, Fourier decomposition MRI and phase-resolved functional lung imaging can also be used to interrogate lung function though they are currently at varying stages of development. This article provides a clinically focused review of these contrast and non-contrast MR imaging techniques and their current applications in lung disease.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Thoracic Medicine, Peninsula Health, Frankston, VIC, Australia
| | - Bruce R. Thompson
- Melbourne School of Health Science, Melbourne University, Melbourne, VIC, Australia
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Assessment of lung ventilation of premature infants with bronchopulmonary dysplasia at 1.5 Tesla using phase-resolved functional lung magnetic resonance imaging. Pediatr Radiol 2023; 53:1076-1084. [PMID: 36737516 DOI: 10.1007/s00247-023-05598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The most common chronic complication of preterm birth is bronchopulmonary dysplasia (BPD), widely referred to as chronic lung disease of prematurity. All current definitions rely on characterizing the disease based on respiratory support level and do not provide full understanding of the underlying cardiopulmonary pathophysiology. OBJECTIVE To evaluate a rapid functional lung imaging technique in premature infants and to quantitate pulmonary ventilation using 1.5 Tesla magnetic resonance imaging (MRI). MATERIALS AND METHODS We conducted a prospective MRI study of 12 premature infants in the neonatal intensive care unit (NICU) using the phase resolved functional lung MRI technique to calculate pulmonary ventilation parameters in preterm infants with and without BPD grade 0/1 (n = 6) and grade 2/3 (n = 6). RESULTS The total ventilation defect percentage showed a significant difference between groups (16.0% IQR (11.0%,18%) BPD grade 2/3 vs. 8.0% IQR (4.5%,9.0%) BPD grade 0/1, p = 0.01). CONCLUSION Phase-resolved functional lung MRI is feasible for assessment of ventilation defect percentages in preterm infants and shows regional variation in localized lung function in this population.
Collapse
|
16
|
Cheng R, Conrad M. Balloon Pulmonary Angioplasty for Chronic Thromboembolic Pulmonary Hypertension in Patients With Chronic Obstructive Pulmonary Disease: A Note of Caution. J Am Heart Assoc 2023; 12:e028898. [PMID: 36734352 PMCID: PMC9973662 DOI: 10.1161/jaha.122.028898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Richard Cheng
- Division of Cardiology, Department of Internal MedicineAdvanced Heart Failure Comprehensive Care Center, University of California San FranciscoCAUSA
| | - Miles Conrad
- Section of Interventional Radiology, Department of RadiologyUniversity of California San FranciscoCAUSA
| |
Collapse
|
17
|
Kahnert K, Fischer C, Alter P, Trudzinski F, Welte T, Behr J, Herth F, Kauczor HU, Bals R, Watz H, Rabe K, Söhler S, Kokot I, Vogelmeier C, Jörres R. [What have we learned from the German COPD cohort COSYCONET and where do we go from here?]. Pneumologie 2022; 77:81-93. [PMID: 36526266 PMCID: PMC9931494 DOI: 10.1055/a-1966-0848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
COSYCONET 1 is the only German COPD cohort which is large enough to be internationally comparable. The recruitment, which started in 2010 and ended in December 2013, comprised 2741 patients with the diagnosis of COPD who were subsequently investigated in regular follow-up visits. All visits included a comprehensive functional and clinical characterisation. On the basis of this detailed data set, it was possible to address a large number of clinical questions. These questions ranged from the prescription of medication, the detailed analysis of comorbidities, in particular cardiovascular disease, and biomarker assessment to radiological and health-economic aspects. Currently, more than 60 publications of COSYCONET data are internationally available. The present overview provides a description of all the results that were obtained, focussing on the relationship between different clinical and functional aspects as well as their potential practical consequences. In addition, information on the follow-up study COSYCONET 2 is given.
Collapse
Affiliation(s)
- Kathrin Kahnert
- 27192Medizinische Klinik und Poliklinik V, Klinikum der Universitat München LMU, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), München, Deutschland,Korrespondenzadresse PD Dr. med. Kathrin Kahnert Klinikum der Universität München LMU, Medizinische Klinik VZiemssenstr. 180336 MünchenDeutschland
| | - Carolina Fischer
- 27192Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, Ludwig-Maximilians-Universität München, München, Deutschland
| | - Peter Alter
- 9377Klinik für Pneumologie, Philipps-Universitat Marburg, Member of the German Center for Lung Research (DZL), Marburg, Deutschland
| | - Franziska Trudzinski
- 14996Thoraxklinik-Heidelberg gGmbH, Translational Lung
Research Centre Heidelberg (TLRC), Member of the German Center for Lung
Research, Heidelberg, Deutschland
| | - Tobias Welte
- 9177Klinik für Pneumologie, Medizinische Hochschule Hannover, Member of the German Center of Lung Research (DZL), Hannover, Deutschland
| | - Jürgen Behr
- 27192Medizinische Klinik und Poliklinik V, Klinikum der Universitat München LMU, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), München, Deutschland
| | - Felix Herth
- 14996Thoraxklinik-Heidelberg gGmbH, Translational Lung
Research Centre Heidelberg (TLRC), Member of the German Center for Lung
Research, Heidelberg, Deutschland
| | - Hans-Ulrich Kauczor
- 27178Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Translational Lung Research Centre Heidelberg (TLRC), Member of the German Center for Lung Research, Heidelberg, Deutschland
| | - Robert Bals
- 39072Innere Medizin V – Pulmonologie, Allergologie, Beatmungs-und Umweltmedizin, Universitätsklinikum des Saarlandes, Associated member of the Germen Center of Lung Research (DZL), Homburg, Deutschland,9377Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Deutschland
| | - Henrik Watz
- 9213Pulmonary Research Institute, LungenClinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Deutschland
| | - Klaus Rabe
- 9213Pulmonary Research Institute, LungenClinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Deutschland,98594Medizinische Fakultät, Christian-Albrechts Universität zu Kiel, Kiel, Deutschland
| | - Sandra Söhler
- 9377Klinik für Pneumologie, Philipps-Universitat Marburg, Member of the German Center for Lung Research (DZL), Marburg, Deutschland
| | - Inge Kokot
- 9377Klinik für Pneumologie, Philipps-Universitat Marburg, Member of the German Center for Lung Research (DZL), Marburg, Deutschland
| | - Claus Vogelmeier
- 9377Klinik für Pneumologie, Philipps-Universitat Marburg, Member of the German Center for Lung Research (DZL), Marburg, Deutschland
| | - Rudolf Jörres
- 27192Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, Ludwig-Maximilians-Universität München, München, Deutschland
| |
Collapse
|
18
|
Feasibility of flow-related enhancement brain perfusion MRI. PLoS One 2022; 17:e0276912. [DOI: 10.1371/journal.pone.0276912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose
Brain perfusion imaging is of enormous importance for various neurological diseases. Fast gradient-echo sequences offering flow-related enhancement (FREE) could present a basis to generate perfusion-weighted maps. In this study, we obtained perfusion-weighted maps without contrast media by a previously described postprocessing algorithm from the field of functional lung MRI. At first, the perfusion signal was analyzed in fast low-angle shot (FLASH) and balanced steady-state free precession (bSSFP) sequences. Secondly, perfusion maps were compared to pseudo-continuous arterial spin labeling (pCASL) MRI in a healthy cohort. Thirdly, the feasibility of the new technique was demonstrated in a small selected group of patients with metastases and acute stroke.
Methods
One participant was examined with bSSFP and FLASH sequences at 1.5T and 3T, different flip angles and slice thicknesses. Twenty-five volunteers had bSSFP imaging and pCASL MRI. Three patients with cerebral metastases and one with acute ischemic stroke had bSSFP imaging and were compared to T1 post-contrast images and CT perfusion. Frequency analyses, SNR and perfusion contrast were compared at different flip angles and slice thicknesses. Regional correlations and Sorensen-Dice overlap were calculated in the healthy cohort. Dice overlap of the pathologies in the patient cohort were calculated.
Results
The bSSFP sequence presented detectable perfusion signal within brain vessel and parenchyma together with superior SNR compared to FLASH. Perfusion contrast and its corticomedullary differentiation increased with flip angle. Mean regional correlation was 0.36 and highly significant between FREE maps and pCASL and grey and white matter Dice match were 72% and 60% in the healthy cohort. Pathologies presented good overlap between FREE perfusion-weighted and T1 post-contrast images.
