1
|
Shrestha B, Stern NB, Zhou A, Dunn A, Porter T. Current trends in the characterization and monitoring of vascular response to cancer therapy. Cancer Imaging 2024; 24:143. [PMID: 39438891 PMCID: PMC11515715 DOI: 10.1186/s40644-024-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Tumor vascular physiology is an important determinant of disease progression as well as the therapeutic outcome of cancer treatment. Angiogenesis or the lack of it provides crucial information about the tumor's blood supply and therefore can be used as an index for cancer growth and progression. While standalone anti-angiogenic therapy demonstrated limited therapeutic benefits, its combination with chemotherapeutic agents improved the overall survival of cancer patients. This could be attributed to the effect of vascular normalization, a dynamic process that temporarily reverts abnormal vasculature to the normal phenotype maximizing the delivery and intratumor distribution of chemotherapeutic agents. Longitudinal monitoring of vascular changes following antiangiogenic therapy can indicate an optimal window for drug administration and estimate the potential outcome of treatment. This review primarily focuses on the status of various imaging modalities used for the longitudinal characterization of vascular changes before and after anti-angiogenic therapies and their clinical prospects.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Noah B Stern
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tyrone Porter
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
2
|
Mukherjee S, Bhaduri S, Harwood R, Murray P, Wilm B, Bearon R, Poptani H. Multiparametric MRI based assessment of kidney injury in a mouse model of ischemia reperfusion injury. Sci Rep 2024; 14:19922. [PMID: 39198525 PMCID: PMC11358484 DOI: 10.1038/s41598-024-70401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Kidney diseases pose a global healthcare burden, with millions requiring renal replacement therapy. Ischemia/reperfusion injury (IRI) is a common pathology of acute kidney injury, causing hypoxia and subsequent inflammation-induced kidney damage. Accurate detection of acute kidney injury due to IRI is crucial for timely intervention. We used longitudinal, multi-parametric magnetic resonance imaging (MRI) employing arterial spin labelling (ASL), diffusion weighted imaging (DWI), and dynamic contrast enhanced (DCE)-MRI to assess IRI induced changes in both the injured and healthy contralateral kidney, in a unilateral IRI mouse model (n = 9). Multi-parametric MRI demonstrated significant differences in kidney volume (p = 0.001), blood flow (p = 0.002), filtration coefficient (p = 0.038), glomerular filtration rate (p = 0.005) and apparent diffusion coefficient (p = 0.048) between the injured kidney and contralateral kidney on day 1 post-IRI surgery. Identification of the injured kidney using principal component analysis including most of the imaging parameters demonstrated an area under the curve (AUC) of 0.97. These results point to the utility of multi-parametric MRI in early detection of IRI-induced kidney damage suggesting that the combination of various MRI parameters may be suitable for monitoring the extent of injury in this model.
Collapse
Affiliation(s)
- Soham Mukherjee
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Sourav Bhaduri
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
- Institute for Advancing Intelligence (IAI), TCG CREST, Kolkata, India
| | - Rachel Harwood
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Rachel Bearon
- Department of Mathematical Science, University of Liverpool, Liverpool, UK
- Department of Mathematics, Kings College, London, UK
| | - Harish Poptani
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK.
| |
Collapse
|
3
|
Ang T, Juniat V, Patel S, Selva D. Evaluation of orbital lesions with DCE-MRI: a literature review. Orbit 2024; 43:408-416. [PMID: 36437715 DOI: 10.1080/01676830.2022.2149819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE To provide a major review on the applications of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in evaluating orbital lesions. This review also outlines selected scenarios where DCE-MRI may be helpful. METHODS A comprehensive retrospective literature review of all English language publications on PubMed, EMBASE, and Google Scholar between 1994 and 2022. This literature review examined the specific applications and clinical scenarios surrounding the utility of DCE-MRI in orbital lesions and various findings that have been presented in the current literature. RESULTS DCE-MRI provides information on tissue physiology and permeability, beyond the anatomical features displayed on static imaging. Various measured parameters (qualitative, semi-quantitative, and quantitative) obtained by DCE-MRI have been used to differentiate between benign and malignant lesions, specific orbital lymphoproliferative diseases (OLPD), lacrimal gland lesions, and various rare orbital tumours. DCE-MRI has a limited role as an initial diagnostic imaging modality. However, DCE-MRI may prove to have benefit in predicting and monitoring treatment response in orbital lymphoma as a critical imaging study, but literature specific to orbital malignancies remains limited. CONCLUSION The value of DCE-MRI may be in situations of diagnostic uncertainty, where it may be an additional imaging aid following conventional imaging techniques. It may also act as a critical imaging modality for monitoring of orbital tumour treatment response, but the literature remains limited. Standardisation of imaging protocol, measured parameters, and statistical analysis remain limitations of this imaging technique.
