1
|
Yang YF, Zhao E, Shi Y, Zhang H, Yang YY. Multicenter investigation of preoperative distinction between primary central nervous system lymphomas and glioblastomas through interpretable artificial intelligence models. Neuroradiology 2024; 66:1893-1906. [PMID: 39225815 DOI: 10.1007/s00234-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Research into the effectiveness and applicability of deep learning, radiomics, and their integrated models based on Magnetic Resonance Imaging (MRI) for preoperative differentiation between Primary Central Nervous System Lymphoma (PCNSL) and Glioblastoma (GBM), along with an exploration of the interpretability of these models. MATERIALS AND METHODS A retrospective analysis was performed on MRI images and clinical data from 261 patients across two medical centers. The data were split into a training set (n = 153, medical center 1) and an external test set (n = 108, medical center 2). Radiomic features were extracted using Pyradiomics to build the Radiomics Model. Deep learning networks, including the transformer-based MobileVIT Model and Convolutional Neural Networks (CNN) based ConvNeXt Model, were trained separately. By applying the "late fusion" theory, the radiomics model and deep learning model were fused to produce the optimal Max-Fusion Model. Additionally, Shapley Additive exPlanations (SHAP) and Grad-CAM were employed for interpretability analysis. RESULTS In the external test set, the Radiomics Model achieved an Area under the receiver operating characteristic curve (AUC) of 0.86, the MobileVIT Model had an AUC of 0.91, the ConvNeXt Model demonstrated an AUC of 0.89, and the Max-Fusion Model showed an AUC of 0.92. The Delong test revealed a significant difference in AUC between the Max-Fusion Model and the Radiomics Model (P = 0.02). CONCLUSION The Max-Fusion Model, combining different models, presents superior performance in distinguishing PCNSL and GBM, highlighting the effectiveness of model fusion for enhanced decision-making in medical applications. CLINICAL RELEVANCE STATEMENT The preoperative non-invasive differentiation between PCNSL and GBM assists clinicians in selecting appropriate treatment regimens and clinical management strategies.
Collapse
Affiliation(s)
- Yun-Feng Yang
- Laboratory for Medical Imaging Informatics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- Laboratory for Medical Imaging Informatics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Endong Zhao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Yutong Shi
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| | - Hao Zhang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yuan-Yuan Yang
- Laboratory for Medical Imaging Informatics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China.
- Laboratory for Medical Imaging Informatics, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Liu J, Tu J, Hu B, Li C, Piao S, Lu Y, Li A, Ding T, Xiong J, Zhu F, Li Y. Prognostic Assessment in Patients With Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System Using MRI-Based Radiomics. J Magn Reson Imaging 2024. [PMID: 38970331 DOI: 10.1002/jmri.29533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Primary central nervous system lymphoma (PCNSL) carries a poor prognosis. Radiomics may hold potential value in prognostic assessment. PURPOSE To develop and validate an MRI-based radiomics model and combine it with clinical factors to assess progression-free survival (PFS) and overall survival (OS) of patients with PCNSL. STUDY TYPE Retrospective and prospective. POPULATION Three hundred seventy-nine patients (179 female, 53 ± 7 years) from 2014 to 2022. FIELD STRENGTH/SEQUENCE T2/fluid-attenuated inversion recovery, contrast-enhanced T1WI and diffusion-weighted echo-planar imaging sequences on 3.0 T. ASSESSMENT Radiomics features were extracted from enhanced tumor regions on preoperative multi-sequence MRI. Using a least absolute shrinkage and selection operator (LASSO) Cox regression model to select radiomic signatures in training cohort (N = 169). Cox proportional hazards models were constructed for clinical, radiomics, and combined models, with internal (N = 72) and external (N = 32) cohorts validating model performance. STATISTICAL TESTS Chi-squared, Mann-Whitney, Kaplan-Meier, log-rank, LASSO, Cox, decision curve analysis, time-dependent Receiver Operating Characteristic, area under the curve (AUC), and likelihood ratio test. P-value <0.05 was considered significant. RESULTS Follow-up duration was 28.79 ± 22.59 months (median: 25). High-risk patients, determined by the median radiomics score, showed significantly lower survival rates than low-risk patients. Compared with NCCN-IPI, conventional imaging and clinical models, the combined model achieved the highest C-index for both PFS (0.660 internal, 0.802 external) and OS (0.733 internal, 0.781 external) in validation. Net benefit was greater with radiomics than with clinical alone. The combined model exhibited performance with AUCs of 0.680, 0.752, and 0.830 for predicting 1-year, 3-year, and 5-year PFS, and 0.770, 0.789, and 0.863 for OS in internal validation, with PFS AUCs of 0.860 and 0.826 and OS AUCs of 0.859 and 0.748 for 1-year and 3-year survival in external validation. DATA CONCLUSION Incorporating a multi-sequence MR-based radiomics model into clinical models enhances the assess accuracy for the prognosis of PCNSL. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jianpeng Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Tu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Hu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Li
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Sirong Piao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yucheng Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Anning Li
- Department of Radiology, Qilu Hospital, Shandong University, Jinan, China
| | - Tianling Ding
- Department of Haematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji Xiong
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengping Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Qi H, Zheng Y, Li J, Chen K, Zhou L, Luo D, Huang S, Zhang J, Lv Y, Tian Z. Correlation of functional magnetic resonance imaging features of primary central nervous system lymphoma with vasculogenic mimicry and reticular fibers. Heliyon 2024; 10:e32111. [PMID: 38947483 PMCID: PMC11214443 DOI: 10.1016/j.heliyon.2024.e32111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Objective To deepen the imaging-pathological mechanism of primary central nervous system lymphoma (PCNSL) and provide a theoretical basis for clinical diagnosis and treatment, the functional magnetic resonance imaging (fMRI) characteristics of PCNSL were analyzed, and the relationship between the fMRI characteristics and vasculogenic mimicry (VM) and reticular fiber in PCNSL was discussed. Methods Ninety-six patients with PCNSL treated in our hospital were divided into three groups according to the pathological examination results, including strong positive group of VM (n = 40), weak positive group of VM (n = 56), strong positive group of reticular fiber (n = 45) and weak positive group of reticular fiber (n = 51). The levels of augmentation index and apparent diffusion coefficient (ADC) were compared among the groups. receiver operator characteristic (ROC) curve analysis was used to analyze the clinical value of ADC value in differential diagnosis of PCNSL. Results The levels of augmentation index in the strong positive group of VM were significantly higher than that in the weak positive group of VM, and the ADC value in the strong positive group of VM was significantly lower than that in the weak positive group of VM (P < 0.001). The levels of augmentation index in the strong positive group of reticular fiber were significantly higher than that in the weak positive group of reticular fiber, and ADC value in the strong positive group of reticular fiber was significantly lower than that in reticular fiber weak positive group (P < 0.001). Pearson correlation analysis showed that the levels of augmentation index were positively correlated with VM and reticular fiber (r = 0.529, 0.548, P < 0.001) and the ADC value was negatively correlated with VM and reticular fiber (r = -0.485, -0.513, P < 0.001). There was a significant negative correlation between necrotic lesions and VM (r = -0.185, P < 0.05). The area under the curve (AUC) values of average ADC value, minimum ADC value, and maximum ADC value for individual differential diagnosis of PCNSL were 0.920, 0.901, and 0.702, while the AUC of the combined differential diagnosis was 0.985, with a sensitivity of 95.00 % and a specificity of 92.70 %. Conclusion The levels of augmentation index and the ADC value of PCNSL focus are significantly correlated with VM and reticular fiber, and there is a strong negative correlation between necrotic lesions and VM. MRI imaging technology is of great significance in revealing the biological behavior of PCNSL, which can effectively reveal the relationship between VM and reticular fibers and the MRI characteristics in PCNSL, thereby providing a new imaging basis for the clinical diagnosis and treatment of PCNSL.
