1
|
Kumar N, Singh H, Deep A, Khatri M, Bhardwaj N. Smartphone-assisted colorimetric detection of glutathione in food and pharmaceutical samples using MIL-88A(Fe). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125297. [PMID: 39461029 DOI: 10.1016/j.saa.2024.125297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/05/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Metal-organic frameworks (MOFs) have risen to prominence due to their unique structural features, including high porosity and tunable surface chemistry. As nanozymes, the MOFs replicate the catalytic activity of natural enzymes, thereby offering stability under diverse conditions and heightened efficiency. Glutathione (GSH) is a vital intracellular antioxidant and disease biomarker for cancer and neurodegenerative disorders. In this study, the intrinsic-oxidase activity of MIL-88A(Fe) was explored to develop a naked-eye-based colorimetric sensor for the detection of GSH. The 3,3',5,5',-tetramethyl benzidine (TMB) substrate was oxidized by MIL-88A(Fe), leading to the formation ofblue-colored oxidized TMB. The addition of GSH resultsin the reduction of oxidized TMB, causing the blue color to fade and a decrease in absorbance at 652 nm. Under optimal conditions, the developed sensor has a good linear relationship with GSH concentrations ranging from 0-40 μM with a detection limit of 150 nM. The developed methodwas successfully used to determine GSH accurately in real food and pharmaceutical samples. Further, the sensor demonstrated satisfactory performance for smartphone-based GSH detection on a paper-based assay. This work demonstrates the rapid, inexpensive, and ultrasensitive detection of GSH, opening new avenues for additional food quality and pharmaceuticalmonitoring.
Collapse
Affiliation(s)
- Nilmani Kumar
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Harpreet Singh
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Akash Deep
- Energy and Environment Unit, Institute of Nano Science and Technology, Sector 81, Mohali, Punjab, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Neha Bhardwaj
- Energy and Environment Unit, Institute of Nano Science and Technology, Sector 81, Mohali, Punjab, India.
| |
Collapse
|
2
|
Cenk M, Bekiroğlu Ataş H, Sabuncuoğlu S. Glutathione conjugation of sesquimustard: in vitro investigation of potential biomarkers. Arch Toxicol 2024; 98:2867-2877. [PMID: 38780811 PMCID: PMC11324776 DOI: 10.1007/s00204-024-03788-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Sesquimustard (Q) is a powerful blistering agent that contains additional sulfur atoms. Sulfur mustard causes covalent bonding by alkylating nucleophilic groups of biologically important macromolecules such as lipids, proteins, DNA, or RNA. Most cells maintain relatively high amounts of a unique tripeptide called glutathione (GSH) (γ-glutamyl-cysteinyl glycine), which possesses a free thiol group, to prevent unwanted reactions caused by reactive chemical entities. Moreover, these thiol groups on cysteines (Cys) are the main target for alkylation. Although Q is the most potent vesicant among sulfur mustards, research studies identifying biomarkers of Q are very limited. Therefore, here in this study, we aimed to identify the GSH and Cys conjugates of Q using mass spectrometric methods and to observe the formation of these conjugates in HaCat cell culture following exposure to different doses. We identified four different conjugates of Q, which are bis-glutathionyl ethylthioethylthioethyl conjugate (GSH-ETETE-GSH), hydroxyethylthioethylthioethyl glutathione conjugate (HETETE-GSH), bis-cysteinyl ethylthioethylthioethyl conjugate (Cys-ETETE-Cys), and hydroxyethylthioethylthioethyl cysteine conjugate (HETETE-Cys). The identity of the conjugates was elucidated using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). We also investigated changes in conjugate formation with exposure concentration and time elapsed after exposure in the cell culture. After exposure, GSH conjugates decreased until 1st hour, while Cys conjugates increased until 6th hour. We also observed that conjugate formation depended on the concentration of Q. This is the first study to elucidate the conjugates of Q dependent on GSH conjugation. As biomarkers are essential tools for evaluating exposure to Q, this study contributes to the limited number of studies identifying biomarkers for Q.