Collapse
Affiliation(s)
- Terence Ang
- Discipline of Ophthalmology and Visual Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Valerie Juniat
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide South Australia, Australia
| | - Sandy Patel
- Department of Medical Imaging, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Dinesh Selva
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide South Australia, Australia
| |
Collapse
|
4
|
O'Shaughnessy E, Cossec CL, Mambour N, Lecoeuvre A, Savatovsky J, Zmuda M, Duron L, Lecler A. Diagnostic Performance of Dynamic Contrast-Enhanced 3T MR Imaging for Characterization of Orbital Lesions: Validation in a Large Prospective Study. AJNR Am J Neuroradiol 2024; 45:342-350. [PMID: 38453407 DOI: 10.3174/ajnr.a8131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND PURPOSE Orbital lesions are rare but serious. Their characterization remains challenging. Diagnosis is based on biopsy or surgery, which implies functional risks. It is necessary to develop noninvasive diagnostic tools. The goal of this study was to evaluate the diagnostic performance of dynamic contrast-enhanced MR imaging at 3T when distinguishing malignant from benign orbital tumors on a large prospective cohort. MATERIALS AND METHODS This institutional review board-approved prospective single-center study enrolled participants presenting with an orbital lesion undergoing a 3T MR imaging before surgery from December 2015 to May 2021. Morphologic, diffusion-weighted, and dynamic contrast-enhanced MR images were assessed by 2 readers blinded to all data. Univariable and multivariable analyses were performed. To assess diagnostic performance, we used the following metrics: area under the curve, sensitivity, and specificity. Histologic analysis, obtained through biopsy or surgery, served as the criterion standard for determining the benign or malignant status of the tumor. RESULTS One hundred thirty-one subjects (66/131 [50%] women and 65/131 [50%] men; mean age, 52 [SD, 17.1] years; range, 19-88 years) were enrolled. Ninety of 131 (69%) had a benign lesion, and 41/131 (31%) had a malignant lesion. Univariable analysis showed a higher median of transfer constant from blood plasma to the interstitial environment (K trans) and of transfer constant from the interstitial environment to the blood plasma (minute-1) (Kep) and a higher interquartile range of K trans in malignant-versus-benign lesions (1.1 minute-1 versus 0.65 minute-1, P = .03; 2.1 minute-1 versus 1.1 minute-1, P = .01; 0.81 minute-1 versus 0.65 minute-1, P = .009, respectively). The best-performing multivariable model in distinguishing malignant-versus-benign lesions included parameters from dynamic contrast-enhanced imaging, ADC, and morphology and reached an area under the curve of 0.81 (95% CI, 0.67-0.96), a sensitivity of 0.82 (95% CI, 0.55-1), and a specificity of 0.81 (95% CI, 0.65-0.96). CONCLUSIONS Dynamic contrast-enhanced MR imaging at 3T appears valuable when characterizing orbital lesions and provides complementary information to morphologic imaging and DWI.