Conclusion
The feasibility of FREE brain perfusion imaging has been shown in a healthy cohort and selected patient cases with brain metastases and acute stroke. The study demonstrates a new approach for non-contrast brain perfusion imaging.
Collapse
|
19
|
Lévy S, Heiss R, Grimm R, Grodzki D, Hadler D, Voskrebenzev A, Vogel-Claussen J, Fuchs F, Strauss R, Achenbach S, Hinsen M, Klett D, Schmid J, Kremer AE, Uder M, Nagel AM, Bickelhaupt S. Free-Breathing Low-Field MRI of the Lungs Detects Functional Alterations Associated With Persistent Symptoms After COVID-19 Infection. Invest Radiol 2022; 57:742-751. [PMID: 35640012 DOI: 10.1097/rli.0000000000000892] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES With the COVID-19 pandemic, repetitive lung examinations have become necessary to follow-up symptoms and associated alterations. Low-field MRI, benefiting from reduced susceptibility effects, is a promising alternative for lung imaging to limit radiations absorbed by patients during CT examinations, which also have limited capability to assess functional alterations. The aim of this investigative study was to explore the functional abnormalities that free-breathing 0.55 T MRI in combination with the phase-resolved functional lung (PREFUL) analysis could identify in patients with persistent symptoms after COVID-19 infection. MATERIALS AND METHODS Seventy-four COVID-19 patients and 8 healthy volunteers were prospectively scanned in free-breathing with a balanced steady-state free-precession sequence optimized at 0.55 T, 5 months postinfection on average. Normalized perfusion (Q), fractional ventilation (FV), and flow-volume loop correlation (FVLc) maps were extracted with the PREFUL technique. Q, FV, and FVLc defects as well as defect overlaps between these metrics were quantified. Morphological turbo-spin-echo images were also acquired, and the extent of abnormalities was scored by a board-certified radiologist. To investigate the functional correlates of persistent symptoms, a recursive feature elimination algorithm was applied to find the most informative variables to detect the presence of persistent symptoms with a logistic regression model and a cross-validation strategy. All MRI metrics, sex, age, body mass index, and the presence of preexisting lung conditions were included. RESULTS The most informative variables to detect persistent symptoms were the percentage of concurrent Q and FVLc defects and of areas free of those defects. A detection accuracy of 71.4% was obtained with these 2 variables when fitting the model on the entire dataset. Although none of the single variables differed between patients with and without persistent symptoms ( P > 0.05), the combined score of these 2 variables did ( P < 0.02). This score also showed a consistent increase from healthy volunteers (7.7) to patients without persistent symptoms (8.2) and with persistent symptoms (8.6). The morphological abnormality score showed poor correlation with the functional parameters. CONCLUSIONS Functional pulmonary examinations using free-breathing 0.55 T MRI with PREFUL analysis revealed potential quantitative markers of impaired lung function in patients with persistent symptoms after COVID-19 infection, potentially complementing morphologic imaging. Future work is needed to explore the translational relevance and clinical implication of these findings.
Collapse
Affiliation(s)
- Simon Lévy
- From the Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Rafael Heiss
- From the Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen
| | - David Grodzki
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen
| | - Dominique Hadler
- From the Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | | | | | - Florian Fuchs
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Richard Strauss
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Susanne Achenbach
- Department of Transfusion Medicine and Haemostaseology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Hinsen
- From the Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Daniel Klett
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Jonas Schmid
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | | | - Michael Uder
- From the Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | | | - Sebastian Bickelhaupt
- From the Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| |
Collapse
|
20
|
Konietzke M, Triphan SMF, Eichinger M, Bossert S, Heller H, Wege S, Eberhardt R, Puderbach MU, Kauczor HU, Heußel G, Heußel CP, Risse F, Wielpütz MO. Unsupervised clustering algorithms improve the reproducibility of dynamic contrast-enhanced magnetic resonance imaging pulmonary perfusion quantification in muco-obstructive lung diseases. Front Med (Lausanne) 2022; 9:1022981. [PMID: 36353218 PMCID: PMC9637664 DOI: 10.3389/fmed.2022.1022981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Background Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) allows the assessment of pulmonary perfusion, which may play a key role in the development of muco-obstructive lung disease. One problem with quantifying pulmonary perfusion is the high variability of metrics. Quantifying the extent of abnormalities using unsupervised clustering algorithms in residue function maps leads to intrinsic normalization and could reduce variability. Purpose We investigated the reproducibility of perfusion defects in percent (QDP) in clinically stable patients with cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Methods 15 CF (29.3 ± 9.3y, FEV1%predicted = 66.6 ± 15.8%) and 20 COPD (66.5 ± 8.9y, FEV1%predicted = 42.0 ± 13.3%) patients underwent DCE-MRI twice 1 month apart. QDP, pulmonary blood flow (PBF), and pulmonary blood volume (PBV) were computed from residue function maps using an in-house quantification pipeline. A previously validated MRI perfusion score was visually assessed by an expert reader. Results Overall, mean QDP, PBF, and PBV did not change within 1 month, except for QDP in COPD (p < 0.05). We observed smaller limits of agreement (± 1.96 SD) related to the median for QDP (CF: ± 38%, COPD: ± 37%) compared to PBF (CF: ± 89%, COPD: ± 55%) and PBV (CF: ± 55%, COPD: ± 51%). QDP correlated moderately with the MRI perfusion score in CF (r = 0.46, p < 0.05) and COPD (r = 0.66, p < 0.001). PBF and PBV correlated poorly with the MRI perfusion score in CF (r =-0.29, p = 0.132 and r =-0.35, p = 0.067, respectively) and moderately in COPD (r =-0.57 and r =-0.57, p < 0.001, respectively). Conclusion In patients with muco-obstructive lung diseases, QDP was more robust and showed a higher correlation with the MRI perfusion score compared to the traditionally used perfusion metrics PBF and PBV.
Collapse
Affiliation(s)
- Marilisa Konietzke
- Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riß, Germany
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Simon M. F. Triphan
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Sebastian Bossert
- Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riß, Germany
| | - Hartmut Heller
- Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riß, Germany
| | - Sabine Wege
- Department of Pulmonology and Respiratory Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Ralf Eberhardt
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pulmonology and Respiratory Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Michael U. Puderbach
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Hufeland Hospital, Bad Langensalza, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Gudula Heußel
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Claus P. Heußel
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Frank Risse
- Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riß, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Behrendt L, Smith LJ, Voskrebenzev A, Klimeš F, Kaireit TF, Pöhler GH, Kern AL, Gonzalez CC, Dittrich AM, Marshall H, Schütz K, Hughes PJC, Ciet P, Tiddens HAWM, Wild JM, Vogel-Claussen J. A dual center and dual vendor comparison study of automated perfusion-weighted phase-resolved functional lung magnetic resonance imaging with dynamic contrast-enhanced magnetic resonance imaging in patients with cystic fibrosis. Pulm Circ 2022; 12:e12054. [PMID: 35514781 PMCID: PMC9063970 DOI: 10.1002/pul2.12054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/17/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022] Open
Abstract
For sensitive diagnosis and monitoring of pulmonary disease, ionizing radiation-free imaging methods are of great importance. A noncontrast and free-breathing proton magnetic resonance imaging (MRI) technique for assessment of pulmonary perfusion is phase-resolved functional lung (PREFUL) MRI. Since there is no validation of PREFUL MRI across different centers and scanners, the purpose of this study was to compare perfusion-weighted PREFUL MRI with the well-established dynamic contrast-enhanced (DCE) MRI across two centers on scanners from two different vendors. Sixteen patients with cystic fibrosis (CF) (Center 1: 10 patients; Center 2: 6 patients) underwent PREFUL and DCE MRI at 1.5T in the same imaging session. Normalized perfusion-weighted values and perfusion defect percentage (QDP) values were calculated for the whole lung and three central slices (dorsal, central, ventral of the carina). Obtained parameters were compared using Pearson correlation, Spearman correlation, Bland-Altman analysis, Wilcoxon signed-rank test, and Wilcoxon rank-sum test. Moderate-to-strong correlations between normalized perfusion-weighted PREFUL and DCE values were found (posterior slice: r = 0.69, p < 0.01). Spatial overlap of PREFUL and DCE QDP maps showed an agreement of 79.4% for the whole lung. Further, spatial overlap values of Center 1 were not significantly different to those of Center 2 for the three central slices (p > 0.07). The feasibility of PREFUL MRI across two different centers and two different vendors was shown in patients with CF and obtained results were in agreement with DCE MRI.