Collapse
Affiliation(s)
- Muharrem Cenk
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- General Directorate of Public Health, National Public Health Reference Laboratory, Ankara, Turkey
| | - Havva Bekiroğlu Ataş
- General Directorate of Public Health, National Public Health Reference Laboratory, Ankara, Turkey
| | - Suna Sabuncuoğlu
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
3
|
Yu G, Wang R, Liu X, Li Y, Li L, Wang X, Huang Y, Pan G. Screening and identification of reactive metabolic compounds of Cortex Periplocae based on glutathione capture-mass spectrometry. J Nat Med 2024; 78:1044-1056. [PMID: 39103725 DOI: 10.1007/s11418-024-01835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
As a traditional Chinese medicine (TCM), Cortex Periplocae (CP) has a wide range of pharmacological effects, as well as toxic side effects. The main toxic components of it are cardiac glycosides, which tend to cause cardiotoxicity. Currently, it has also been reported in studies to cause hepatotoxicity, but it is not clear whether the hepatotoxicity is related to the toxicity caused by the reactive metabolites. This study aims to investigate the target components of CP that generate reactive metabolic toxicity. The fluorescent probe method was used to detect glutathione (GSH)-trapped reactive metabolites in a co-incubation system of CP extract with rat liver microsomes. Identification of GSH conjugates was performed by LC-MS/MS and that of the possible precursor components that produce reactive metabolites was conducted by UPLC-Q-TOF/MS. Cell viability assays were performed on HepG2 and L02 cells to determine the cytotoxicity of the target components. The findings of our study demonstrate that the extract derived from CP has the ability to generate metabolites that exhaust the intracellular GSH levels, resulting in the formation of GSH conjugates and subsequent cytotoxic effects. Through the utilization of the UPLC-Q-TOF/MS technique, we were able to accurately determine the molecular weight of the precursor compound in CP to be 355.1023. The primary evidence to determining the GSH conjugetes relies on the appearance of characteristic product ions resulting from central neutral loss (CNL) scanning of 129 Da and product scanning of m/z 660 in the positive MS/MS spectrum. Through analysis, it was ultimately ascertained that the presence of chlorogenic acid (CGA) and its isomers, namely neochlorogenic acid (NCGA) and cryptochlorogenic acid (CCGA), could lead to the production of GSH conjugates, resulting in cytotoxicity at elevated levels. Taking these findings into consideration, the underlying cause for the potential hepatotoxicity of CP was initially determined.
Collapse
Affiliation(s)
- Guantong Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruirui Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaomei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
4
|
Khalil SM, MacKenzie KR, Maletic-Savatic M, Li F. Metabolic bioactivation of antidepressants: advance and underlying hepatotoxicity. Drug Metab Rev 2024; 56:97-126. [PMID: 38311829 PMCID: PMC11118075 DOI: 10.1080/03602532.2024.2313967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Many drugs that serve as first-line medications for the treatment of depression are associated with severe side effects, including liver injury. Of the 34 antidepressants discussed in this review, four have been withdrawn from the market due to severe hepatotoxicity, and others carry boxed warnings for idiosyncratic liver toxicity. The clinical and economic implications of antidepressant-induced liver injury are substantial, but the underlying mechanisms remain elusive. Drug-induced liver injury may involve the host immune system, the parent drug, or its metabolites, and reactive drug metabolites are one of the most commonly referenced risk factors. Although the precise mechanism by which toxicity is induced may be difficult to determine, identifying reactive metabolites that cause toxicity can offer valuable insights for decreasing the bioactivation potential of candidates during the drug discovery process. A comprehensive understanding of drug metabolic pathways can mitigate adverse drug-drug interactions that may be caused by elevated formation of reactive metabolites. This review provides a comprehensive overview of the current state of knowledge on antidepressant bioactivation, the metabolizing enzymes responsible for the formation of reactive metabolites, and their potential implication in hepatotoxicity. This information can be a valuable resource for medicinal chemists, toxicologists, and clinicians engaged in the fields of antidepressant development, toxicity, and depression treatment.