Collapse
Affiliation(s)
- Emma O'Shaughnessy
- From the Department of Neuroradiology (E.O., J.S., L.D., A.L.), Rothschild Foundation Hospital, Paris, France
| | - Chloé Le Cossec
- Department of Clinical Research (C.L.C., A.L.), Rothschild Foundation Hospital, Paris, France
| | - Natasha Mambour
- Department of Ophthalmology (N.M., M.Z.), Rothschild Foundation Hospital, Paris, France
| | - Adrien Lecoeuvre
- Department of Clinical Research (C.L.C., A.L.), Rothschild Foundation Hospital, Paris, France
| | - Julien Savatovsky
- From the Department of Neuroradiology (E.O., J.S., L.D., A.L.), Rothschild Foundation Hospital, Paris, France
| | - Mathieu Zmuda
- Department of Ophthalmology (N.M., M.Z.), Rothschild Foundation Hospital, Paris, France
| | - Loïc Duron
- From the Department of Neuroradiology (E.O., J.S., L.D., A.L.), Rothschild Foundation Hospital, Paris, France
| | - Augustin Lecler
- From the Department of Neuroradiology (E.O., J.S., L.D., A.L.), Rothschild Foundation Hospital, Paris, France
| |
Collapse
|
5
|
Jian T, Yang M, Wu T, Ji X, Xia S, Sun F. Diagnostic value of dynamic contrast enhancement combined with conventional MRI in differentiating benign and malignant lacrimal gland epithelial tumours. Clin Radiol 2024; 79:e345-e352. [PMID: 37953093 DOI: 10.1016/j.crad.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
AIM To establish the diagnostic value of the quantitative parameters of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) combined with conventional MRI in differentiating of benign and malignant lacrimal gland epithelial tumours. MATERIALS AND METHODS A retrospective analysis of primary lacrimal gland epithelial tumours confirmed by histopathology was conducted. Conventional MRI features and DCE-MRI quantitative parameters were collected and subjected to analysis. The diagnostic value was evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS A total of 53 patients were enrolled of which 29 had malignant, whereas 24 had benign tumours. Conventional MRI revealed statistically significant differences between benign and malignant tumours regarding maximum tumour diameter, posterior margin characteristic, bone destruction, and erosion. The Ktrans and Kep values obtained by DCE-MRI were higher in malignant than in benign tumours, with a statistically significant (p<0.001 and p=0.022). A type I time-signal intensity (TIC) curve was more frequent in benign tumours, whereas a type II TIC curve was prevalent in malignant tumours (p=0.001). ROC analysis showed that Ktrans had the best diagnostic value of the DCE-MRI parameters (area under the ROC curve [AUC] of 0.822, 75.9% sensitivity, and 83.3% specificity, p<0.001). The combination of conventional MRI and DCE-MRI factors had the best diagnostic value and balanced sensitivity and specificity (AUC of 0.948, 93.1% sensitivity, and 91.7% specificity, p<0.001). CONCLUSIONS The present findings indicate that the combination of quantitative parameters of DCE-MRI and image characteristics of conventional MRI have a high diagnostic value for the diagnosis of benign and malignant lacrimal gland epithelial tumours.
Collapse
Affiliation(s)
- T Jian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - M Yang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - T Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - X Ji
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - S Xia
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - F Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
6
|
Oyama K, Ichinohe F, Yamada A, Kitoh Y, Adachi Y, Hayashihara H, Nickel MD, Maruyama K, Fujinaga Y. Optimal Temporal Resolution to Achieve Good Image Quality and Perform Pharmacokinetic Analysis in Free-breathing Dynamic Contrast-enhanced MR Imaging of the Pancreas. Magn Reson Med Sci 2023; 22:477-485. [PMID: 36002311 PMCID: PMC10552666 DOI: 10.2463/mrms.mp.2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The optimal temporal resolution for free-breathing dynamic contrast-enhanced MRI (FBDCE-MRI) of the pancreas has not been determined. This study aimed to evaluate the appropriate temporal resolution to achieve good image quality and to perform pharmacokinetic analysis in FBDCE-MRI of the pancreas using golden-angle radial sparse parallel (GRASP). METHODS Sixteen participants (53 ± 15 years, eight females) undergoing FBDCE-MRI were included in this prospective study. Images were retrospectively reconstructed at four temporal resolutions (1.8, 3.0, 4.8, and 7.8s). Two radiologists (5 years of experience) evaluated the image quality of each reconstructed image by assessing the visualization of the celiac artery (CEA), the common hepatic artery, the splenic artery, each area of the pancreas, and artifacts using a 5-point scale. Using Tissue-4D, pharmacokinetic parameters were calculated for each area in the reconstructed images at each temporal resolution for 16 examinations, excluding two with errors in the pharmacokinetic modeling analysis. Friedman and Bonferroni tests were used for analysis. A P value < 0.05 was considered statistically significant. RESULTS During vascular assessment, only scores for the CEA at 7.8s were significantly lower than the other temporal resolutions. Scores of all pancreatic regions and artifacts were significantly lower at 1.8s than at 4.8s and 7.8s. In the pharmacokinetic analysis, all volume transfer coefficients (Ktrans), rate constants (Kep), and the initial area under the concentration curve (iAUC) in the pancreatic head and tail were significantly lower at 4.8s and 7.8s than at 1.8s. iAUC in the pancreatic body and extracellular extravascular volume fraction (Ve) in the pancreatic head were significantly lower at 7.8s than at 1.8s. CONCLUSION A temporal resolution of 3.0s is appropriate to achieve image quality and perform pharmacokinetic analysis in FBDCE-MRI of the pancreas using GRASP.