Collapse
Affiliation(s)
- Lea Behrendt
- Department for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) German Center for Lung Research (DZL) Hannover Germany
| | - Laurie J Smith
- Department of Infection, Immunity and Cardiovascular Disease, POLARIS, Imaging Sciences University of Sheffield Sheffield UK
| | - Andreas Voskrebenzev
- Department for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) German Center for Lung Research (DZL) Hannover Germany
| | - Filip Klimeš
- Department for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) German Center for Lung Research (DZL) Hannover Germany
| | - Till F Kaireit
- Department for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) German Center for Lung Research (DZL) Hannover Germany
| | - Gesa H Pöhler
- Department for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) German Center for Lung Research (DZL) Hannover Germany
| | - Agilo L Kern
- Department for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) German Center for Lung Research (DZL) Hannover Germany
| | - Cristian Crisosto Gonzalez
- Department for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) German Center for Lung Research (DZL) Hannover Germany
| | - Anna-Maria Dittrich
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) German Center for Lung Research (DZL) Hannover Germany.,Department for Pediatric Pulmonology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Helen Marshall
- Department of Infection, Immunity and Cardiovascular Disease, POLARIS, Imaging Sciences University of Sheffield Sheffield UK
| | - Katharina Schütz
- Department for Pediatric Pulmonology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Paul J C Hughes
- Department of Infection, Immunity and Cardiovascular Disease, POLARIS, Imaging Sciences University of Sheffield Sheffield UK
| | - Pierluigi Ciet
- Department of Pediatric Pulmonology and Allergology Sophia Children's Hospital, Erasmus MC Rotterdam The Netherlands
| | - Harm A W M Tiddens
- Department of Pediatric Pulmonology and Allergology Sophia Children's Hospital, Erasmus MC Rotterdam The Netherlands.,Department of Radiology and Nuclear medicine Erasmus MC Rotterdam The Netherlands
| | - Jim M Wild
- Department of Infection, Immunity and Cardiovascular Disease, POLARIS, Imaging Sciences University of Sheffield Sheffield UK
| | - Jens Vogel-Claussen
- Department for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) German Center for Lung Research (DZL) Hannover Germany
| |
Collapse
|
22
|
Voskrebenzev A, Kaireit TF, Klimeš F, Pöhler GH, Behrendt L, Biller H, Berschneider K, Wacker F, Welte T, Hohlfeld JM, Vogel-Claussen J. PREFUL MRI Depicts Dual Bronchodilator Changes in COPD: A Retrospective Analysis of a Randomized Controlled Trial. Radiol Cardiothorac Imaging 2022; 4:e210147. [PMID: 35506142 PMCID: PMC9059092 DOI: 10.1148/ryct.210147] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 12/22/2022]
Abstract
Purpose To assess whether dynamic ventilation and perfusion (Q) biomarkers
derived by phase-resolved functional lung (PREFUL) MRI can measure
treatment response to 14-day therapy with indacaterol-glycopyrronium
(IND-GLY) and correlate to clinical outcomes including lung function,
symptoms, and cardiac function in patients with chronic obstructive
pulmonary disease (COPD), as determined by spirometry, body
plethysmography, cardiac MRI, and dyspnea score measurements. Materials and Methods The cardiac left ventricular function in COPD (CLAIM) study enrolled
patients aged 40 years or older with COPD, stable cardiovascular
function, and hyperinflation (residual volume > 135% predicted).
Dynamic MRI data of these patients were retrospectively analyzed using
the PREFUL technique to assess the effect of 14-day IND-GLY treatment
versus placebo on regional measurements of ventilation dynamics. After
manual segmentation of the lung parenchyma, flow-volume loops of each
voxel were correlated to an individualized reference flow-volume loop,
creating a two-dimensional flow-volume loop correlation map (FVL-CM) as
a measure of ventilation dynamics. Ventilation-perfusion match (VQM) was
evaluated in combination with perfusion and regional ventilation
(VQMRVent) and with perfusion and the FVL-CM measurement
(VQMCM). For image and statistical analysis, the lung
parenchyma was segmented as a region of interest by manually delineating
the lung boundary and excluding the large (central) vessels for each
section. Differences in ventilation, perfusion, and VQM between IND-GLY
and placebo were compared using analysis of variance, with study
treatment, patient, and period included as factors. Results Fifty patients (mean age, 64.3 years ± 7.65 [SD]; 35 men) were
included in this analysis. IND-GLY significantly increased mean
correlation as measured with FVL-CM versus that of placebo (least
squares [LS] means treatment difference: 0.05 [95% CI: 0.03, 0.07];
P < .0001). Compared with placebo, IND-GLY
increased mean Q (LS means treatment difference: 9.27 mL/min/100 mL [95%
CI: 0.05, 18.49]; P = .049) and improved both
VQMCM and VQMRVent (LS means treatment
difference: 0.06 [95% CI: 0.03, 0.08]; P < .0001
and 0.05 [95% CI: 0.02, 0.08]; P = .001,
respectively). Conclusion Regional ventilation dynamics and VQM measured by PREFUL MRI show
treatment response in COPD. Supplemental material is available for this
article. Clinical trial registration no. NTR6831 Keywords: MRI, COPD, Perfusion, Ventilation, Lung,
Pulmonary Published under a CC BY 4.0 license
Collapse
Affiliation(s)
- Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology (A.V., T.F.K., F.K., G.H.P., L.B., F.W., J.V.C.) and Department of Respiratory Medicine (T.W., J.M.H.), Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany (A.V., T.F.K., F.K., G.H.P., L.B., H.B., F.W., T.W., J.M.H., J.V.C.); Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (H.B., J.M.H.); and Novartis Pharma, Clinical Research Respiratory, Nuremberg, Germany (K.B.)
| | - Till F Kaireit
- Institute for Diagnostic and Interventional Radiology (A.V., T.F.K., F.K., G.H.P., L.B., F.W., J.V.C.) and Department of Respiratory Medicine (T.W., J.M.H.), Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany (A.V., T.F.K., F.K., G.H.P., L.B., H.B., F.W., T.W., J.M.H., J.V.C.); Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (H.B., J.M.H.); and Novartis Pharma, Clinical Research Respiratory, Nuremberg, Germany (K.B.)
| | - Filip Klimeš
- Institute for Diagnostic and Interventional Radiology (A.V., T.F.K., F.K., G.H.P., L.B., F.W., J.V.C.) and Department of Respiratory Medicine (T.W., J.M.H.), Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany (A.V., T.F.K., F.K., G.H.P., L.B., H.B., F.W., T.W., J.M.H., J.V.C.); Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (H.B., J.M.H.); and Novartis Pharma, Clinical Research Respiratory, Nuremberg, Germany (K.B.)
| | - Gesa H Pöhler
- Institute for Diagnostic and Interventional Radiology (A.V., T.F.K., F.K., G.H.P., L.B., F.W., J.V.C.) and Department of Respiratory Medicine (T.W., J.M.H.), Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany (A.V., T.F.K., F.K., G.H.P., L.B., H.B., F.W., T.W., J.M.H., J.V.C.); Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (H.B., J.M.H.); and Novartis Pharma, Clinical Research Respiratory, Nuremberg, Germany (K.B.)
| | - Lea Behrendt
- Institute for Diagnostic and Interventional Radiology (A.V., T.F.K., F.K., G.H.P., L.B., F.W., J.V.C.) and Department of Respiratory Medicine (T.W., J.M.H.), Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany (A.V., T.F.K., F.K., G.H.P., L.B., H.B., F.W., T.W., J.M.H., J.V.C.); Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (H.B., J.M.H.); and Novartis Pharma, Clinical Research Respiratory, Nuremberg, Germany (K.B.)
| | - Heike Biller
- Institute for Diagnostic and Interventional Radiology (A.V., T.F.K., F.K., G.H.P., L.B., F.W., J.V.C.) and Department of Respiratory Medicine (T.W., J.M.H.), Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany (A.V., T.F.K., F.K., G.H.P., L.B., H.B., F.W., T.W., J.M.H., J.V.C.); Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (H.B., J.M.H.); and Novartis Pharma, Clinical Research Respiratory, Nuremberg, Germany (K.B.)
| | - Korbinian Berschneider
- Institute for Diagnostic and Interventional Radiology (A.V., T.F.K., F.K., G.H.P., L.B., F.W., J.V.C.) and Department of Respiratory Medicine (T.W., J.M.H.), Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany (A.V., T.F.K., F.K., G.H.P., L.B., H.B., F.W., T.W., J.M.H., J.V.C.); Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (H.B., J.M.H.); and Novartis Pharma, Clinical Research Respiratory, Nuremberg, Germany (K.B.)