Collapse
Affiliation(s)
- Huaiju Qi
- Department of Emergency, Shapingba Hospital, Chongqing University. people’s hospital of Shapingba district, 400033, Chongqing, China
| | - Yu Zheng
- Department of Oncology, Chongqing Hospital of Traditional Chinese Medicine, 400000, Chongqing, China
| | - Jiansheng Li
- Department of Radiology, Shenzhen Hospital of Integrated Traditional and Western Medicine, Shenzhen, Guangdong, 518104, China
| | - Kaixuan Chen
- Department of Radiology, Shenzhen Hospital of Integrated Traditional and Western Medicine, Shenzhen, Guangdong, 518104, China
| | - Li Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Dilin Luo
- Department of Radiology, Shenzhen Hospital of Integrated Traditional and Western Medicine, Shenzhen, Guangdong, 518104, China
| | - Shan Huang
- Department of Radiology, Shenzhen Hospital of Integrated Traditional and Western Medicine, Shenzhen, Guangdong, 518104, China
| | - Jiahui Zhang
- Department of Radiology, Shenzhen Hospital of Integrated Traditional and Western Medicine, Shenzhen, Guangdong, 518104, China
| | - Yongge Lv
- Department of Radiology, Shenzhen Hospital of Integrated Traditional and Western Medicine, Shenzhen, Guangdong, 518104, China
| | - Zhu Tian
- Department of Emergency, Shapingba Hospital, Chongqing University. people’s hospital of Shapingba district, 400033, Chongqing, China
| |
Collapse
|
4
|
Duan L, He Y, Guo W, Du Y, Yin S, Yang S, Dong G, Li W, Chen F. Machine learning-based pathomics signature of histology slides as a novel prognostic indicator in primary central nervous system lymphoma. J Neurooncol 2024; 168:283-298. [PMID: 38557926 PMCID: PMC11147825 DOI: 10.1007/s11060-024-04665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE To develop and validate a pathomics signature for predicting the outcomes of Primary Central Nervous System Lymphoma (PCNSL). METHODS In this study, 132 whole-slide images (WSIs) of 114 patients with PCNSL were enrolled. Quantitative features of hematoxylin and eosin (H&E) stained slides were extracted using CellProfiler. A pathomics signature was established and validated. Cox regression analysis, receiver operating characteristic (ROC) curves, Calibration, decision curve analysis (DCA), and net reclassification improvement (NRI) were performed to assess the significance and performance. RESULTS In total, 802 features were extracted using a fully automated pipeline. Six machine-learning classifiers demonstrated high accuracy in distinguishing malignant neoplasms. The pathomics signature remained a significant factor of overall survival (OS) and progression-free survival (PFS) in the training cohort (OS: HR 7.423, p < 0.001; PFS: HR 2.143, p = 0.022) and independent validation cohort (OS: HR 4.204, p = 0.017; PFS: HR 3.243, p = 0.005). A significantly lower response rate to initial treatment was found in high Path-score group (19/35, 54.29%) as compared to patients in the low Path-score group (16/70, 22.86%; p < 0.001). The DCA and NRI analyses confirmed that the nomogram showed incremental performance compared with existing models. The ROC curve demonstrated a relatively sensitive and specific profile for the nomogram (1-, 2-, and 3-year AUC = 0.862, 0.932, and 0.927, respectively). CONCLUSION As a novel, non-invasive, and convenient approach, the newly developed pathomics signature is a powerful predictor of OS and PFS in PCNSL and might be a potential predictive indicator for therapeutic response.
Collapse
Affiliation(s)
- Ling Duan
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China
| | - Yongqi He
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China
| | - Wenhui Guo
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China
| | - Yanru Du
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China
| | - Shuo Yin
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China
| | - Shoubo Yang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China.
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China.
| | - Feng Chen
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China.
| |
Collapse
|
5
|
Guha A, Halder S, Shinde SH, Gawde J, Munnolli S, Talole S, Goda JS. How does deep learning/machine learning perform in comparison to radiologists in distinguishing glioblastomas (or grade IV astrocytomas) from primary CNS lymphomas?: a meta-analysis and systematic review. Clin Radiol 2024; 79:460-472. [PMID: 38614870 DOI: 10.1016/j.crad.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Several studies have been published comparing deep learning (DL)/machine learning (ML) to radiologists in differentiating PCNSLs from GBMs with equivocal results. We aimed to perform this meta-analysis to evaluate the diagnostic accuracy of ML/DL versus radiologists in classifying PCNSL versus GBM using MRI. METHODOLOGY The study was performed in accordance with PRISMA guidelines. Data was extracted and interpreted by two researchers with 12 and 23 years' experience, respectively, and QUADAS-2 tool was used for quality and risk-bias assessment. We constructed contingency tables to derive sensitivity, specificity accuracy, summary receiver operating characteristic (SROC) curve, and the area under the curve (AUC). RESULTS Our search identified 11 studies, of which 8 satisfied our inclusion criteria and restricted the analysis in each study to reporting the model showing highest accuracy, with a total sample size of 1159 patients. The random effects model showed a pooled sensitivity of 0.89 [95% CI:0.84-0.92] for ML and 0.82 [95% CI:0.76-0.87] for radiologists. Pooled specificity was 0.88 [95% CI: 0.84-0.91] for ML and 0.90 [95% CI: 0.81-0.95] for radiologists. Pooled accuracy was 0.88 [95% CI: 0.86-0.90] for ML and 0.86 [95% CI: 0.78-0.91] for radiologists. Pooled AUC of ML was 0.94 [95% CI:0.92-0.96]and for radiologists, it was 0.90 [95% CI: 0.84-0.93]. CONCLUSIONS MRI-based ML/DL techniques can complement radiologists to improve the accuracy of classifying GBMs from PCNSL, possibly reduce the need for a biopsy, and avoid any unwanted neurosurgical resection of a PCNSL.
Collapse
Affiliation(s)
- A Guha
- Department of Radio-diagnosis, Tata Memorial Hospital, Parel, Mumbai, 400012, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, 400094, India.
| | - S Halder
- Centre for Cancer Epidemiology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, 400094, India
| | - S H Shinde
- Department of Radio-diagnosis, Tata Memorial Hospital, Parel, Mumbai, 400012, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, 400094, India
| | - J Gawde
- Centre for Cancer Epidemiology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, 400094, India
| | - S Munnolli
- Librarian and Officer In-Charge, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, 400094, India
| | - S Talole
- Biostatistician, Centre for Cancer Epidemiology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, 400094, India
| | - J S Goda
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, 400094, India.
| |
Collapse
|
6
|
Bai D, Zhou N, Liu X, Liang Y, Lu X, Wang J, Liang L, Wang Z. The diagnostic value of multimodal imaging based on MR combined with ultrasound in benign and malignant breast diseases. Clin Exp Med 2024; 24:110. [PMID: 38780895 PMCID: PMC11116236 DOI: 10.1007/s10238-024-01377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
We aimed to construct and validate a multimodality MRI combined with ultrasound based on radiomics for the evaluation of benign and malignant breast diseases. The preoperative enhanced MRI and ultrasound images of 131 patients with breast diseases confirmed by pathology in Aerospace Center Hospital from January 2021 to August 2023 were retrospectively analyzed, including 73 benign diseases and 58 malignant diseases. Ultrasound and 3.0 T multiparameter MRI scans were performed in all patients. Then, all the data were divided into training set and validation set in a 7:3 ratio. Regions of interest were drawn layer by layer based on ultrasound and MR enhanced sequences to extract radiomics features. The optimal radiomic features were selected by the best feature screening method. Logistic Regression classifier was used to establish models according to the best features, including ultrasound model, MRI model, ultrasound combined with MRI model. The model efficacy was evaluated by the area under the curve (AUC) of the receiver operating characteristic, sensitivity, specificity, and accuracy. The F-test based on ANOVA was used to screen out 20 best ultrasonic features, 11 best MR Features, and 14 best features from the combined model. Among them, texture features accounted for the largest proportion, accounting for 79%.The ultrasound combined with MR Image fusion model based on logistic regression classifier had the best diagnostic performance. The AUC of the training group and the validation group were 0.92 and 091, the sensitivity was 0.80 and 0.67, the specificity was 0.90 and 0.94, and the accuracy was 0.84 and 0.79, respectively. It was better than the simple ultrasound model (AUC of validation set was 0.82) or the simple MR model (AUC of validation set was 0.85). Compared with the traditional ultrasound or magnetic resonance diagnosis of breast diseases, the multimodal model of MRI combined with ultrasound based on radiomics can more accurately predict the benign and malignant breast diseases, thus providing a better basis for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Dong Bai
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Nan Zhou
- Department of Ultrasound, Aerospace Center Hospital, Beijing, China
| | - Xiaofei Liu
- Department of Radiology, Liangxiang Hospital, Fangshan District, Beijing, China
| | - Yuanzi Liang
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Xiaojun Lu
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Jiajun Wang
- Department of Ultrasound, Aerospace Center Hospital, Beijing, China
| | - Lei Liang
- Department of Ultrasound, Aerospace Center Hospital, Beijing, China.
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Beijing, China.
| |
Collapse
|
7
|
Naser PV, Maurer MC, Fischer M, Karimian-Jazi K, Ben-Salah C, Bajwa AA, Jakobs M, Jungk C, Jesser J, Bendszus M, Maier-Hein K, Krieg SM, Neher P, Neumann JO. Deep learning aided preoperative diagnosis of primary central nervous system lymphoma. iScience 2024; 27:109023. [PMID: 38352223 PMCID: PMC10863328 DOI: 10.1016/j.isci.2024.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
The preoperative distinction between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) can be difficult, even for experts, but is highly relevant. We aimed to develop an easy-to-use algorithm, based on a convolutional neural network (CNN) to preoperatively discern PCNSL from GBM and systematically compare its performance to experienced neurosurgeons and radiologists. To this end, a CNN-based on DenseNet169 was trained with the magnetic resonance (MR)-imaging data of 68 PCNSL and 69 GBM patients and its performance compared to six trained experts on an external test set of 10 PCNSL and 10 GBM. Our neural network predicted PCNSL with an accuracy of 80% and a negative predictive value (NPV) of 0.8, exceeding the accuracy achieved by clinicians (73%, NPV 0.77). Combining expert rating with automated diagnosis in those cases where experts dissented yielded an accuracy of 95%. Our approach has the potential to significantly augment the preoperative radiological diagnosis of PCNSL.