Collapse
Affiliation(s)
- Kazuki Oyama
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Fumihito Ichinohe
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yoshihiro Kitoh
- Radiology Division, Shinshu University Hospital, Matsumoto, Nagano, Japan
| | - Yasuo Adachi
- Radiology Division, Shinshu University Hospital, Matsumoto, Nagano, Japan
| | - Hayato Hayashihara
- Radiology Division, Shinshu University Hospital, Matsumoto, Nagano, Japan
| | - Marcel D. Nickel
- MR Application Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark, Erlangen, Germany
| | - Katsuya Maruyama
- MR Research & Collaboration Department, Siemens Healthcare K.K., Tokyo, Japan
| | - Yasunari Fujinaga
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
7
|
Lecler A, Duron L, Charlson E, Kolseth C, Kossler AL, Wintermark M, Moulin K, Rutt B. Comparison between 7 Tesla and 3 Tesla MRI for characterizing orbital lesions. Diagn Interv Imaging 2022; 103:433-439. [PMID: 35410799 DOI: 10.1016/j.diii.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Characterizing orbital lesions remains challenging with imaging. The purpose of this study was to compare 3 Tesla (T) to 7 T magnetic resonance imaging (MRI) for characterizing orbital lesions. MATERIALS AND METHODS This prospective single-center study enrolled participants presenting with orbital lesions from May to October 2019, who underwent both 7 T and 3 T MRI examinations. Two neuroradiologists, blinded to all data, read both datasets independently and randomly. They assessed general characteristics of each orbital lesion as well as image quality and presence of artifacts. Comparison between both datasets was made using Fisher exact test. RESULTS Seven patients (4 women, 3 men) with a median age of 52 years were enrolled. Orbital lesion conspicuity was better scored at 7 T compared to 3 T MRI, with 3/7 lesions (43%) scored as very conspicuous at 7 T compared to 0/7 lesion (0%) at 3 T, although the difference was not significant (P = 0.16). Delineation of lesion margins was better scored at 7 T compared to 3 T with 3/7 lesions (43%) scored as very well delineated on 7 T compared to 0/7 lesions (0%) at 3 T, although the difference was not significant (P = 0.34). Details of internal structure were better assessed at 7 T compared to 3 T, with 4/7 lesions (57%) displaying numerous internal details compared to 0/7 lesions (0%) at 3 T (P = 0.10). Internal microvessels were visible in 3/7 lesions (43%) at 7 T compared to 0/7 lesions (0%) at 3 T (P = 0.19). CONCLUSION Although no significant differences were found between 7 T and 3 T MRI, assumably due to a limited number of patients, our study suggests that 7 Tesla MRI might help improve the characterization of orbital lesions. However, further studies with more patients are needed.
Collapse
Affiliation(s)
- Augustin Lecler
- Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 75019 Paris, France; Université Paris Cité, Faculté de Médecine, 75006 Paris, France.
| | - Loïc Duron
- Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 75019 Paris, France
| | - Emily Charlson
- Department of Ophthalmology, Byers Eye Institute, Stanford Hospital, 94305 Stanford, CA, USA
| | - Clint Kolseth
- Department of Ophthalmology, Byers Eye Institute, Stanford Hospital, 94305 Stanford, CA, USA
| | - Andrea L Kossler
- Department of Ophthalmology, Byers Eye Institute, Stanford Hospital, 94305 Stanford, CA, USA
| | - Max Wintermark
- Department of Neuroradiology, Stanford Hospital, 94305 Stanford, CA, USA
| | - Kevin Moulin
- Lucas Center for Imaging, 94305 Stanford, CA, USA
| | - Brian Rutt
- Lucas Center for Imaging, 94305 Stanford, CA, USA
| |
Collapse
|
8
|
Jungbauer F, Gvaramia D, Huber L, Kramer B, Ponto KA, Popovic Z, Riffel P, Rotter N, Scherl C, Zaubitzer L, Lammert A. [Differential diagnosis of intraorbital masses - a narrative review]. Laryngorhinootologie 2021; 101:390-398. [PMID: 34902864 DOI: 10.1055/a-1580-7371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Intraorbital masses represent a condition that is frequently threatening for the visual system. A rigorous differential diagnosis is essential to promptly initiate appropriate therapy and optimize prognosis. MATERIALS/METHODS Narrative review of current literature and expert recommendations. For further illustration we describe the case of a 71-year-old male admitted to our department three months after sinus surgery. Postoperative intraorbital hematoma of the right orbit had been treated conservatively with antibiotics/corticosteroids, leading to a near-complete unilateral visual loss. The immediate surgical intervention aimed at decompression of the orbit and the optical nerve. Due to the delay, the intervention could not prevent formation of a lipogranuloma. Inflammatory phases associated with the lipogranuloma are successfully managed by conservative treatment based on multidisciplinary recommendations. RESULTS In the case reported, delay of surgical therapy acted as a cause of intraorbital lipogranuloma formation. Literature supports our recommendation of immediate surgical intervention in case of acute retrobulbar hematoma. Besides acute conditions, intraorbital masses can be a sign of systemic disease. In every case, a multidisciplinary therapeutic approach is required for adequate management. CONCLUSIONS Intraorbital masses can occur as a complication of trauma or e.g. sinus surgery. On the other hand they can be a sign of systemic disease. Timely diagnosis and treatment prevents from visual loss. That is why rigorous differential diagnosis is essential for every discipline managing intraorbital lesions.