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology (A.V., T.F.K., F.K., G.H.P., L.B., F.W., J.V.C.) and Department of Respiratory Medicine (T.W., J.M.H.), Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany (A.V., T.F.K., F.K., G.H.P., L.B., H.B., F.W., T.W., J.M.H., J.V.C.); Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (H.B., J.M.H.); and Novartis Pharma, Clinical Research Respiratory, Nuremberg, Germany (K.B.)
| | - Tobias Welte
- Institute for Diagnostic and Interventional Radiology (A.V., T.F.K., F.K., G.H.P., L.B., F.W., J.V.C.) and Department of Respiratory Medicine (T.W., J.M.H.), Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany (A.V., T.F.K., F.K., G.H.P., L.B., H.B., F.W., T.W., J.M.H., J.V.C.); Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (H.B., J.M.H.); and Novartis Pharma, Clinical Research Respiratory, Nuremberg, Germany (K.B.)
| | - Jens M Hohlfeld
- Institute for Diagnostic and Interventional Radiology (A.V., T.F.K., F.K., G.H.P., L.B., F.W., J.V.C.) and Department of Respiratory Medicine (T.W., J.M.H.), Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany (A.V., T.F.K., F.K., G.H.P., L.B., H.B., F.W., T.W., J.M.H., J.V.C.); Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (H.B., J.M.H.); and Novartis Pharma, Clinical Research Respiratory, Nuremberg, Germany (K.B.)
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology (A.V., T.F.K., F.K., G.H.P., L.B., F.W., J.V.C.) and Department of Respiratory Medicine (T.W., J.M.H.), Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany (A.V., T.F.K., F.K., G.H.P., L.B., H.B., F.W., T.W., J.M.H., J.V.C.); Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (H.B., J.M.H.); and Novartis Pharma, Clinical Research Respiratory, Nuremberg, Germany (K.B.)
| |
Collapse
|
23
|
Zanette B, Schrauben EM, Munidasa S, Goolaub DS, Singh A, Coblentz A, Stirrat E, Couch MJ, Grimm R, Voskrebenzev A, Vogel-Claussen J, Seethamraju RT, Macgowan CK, Greer MLC, Tam EWY, Santyr G. Clinical Feasibility of Structural and Functional MRI in Free-Breathing Neonates and Infants. J Magn Reson Imaging 2022; 55:1696-1707. [PMID: 35312203 DOI: 10.1002/jmri.28165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Evaluation of structural lung abnormalities with magnetic resonance imaging (MRI) has previously been shown to be predictive of clinical neonatal outcomes in preterm birth. MRI during free-breathing with phase-resolved functional lung (PREFUL) may allow for complimentary functional information without exogenous contrast. PURPOSE To investigate the feasibility of structural and functional pulmonary MRI in a cohort of neonates and infants with no cardiorespiratory disease. Macrovascular pulmonary blood flows were also evaluated. STUDY TYPE Prospective. POPULATION Ten term infants with no clinically defined cardiorespiratory disease were imaged. Infants recruited from the general population and neonatal intensive care unit (NICU) were studied. FIELD STRENGTH/SEQUENCE T1 -weighted VIBE, T2 -weighted BLADE uncorrected for motion. Ultrashort echo time (UTE) and 3D-flow data were acquired during free-breathing with self-navigation and retrospective reconstruction. Single slice 2D-gradient echo (GRE) images were acquired during free-breathing for PREFUL analysis. Imaging was performed at 3 T. ASSESSMENT T1 , T2 , and UTE images were scored according to the modified Ochiai scheme by three pediatric body radiologists. Ventilation/perfusion-weighted maps were extracted from free-breathing GRE images using PREFUL analysis. Ventilation and perfusion defect percent (VDP, QDP) were calculated from the segmented ventilation and perfusion-weighted maps. Time-averaged cardiac blood velocities from three-dimensional-flow were evaluated in major pulmonary arteries and veins. STATISTICAL TEST Intraclass correlation coefficient (ICC). RESULTS The ICC of replicate structural scores was 0.81 (95% CI: 0.45-0.95) across three observers. Elevated Ochiai scores, VDP, and QDP were observed in two NICU participants. Excluding these participants, mean ± standard deviation structural scores were 1.2 ± 0.8, while VDP and QDP were 1.0% ± 1.1% and 0.4% ± 0.5%, respectively. Main pulmonary arterial blood flows normalized to body surface area were 3.15 ± 0.78 L/min/m2 . DATA CONCLUSION Structural and functional pulmonary imaging is feasible using standard clinical MRI hardware (commercial whole-body 3 T scanner, table spine array, and flexible thoracic array) in free-breathing infants. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Brandon Zanette
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Eric M Schrauben
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Samal Munidasa
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Datta S Goolaub
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Anuradha Singh
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
| | - Ailish Coblentz
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Elaine Stirrat
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Marcus J Couch
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany
| | - Andreas Voskrebenzev
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Jens Vogel-Claussen
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | | | - Christopher K Macgowan
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Mary-Louise C Greer
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Emily W Y Tam
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.,Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Giles Santyr
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
Schiwek M, Triphan SMF, Biederer J, Weinheimer O, Eichinger M, Vogelmeier CF, Jörres RA, Kauczor HU, Heußel CP, Konietzke P, von Stackelberg O, Risse F, Jobst BJ, Wielpütz MO. Quantification of pulmonary perfusion abnormalities using DCE-MRI in COPD: comparison with quantitative CT and pulmonary function. Eur Radiol 2021; 32:1879-1890. [PMID: 34553255 PMCID: PMC8831348 DOI: 10.1007/s00330-021-08229-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 12/05/2022]
Abstract
Objectives Pulmonary perfusion abnormalities are prevalent in patients with chronic obstructive pulmonary disease (COPD), are potentially reversible, and may be associated with emphysema development. Therefore, we aimed to evaluate the clinical meaningfulness of perfusion defects in percent (QDP) using DCE-MRI. Methods We investigated a subset of baseline DCE-MRIs, paired inspiratory/expiratory CTs, and pulmonary function testing (PFT) of 83 subjects (age = 65.7 ± 9.0 years, patients-at-risk, and all GOLD groups) from one center of the “COSYCONET” COPD cohort. QDP was computed from DCE-MRI using an in-house developed quantification pipeline, including four different approaches: Otsu’s method, k-means clustering, texture analysis, and 80th percentile threshold. QDP was compared with visual MRI perfusion scoring, CT parametric response mapping (PRM) indices of emphysema (PRMEmph) and functional small airway disease (PRMfSAD), and FEV1/FVC from PFT. Results All QDP approaches showed high correlations with the MRI perfusion score (r = 0.67 to 0.72, p < 0.001), with the highest association based on Otsu’s method (r = 0.72, p < 0.001). QDP correlated significantly with all PRM indices (p < 0.001), with the strongest correlations with PRMEmph (r = 0.70 to 0.75, p < 0.001). QDP was distinctly higher than PRMEmph (mean difference = 35.85 to 40.40) and PRMfSAD (mean difference = 15.12 to 19.68), but in close agreement when combining both PRM indices (mean difference = 1.47 to 6.03) for all QDP approaches. QDP correlated moderately with FEV1/FVC (r = − 0.54 to − 0.41, p < 0.001). Conclusion QDP is associated with established markers of disease severity and the extent corresponds to the CT-derived combined extent of PRMEmph and PRMfSAD. We propose to use QDP based on Otsu’s method for future clinical studies in COPD. Key Points • QDP quantified from DCE-MRI is associated with visual MRI perfusion score, CT PRM indices, and PFT. • The extent of QDP from DCE-MRI corresponds to the combined extent of PRMEmph and PRMfSAD from CT. • Assessing pulmonary perfusion abnormalities using DCE-MRI with QDP improved the correlations with CT PRM indices and PFT compared to the quantification of pulmonary blood flow and volume. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-08229-6.