Collapse
Affiliation(s)
- Paul Vincent Naser
- Heidelberg University Hospital, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- Heidelberg University Hospital, Division of Stereotactic Neurosurgery, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- AI Health Innovation Cluster, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miriam Cindy Maurer
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Germany, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medical Informatics, University Medical Center Göttingen, Von-Siebold-Straße 3, 37075 Göttingen, Germany
| | - Maximilian Fischer
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Germany, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
| | - Kianush Karimian-Jazi
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- Heidelberg University Hospital, Department of Neuroradiology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Chiraz Ben-Salah
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Awais Akbar Bajwa
- Heidelberg University Hospital, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
| | - Martin Jakobs
- Heidelberg University Hospital, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- Heidelberg University Hospital, Division of Stereotactic Neurosurgery, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Christine Jungk
- Heidelberg University Hospital, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
| | - Jessica Jesser
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- Heidelberg University Hospital, Department of Neuroradiology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Martin Bendszus
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- Heidelberg University Hospital, Department of Neuroradiology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Klaus Maier-Hein
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Germany, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and the University Medical Center Heidelberg, 69120 Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- AI Health Innovation Cluster, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sandro M. Krieg
- Heidelberg University Hospital, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
| | - Peter Neher
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Germany, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jan-Oliver Neumann
- Heidelberg University Hospital, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- Heidelberg University Hospital, Division of Stereotactic Neurosurgery, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Wang S, Wu J, Chen M, Huang S, Huang Q. Balanced transformer: efficient classification of glioblastoma and primary central nervous system lymphoma. Phys Med Biol 2024; 69:045032. [PMID: 38232389 DOI: 10.1088/1361-6560/ad1f88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Objective.Primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) are malignant primary brain tumors with different biological characteristics. Great differences exist between the treatment strategies of PCNSL and GBM. Thus, accurately distinguishing between PCNSL and GBM before surgery is very important for guiding neurosurgery. At present, the spinal fluid of patients is commonly extracted to find tumor markers for diagnosis. However, this method not only causes secondary injury to patients, but also easily delays treatment. Although diagnosis using radiology images is non-invasive, the morphological features and texture features of the two in magnetic resonance imaging (MRI) are quite similar, making distinction with human eyes and image diagnosis very difficult. In order to solve the problem of insufficient number of samples and sample imbalance, we used data augmentation and balanced sample sampling methods. Conventional Transformer networks use patch segmentation operations to divide images into small patches, but the lack of communication between patches leads to unbalanced data layers.Approach.To address this problem, we propose a balanced patch embedding approach that extracts high-level semantic information by reducing the feature dimensionality and maintaining the geometric variation invariance of the features. This approach balances the interactions between the information and improves the representativeness of the data. To further address the imbalance problem, the balanced patch partition method is proposed to increase the receptive field by sampling the four corners of the sliding window and introducing a linear encoding component without increasing the computational effort, and designed a new balanced loss function.Main results.Benefiting from the overall balance design, we conducted an experiment using Balanced Transformer and obtained an accuracy of 99.89%, sensitivity of 99.74%, specificity of 99.73% and AUC of 99.19%, which is far higher than the previous results (accuracy of 89.6% ∼ 96.8%, sensitivity of 74.3% ∼ 91.3%, specificity of 88.9% ∼ 96.02% and AUC of 87.8% ∼ 94.9%).Significance.This study can accurately distinguish PCNSL and GBM before surgery. Because GBM is a common type of malignant tumor, the 1% improvement in accuracy has saved many patients and reduced treatment times considerably. Thus, it can provide doctors with a good basis for auxiliary diagnosis.
Collapse
Affiliation(s)
- Shigang Wang
- Department of Electronic Engineering, College of Communication Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Jinyang Wu
- Department of Electronic Engineering, College of Communication Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Meimei Chen
- Department of Electronic Engineering, College of Communication Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Sa Huang
- Department of Radiology, the Second Hospital of Jilin University, Changchun 130012, People's Republic of China
| | - Qian Huang
- Department of Radiology, the Second Hospital of Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
9
|
Garaba A, Aslam N, Ponzio F, Panciani PP, Brinjikji W, Fontanella M, De Maria L. Radiomics for differentiation of gliomas from primary central nervous system lymphomas: a systematic review and meta-analysis. Front Oncol 2024; 14:1291861. [PMID: 38420015 PMCID: PMC10899458 DOI: 10.3389/fonc.2024.1291861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Background and objective Numerous radiomics-based models have been proposed to discriminate between central nervous system (CNS) gliomas and primary central nervous system lymphomas (PCNSLs). Given the heterogeneity of the existing models, we aimed to define their overall performance and identify the most critical variables to pilot future algorithms. Methods A systematic review of the literature and a meta-analysis were conducted, encompassing 12 studies and a total of 1779 patients, focusing on radiomics to differentiate gliomas from PCNSLs. A comprehensive literature search was performed through PubMed, Ovid MEDLINE, Ovid EMBASE, Web of Science, and Scopus databases. Overall sensitivity (SEN) and specificity (SPE) were estimated. Event rates were pooled using a random-effects meta-analysis, and the heterogeneity was assessed using the χ2 test. Results The overall SEN and SPE for differentiation between CNS gliomas and PCNSLs were 88% (95% CI = 0.83 - 0.91) and 87% (95% CI = 0.83 - 0.91), respectively. The best-performing features were the ones extracted from the Gray Level Run Length Matrix (GLRLM; ACC 97%), followed by those obtained from the Neighboring Gray Tone Difference Matrix (NGTDM; ACC 93%), and shape-based features (ACC 91%). The 18F-FDG-PET/CT was the best-performing imaging modality (ACC 97%), followed by the MRI CE-T1W (ACC 87% - 95%). Most studies applied a cross-validation analysis (92%). Conclusion The current SEN and SPE of radiomics to discriminate CNS gliomas from PCNSLs are high, making radiomics a helpful method to differentiate these tumor types. The best-performing features are the GLRLM, NGTDM, and shape-based features. The 18F-FDG-PET/CT imaging modality is the best-performing, while the MRI CE-T1W is the most used.
Collapse
Affiliation(s)
- Alexandru Garaba
- Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Nummra Aslam
- Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Francesco Ponzio
- Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, Torino, Italy
| | - Pier Paolo Panciani
- Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Waleed Brinjikji
- Department of Neurosurgery and Interventional Neuroradiology, Mayo Clinic, Rochester, MN, United States
| | - Marco Fontanella
- Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Lucio De Maria
- Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
- Department of Clinical Neuroscience, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
10
|
Parmar V, Haubold J, Salhöfer L, Meetschen M, Wrede K, Glas M, Guberina M, Blau T, Bos D, Kureishi A, Hosch R, Nensa F, Forsting M, Deuschl C, Umutlu L. Fully automated MR-based virtual biopsy of primary CNS lymphomas. Neurooncol Adv 2024; 6:vdae022. [PMID: 38516329 PMCID: PMC10956963 DOI: 10.1093/noajnl/vdae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Background Primary central nervous system lymphomas (PCNSL) pose a challenge as they may mimic gliomas on magnetic resonance imaging (MRI) imaging, compelling precise differentiation for appropriate treatment. This study focuses on developing an automated MRI-based workflow to distinguish between PCNSL and gliomas. Methods MRI examinations of 240 therapy-naive patients (141 males and 99 females, mean age: 55.16 years) with cerebral gliomas and PCNSLs (216 gliomas and 24 PCNSLs), each comprising a non-contrast T1-weighted, fluid-attenuated inversion recovery (FLAIR), and contrast-enhanced T1-weighted sequence were included in the study. HD-GLIO, a pre-trained segmentation network, was used to generate segmentations automatically. To validate the segmentation efficiency, 237 manual segmentations were prepared (213 gliomas and 24 PCNSLs). Subsequently, radiomics features were extracted following feature selection and training of an XGBoost algorithm for classification. Results The segmentation models for gliomas and PCNSLs achieved a mean Sørensen-Dice coefficient of 0.82 and 0.80 for whole tumors, respectively. Three classification models were developed in this study to differentiate gliomas from PCNSLs. The first model differentiated PCNSLs from gliomas, with an area under the curve (AUC) of 0.99 (F1-score: 0.75). The second model discriminated between high-grade gliomas and PCNSLs with an AUC of 0.91 (F1-score: 0.6), and the third model differentiated between low-grade gliomas and PCNSLs with an AUC of 0.95 (F1-score: 0.89). Conclusions This study serves as a pilot investigation presenting an automated virtual biopsy workflow that distinguishes PCNSLs from cerebral gliomas. Prior to clinical use, it is necessary to validate the results in a prospective multicenter setting with a larger number of PCNSL patients.