Collapse
Affiliation(s)
| | | | - Lena Huber
- HNO, Universitatsklinikum Mannheim, Mannheim, Germany
| | | | - Katharina A Ponto
- Universitäts-Augenklinik, Universitätsklinikum Mainz, Mainz, Germany
| | - Zoran Popovic
- Pathologisches Institut Mannheim, Universitätsklinikum Mannheim, Mannheim, Germany
| | - Philipp Riffel
- Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Mannheim, Mannheim, Germany
| | - Nicole Rotter
- HNO, Universitatsklinikum Mannheim, Mannheim, Germany
| | | | | | - Anne Lammert
- Fakultät Mannheim, ENT, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
9
|
Julie L, Ikram D, Mailyn PL, Augustin L, Afef B, Joevin S, Bentoumi I, Cuenod CA, Daniel B. A free time point model for dynamic contrast enhanced exploration. Magn Reson Imaging 2021; 80:39-49. [PMID: 33905829 DOI: 10.1016/j.mri.2021.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Dynamic-Contrast-Enhanced (DCE) Imaging has been widely studied to characterize microcirculatory disorders associated with various diseases. Although numerous studies have demonstrated its diagnostic interest, the physiological interpretation using pharmacokinetic models often remains debatable. Indeed, to be interpretable, a model must provide, at first instance, an accurate description of the DCE data. However, the evaluation and optimization of this accuracy remain rather limited in DCE. Here we established a non-linear Free-Time-Point-Hermite (FTPH) data-description model designed to fit DCE data accurately. Its performance was evaluated on data generated using two contrasting pharmacokinetic microcirculatory hypotheses (MH). The accuracy of data description of the models was evaluated by calculating the mean squared error (QE) from initial and assessed tissue impulse responses. Then, FTPH assessments were provided to blinded observers to evaluate if these assessments allowed observers to identify MH in their data. Regardless of the initial pharmacokinetic model used for data generation, QE was lower than 3% for the noise-free datasets and increased up to 10% for a signal-to-noise-ratio (SNR) of 20. Under SNR = 20, the sensitivity and specificity of the MH identification were over 80%. The performance of the FTPH model was higher than that of the B-Spline model used as a reference. The accuracy of the FTPH model regardless of the initial MH provided an opportunity to have a reference to check the accuracy of other pharmacokinetic models.
Collapse
Affiliation(s)
- Levebvre Julie
- Université de Paris, PARCC, INSERM, Paris F-75015, France
| | - Djebali Ikram
- Université de Paris, PARCC, INSERM, Paris F-75015, France
| | | | | | | | - Sourdon Joevin
- Université de Paris, PARCC, INSERM, Paris F-75015, France.
| | - Isma Bentoumi
- Université de Paris, PARCC, INSERM, Paris F-75015, France
| | - Charles-André Cuenod
- Université de Paris, PARCC, INSERM, Paris F-75015, France; Service Radiologie, AP-HP, Hôpital Européen Georges Pompidou, F-75015, France.
| | - Balvay Daniel
- Université de Paris, PARCC, INSERM, Paris F-75015, France; Université de Paris, Plateforme d'Imageries du Vivant, F-75015, France.