Collapse
Affiliation(s)
- Marilisa Schiwek
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riß, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Simon M F Triphan
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Jürgen Biederer
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Faculty of Medicine, University of Latvia, Raina bulvaris 19, Riga, 1586, Latvia.,Faculty of Medicine, Christian-Albrechts-Universität Zu Kiel, 24098, Kiel, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Germany
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, Philipps-University of Marburg (UMR), Marburg, Germany
| | - Rudolf A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilians University (LMU) Munich, Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Claus P Heußel
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Germany
| | - Philip Konietzke
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Oyunbileg von Stackelberg
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Frank Risse
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riß, Germany
| | - Bertram J Jobst
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany. .,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.
| | | |
Collapse
|
25
|
Comparison of Functional Free-Breathing Pulmonary 1H and Hyperpolarized 129Xe Magnetic Resonance Imaging in Pediatric Cystic Fibrosis. Acad Radiol 2021; 28:e209-e218. [PMID: 32532639 DOI: 10.1016/j.acra.2020.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
RATIONALE AND OBJECTIVES Phase resolved functional lung (PREFUL) magnetic resonance imaging (MRI) is a free-breathing 1H-based technique that produces maps of fractional ventilation (FV). This study compared ventilation defect percent (VDP) calculated using PREFUL to hyperpolarized (HP) 129Xe MRI and pulmonary function tests in pediatric cystic fibrosis (CF). MATERIALS AND METHODS 27 pediatric participants were recruited (mean age 13.0 ± 2.7), including 6 with clinically stable CF, 11 CF patients undergoing a pulmonary exacerbation (PEx), and 10 healthy controls. Spirometry was performed to measure forced expiratory volume in 1 second (FEV1), along with nitrogen multiple breath washout to measure lung clearance index (LCI). VDP was calculated from single central coronal slice PREFUL FV maps and the corresponding HP 129Xe slice. RESULTS The stable CF group had a normal FEV1 (p = 0.41) and elevated LCI (p = 0.007). The CF PEx group had a decreased FEV1 (p < 0.0001) and elevated LCI (p < 0.0001). PREFUL and HP 129Xe VDP were significantly different between the CF PEx and healthy groups (p < 0.05). In the stable CF group, PREFUL and HP 129Xe VDP were not significantly different from the healthy group (p = 0.18 and 0.08, respectively). There was a correlation between PREFUL and HP 129Xe VDP (R2 = 0.31, p = 0.004), and both parameters were significantly correlated with FEV1 and LCI. CONCLUSION PREFUL MRI is feasible in pediatric CF, distinguishes patients undergoing pulmonary exacerbations compared to healthy subjects, and correlates with HP 129Xe MRI as well as functional measures of disease severity. PREFUL MRI does not require breath-holds and is straight forward to implement on any MRI scanner.
Collapse
|
26
|
Tanaka Y, Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Iwase A, Fukuba T, Hattori H, Murayama K, Yoshikawa T, Takenaka D, Koyama H, Toyama H. State-of-the-art MR Imaging for Thoracic Diseases. Magn Reson Med Sci 2021; 21:212-234. [PMID: 33952785 PMCID: PMC9199970 DOI: 10.2463/mrms.rev.2020-0184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT and positron emission tomography (PET)/CT. However, in many countries and states and for specific indications, MR imaging has recently become practicable. In addition, recently developed pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been introduced as being capable of assessing pulmonary function. It should be borne in mind, however, that these applications have so far been academically and clinically used only for healthy volunteers, but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the Fleischner Society published a new report, which provides consensus expert opinions regarding appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2) promising but requiring further validation or evaluation, and 3) developments warranting research investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively visualize lung structural and functional abnormalities without ionizing radiation and thus provide an alternative to CT. MR imaging is considered as a tool for providing unique information. Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare MR imaging with conventional methods to determine whether the former has equal or superior clinical relevance. The results of these trials together with continued improvements are expected to update or modify recommendations for the use of MRI in near future.
Collapse
Affiliation(s)
- Yumi Tanaka
- Department of Radiology, Fujita Health University School of Medicine
| | - Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine.,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine
| | - Yuki Obama
- Department of Radiology, Fujita Health University School of Medicine
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine
| | - Akiyoshi Iwase
- Department of Radiology, Fujita Health University Hospital
| | - Takashi Fukuba
- Department of Radiology, Fujita Health University Hospital
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University School of Medicine
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | | | | | | | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine
| |
Collapse
|
27
|
Abstract
Magnetic resonance imaging (MRI) of the lungs is one of the most underutilized imaging modality when it comes to imaging of thoracic diseases in children. This is largely due to less-than-optimal image quality and multiple technical challenges involved with MRI of the lungs. Advances in MRI technology along with increased awareness about optimization of MR protocol have led to it being viewed as a feasible option for evaluation of various chest diseases in children. This short review article takes the reader to the road less travelled to explore newer horizons for applications of this rapidly evolving magnetic resonance technique in the field of thoracic diseases in children.
Collapse
Affiliation(s)
- Kushaljit Singh Sodhi
- Department of Radio-diagnosis, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
28
|
Glandorf J, Klimeš F, Behrendt L, Voskrebenzev A, Kaireit TF, Gutberlet M, Wacker F, Vogel-Claussen J. Perfusion quantification using voxel-wise proton density and median signal decay in PREFUL MRI. Magn Reson Med 2021; 86:1482-1493. [PMID: 33837557 DOI: 10.1002/mrm.28787] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE Contrast-free lung MRI based on Fourier decomposition is an attractive method to monitor various lung diseases. However, the accuracy of the current perfusion quantification is limited. In this study, a new approach for perfusion quantification based on voxel-wise proton density and median signal decay toward the steady state for Fourier decomposition-based techniques is proposed called QQuantified (QQuant ). METHODS Twenty patients with chronic obstructive pulmonary disease and 18 patients with chronic thromboembolic pulmonary hypertension received phase-resolved functional lung-MRI (PREFUL) and dynamic contrast-enhanced (DCE)-MRI. Nine healthy participants received phase-resolved functional lung-MRI only. Median values of QQuant were compared to a Fourier decomposition perfusion quantification presented by Kjørstad et al (QKjørstad ) and validated toward pulmonary blood flow derived by DCE-MRI (PBFDCE ). Blood fraction maps determined by the new approach were calculated. Regional and global correlation coefficients were calculated, and Bland-Altman plots were created. Histogram analyses of all cohorts were created. RESULTS The introduced parameter QQuant showed only 2 mL/min/100 mL mean deviation to PBFDCE in the patient cohort and showed less bias than QKjørstad . Significant increases of regional correlation with PBFDCE were achieved (r = 0.3 vs. r = 0.2, P < .01*). The trend of global correlation toward PBFDCE is not uniform, showing higher values for QKjørstad in the chronic obstructive pulmonary disease cohort than for QQuant and vice versa in the chronic thromboembolic pulmonary hypertension cohort. In contrast to QKjørstad , QQuant perfusion maps indicate a physiologic dorsoventral gradient in supine position similar to PBFDCE with similar value distribution in the histograms. CONCLUSION We proposed a new approach for perfusion quantification of phase-resolved functional lung measurements. The developed parameter QQuant reveals a higher accuracy compared to QKjørstad .
Collapse
Affiliation(s)
- Julian Glandorf
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| | - Filip Klimeš
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| | - Lea Behrendt
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| | - Till F Kaireit
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| |
Collapse
|
29
|
Benlala I, Laurent F, Dournes G. Structural and functional changes in COPD: What we have learned from imaging. Respirology 2021; 26:731-741. [PMID: 33829593 DOI: 10.1111/resp.14047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality worldwide. It is a heterogeneous disease involving different components of the lung to varying extents. Developments in medical imaging and image analysis techniques provide new insights in the assessment of the structural and functional changes of the disease. This article reviews the leading imaging techniques: CT and MRI of the lung in research settings and clinical routine. Both visual and quantitative methods are reviewed, emphasizing their relevance to patient phenotyping and outcome prediction.