Collapse
Affiliation(s)
- Saleh M. Khalil
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin R. MacKenzie
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Feng Li
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Seo HJ, Ji SB, Kim SE, Lee GM, Park SY, Wu Z, Jang DS, Liu KH. Inhibitory Effects of Schisandra Lignans on Cytochrome P450s and Uridine 5'-Diphospho-Glucuronosyl Transferases in Human Liver Microsomes. Pharmaceutics 2021; 13:pharmaceutics13030371. [PMID: 33802239 PMCID: PMC8000448 DOI: 10.3390/pharmaceutics13030371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 01/21/2023] Open
Abstract
Schisandra chinensis has been widely used as a traditional herbal medicine to treat chronic coughs, fatigue, night sweats, and insomnia. Numerous bioactive components including lignans have been identified in this plant. Lignans with a dibenzocyclooctadiene moiety have been known to possess anti-cancer, anti-inflammatory, and hepatoprotective activity. Fragmentary studies have reported the ability of some lignans to modulate some cytochrome P450 (P450) enzymes. Herein, we investigated the drug interaction potential of six dibenzocyclooctadiene lignans (schisandrin, gomisin A, B, C, and N, and wuweizisu C) on nine P450 enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A) and six uridine 5'-diphosphoglucuronosyl transferase (UGT) enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) using human liver microsomes. We found that lignans with one or two methylenedioxyphenyl groups inhibited CYP2B6, CYP2C8, CYP2C9, CYP2C19, and CYP2E1 activities in a time- and concentration-dependent like their CYP3A inhibition. In comparison, these lignans do not induce time-dependent inhibition of CYP1A2, CYP2A6, and CYP2D6. The time-dependent inhibition of gomisin A against CYP2C8, CYP2C19, and CYP3A4 was also elucidated using glutathione as a trapping reagent of reactive carbene metabolites given that gomisin A strongly inhibits these P450 enzymes in a time-dependent manner. A glutathione conjugate of gomisin A was generated in reactions with human recombinant CYP2C8, CYP2C19, and CYP3A4. This suggests that the time-dependent inhibition of gomisin A against CYP2C8, CYP2C9, and CYP3A4 is due to the production of carbene reactive metabolite. Six of the lignans we tested inhibited the activities of six UGT to a limited extent (IC50 > 15 μM). This information may aid the prediction of possible drug interactions between Schisandra lignans and any co-administered drugs which are mainly metabolized by P450s.
Collapse
Affiliation(s)
- Hyung-Ju Seo
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.S.); (S.-B.J.); (S.-E.K.); (G.-M.L.); (S.-Y.P.)
| | - Seung-Bae Ji
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.S.); (S.-B.J.); (S.-E.K.); (G.-M.L.); (S.-Y.P.)
| | - Sin-Eun Kim
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.S.); (S.-B.J.); (S.-E.K.); (G.-M.L.); (S.-Y.P.)
| | - Gyung-Min Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.S.); (S.-B.J.); (S.-E.K.); (G.-M.L.); (S.-Y.P.)
| | - So-Young Park
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.S.); (S.-B.J.); (S.-E.K.); (G.-M.L.); (S.-Y.P.)
| | - Zhexue Wu
- Mass Spectrometry Based Convergence Research Institute and Department of Chemistry, Kyungpook National University, Daegu 41566, Korea;
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (D.S.J.); (K.-H.L.); Tel.: +82-2-961-0719 (D.S.J.); +82-53-950-8567 (K.-H.L.)
| | - Kwang-Hyeon Liu
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.S.); (S.-B.J.); (S.-E.K.); (G.-M.L.); (S.-Y.P.)
- Mass Spectrometry Based Convergence Research Institute and Department of Chemistry, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: (D.S.J.); (K.-H.L.); Tel.: +82-2-961-0719 (D.S.J.); +82-53-950-8567 (K.-H.L.)
| |
Collapse
|
6
|
Hughes TB, Flynn N, Dang NL, Swamidass SJ. Modeling the Bioactivation and Subsequent Reactivity of Drugs. Chem Res Toxicol 2021; 34:584-600. [PMID: 33496184 DOI: 10.1021/acs.chemrestox.0c00417] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrophilically reactive drug metabolites are implicated in many adverse drug reactions. In this mechanism-termed bioactivation-metabolic enzymes convert drugs into reactive metabolites that often conjugate to nucleophilic sites within biological macromolecules like proteins. Toxic metabolite-product adducts induce severe immune responses that can cause sometimes fatal disorders, most commonly in the form of liver injury, blood dyscrasia, or the dermatologic conditions toxic epidermal necrolysis and Stevens-Johnson syndrome. This study models four of the most common metabolic transformations that result in bioactivation: quinone formation, epoxidation, thiophene sulfur-oxidation, and nitroaromatic reduction, by synthesizing models of metabolism and reactivity. First, the metabolism models predict the formation probabilities of all possible metabolites among the pathways studied. Second, the exact structures of these metabolites are enumerated. Third, using these structures, the reactivity model predicts the reactivity of each metabolite. Finally, a feedfoward neural network converts the metabolism and reactivity predictions to a bioactivation prediction for each possible metabolite. These bioactivation predictions represent the joint probability that a metabolite forms and that this metabolite subsequently conjugates to protein or glutathione. Among molecules bioactivated by these pathways, we predicted the correct pathway with an AUC accuracy of 89.98%. Furthermore, the model predicts whether molecules will be bioactivated, distinguishing bioactivated and nonbioactivated molecules with 81.06% AUC. We applied this algorithm to withdrawn drugs. The known bioactivation pathways of alclofenac and benzbromarone were identified by the algorithm, and high probability bioactivation pathways not yet confirmed were identified for safrazine, zimelidine, and astemizole. This bioactivation model-the first of its kind that jointly considers both metabolism and reactivity-enables drug candidates to be quickly evaluated for a toxicity risk that often evades detection during preclinical trials. The XenoSite bioactivation model is available at http://swami.wustl.edu/xenosite/p/bioactivation.