| |
Collapse
|
10
|
Duron L, Heraud A, Charbonneau F, Zmuda M, Savatovsky J, Fournier L, Lecler A. A Magnetic Resonance Imaging Radiomics Signature to Distinguish Benign From Malignant Orbital Lesions. Invest Radiol 2021; 56:173-180. [PMID: 32932375 DOI: 10.1097/rli.0000000000000722] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Distinguishing benign from malignant orbital lesions remains challenging both clinically and with imaging, leading to risky biopsies. The objective was to differentiate benign from malignant orbital lesions using radiomics on 3 T magnetic resonance imaging (MRI) examinations. MATERIALS AND METHODS This institutional review board-approved prospective single-center study enrolled consecutive patients presenting with an orbital lesion undergoing a 3 T MRI prior to surgery from December 2015 to July 2019. Radiomics features were extracted from 6 MRI sequences (T1-weighted images [WIs], DIXON-T2-WI, diffusion-WI, postcontrast DIXON-T1-WI) using the Pyradiomics software. Features were selected based on their intraobserver and interobserver reproducibility, nonredundancy, and with a sequential step forward feature selection method. Selected features were used to train and optimize a Random Forest algorithm on the training set (75%) with 5-fold cross-validation. Performance metrics were computed on a held-out test set (25%) with bootstrap 95% confidence intervals (95% CIs). Five residents, 4 general radiologists, and 3 expert neuroradiologists were evaluated on their ability to visually distinguish benign from malignant lesions on the test set. Performance comparisons between reader groups and the model were performed using McNemar test. The impact of clinical and categorizable imaging data on algorithm performance was also assessed. RESULTS A total of 200 patients (116 [58%] women and 84 [42%] men; mean age, 53.0 ± 17.9 years) with 126 of 200 (63%) benign and 74 of 200 (37%) malignant orbital lesions were included in the study. A total of 606 radiomics features were extracted. The best performing model on the training set was composed of 8 features including apparent diffusion coefficient mean value, maximum diameter on T1-WIs, and texture features. Area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity on the test set were respectively 0.869 (95% CI, 0.834-0.898), 0.840 (95% CI, 0.806-0.874), 0.684 (95% CI, 0.615-0.751), and 0.935 (95% CI, 0.905-0.961). The radiomics model outperformed all reader groups, including expert neuroradiologists (P < 0.01). Adding clinical and categorizable imaging data did not significantly impact the algorithm performance (P = 0.49). CONCLUSIONS An MRI radiomics signature is helpful in differentiating benign from malignant orbital lesions and may outperform expert radiologists.
Collapse
Affiliation(s)
| | | | | | - Mathieu Zmuda
- Department of Orbitopalpebral Surgery, Fondation Adolphe de Rothschild Hospital
| | | | | | | |
Collapse
|
11
|
Intravoxel incoherent motion (IVIM) 3 T MRI for orbital lesion characterization. Eur Radiol 2020; 31:14-23. [PMID: 32740820 DOI: 10.1007/s00330-020-07103-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/28/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To determine the diagnostic accuracy of MRI intravoxel incoherent motion (IVIM) when characterizing orbital lesions, which is challenging due to a wide range of locations and histologic types. METHODS This IRB-approved prospective single-center study enrolled participants presenting with an orbital lesion undergoing a 3-T MRI prior to surgery from December 2015 to July 2019. An IVIM sequence with 15 b values ranging from 0 to 2000 s/mm2 was performed. Two neuroradiologists, blinded to clinical data, individually analyzed morphological MRIs. They drew one region of interest inside each orbital lesion, providing apparent diffusion coefficient (ADC), true diffusion coefficient (D), perfusion fraction (f), and pseudodiffusion coefficient (D*) values. T test, Mann-Whitney U test, and receiver operating characteristic curve analyses were performed to discriminate between orbital lesions and to determine the diagnostic accuracy of the IVIM parameters. RESULTS One hundred fifty-six participants (84 women and 72 men, mean age 54.4 ± 17.5 years) with 167 orbital lesions (98/167 [59%] benign lesions including 54 orbital inflammations and 69/167 [41%] malignant lesions including 32 lymphomas) were included in the study. ADC and D were significantly lower in malignant than in benign lesions: 0.8 × 10-3 mm2/s [0.45] versus 1.04 × 10-3 mm2/s [0.33], p < 0.001, and 0.75 × 10-3 mm2/s [0.40] versus 0.98 × 10-3 mm2/s [0.42], p < 0.001, respectively. D* was significantly higher in malignant lesions than in benign ones: 12.8 × 10-3 mm2/s [20.17] versus 7.52 × 10-3 mm2/s [7.57], p = 0.005. Area under curve was of 0.73, 0.74, 0.72, and 0.81 for ADC, D, D*, and a combination of D, f, and D*, respectively. CONCLUSIONS Our study showed that IVIM might help better characterize orbital lesions. KEY POINTS • Intravoxel incoherent motion (IVIM) helps clinicians to assess patients with orbital lesions. • Intravoxel incoherent motion (IVIM) helps clinicians to characterize orbital lymphoma versus orbital inflammation. • Management of patients becomes more appropriate.