Collapse
Affiliation(s)
- Vicky Parmar
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Johannes Haubold
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Luca Salhöfer
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Mathias Meetschen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Karsten Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
| | - Martin Glas
- Department of Neuropathology, University Hospital Essen, Essen, Germany
| | - Maja Guberina
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Tobias Blau
- Department of Neurology and Neurooncology, University Hospital Essen, Essen, Germany
| | - Denise Bos
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Anisa Kureishi
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - René Hosch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Cornelius Deuschl
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| |
Collapse
|
11
|
Yuan J, Zhang Y, Wang X. Application of machine learning in the management of lymphoma: Current practice and future prospects. Digit Health 2024; 10:20552076241247963. [PMID: 38628632 PMCID: PMC11020711 DOI: 10.1177/20552076241247963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
In the past decade, digitization of medical records and multiomics data analysis in lymphoma has led to the accessibility of high-dimensional records. The digitization of medical records, the visualization of extensive volume data extracted from medical images, and the integration of multiomics methods into clinical decision-making have produced many datasets. As a promising auxiliary tool, machine learning (ML) intends to extract homologous features in large-scale data sets and encode them into various patterns to complete complicated tasks. At present, artificial intelligence and digital mining have shown promising prospects in the field of lymphoma pathological image analysis. The paradigm shift from qualitative analysis to quantitative analysis makes the pathological diagnosis more intelligent and the results more accurate and objective. ML can promote accurate lymphoma diagnosis and provide patients with prognostic information and more individualized treatment options. Based on the above, this comprehensive review of the general workflow of ML highlights recent advances in ML techniques in the diagnosis, treatment, and prognosis of lymphoma, and clarifies the boundedness and future orientation of the ML technique in the clinical practice of lymphoma.
Collapse
Affiliation(s)
- Junyun Yuan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, China
- National Clinical Research Center for Hematologic Diseases, Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Lv K, Chen H, Cao X, Du P, Chen J, Liu X, Zhu L, Geng D, Zhang J. Development and validation of a machine learning algorithm for predicting diffuse midline glioma, H3 K27-altered, H3 K27 wild-type high-grade glioma, and primary CNS lymphoma of the brain midline in adults. J Neurosurg 2023; 139:393-401. [PMID: 36681946 DOI: 10.3171/2022.11.jns221544] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Preoperative diagnosis of diffuse midline glioma, H3 K27-altered (DMG-A) and midline high-grade glioma without H3 K27 alteration (DMG-W), as well as midline primary CNS lymphoma (PCNSL) in adults, is challenging but crucial. The aim of this study was to develop a model for predicting these three entities using machine learning (ML) algorithms. METHODS Thirty-three patients with DMG-A, 35 with DMG-W, and 35 with midline PCNSL were retrospectively enrolled in the study. Radiomics features were extracted from contrast-enhanced T1-weighted MR images. Two radiologists evaluated the conventional MRI features of the tumors, such as shape. Patient age, tumor volume, and conventional MRI features were considered clinical features. The data set was randomly stratified into 70% training and 30% testing cohorts. Predictive models based on the clinical features, radiomics features, and integration of clinical and radiomics features were established through ML. The performances of the models were evaluated by calculating the area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity. Subsequently, 10 patients with DMG-A, 10 with DMG-W, and 12 with PCNSL were enrolled from another institution to validate the established models. RESULTS The predictive models based on clinical features, radiomics features, and the integration of clinical and radiomics features through the support vector machine algorithm had the optimal accuracies in the training, testing, and validation cohorts, and the accuracies in the testing cohort were 0.871, 0.892, and 0.903, respectively. Age, 2 radiomics features, and 3 conventional MRI features were the 6 most significant features in the established integrated model. CONCLUSIONS The integrated prediction model established by ML provides high discriminatory accuracy for predicting DMG-A, DMG-W, and midline PCNSL in adults.
Collapse
Affiliation(s)
- Kun Lv
- Departments of1Radiology and
| | - Hongyi Chen
- 2Academy for Engineering and Technology, Fudan University, Shanghai
| | - Xin Cao
- Departments of1Radiology and
| | - Peng Du
- Departments of1Radiology and
| | - Jiawei Chen
- 3Neurosurgery, Huashan Hospital, Fudan University, Shanghai
| | - Xiao Liu
- 4School of Computer and Information Technology, Beijing Jiaotong University, Beijing; and
| | - Li Zhu
- 5Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Daoying Geng
- Departments of1Radiology and
- 2Academy for Engineering and Technology, Fudan University, Shanghai
| | - Jun Zhang
- Departments of1Radiology and
- 2Academy for Engineering and Technology, Fudan University, Shanghai
| |
Collapse
|
13
|
Bagher-Ebadian H, Brown SL, Ghassemi MM, Nagaraja TN, Movsas B, Ewing JR, Chetty IJ. Radiomics characterization of tissues in an animal brain tumor model imaged using dynamic contrast enhanced (DCE) MRI. Sci Rep 2023; 13:10693. [PMID: 37394559 DOI: 10.1038/s41598-023-37723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
Here, we investigate radiomics-based characterization of tumor vascular and microenvironmental properties in an orthotopic rat brain tumor model measured using dynamic-contrast-enhanced (DCE) MRI. Thirty-two immune compromised-RNU rats implanted with human U-251N cancer cells were imaged using DCE-MRI (7Tesla, Dual-Gradient-Echo). The aim was to perform pharmacokinetic analysis using a nested model (NM) selection technique to classify brain regions according to vasculature properties considered as the source of truth. A two-dimensional convolutional-based radiomics analysis was performed on the raw-DCE-MRI of the rat brains to generate dynamic radiomics maps. The raw-DCE-MRI and respective radiomics maps were used to build 28 unsupervised Kohonen self-organizing-maps (K-SOMs). A Silhouette-Coefficient (SC), k-fold Nested-Cross-Validation (k-fold-NCV), and feature engineering analyses were performed on the K-SOMs' feature spaces to quantify the distinction power of radiomics features compared to raw-DCE-MRI for classification of different Nested Models. Results showed that eight radiomics features outperformed respective raw-DCE-MRI in prediction of the three nested models. The average percent difference in SCs between radiomics features and raw-DCE-MRI was: 29.875% ± 12.922%, p < 0.001. This work establishes an important first step toward spatiotemporal characterization of brain regions using radiomics signatures, which is fundamental toward staging of tumors and evaluation of tumor response to different treatments.
Collapse
Affiliation(s)
- Hassan Bagher-Ebadian
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA.
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Physics, Oakland University, Rochester, MI, 48309, USA.
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Mohammad M Ghassemi
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Tavarekere N Nagaraja
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - James R Ewing
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Wayne State University, Detroit, MI, 48202, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
14
|
Zhao L, Shi L, Huang SG, Cai TN, Guo WL, Gao X, Wang J. Identification and validation of radiomic features from computed tomography for preoperative classification of neuroblastic tumors in children. BMC Pediatr 2023; 23:262. [PMID: 37226234 PMCID: PMC10207804 DOI: 10.1186/s12887-023-04057-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND To identify radiomic features that can predict the pathological type of neuroblastic tumor in children. METHODS Data on neuroblastic tumors in 104 children were retrospectively analyzed. There were 14 cases of ganglioneuroma, 24 cases of ganglioneuroblastoma, and 65 cases of neuroblastoma. Stratified sampling was used to randomly allocate the cases into the training and validation sets in a ratio of 3:1. The maximum relevance-minimum redundancy algorithm was used to identify the top 10 of two clinical features and 851 radiomic features in portal venous-phase contrast-enhanced computed tomography images. Least absolute shrinkage and selection operator regression was used to classify tumors in two binary steps: first as ganglioneuroma compared to the other two types, then as ganglioneuroblastoma compared to neuroblastoma. RESULTS Based on 10 clinical-radiomic features, the classifier identified ganglioneuroma compared to the other two tumor types in the validation dataset with sensitivity of 100.0%, specificity of 81.8%, and an area under the receiver operating characteristic curve (AUC) of 0.875. The classifier identified ganglioneuroblastoma versus neuroblastoma with a sensitivity of 83.3%, a specificity of 87.5%, and an AUC of 0.854. The overall accuracy of the classifier across all three types of tumors was 80.8%. CONCLUSION Radiomic features can help predict the pathological type of neuroblastic tumors in children.
Collapse
Affiliation(s)
- Lian Zhao
- Radiology Department, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Liting Shi
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Hefei, Anhui, 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Shun-Gen Huang
- Pediatric Surgery Department, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Tian-Na Cai
- Radiology Department, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Wan-Liang Guo
- Radiology Department, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China.
| | - Xin Gao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China.