Collapse
Affiliation(s)
- Ilyes Benlala
- Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, INSERM, Bordeaux, France
| | - François Laurent
- Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, INSERM, Bordeaux, France
| | - Gael Dournes
- Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, INSERM, Bordeaux, France
| |
Collapse
|
30
|
Safavi S, Munidasa S, Zanette B, Dai R, Stirrat E, Li D, Moraes TJ, Subbarao P, Santyr G. Evaluating post-bronchodilator response in well-controlled paediatric severe asthma using hyperpolarised 129Xe-MRI: A pilot study. Respir Med 2021; 180:106368. [PMID: 33740737 DOI: 10.1016/j.rmed.2021.106368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Pulmonary function tests (PFTs) are the main objective measures used to assess asthma in children. However, PFTs provide a global measure of lung function. Hyperpolarised xenon-129 magnetic resonance imaging (129Xe-MRI) can assess lung function spatially. This cross-sectional cohort study aimed to evaluate the use of 129Xe-MRI in detecting ventilation abnormalities in children with well-controlled severe asthma pre- and post-bronchodilator (BD). METHOD Six healthy children (aged 11 ± 3) and six with well-controlled severe asthma (14 ± 1) underwent spirometry, multiple breath washout (MBW), and 129Xe-MRI. These tests were repeated post-BD in the asthma cohort. Image analysis was performed in MATLAB. Wilcoxon signed-rank test, repeated measures analysis of variance (ANOVA), and Spearman's rank correlation coefficient were used for statistical analysis. RESULTS A significantly higher number of ventilation defects were found in the asthma cohort pre-BD compared to the healthy participants and post-BD within the asthma cohort (p = 0.02 and 0.01). A greater number of wedge-shaped defects were detected in the asthma cohort pre-BD compared to healthy participants and post-BD within the asthma cohort (p = 0.01 and 0.008, respectively). 129Xe ventilation defect percentage (VDP) and coefficient of variation (CoV) were significantly higher in the asthma cohort pre-BD compared to the healthy cohort (p = 0.006 for both). VDP and CoV were reduced significantly post-BD in the asthma cohort, to a level where there was no longer a significant difference between the two cohorts. CONCLUSION 129Xe-MRI is a sensitive marker of ventilation inhomogeneity in paediatric severe asthma and may potentially be used as a biomarker to assess disease progression and therapeutic response.
Collapse
Affiliation(s)
- Shahideh Safavi
- Respiratory Medicine Department, School of Medicine, University of Nottingham,Queen's Medical Centre Campus, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, Nottingham, UK.
| | - Samal Munidasa
- The Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Brandon Zanette
- The Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Ruixue Dai
- Division of Respiratory Medicine, Department of Paediatrics, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Elaine Stirrat
- The Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Daniel Li
- The Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Theo J Moraes
- The Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Respiratory Medicine, Department of Paediatrics, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Padmaja Subbarao
- The Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Respiratory Medicine, Department of Paediatrics, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Giles Santyr
- The Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
31
|
Pöhler GH, Klimeš F, Behrendt L, Voskrebenzev A, Gonzalez CC, Wacker F, Hohlfeld JM, Vogel‐Claussen J. Repeatability of Phase‐Resolved Functional Lung (
PREFUL
)‐
MRI
Ventilation and Perfusion Parameters in Healthy Subjects and
COPD
Patients. J Magn Reson Imaging 2020; 53:915-927. [DOI: 10.1002/jmri.27385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Gesa H. Pöhler
- Institute for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Filip Klimeš
- Institute for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Lea Behrendt
- Institute for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Cristian Crisosto Gonzalez
- Institute for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Jens M. Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL) Hannover Germany
- Department of Respiratory Medicine Hannover Medical School Hannover Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine Hannover Germany
| | - Jens Vogel‐Claussen
- Institute for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL) Hannover Germany
| |
Collapse
|
32
|
Willers C, Bauman G, Andermatt S, Santini F, Sandkühler R, Ramsey KA, Cattin PC, Bieri O, Pusterla O, Latzin P. The impact of segmentation on whole-lung functional MRI quantification: Repeatability and reproducibility from multiple human observers and an artificial neural network. Magn Reson Med 2020; 85:1079-1092. [PMID: 32892445 DOI: 10.1002/mrm.28476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the repeatability and reproducibility of lung segmentation and their impact on the quantitative outcomes from functional pulmonary MRI. Additionally, to validate an artificial neural network (ANN) to accelerate whole-lung quantification. METHOD Ten healthy children and 25 children with cystic fibrosis underwent matrix pencil decomposition MRI (MP-MRI). Impaired relative fractional ventilation (RFV ) and relative perfusion (RQ ) from MP-MRI were compared using whole-lung segmentation performed by a physician at two time-points (At1 and At2 ), by an MRI technician (B), and by an ANN (C). Repeatability and reproducibility were assess with Dice similarity coefficient (DSC), paired t-test and Intraclass-correlation coefficient (ICC). RESULTS The repeatability within an observer (At1 vs At2 ) resulted in a DSC of 0.94 ± 0.01 (mean ± SD) and an unsystematic difference of -0.01% for RFV (P = .92) and +0.1% for RQ (P = .21). The reproducibility between human observers (At1 vs B) resulted in a DSC of 0.88 ± 0.02, and a systematic absolute difference of -0.81% (P < .001) for RFV and -0.38% (P = .037) for RQ . The reproducibility between human and the ANN (At1 vs C) resulted in a DSC of 0.89 ± 0.03 and a systematic absolute difference of -0.36% for RFV (P = .017) and -0.35% for RQ (P = .002). The ICC was >0.98 for all variables and comparisons. CONCLUSIONS Despite high overall agreement, there were systematic differences in lung segmentation between observers. This needs to be considered for longitudinal studies and could be overcome by using an ANN, which performs as good as human observers and fully automatizes MP-MRI post-processing.
Collapse
Affiliation(s)
- Corin Willers
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Simon Andermatt
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Francesco Santini
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Robin Sandkühler
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Kathryn A Ramsey
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philippe C Cattin
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Orso Pusterla
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Philipp Latzin
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Benedetti G. Editorial for “Chronic Thromboembolic Pulmonary Hypertension Perioperative Monitoring Using Phase‐ResolvedFunctional Lung ( PREFUL)‐ MRI”. J Magn Reson Imaging 2020; 52:620-621. [DOI: 10.1002/jmri.27242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 11/11/2022] Open
Affiliation(s)
- Giulia Benedetti
- Radiology Department, Cardiothoracic RadiologyGuy's and St Thomas' NHS Foundation Trust London UK
| |
Collapse
|
34
|
Voskrebenzev A, Vogel-Claussen J. Proton MRI of the Lung: How to Tame Scarce Protons and Fast Signal Decay. J Magn Reson Imaging 2020; 53:1344-1357. [PMID: 32166832 DOI: 10.1002/jmri.27122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Pulmonary proton MRI techniques offer the unique possibility of assessing lung function and structure without the requirement for hyperpolarization or dedicated hardware, which is mandatory for multinuclear acquisition. Five popular approaches are presented and discussed in this review: 1) oxygen enhanced (OE)-MRI; 2) arterial spin labeling (ASL); 3) Fourier decomposition (FD) MRI and other related methods including self-gated noncontrast-enhanced functional lung (SENCEFUL) MR and phase-resolved functional lung (PREFUL) imaging; 4) dynamic contrast-enhanced (DCE) MRI; and 5) ultrashort TE (UTE) MRI. While DCE MRI is the most established and well-studied perfusion measurement, FD MRI offers a free-breathing test without any contrast agent and is predestined for application in patients with renal failure or with low compliance. Additionally, FD MRI and related methods like PREFUL and SENCEFUL can act as an ionizing radiation-free V/Q scan, since ventilation and perfusion information is acquired simultaneously during one scan. For OE-MRI, different concentrations of oxygen are applied via a facemask to assess the regional change in T1 , which is caused by the paramagnetic property of oxygen. Since this change is governed by a combination of ventilation, diffusion, and perfusion, a compound functional measurement can be achieved with OE-MRI. The known problem of fast T2 * decay of the lung parenchyma leading to a low signal-to-noise ratio is bypassed by the UTE acquisition strategy. Computed tomography (CT)-like images allow the assessment of lung structure with high spatial resolution without ionizing radiation. Despite these different branches of proton MRI, common trends are evident among pulmonary proton MRI: 1) free-breathing acquisition with self-gating; 2) application of UTE to preserve a stronger parenchymal signal; and 3) transition from 2D to 3D acquisition. On that note, there is a visible convergence of the different methods and it is not difficult to imagine that future methods will combine different aspects of the presented methods.