Collapse
|
12
|
Lecler A, Zmuda M. Re: Vahdani et al.: Presentation and treatment of deep orbital dermoid cysts. (Ophthalmology. 2020 Mar 5;S0161-6420(20)30225-6. doi: 10.1016/j.ophtha.2020.02.037. Online ahead of print.). Ophthalmology 2020; 127:e60-e61. [PMID: 32703398 DOI: 10.1016/j.ophtha.2020.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Augustin Lecler
- Department of Neuroradiology, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.
| | - Mathieu Zmuda
- Department of Orbitopalpebral Surgery, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| |
Collapse
|
13
|
Lecler A, Broquet V, Bailleux J, Carsin B, Adle-Biassette H, Baloglu S, Forestier G, Bonneville F, Calvier E, Chauvet D, Comby PO, Cottier JP, Cotton F, Deschamps R, Diard-Detoeuf C, Ducray F, Drissi C, Elmaleh M, Farras J, Aguilar Garcia J, Gerardin E, Grand S, Jianu DC, Kremer S, Loiseau H, Magne N, Mejdoubi M, Moulignier A, Ollivier M, Nagi S, Rodallec M, Shor N, Tourdias T, Vandendries C, Anxionnat R, Duron L, Savatovsky J. Advanced multiparametric magnetic resonance imaging of multinodular and vacuolating neuronal tumor. Eur J Neurol 2020; 27:1561-1569. [PMID: 32301260 DOI: 10.1111/ene.14264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/10/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE Multinodular and vacuolating neuronal tumor (MVNT) of the cerebrum is a rare brain lesion with suggestive imaging features. The aim of our study was to report the largest series of MVNTs so far and to evaluate the utility of advanced multiparametric magnetic resonance (MR) techniques. METHODS This multicenter retrospective study was approved by our institutional research ethics board. From July 2014 to May 2019, two radiologists read in consensus the MR examinations of patients presenting with a lesion suggestive of an MVNT. They analyzed the lesions' MR characteristics on structural images and advanced multiparametric MR imaging. RESULTS A total of 64 patients (29 women and 35 men, mean age 44.2 ± 15.1 years) from 25 centers were included. Lesions were all hyperintense on fluid-attenuated inversion recovery and T2-weighted imaging without post-contrast enhancement. The median relative apparent diffusion coefficient on diffusion-weighted imaging was 1.13 [interquartile range (IQR), 0.2]. Perfusion-weighted imaging showed no increase in perfusion, with a relative cerebral blood volume of 1.02 (IQR, 0.05) and a relative cerebral blood flow of 1.01 (IQR, 0.08). MR spectroscopy showed no abnormal peaks. Median follow-up was 2 (IQR, 1.2) years, without any changes in size. CONCLUSIONS A comprehensive characterization protocol including advanced multiparametric magnetic resonance imaging sequences showed no imaging patterns suggestive of malignancy in MVNTs. It might be useful to better characterize MVNTs.