Collapse
Affiliation(s)
- Tyler B Hughes
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Noah Flynn
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Na Le Dang
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - S Joshua Swamidass
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| |
Collapse
|
7
|
Hughes TB, Dang NL, Kumar A, Flynn NR, Swamidass SJ. Metabolic Forest: Predicting the Diverse Structures of Drug Metabolites. J Chem Inf Model 2020; 60:4702-4716. [PMID: 32881497 PMCID: PMC8716321 DOI: 10.1021/acs.jcim.0c00360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adverse drug metabolism often severely impacts patient morbidity and mortality. Unfortunately, drug metabolism experimental assays are costly, inefficient, and slow. Instead, computational modeling could rapidly flag potentially toxic molecules across thousands of candidates in the early stages of drug development. Most metabolism models focus on predicting sites of metabolism (SOMs): the specific substrate atoms targeted by metabolic enzymes. However, SOMs are merely a proxy for metabolic structures: knowledge of an SOM does not explicitly provide the actual metabolite structure. Without an explicit metabolite structure, computational systems cannot evaluate the new molecule's properties. For example, the metabolite's reactivity cannot be automatically predicted, a crucial limitation because reactive drug metabolites are a key driver of adverse drug reactions (ADRs). Additionally, further metabolic events cannot be forecast, even though the metabolic path of the majority of substrates includes two or more sequential steps. To overcome the myopia of the SOM paradigm, this study constructs a well-defined system-termed the metabolic forest-for generating exact metabolite structures. We validate the metabolic forest with the substrate and product structures from a large, chemically diverse, literature-derived dataset of 20 736 records. The metabolic forest finds a pathway linking each substrate and product for 79.42% of these records. By performing a breadth-first search of depth two or three, we improve performance to 88.43 and 88.77%, respectively. The metabolic forest includes a specialized algorithm for producing accurate quinone structures, the most common type of reactive metabolite. To our knowledge, this quinone structure algorithm is the first of its kind, as the diverse mechanisms of quinone formation are difficult to systematically reproduce. We validate the metabolic forest on a previously published dataset of 576 quinone reactions, predicting their structures with a depth three performance of 91.84%. The metabolic forest accurately enumerates metabolite structures, enabling promising new directions such as joint metabolism and reactivity modeling.
Collapse
Affiliation(s)
- Tyler B Hughes
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Na Le Dang
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Ayush Kumar
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Noah R Flynn
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - S Joshua Swamidass
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| |
Collapse
|
8
|
Bandookwala M, Nemani KS, Chatterjee B, Sengupta P. Reactive Metabolites: Generation and Estimation with Electrochemistry Based Analytical Strategy as an Emerging Screening Tool. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411016666200131154202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Analytical scientists have constantly been in search for more efficient and
economical methods for drug simulation studies. Owing to great progress in this field, there are various
techniques available nowadays that mimic drug metabolism in the hepatic microenvironment.
The conventional in vitro and in vivo studies pose inherent methodological drawbacks due to which
alternative analytical approaches are devised for different drug metabolism experiments.
Methods:
Electrochemistry has gained attention due to its benefits over conventional metabolism
studies. Because of the protein binding nature of reactive metabolites, it is difficult to identify them
directly after formation, although the use of trapping agents aids in their successful identification.