Collapse
Affiliation(s)
- Andreas Voskrebenzev
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Lung Research Center (DZL), Hannover, Germany
| | - Jens Vogel-Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Lung Research Center (DZL), Hannover, Germany
| |
Collapse
|
35
|
Pöhler GH, Klimes F, Voskrebenzev A, Behrendt L, Czerner C, Gutberlet M, Cebotari S, Ius F, Fegbeutel C, Schoenfeld C, Kaireit TF, Hauck EF, Olsson KM, Hoeper MM, Wacker F, Vogel‐Claussen J. Chronic Thromboembolic Pulmonary Hypertension Perioperative Monitoring Using Phase‐Resolved Functional Lung (PREFUL)‐MRI. J Magn Reson Imaging 2020; 52:610-619. [DOI: 10.1002/jmri.27097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 01/19/2023] Open
Affiliation(s)
- Gesa H. Pöhler
- Department of Diagnostic and Interventional Radiology, Hannover Medical School Hannover Germany
- German Centre for Lung Research, BREATH Hannover Germany
| | - Filip Klimes
- Department of Diagnostic and Interventional Radiology, Hannover Medical School Hannover Germany
- German Centre for Lung Research, BREATH Hannover Germany
| | - Andreas Voskrebenzev
- Department of Diagnostic and Interventional Radiology, Hannover Medical School Hannover Germany
- German Centre for Lung Research, BREATH Hannover Germany
| | - Lea Behrendt
- Department of Diagnostic and Interventional Radiology, Hannover Medical School Hannover Germany
- German Centre for Lung Research, BREATH Hannover Germany
| | - Christoph Czerner
- Department of Diagnostic and Interventional Radiology, Hannover Medical School Hannover Germany
- German Centre for Lung Research, BREATH Hannover Germany
| | - Marcel Gutberlet
- Department of Diagnostic and Interventional Radiology, Hannover Medical School Hannover Germany
- German Centre for Lung Research, BREATH Hannover Germany
| | - Serghei Cebotari
- Department of CardiothoracicTransplantation and Vascular Surgery, Hannover Medical School Hannover Germany
| | - Fabio Ius
- Department of CardiothoracicTransplantation and Vascular Surgery, Hannover Medical School Hannover Germany
| | - Christine Fegbeutel
- Department of CardiothoracicTransplantation and Vascular Surgery, Hannover Medical School Hannover Germany
| | - Christian Schoenfeld
- Department of Diagnostic and Interventional Radiology, Hannover Medical School Hannover Germany
- German Centre for Lung Research, BREATH Hannover Germany
| | - Till F. Kaireit
- Department of Diagnostic and Interventional Radiology, Hannover Medical School Hannover Germany
- German Centre for Lung Research, BREATH Hannover Germany
| | - Erik F. Hauck
- Department of NeurosurgeryDuke Hospital Durham North Carolina USA
| | - Karen M. Olsson
- Department of Respiratory MedicineHannover Medical School Hannover Germany
- German Centre for Lung Research, BREATH Hannover Germany
| | - Marius M. Hoeper
- Department of Respiratory MedicineHannover Medical School Hannover Germany
- German Centre for Lung Research, BREATH Hannover Germany
| | - Frank Wacker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School Hannover Germany
- German Centre for Lung Research, BREATH Hannover Germany
| | - Jens Vogel‐Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School Hannover Germany
- German Centre for Lung Research, BREATH Hannover Germany
| |
Collapse
|
36
|
Hirsch FW, Sorge I, Vogel-Claussen J, Roth C, Gräfe D, Päts A, Voskrebenzev A, Anders RM. The current status and further prospects for lung magnetic resonance imaging in pediatric radiology. Pediatr Radiol 2020; 50:734-749. [PMID: 31996938 PMCID: PMC7150663 DOI: 10.1007/s00247-019-04594-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/08/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
Lung MRI makes it possible to replace up to 90% of CT examinations with radiation-free magnetic resonance diagnostics of the lungs without suffering any diagnostic loss. The individual radiation exposure can thus be relevantly reduced. This applies in particular to children who repeatedly require sectional imaging of the lung, e.g., in tumor surveillance or in chronic lung diseases such as cystic fibrosis. In this paper we discuss various factors that favor the establishment of lung MRI in the clinical setting. Among the many sequences proposed for lung imaging, respiration-triggered T2-W turbo spin-echo (TSE) sequences have been established as a good standard for children. Additional sequences are mostly dispensable. The most important pulmonary findings are demonstrated here in the form of a detailed pictorial essay. T1-weighted gradient echo sequences with ultrashort echo time are a new option. These sequences anticipate signal loss in the lung and deliver CT-like images with high spatial resolution. When using self-gated T1-W ultrashort echo time 3-D sequences that acquire iso-voxel geometry in the sub-millimeter range, secondary reconstructions are possible.
Collapse
Affiliation(s)
- Franz Wolfgang Hirsch
- Department of Pediatric Radiology, University of Leipzig, Liebigstraße 20a, 04103, Leipzig, Germany.
| | - Ina Sorge
- Department of Pediatric Radiology, University of Leipzig, Liebigstraße 20a, 04103, Leipzig, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, 30625, Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Centre for Lung Research, 30625, Hannover, Germany
| | - Christian Roth
- Department of Pediatric Radiology, University of Leipzig, Liebigstraße 20a, 04103, Leipzig, Germany
| | - Daniel Gräfe
- Department of Pediatric Radiology, University of Leipzig, Liebigstraße 20a, 04103, Leipzig, Germany
| | - Anne Päts
- Department of Pediatric Radiology, University of Leipzig, Liebigstraße 20a, 04103, Leipzig, Germany
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, 30625, Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Centre for Lung Research, 30625, Hannover, Germany
| | - Rebecca Marie Anders
- Department of Pediatric Radiology, University of Leipzig, Liebigstraße 20a, 04103, Leipzig, Germany
| |
Collapse
|
37
|
Behrendt L, Voskrebenzev A, Klimeš F, Gutberlet M, Winther HB, Kaireit TF, Alsady TM, Pöhler GH, Derlin T, Wacker F, Vogel‐Claussen J. Validation of Automated Perfusion‐Weighted Phase‐Resolved Functional Lung (PREFUL)‐MRI in Patients With Pulmonary Diseases. J Magn Reson Imaging 2019; 52:103-114. [DOI: 10.1002/jmri.27027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
- Lea Behrendt
- Department of Diagnostic and Interventional RadiologyHannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Andreas Voskrebenzev
- Department of Diagnostic and Interventional RadiologyHannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Filip Klimeš
- Department of Diagnostic and Interventional RadiologyHannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Marcel Gutberlet
- Department of Diagnostic and Interventional RadiologyHannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Hinrich B. Winther
- Department of Diagnostic and Interventional RadiologyHannover Medical School Hannover Germany
| | - Till F. Kaireit
- Department of Diagnostic and Interventional RadiologyHannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Tawfik Moher Alsady
- Department of Diagnostic and Interventional RadiologyHannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Gesa H. Pöhler
- Department of Diagnostic and Interventional RadiologyHannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Thorsten Derlin
- Department of Nuclear MedicineHannover Medical School Hannover Germany
| | - Frank Wacker
- Department of Diagnostic and Interventional RadiologyHannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Jens Vogel‐Claussen
- Department of Diagnostic and Interventional RadiologyHannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)Member of the German Center for Lung Research (DZL) Hannover Germany
| |
Collapse
|
38
|
Leutz-Schmidt P, Eichinger M, Stahl M, Sommerburg O, Biederer J, Kauczor HU, Puderbach MU, Mall MA, Wielpütz MO. Ten years of chest MRI for patients with cystic fibrosis : Translation from the bench to clinical routine. Radiologe 2019; 59:10-20. [PMID: 31172247 DOI: 10.1007/s00117-019-0553-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite recent advances in our knowledge about the pathophysiology and treatment of cystic fibrosis (CF), pulmonary involvement remains the most important determinant of morbidity and mortality in patients with CF. Since lung function testing may not be sensitive enough for subclinical disease progression, and because young children may have normal spirometry results over a longer period of time, imaging today plays an increasingly important role in clinical routine and research for the monitoring of CF lung disease. In this regard, chest magnetic resonance imaging (MRI) could serve as a radiation-free modality for structural and functional lung imaging. METHODS Our research agenda encompassed the entire process of development, implementation, and validation of appropriate chest MRI protocols for use with infant and adult CF patients alike. RESULTS After establishing a general MRI protocol for state-of-the-art clinical 1.5-T scanners based on the available sequence technology, a semiquantitative scoring system was developed followed by cross-validation of the method against the established modalities of computed tomography, radiography, and lung function testing. Cross-sectional studies were then set up to determine the sensitivity of the method for the interindividual variation of the disease and for changes in disease severity after treatment. Finally, the MRI protocol was implemented at multiple sites to be validated in a multicenter setting. CONCLUSION After more than a decade, lung MRI has become a valuable tool for monitoring CF in clinical routine application and as an endpoint for clinical studies.