Collapse
Affiliation(s)
- A Lecler
- Department of Neuroradiology, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - V Broquet
- Department of Neuroradiology, CHU Lille, Lille, France
| | - J Bailleux
- Department of Neuroradiology, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - B Carsin
- Department of Radiology, CHRU de Rennes, Rennes, France
| | - H Adle-Biassette
- Department of Pathology, Lariboisière Hospital, Paris Diderot, Paris-Cité-Sorbonne University, Paris, France
| | - S Baloglu
- Department of Radiology, University Hospital of Strasbourg, Strasbourg, France
| | - G Forestier
- Department of Neuroradiology, CHU Limoges, Limoges, France
| | - F Bonneville
- Department of Neuroradiology, Hôpital Pierre-Paul-Riquet, CHU Purpan, Toulouse, France
| | - E Calvier
- Neurology Department, Hôpital René et Guillaume-Laënnec, CHU de Nantes, Saint-Herblain, France
| | - D Chauvet
- Department of Neurosurgery, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - P O Comby
- Department of Vascular and Interventional Radiology, Image-Guided Therapy Center, François-Mitterrand University Hospital, Dijon, France
| | - J P Cottier
- Department of Radiology, CHRU de Tours, Tours, France.,Brain and Imaging laboratory, UMR U930, INSERM, François-Rabelais University, Tours, France
| | - F Cotton
- Service de Radiologie, Centre Hospitalier Lyon-Sud, 69495 Pierre-Bénite, Hospices Civils de Lyon, University Claude Bernard Lyon 1, Lyon, France
| | - R Deschamps
- Department of Neurology, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | | | - F Ducray
- Department of Neuro-oncology, Lyon French Reference Center of Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Lyon, France
| | - C Drissi
- Faculté de Médecine de Tunis, Institut National de Neurologie, Service de Neuroradiologie, Université de Tunis El Manar, Tunis, Tunisia
| | - M Elmaleh
- Pediatric Radiology Department, Robert Debré Hospital, Paris, France
| | - J Farras
- Jordi Radiologia C/ de la Roda, Andorra la Vella, Andorra
| | - J Aguilar Garcia
- Neurology Department, Hôpital René et Guillaume-Laënnec, CHU de Nantes, Saint-Herblain, France
| | - E Gerardin
- Department of Neuroradiology and MRI, Rouen University Hospital, Rouen, France
| | - S Grand
- Neuroradiologie diagnostique et interventionnelle et IRM Nord 'Centre Hospitalier et Universitaire de Alpes Grenoble', Grenoble, France
| | - D C Jianu
- Department of Neurology, Victor Babes University of Medecine and Pharmacy, Timisoara, Romania
| | - S Kremer
- Department of Radiology, University Hospital of Strasbourg, Strasbourg, France
| | - H Loiseau
- Service de Neurochirurgie, CHU de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - N Magne
- Department of Neuroradiology and MRI, Rouen University Hospital, Rouen, France
| | - M Mejdoubi
- Department of Neuroradiology, University Hospital of Martinique, Fort-de-France, France
| | - A Moulignier
- Department of Neurology, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - M Ollivier
- Service de Radiologie, Groupe Hospitalier Pellegrin, Bordeaux, France
| | - S Nagi
- Faculté de Médecine de Tunis, Institut National de Neurologie, Service de Neuroradiologie, Université de Tunis El Manar, Tunis, Tunisia.,Clinique les Berges du Lac, rue du Lac de Constance, Tunis, Tunisia
| | - M Rodallec
- Centre d'Imagerie Centre Cardiologique du Nord, CCN, Saint-Denis, France
| | - N Shor
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, Paris, France
| | - T Tourdias
- Service de Neuroimagerie Diagnostique et Thérapeutique, CHU de Bordeaux et INSERM U1215, Université de Bordeaux, Bordeaux, France
| | - C Vandendries
- Department of Neuroradiology, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Centre d'Imagerie Médicale Paris 15ème, RMX, Paris, France
| | - R Anxionnat
- Service de Radiologie, CHU de Nancy, Nancy, France
| | - L Duron
- Department of Neuroradiology, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - J Savatovsky
- Department of Neuroradiology, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Centre d'Imagerie Paris 13, Paris, France
| |
Collapse
|
14
|
Chi JM, Mackay M, Hoang A, Cheng K, Aranow C, Ivanidze J, Volpe B, Diamond B, Sanelli PC. Reply. AJNR Am J Neuroradiol 2019; 40:E42-E43. [PMID: 31345947 DOI: 10.3174/ajnr.a6166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - M Mackay
- Feinstein Institute for Medical Research The Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead, New York
| | - A Hoang
- Department of Radiology Northwell Health New York, York
| | | | - C Aranow
- Feinstein Institute for Medical Research The Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead, New York
| | - J Ivanidze
- Department of Radiology Weill Cornell Medical College New York, New York
| | - B Volpe
- Feinstein Institute for Medical Research The Center for Biomedical Science
| | - B Diamond
- Feinstein Institute for Medical Research The Center for Health Innovations and Outcomes Research
| | - P C Sanelli
- Feinstein Institute for Medical Research The Center for Health Innovations and Outcomes Research Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead, New York.,Department of Radiology Imaging Clinical Effectiveness and Outcomes Research Program Northwell Health New York, New York
| |
Collapse
|