- Jinan Guoke Medical Engineering and Technology Development Co., Ltd, Jinan, Shandong, 250101, China.
| | - Jian Wang
- Pediatric Surgery Department, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China.
| |
Collapse
|
15
|
Radiomics-Based Machine Learning Model for Predicting Overall and Progression-Free Survival in Rare Cancer: A Case Study for Primary CNS Lymphoma Patients. Bioengineering (Basel) 2023; 10:bioengineering10030285. [PMID: 36978676 PMCID: PMC10045100 DOI: 10.3390/bioengineering10030285] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Primary Central Nervous System Lymphoma (PCNSL) is an aggressive neoplasm with a poor prognosis. Although therapeutic progresses have significantly improved Overall Survival (OS), a number of patients do not respond to HD–MTX-based chemotherapy (15–25%) or experience relapse (25–50%) after an initial response. The reasons underlying this poor response to therapy are unknown. Thus, there is an urgent need to develop improved predictive models for PCNSL. In this study, we investigated whether radiomics features can improve outcome prediction in patients with PCNSL. A total of 80 patients diagnosed with PCNSL were enrolled. A patient sub-group, with complete Magnetic Resonance Imaging (MRI) series, were selected for the stratification analysis. Following radiomics feature extraction and selection, different Machine Learning (ML) models were tested for OS and Progression-free Survival (PFS) prediction. To assess the stability of the selected features, images from 23 patients scanned at three different time points were used to compute the Interclass Correlation Coefficient (ICC) and to evaluate the reproducibility of each feature for both original and normalized images. Features extracted from Z-score normalized images were significantly more stable than those extracted from non-normalized images with an improvement of about 38% on average (p-value < 10−12). The area under the ROC curve (AUC) showed that radiomics-based prediction overcame prediction based on current clinical prognostic factors with an improvement of 23% for OS and 50% for PFS, respectively. These results indicate that radiomics features extracted from normalized MR images can improve prognosis stratification of PCNSL patients and pave the way for further study on its potential role to drive treatment choice.
Collapse
|
16
|
Cao L, Zhang M, Zhang Y, Ji B, Wang X, Wang X. Progress of radiological‑pathological workflows in the differential diagnosis between primary central nervous system lymphoma and high‑grade glioma (Review). Oncol Rep 2022; 49:20. [PMID: 36484403 PMCID: PMC9773014 DOI: 10.3892/or.2022.8457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) and high‑grade glioma (HGG) are distinct entities of the CNS with completely distinct treatments. The treatment of PCNSL is chemotherapy‑based, while surgery is the first choice for HGG. However, the clinical features of the two entities often overlap, and a clear pathological diagnosis is important for subsequent management, especially for the management of PCNSL. Stereotactic biopsy is recognized as one of the minimally invasive alternatives for evaluating the involvement of the CNS. However, in the case of limited tissue materials, the differential diagnosis between the two entities is still difficult. In addition, some patients are too ill to tolerate a needle biopsy. Therefore, combining imaging, histopathology and laboratory examinations is essential in order to make a clear diagnosis as soon as possible. The present study reviews the progress of comparative research on both imaging and laboratory tests based on the pathophysiological changes of the two entities, and proposes an integrative and optimized diagnostic process, with the purpose of building a better understanding for neurologists, hematologists, radiologists and pathologists.
Collapse
Affiliation(s)
- Luming Cao
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bin Ji
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China,Correspondence to: Dr Xueju Wang, Department of Pathology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P.R. China, E-mail:
| |
Collapse
|
17
|
Dong Y, Zhang Q, Chen H, Jin Y, Ji Z, Han H, Wang W. Radiomics of Multi-modality Ultrasound in Rabbit VX2 Liver Tumors: Differentiating Residual Tumors from Hyperemic Rim After Ablation. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00763-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Bai H, Meng S, Xiong C, Liu Z, Shi W, Ren Q, Xia W, Zhao X, Jian J, Song Y, Ni C, Gao X, Li Z. Preoperative CECT-based Radiomic Signature for Predicting the Response of Transarterial Chemoembolization (TACE) Therapy in Hepatocellular Carcinoma. Cardiovasc Intervent Radiol 2022; 45:1524-1533. [PMID: 35896687 DOI: 10.1007/s00270-022-03221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE To evaluate the efficiency of radiomics signatures in predicting the response of transarterial chemoembolization (TACE) therapy based on preoperative contrast-enhanced computed tomography (CECT). MATERIALS This study consisted of 111 patients with intermediate-stage hepatocellular carcinoma who underwent CECT at both the arterial phase (AP) and venous phase (VP) before and after TACE. According to mRECIST 1.1, patients were divided into an objective-response group (n = 38) and a non-response group (n = 73). Among them, 79 patients were assigned as the training dataset, and the remaining 32 cases were assigned as the test dataset. METHODS Radiomics features were extracted from CECT images. Two feature ranking methods and three classifiers were used to find the best single-phase radiomics signatures for both AP and VP on the training set. Meanwhile, multi-phase radiomics signatures were built upon integration of images from two CECT phases by decision-level fusion and feature-level fusion. Finally, multivariable logistic regression was used to develop a nomogram by combining radiomics signatures and clinic-radiologic characteristics. The prediction performance was evaluated by AUC on the test dataset. RESULTS The multi-phase radiomics signature (AUC = 0.883) performed better in predicting TACE therapy response compared to the best single-phase radiomics signature (AUC = 0.861). The nomogram (AUC = 0.913) showed better performance than any radiomics signatures. CONCLUSION The radiomics signatures and nomogram were developed and validated for predicting responses to TACE therapy, and the radiomics model may play a positive role in identifying patients who may benefit from TACE therapy in clinical practice.
Collapse
Affiliation(s)
- Honglin Bai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou, 215163, Jiangsu, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, 215163, China
| | - Siyu Meng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou, 215163, Jiangsu, China
| | - Chuanfeng Xiong
- Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, USA
| | - Zhao Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Wei Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou, 215163, Jiangsu, China
| | - Qimeng Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Wei Xia
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou, 215163, Jiangsu, China
| | - XingYu Zhao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou, 215163, Jiangsu, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, 215163, China
| | - Junming Jian
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou, 215163, Jiangsu, China
| | - Yizhi Song
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou, 215163, Jiangsu, China
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Xin Gao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou, 215163, Jiangsu, China.
| | - Zhi Li
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China. .,People's Hospital of Xinjiang Kizilsu Kirgiz Autonomous Prefecture, West Pamir Road 5, Atush, Xinjiang, 845350, China.
| |
Collapse
|
19
|
A Survey of Radiomics in Precision Diagnosis and Treatment of Adult Gliomas. J Clin Med 2022; 11:jcm11133802. [PMID: 35807084 PMCID: PMC9267404 DOI: 10.3390/jcm11133802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Glioma is the most common primary malignant tumor of the adult central nervous system (CNS), which mostly shows invasive growth. In most cases, surgery is often difficult to completely remove, and the recurrence rate and mortality of patients are high. With the continuous development of molecular genetics and the great progress of molecular biology technology, more and more molecular biomarkers have been proved to have important guiding significance in the individualized diagnosis, treatment, and prognosis evaluation of glioma. With the updates of the World Health Organization (WHO) classification of tumors of the CNS in 2021, the diagnosis and treatment of glioma has entered the era of precision medicine in the true sense. Due to its ability to non-invasively achieve accurate identification of glioma from other intracranial tumors, and to predict the grade, genotyping, treatment response, and prognosis of glioma, which provides a scientific basis for the clinical application of individualized diagnosis and treatment model of glioma, radiomics has become a research hotspot in the field of precision medicine. This paper reviewed the research related to radiomics of adult gliomas published in recent years and summarized the research proceedings of radiomics in differential diagnosis, preoperative grading and genotyping, treatment and efficacy evaluation, and survival prediction of adult gliomas.