Collapse
Affiliation(s)
- Patricia Leutz-Schmidt
- Department of Diagnostic and Interventional Radiology, Subdivision Pulmonary Imaging, University Hospital of Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany. .,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany. .,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University Hospital of Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Germany.
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology, Subdivision Pulmonary Imaging, University Hospital of Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University Hospital of Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Germany
| | - Mirjam Stahl
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany.,Department of Translational Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany.,Department of Translational Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Jürgen Biederer
- Department of Diagnostic and Interventional Radiology, Subdivision Pulmonary Imaging, University Hospital of Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University Hospital of Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Germany.,Faculty of Medicine, University of Latvia, Raina bulvaris 19, LV-1586, Riga, Latvia
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Subdivision Pulmonary Imaging, University Hospital of Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University Hospital of Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Germany.,Department of Translational Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Michael U Puderbach
- Department of Diagnostic and Interventional Radiology, Subdivision Pulmonary Imaging, University Hospital of Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University Hospital of Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology, Hufeland Hospital, Rudolph-Weiss-Straße 1-5, 99947, Bad Langensalza, Germany
| | - Marcus A Mall
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Translational Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, Subdivision Pulmonary Imaging, University Hospital of Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University Hospital of Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Germany
| |
Collapse
|
39
|
Glandorf J, Klimeš F, Voskrebenzev A, Gutberlet M, Wacker F, Vogel-Claussen J. Effect of intravenously injected gadolinium-based contrast agents on functional lung parameters derived by PREFUL MRI. Magn Reson Med 2019; 83:1045-1054. [PMID: 31517406 DOI: 10.1002/mrm.27991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE To evaluate the influence of intravenously administered gadolinium-based contrast agents on functional ventilation and perfusion parameters derived by phase-resolved functional lung (PREFUL) MRI. METHODS Fourteen participants underwent functional MRI at 1.5T using a 2D spoiled gradient echo sequence during free breathing. Three data sets of PREFUL images were obtained-the 1st data set was acquired in mean 33:46 min (SD = 6:20 min) prior, the 2nd and 3rd data sets 43 and 91 s (both SD = 1.9 s), respectively, after i.v. application of gadobutrol. Full respiratory and cardiac cycles were reconstructed and functional parameters of regional ventilation (RV), perfusion (Q), and quantified perfusion (QQuant ) together with perfusion-defected percentages (QDP), ventilation-defected percentages (VDP), and ventilation-perfusion match (VQM) were calculated and compared for systematic differences between the acquired data sets. RESULTS RV- and Q-values presented no significant alteration after gadobutrol administration. Consequently, QDP, VDP, and VQ maps were not significantly different. Sørensen-Dice coefficients of QDP and VDP maps between the different series varied up to ±9%. QQuant was significantly increased after the application of gadobutrol (1st vs. 2nd series, P = 0.0021; 1st vs. 3rd, P = 0.0188), which can be explained by the velocity-dependent signal in the completely blood-filled voxel (ROI of the aorta) after shortening of T1 relaxation time (1st vs. 2nd series, P = 0.0003; 1st vs. 3rd series, P = 0.0008). CONCLUSION Except for quantified perfusion, all evaluated functional parameters including ventilation- and perfusion-weighted maps derived by PREFUL MRI were independent of gadolinium-based contrast agents, which is important for the design of MRI protocols in future studies.
Collapse
Affiliation(s)
- Julian Glandorf
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Filip Klimeš
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
40
|
Winther HB, Gutberlet M, Hundt C, Kaireit TF, Alsady TM, Schmidt B, Wacker F, Sun Y, Dettmer S, Maschke SK, Hinrichs JB, Jambawalikar S, Prince MR, Barr RG, Vogel-Claussen J. Deep semantic lung segmentation for tracking potential pulmonary perfusion biomarkers in chronic obstructive pulmonary disease (COPD): The multi-ethnic study of atherosclerosis COPD study. J Magn Reson Imaging 2019; 51:571-579. [PMID: 31276264 DOI: 10.1002/jmri.26853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is associated with high morbidity and mortality. Identification of imaging biomarkers for phenotyping is necessary for future treatment and therapy monitoring. However, translation of visual analytic pipelines into clinics or their use in large-scale studies is significantly slowed by time-consuming postprocessing steps. PURPOSE To implement an automated tool chain for regional quantification of pulmonary microvascular blood flow in order to reduce analysis time and user variability. STUDY TYPE Prospective. POPULATION In all, 90 MRI scans of 63 patients, of which 31 had a COPD with a mean Global Initiative for Chronic Obstructive Lung Disease status of 1.9 ± 0.64 (μ ± σ). FIELD STRENGTH/SEQUENCE 1.5T dynamic gadolinium-enhanced MRI measurement using 4D dynamic contrast material-enhanced (DCE) time-resolved angiography acquired in a single breath-hold in inspiration. [Correction added on August 20, 2019, after first online publication: The field strength in the preceding sentence was corrected.] ASSESSMENT: We built a 3D convolutional neural network for semantic segmentation using 29 manually segmented perfusion maps. All five lobes of the lung are denoted, including the middle lobe. Evaluation was performed on 61 independent cases from two sites of the Multi-Ethnic Study of Arteriosclerosis (MESA)-COPD study. We publish our implementation of a model-free deconvolution filter according to Sourbron et al for 4D DCE MRI scans as open source. STATISTICAL TEST Cross-validation 29/61 (# training / # testing), intraclass correlation coefficient (ICC), Spearman ρ, Pearson r, Sørensen-Dice coefficient, and overlap. RESULTS Segmentations and derived clinical parameters were processed in ~90 seconds per case on a Xeon E5-2637v4 workstation with Tesla P40 GPUs. Clinical parameters and predicted segmentations exhibit high concordance with the ground truth regarding median perfusion for all lobes with an ICC of 0.99 and a Sørensen-Dice coefficient of 93.4 ± 2.8 (μ ± σ). DATA CONCLUSION We present a robust end-to-end pipeline that allows for the extraction of perfusion-based biomarkers for all lung lobes in 4D DCE MRI scans by combining model-free deconvolution with deep learning. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:571-579.
Collapse
Affiliation(s)
- Hinrich B Winther
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Marcel Gutberlet
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | - Till F Kaireit
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Tawfik Moher Alsady
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Bertil Schmidt
- Institute for Computer Science, Johannes Gutenberg University, Mainz, Germany
| | - Frank Wacker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Yanping Sun
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sabine Dettmer
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Sabine K Maschke
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Jan B Hinrichs
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Medical Center, New York, New York, USA
| | - Martin R Prince
- Cornell Cardiovascular Magnetic Resonance Imaging Laboratory, Radiology Department, Weill Medical College of Cornell University, New York, New York, USA
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jens Vogel-Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|