Collapse
|
20
|
A Systematic Review of the Current Status and Quality of Radiomics for Glioma Differential Diagnosis. Cancers (Basel) 2022; 14:cancers14112731. [PMID: 35681711 PMCID: PMC9179305 DOI: 10.3390/cancers14112731] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Gliomas can be difficult to discern clinically and radiologically from other brain lesions (either neoplastic or non-neoplastic) since their clinical manifestations as well as preoperative imaging features often overlap and appear misleading. Radiomics could be extremely helpful for non-invasive glioma differential diagnosis (DDx). However, implementation in clinical practice is still distant and concerns have been raised regarding the methodological quality of radiomic studies. In this context, we aimed to summarize the current status and quality of radiomic studies concerning glioma DDx in a systematic review. In total, 42 studies were selected and examined in our work. Our study revealed that, despite promising and encouraging results, current studies on radiomics for glioma DDx still lack the quality required to allow its introduction into clinical practice. This work could provide new insights and help to reach a consensus on the use of the radiomic approach for glioma DDx. Abstract Radiomics is a promising tool that may increase the value of imaging in differential diagnosis (DDx) of glioma. However, implementation in clinical practice is still distant and concerns have been raised regarding the methodological quality of radiomic studies. Therefore, we aimed to systematically review the current status of radiomic studies concerning glioma DDx, also using the radiomics quality score (RQS) to assess the quality of the methodology used in each study. A systematic literature search was performed to identify original articles focused on the use of radiomics for glioma DDx from 2015. Methodological quality was assessed using the RQS tool. Spearman’s correlation (ρ) analysis was performed to explore whether RQS was correlated with journal metrics and the characteristics of the studies. Finally, 42 articles were selected for the systematic qualitative analysis. Selected articles were grouped and summarized in terms of those on DDx between glioma and primary central nervous system lymphoma, those aiming at differentiating glioma from brain metastases, and those based on DDx of glioma and other brain diseases. Median RQS was 8.71 out 36, with a mean RQS of all studies of 24.21%. Our study revealed that, despite promising and encouraging results, current studies on radiomics for glioma DDx still lack the quality required to allow its introduction into clinical practice. This work could provide new insights and help to reach a consensus on the use of the radiomic approach for glioma DDx.
Collapse
|
21
|
Scheichel F, Pinggera D, Popadic B, Sherif C, Marhold F, Freyschlag CF. An Update on Neurosurgical Management of Primary CNS Lymphoma in Immunocompetent Patients. Front Oncol 2022; 12:884724. [PMID: 35515113 PMCID: PMC9065338 DOI: 10.3389/fonc.2022.884724] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Primary central nervous system lymphomas (PCNSL) are rare CNS tumors that harbor a conspicuously longer diagnostic delay compared to other malignant brain tumors. The gold standard for diagnosis is stereotactic biopsy to acquire tissue for histopathological analysis and therefore neurosurgery plays a central role when reducing the diagnostic period is mandated. However, histopathological diagnosis could be complicated if the patient was preoperatively exposed to corticosteroids. Besides the histopathological result, diagnosis of a PCNSL also requires full diagnostic workup to exclude cerebral metastatic disease of a systemic lymphoma. Most reviews of PCNSL discuss recent advancements in systemic treatment options from an (neuro-)oncologic viewpoint, whereas our intention was to discuss the optimization of the diagnostic period and therefore describe current standards of imaging, summarizing the diagnostic workup, discussing the surgical workup and future diagnostic prospects as well as the influence of preoperative corticosteroid therapy to reduce the diagnostic delay of PCNSL patients.
Collapse
Affiliation(s)
- Florian Scheichel
- Karl Landsteiner University of Health Sciences, Krems, Austria.,Department of Neurosurgery, University Hospital St. Poelten, St. Poelten, Austria
| | - Daniel Pinggera
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Branko Popadic
- Karl Landsteiner University of Health Sciences, Krems, Austria.,Department of Neurosurgery, University Hospital St. Poelten, St. Poelten, Austria
| | - Camillo Sherif
- Karl Landsteiner University of Health Sciences, Krems, Austria.,Department of Neurosurgery, University Hospital St. Poelten, St. Poelten, Austria
| | - Franz Marhold
- Karl Landsteiner University of Health Sciences, Krems, Austria.,Department of Neurosurgery, University Hospital St. Poelten, St. Poelten, Austria
| | | |
Collapse
|
22
|
Differentiation of high-grade glioma and primary central nervous system lymphoma: Multiparametric imaging of the enhancing tumor and peritumoral regions based on hybrid 18F-FDG PET/MRI. Eur J Radiol 2022; 150:110235. [DOI: 10.1016/j.ejrad.2022.110235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022]
|
23
|
Cassinelli Petersen GI, Shatalov J, Verma T, Brim WR, Subramanian H, Brackett A, Bahar RC, Merkaj S, Zeevi T, Staib LH, Cui J, Omuro A, Bronen RA, Malhotra A, Aboian MS. Machine Learning in Differentiating Gliomas from Primary CNS Lymphomas: A Systematic Review, Reporting Quality, and Risk of Bias Assessment. AJNR Am J Neuroradiol 2022; 43:526-533. [PMID: 35361577 PMCID: PMC8993193 DOI: 10.3174/ajnr.a7473] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Differentiating gliomas and primary CNS lymphoma represents a diagnostic challenge with important therapeutic ramifications. Biopsy is the preferred method of diagnosis, while MR imaging in conjunction with machine learning has shown promising results in differentiating these tumors. PURPOSE Our aim was to evaluate the quality of reporting and risk of bias, assess data bases with which the machine learning classification algorithms were developed, the algorithms themselves, and their performance. DATA SOURCES Ovid EMBASE, Ovid MEDLINE, Cochrane Central Register of Controlled Trials, and the Web of Science Core Collection were searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. STUDY SELECTION From 11,727 studies, 23 peer-reviewed studies used machine learning to differentiate primary CNS lymphoma from gliomas in 2276 patients. DATA ANALYSIS Characteristics of data sets and machine learning algorithms were extracted. A meta-analysis on a subset of studies was performed. Reporting quality and risk of bias were assessed using the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) and Prediction Model Study Risk Of Bias Assessment Tool. DATA SYNTHESIS The highest area under the receiver operating characteristic curve (0.961) and accuracy (91.2%) in external validation were achieved by logistic regression and support vector machines models using conventional radiomic features. Meta-analysis of machine learning classifiers using these features yielded a mean area under the receiver operating characteristic curve of 0.944 (95% CI, 0.898-0.99). The median TRIPOD score was 51.7%. The risk of bias was high for 16 studies. LIMITATIONS Exclusion of abstracts decreased the sensitivity in evaluating all published studies. Meta-analysis had high heterogeneity. CONCLUSIONS Machine learning-based methods of differentiating primary CNS lymphoma from gliomas have shown great potential, but most studies lack large, balanced data sets and external validation. Assessment of the studies identified multiple deficiencies in reporting quality and risk of bias. These factors reduce the generalizability and reproducibility of the findings.
Collapse
Affiliation(s)
- G I Cassinelli Petersen
- From the Department of Radiology and Biomedical Imaging (G.I.C.P., T.V., H.S., R.C.B., S.M., T.Z., L.H.S., J.C., R.A.B., A.M., M.S.A.)
- Universitätsmedizin Göttingen (G.I.C.P.), Göttingen, Germany
| | - J Shatalov
- University of Richmond (J.S.), Richmond, Virginia
| | - T Verma
- From the Department of Radiology and Biomedical Imaging (G.I.C.P., T.V., H.S., R.C.B., S.M., T.Z., L.H.S., J.C., R.A.B., A.M., M.S.A.)
- New York University (T.V.), New York, New York
| | - W R Brim
- Whiting School of Engineering (W.R.B.), Johns Hopkins University, Baltimore, Maryland
| | - H Subramanian
- From the Department of Radiology and Biomedical Imaging (G.I.C.P., T.V., H.S., R.C.B., S.M., T.Z., L.H.S., J.C., R.A.B., A.M., M.S.A.)
| | | | - R C Bahar
- From the Department of Radiology and Biomedical Imaging (G.I.C.P., T.V., H.S., R.C.B., S.M., T.Z., L.H.S., J.C., R.A.B., A.M., M.S.A.)
| | - S Merkaj
- From the Department of Radiology and Biomedical Imaging (G.I.C.P., T.V., H.S., R.C.B., S.M., T.Z., L.H.S., J.C., R.A.B., A.M., M.S.A.)
| | - T Zeevi
- From the Department of Radiology and Biomedical Imaging (G.I.C.P., T.V., H.S., R.C.B., S.M., T.Z., L.H.S., J.C., R.A.B., A.M., M.S.A.)
| | - L H Staib
- From the Department of Radiology and Biomedical Imaging (G.I.C.P., T.V., H.S., R.C.B., S.M., T.Z., L.H.S., J.C., R.A.B., A.M., M.S.A.)
| | - J Cui
- From the Department of Radiology and Biomedical Imaging (G.I.C.P., T.V., H.S., R.C.B., S.M., T.Z., L.H.S., J.C., R.A.B., A.M., M.S.A.)
| | - A Omuro
- Department of Neurology (A.O.), Yale School of Medicine, New Haven, Connecticut
| | - R A Bronen
- From the Department of Radiology and Biomedical Imaging (G.I.C.P., T.V., H.S., R.C.B., S.M., T.Z., L.H.S., J.C., R.A.B., A.M., M.S.A.)
| | - A Malhotra
- From the Department of Radiology and Biomedical Imaging (G.I.C.P., T.V., H.S., R.C.B., S.M., T.Z., L.H.S., J.C., R.A.B., A.M., M.S.A.)
| | - M S Aboian
- From the Department of Radiology and Biomedical Imaging (G.I.C.P., T.V., H.S., R.C.B., S.M., T.Z., L.H.S., J.C., R.A.B., A.M., M.S.A.)
| |
Collapse
|
24
|
Kalasauskas D, Kosterhon M, Keric N, Korczynski O, Kronfeld A, Ringel F, Othman A, Brockmann MA. Beyond Glioma: The Utility of Radiomic Analysis for Non-Glial Intracranial Tumors. Cancers (Basel) 2022; 14:cancers14030836. [PMID: 35159103 PMCID: PMC8834271 DOI: 10.3390/cancers14030836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Tumor qualities, such as growth rate, firmness, and intrusion into healthy tissue, can be very important for operation planning and further treatment. Radiomics is a promising new method that allows the determination of some of these qualities on images performed before surgery. In this article, we provide a review of the use of radiomics in various tumors of the central nervous system, such as metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors. Abstract The field of radiomics is rapidly expanding and gaining a valuable role in neuro-oncology. The possibilities related to the use of radiomic analysis, such as distinguishing types of malignancies, predicting tumor grade, determining the presence of particular molecular markers, consistency, therapy response, and prognosis, can considerably influence decision-making in medicine in the near future. Even though the main focus of radiomic analyses has been on glial CNS tumors, studies on other intracranial tumors have shown encouraging results. Therefore, as the main focus of this review, we performed an analysis of publications on PubMed and Web of Science databases, focusing on radiomics in CNS metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors.
Collapse
Affiliation(s)
- Darius Kalasauskas
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Naureen Keric
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Oliver Korczynski
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Florian Ringel
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
- Correspondence:
| |
Collapse
|
25
|
Gong XQ, Tao YY, Wu YK, Liu N, Yu X, Wang R, Zheng J, Liu N, Huang XH, Li JD, Yang G, Wei XQ, Yang L, Zhang XM. Progress of MRI Radiomics in Hepatocellular Carcinoma. Front Oncol 2021; 11:698373. [PMID: 34616673 PMCID: PMC8488263 DOI: 10.3389/fonc.2021.698373] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer-related death. Although the diagnostic scheme of HCC is currently undergoing refinement, the prognosis of HCC is still not satisfactory. In addition to certain factors, such as tumor size and number and vascular invasion displayed on traditional imaging, some histopathological features and gene expression parameters are also important for the prognosis of HCC patients. However, most parameters are based on postoperative pathological examinations, which cannot help with preoperative decision-making. As a new field, radiomics extracts high-throughput imaging data from different types of images to build models and predict clinical outcomes noninvasively before surgery, rendering it a powerful aid for making personalized treatment decisions preoperatively. Objective This study reviewed the workflow of radiomics and the research progress on magnetic resonance imaging (MRI) radiomics in the diagnosis and treatment of HCC. Methods A literature review was conducted by searching PubMed for search of relevant peer-reviewed articles published from May 2017 to June 2021.The search keywords included HCC, MRI, radiomics, deep learning, artificial intelligence, machine learning, neural network, texture analysis, diagnosis, histopathology, microvascular invasion, surgical resection, radiofrequency, recurrence, relapse, transarterial chemoembolization, targeted therapy, immunotherapy, therapeutic response, and prognosis. Results Radiomics features on MRI can be used as biomarkers to determine the differential diagnosis, histological grade, microvascular invasion status, gene expression status, local and systemic therapeutic responses, and prognosis of HCC patients. Conclusion Radiomics is a promising new imaging method. MRI radiomics has high application value in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xue-Qin Gong
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yun-Yun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yao-Kun Wu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ning Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xi Yu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ran Wang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Zheng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Nian Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Hua Huang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing-Dong Li
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Gang Yang
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Qin Wei
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
26
|
Preoperative differentiation of serous cystic neoplasms from mucin-producing pancreatic cystic neoplasms using a CT-based radiomics nomogram. Abdom Radiol (NY) 2021; 46:2637-2646. [PMID: 33558952 DOI: 10.1007/s00261-021-02954-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE To develop and validate a CT-based radiomics nomogram in preoperative differential diagnosis of SCNs from mucin-producing PCNs. MATERIAL AND METHODS A total of 89 patients consisting of 31 SCNs, 30 IPMNs, and 28 MCNs who underwent preoperative CT were analyzed. A total of 710 radiomics features were extracted from each case. Patients were divided into training (n = 63) and validation cohorts (n = 26) with a ratio of 7:3. Least absolute shrinkage and selection operator (LASSO) method and logistic regression analysis were used for feature selection and model construction. A nomogram was created from a comprehensive model consisting of clinical features and the fusion radiomics signature. A decision curve analysis was used for clinical decisions. RESULTS The radiomics features extracted from CT could assist with the differentiation of SCNs from mucin-producing PCNs in both the training and validation cohorts. The signature of the combination of the plain, late arterial, and venous phases had the largest areas under the curve (AUCs) of 0.960 (95% CI 0.910-1) in the training cohort and 0.817 (95% CI 0.651-0.983) in the validation cohort with good calibration. The value and efficacy of the nomogram was verified using decision curve analysis. CONCLUSION A comprehensive nomogram incorporating clinical features and fusion radiomics signature can differentiate SCNs from mucin-producing PCNs.
Collapse
|
27
|
Priya S, Liu Y, Ward C, Le NH, Soni N, Pillenahalli Maheshwarappa R, Monga V, Zhang H, Sonka M, Bathla G. Radiomic Based Machine Learning Performance for a Three Class Problem in Neuro-Oncology: Time to Test the Waters? Cancers (Basel) 2021; 13:2568. [PMID: 34073840 PMCID: PMC8197204 DOI: 10.3390/cancers13112568] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 01/06/2023] Open
Abstract
Prior radiomics studies have focused on two-class brain tumor classification, which limits generalizability. The performance of radiomics in differentiating the three most common malignant brain tumors (glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and metastatic disease) is assessed; factors affecting the model performance and usefulness of a single sequence versus multiparametric MRI (MP-MRI) remain largely unaddressed. This retrospective study included 253 patients (120 metastatic (lung and brain), 40 PCNSL, and 93 GBM). Radiomic features were extracted for whole a tumor mask (enhancing plus necrotic) and an edema mask (first pipeline), as well as for separate enhancing and necrotic and edema masks (second pipeline). Model performance was evaluated using MP-MRI, individual sequences, and the T1 contrast enhanced (T1-CE) sequence without the edema mask across 45 model/feature selection combinations. The second pipeline showed significantly high performance across all combinations (Brier score: 0.311-0.325). GBRM fit using the full feature set from the T1-CE sequence was the best model. The majority of the top models were built using a full feature set and inbuilt feature selection. No significant difference was seen between the top-performing models for MP-MRI (AUC 0.910) and T1-CE sequence with (AUC 0.908) and without edema masks (AUC 0.894). T1-CE is the single best sequence with comparable performance to that of multiparametric MRI (MP-MRI). Model performance varies based on tumor subregion and the combination of model/feature selection methods.
Collapse
Affiliation(s)
- Sarv Priya
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (N.S.); (R.P.M.); (G.B.)
| | - Yanan Liu
- College of Engineering, University of Iowa, Iowa City, IA 52242, USA; (Y.L.); (N.H.L.); (H.Z.); (M.S.)
| | - Caitlin Ward
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA;
| | - Nam H. Le
- College of Engineering, University of Iowa, Iowa City, IA 52242, USA; (Y.L.); (N.H.L.); (H.Z.); (M.S.)
| | - Neetu Soni
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (N.S.); (R.P.M.); (G.B.)
| | | | - Varun Monga
- Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Honghai Zhang
- College of Engineering, University of Iowa, Iowa City, IA 52242, USA; (Y.L.); (N.H.L.); (H.Z.); (M.S.)
| | - Milan Sonka
- College of Engineering, University of Iowa, Iowa City, IA 52242, USA; (Y.L.); (N.H.L.); (H.Z.); (M.S.)
| | - Girish Bathla
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (N.S.); (R.P.M.); (G.B.)
| |
Collapse
|
28
|
Bai H, Xia W, Ji X, He D, Zhao X, Bao J, Zhou J, Wei X, Huang Y, Li Q, Gao X. Multiparametric Magnetic Resonance Imaging-Based Peritumoral Radiomics for Preoperative Prediction of the Presence of Extracapsular Extension With Prostate Cancer. J Magn Reson Imaging 2021; 54:1222-1230. [PMID: 33970517 DOI: 10.1002/jmri.27678] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Preoperative prediction of extracapsular extension (ECE) of prostate cancer (PCa) is important to guide clinical decision-making and improve patient prognosis. PURPOSE To investigate the value of multiparametric magnetic resonance imaging (mpMRI)-based peritumoral radiomics for preoperative prediction of the presence of ECE. STUDY TYPE Retrospective. POPULATION Two hundred eighty-four patients with PCa from two centers (center 1: 226 patients; center 2: 58 patients). Cases from center 1 were randomly divided into training (158 patients) and internal validation (68 patients) sets. Cases from center 2 were assigned to the external validation set. FIELD STRENGTH/SEQUENCE A 3.0 T MRI scanners (three vendors). Sequence: Pelvic T2-weighted turbo/fast spin echo sequence and diffusion weighted echo planar imaging sequence. ASSESSMENT The peritumoral region (PTR) was obtained by 3-12 mm (half of the tumor length) 3D dilatation of the intratumoral region (ITR). Single-MRI radiomics signatures, mpMRI radiomics signatures, and integrated models, which combined clinical characteristics with the radiomics signatures were built. The discrimination ability was assessed by area under the receiver operating characteristic curve (AUC) in the internal and external validation sets. STATISTICAL TESTS Fisher's exact test, Mann-Whitney U-test, DeLong test. RESULTS The PTR radiomics signatures demonstrated significantly better performance than the corresponding ITR radiomics signatures (AUC: 0.674 vs. 0.554, P < 0.05 on T2-weighted, 0.652 vs. 0.546, P < 0.05 on apparent diffusion coefficient, 0.682 vs. 0.556 on mpMRI in the external validation set). The integrated models combining the PTR radiomics signature with clinical characteristics performed better than corresponding radiomics signatures in the internal validation set (eg. AUC: 0.718 vs. 0.671, P < 0.05 on mpMRI) but performed similar in the external validation set (eg. AUC: 0.684, vs. 0.682, P = 0.45 on mpMRI). DATA CONCLUSION The peritumoral radiomics can better predict the presence of ECE preoperatively compared with the intratumoral radiomics and may have better generalization than clinical characteristics. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: 2.
Collapse
Affiliation(s)
- Honglin Bai
- School of Biomedical Engineering (Suzhou), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, China.,Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Wei Xia
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xuefu Ji
- The School of Electro-Optical Engineering, Changchun University of Science and Technology, Changchun, 130013, China
| | - Dong He
- Department of Urology, The First Affiliated Hospital of SooChow University, Suzhou, 215006, China
| | - Xingyu Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, China.,Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jie Bao
- Department of Radiology, The First Affiliated Hospital of SooChow University, Suzhou, 215006, China
| | - Jian Zhou
- Department of Radiology, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of SooChow University, Suzhou, 215006, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of SooChow University, Suzhou, 215006, China
| | - Qiong Li
- Department of Radiology, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xin Gao
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.,Department of Radiology, Shanxi Province Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, China
| |
Collapse
|
29
|
Radiomics-Based Differentiation between Glioblastoma, CNS Lymphoma, and Brain Metastases: Comparing Performance across MRI Sequences and Machine Learning Models. Cancers (Basel) 2021. [DOI: 10.3390/cancers13092261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prior radiomics studies have focused on two-class brain tumor classification, which limits generalizability. The performance of radiomics in differentiating the three most common malignant brain tumors (glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and metastatic disease) is assessed; factors affecting the model performance and usefulness of a single sequence versus multiparametric MRI (MP-MRI) remain largely unaddressed. This retrospective study included 253 patients (120 metastatic (lung and brain), 40 PCNSL, and 93 GBM). Radiomic features were extracted for whole a tumor mask (enhancing plus necrotic) and an edema mask (first pipeline), as well as for separate enhancing and necrotic and edema masks (second pipeline). Model performance was evaluated using MP-MRI, individual sequences, and the T1 contrast enhanced (T1-CE) sequence without the edema mask across 45 model/feature selection combinations. The second pipeline showed significantly high performance across all combinations (Brier score: 0.311–0.325). GBRM fit using the full feature set from the T1-CE sequence was the best model. The majority of the top models were built using a full feature set and inbuilt feature selection. No significant difference was seen between the top-performing models for MP-MRI (AUC 0.910) and T1-CE sequence with (AUC 0.908) and without edema masks (AUC 0.894). T1-CE is the single best sequence with comparable performance to that of multiparametric MRI (MP-MRI). Model performance varies based on tumor subregion and the combination of model/feature selection methods.
Collapse
|
30
|
Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques. Eur Radiol 2021; 31:8703-8713. [PMID: 33890149 DOI: 10.1007/s00330-021-07845-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/03/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Despite the robust diagnostic performance of MRI-based radiomic features for differentiating between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) reported on prior studies, the best sequence or a combination of sequences and model performance across various machine learning pipelines remain undefined. Herein, we compare the diagnostic performance of multiple radiomics-based models to differentiate GBM from PCNSL. METHODS Our retrospective study included 94 patients (34 with PCNSL and 60 with GBM). Model performance was assessed using various MRI sequences across 45 possible model and feature selection combinations for nine different sequence permutations. Predictive performance was assessed using fivefold repeated cross-validation with five repeats. The best and worst performing models were compared to assess differences in performance. RESULTS The predictive performance, both using individual and a combination of sequences, was fairly robust across multiple top performing models (AUC: 0.961-0.977) but did show considerable variation between the best and worst performing models. The top performing individual sequences had comparable performance to multiparametric models. The best prediction model in our study used a combination of ADC, FLAIR, and T1-CE achieving the highest AUC of 0.977, while the second ranked model used T1-CE and ADC, achieving a cross-validated AUC of 0.975. CONCLUSION Radiomics-based predictive accuracy can vary considerably, based on the model and feature selection methods as well as the combination of sequences used. Also, models derived from limited sequences show performance comparable to those derived from all five sequences. KEY POINTS • Radiomics-based diagnostic performance of various machine learning models for differentiating glioblastoma and PCNSL varies considerably. • ML models using limited or multiple MRI sequences can provide comparable performance, based on the chosen model. • Embedded feature selection models perform better than models using a priori feature reduction.
Collapse
|
31
|
Xia W, Hu B, Li H, Shi W, Tang Y, Yu Y, Geng C, Wu Q, Yang L, Yu Z, Geng D, Li Y. Deep Learning for Automatic Differential Diagnosis of Primary Central Nervous System Lymphoma and Glioblastoma: Multi-Parametric Magnetic Resonance Imaging Based Convolutional Neural Network Model. J Magn Reson Imaging 2021; 54:880-887. [PMID: 33694250 DOI: 10.1002/jmri.27592] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Differential diagnosis of primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) is useful to guide treatment strategies. PURPOSE To investigate the use of a convolutional neural network (CNN) model for differentiation of PCNSL and GBM without tumor delineation. STUDY TYPE Retrospective. POPULATION A total of 289 patients with PCNSL (136) or GBM (153) were included, the average age of the cohort was 54 years, and there were 173 men and 116 women. FIELD STRENGTH/SEQUENCE 3.0 T Axial contrast-enhanced T1 -weighted spin-echo inversion recovery sequence (CE-T1 WI), T2 -weighted fluid-attenuation inversion recovery sequence (FLAIR), and diffusion weighted imaging (DWI, b = 0 second/mm2 , 1000 seconds/mm2 ). ASSESSMENT A single-parametric CNN model was built using CE-T1 WI, FLAIR, and the apparent diffusion coefficient (ADC) map derived from DWI, respectively. A decision-level fusion based multi-parametric CNN model (DF-CNN) was built by combining the predictions of single-parametric CNN models through logistic regression. An image-level fusion based multi-parametric CNN model (IF-CNN) was built using the integrated multi-parametric MR images. The radiomics models were developed. The diagnoses by three radiologists with 6 years (junior radiologist Y.Y.), 11 years (intermediate-level radiologist Y.T.), and 21 years (senior radiologist Y.L.) of experience were obtained. STATISTICAL ANALYSIS The 5-fold cross validation was used for model evaluation. The Pearson's chi-squared test was used to compare the accuracies. U-test and Fisher's exact test were used to compare clinical characteristics. RESULTS The CE-T1 WI, FLAIR, and ADC based single-parametric CNN model had accuracy of 0.884, 0.782, and 0.700, respectively. The DF-CNN model had an accuracy of 0.899 which was higher than the IF-CNN model (0.830, P = 0.021), but had no significant difference in accuracy compared to the radiomics model (0.865, P = 0.255), and the senior radiologist (0.906, P = 0.886). DATA CONCLUSION A CNN model can differentiate PCNSL from GBM without tumor delineation, and comparable to the radiomics models and radiologists. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Wei Xia
- Academy for Engineering and Technology, Fudan University, Shanghai, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Hu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haiqing Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Ying Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Yu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Geng
- Academy for Engineering and Technology, Fudan University, Shanghai, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiuwen Wu
- Academy for Engineering and Technology, Fudan University, Shanghai, China.,Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Liqin Yang
- Academy for Engineering and Technology, Fudan University, Shanghai, China.,Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zekuan Yu
- Academy for Engineering and Technology, Fudan University, Shanghai, China.,Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Daoying Geng
- Academy for Engineering and Technology, Fudan University, Shanghai, China.,Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Li
- Academy for Engineering and Technology, Fudan University, Shanghai, China.,Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|