Furthermore, various scientific reports confirmed the successful simulation of drug metabolism studies
by electrochemical cells. Electrochemical cells coupled with chromatography and mass spectrometry
made it easy for direct detection of reactive metabolites. In this review, an insight into the application
of electrochemical techniques for metabolism simulation studies has been provided. The sole
use of electrochemical cells, as well as their setups on coupling to liquid chromatography and mass
spectrometry has been discussed. The importance of metabolism prediction in early drug discovery
and development stages along with a brief overview of other conventional methods has also been
highlighted.
Conclusion:
To the best of our knowledge, this is the first article to review the electrochemistry
based strategy for the analysis of reactive metabolites. The outcome of this ‘first of its kind’ review
will significantly help the researchers in the application of electrochemistry based bioanalysis for metabolite
detection.
Collapse
Affiliation(s)
- Maria Bandookwala
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gujarat, India
| | - Kavya Sri Nemani
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gujarat, India
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management (SPPSPTM), NMIMS University, Mumbai, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gujarat, India
| |
Collapse
|
9
|
Towards the Inhibition of Protein-Protein Interactions (PPIs) in STAT3: Insights into a New Class of Benzothiadiazole Derivatives. Molecules 2020; 25:molecules25153509. [PMID: 32752073 PMCID: PMC7435819 DOI: 10.3390/molecules25153509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a validated anticancer target due to the relationship between its constitutive activation and malignant tumors. Through a virtual screening approach on the STAT3-SH2 domain, 5,6-dimethyl-1H,3H-2,1,3-benzothiadiazole-2,2-dioxide (1) was identified as a potential STAT3 inhibitor. Some benzothiadiazole derivatives were synthesized by employing a versatile methodology, and they were tested by an AlphaScreen-based assay. Among them, benzosulfamide 1 showed a significant activity with an IC50 = 15.8 ± 0.6 µM as a direct STAT3 inhibitor. Notably, we discovered that compound 1 was also able to interact with cysteine residues located around the SH2 domain. By applying mass spectrometry, liquid chromatography, NMR, and UV spectroscopy, an in-depth investigation was carried out, shedding light on its intriguing and unexpected mechanism of interaction.
Collapse
|
10
|
Application of a fluorous derivatization method for characterization of glutathione-trapped reactive metabolites with liquid chromatography-tandem mass spectrometry analysis. J Chromatogr A 2020; 1622:461160. [PMID: 32450990 DOI: 10.1016/j.chroma.2020.461160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 01/05/2023]
Abstract
The glutathione (GSH) trapping assay is commonly utilized for the screening and characterization of reactive metabolites produced by drug metabolism. This study describes a fluorous derivatization method for a more sensitive and selective analysis of reactive metabolites trapped by GSH using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this study, the GSH-trapped reactive metabolites, which were obtained after incubation of the test compounds with human liver microsome (HLM) in the presence of GSH and NADPH, were derivatized using the perfluoroalkylamine reagent through oxazolone chemistry. Since this reaction enabled the selective modification of the α-carboxyl group in GSH, the structural compositions of the metabolites were not affected by the derivatization. Furthermore, the selective analysis of the resulting derivatives could be performed using perfluoroalkyl-modified stationary phase LC separation via the interaction between the perfluoroalkyl-containing compounds, such as fluorous affinity, followed by detection with the precursor ion and/or enhanced product ion scan modes in MS/MS. Finally, we demonstrated the applicability of this method by analyzing perfluoroalkyl derivatives of some drug metabolites trapped by GSH in HLM incubation.
Collapse
|
11
|
Is there enough evidence to classify cycloalkyl amine substituents as structural alerts? Biochem Pharmacol 2020; 174:113796. [PMID: 31926938 DOI: 10.1016/j.bcp.2020.113796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
Basic amine substituents provide several pharmacokinetic benefits relative to acidic and neutral functional groups, and have been extensively utilized as substituents of choice in drug design. On occasions, basic amines have been associated with off-target pharmacology via interactions with aminergic G-protein coupled receptors, ion-channels, kinases, etc. Structural features associated with the promiscuous nature of basic amines have been well-studied, and can be mitigated in a preclinical drug discovery environment. In addition to the undesirable secondary pharmacology, α-carbon oxidation of certain secondary or tertiary cycloalkyl amines can generate electrophilic iminium and aldehyde metabolites, potentially capable of covalent adduction to proteins or DNA. Consequently, cycloalkyl amines have been viewed as structural alerts (SAs), analogous to functional groups such as anilines, furans, thiophenes, etc., which are oxidized to reactive metabolites that generate immunogenic haptens by covalently binding to host proteins. Detailed survey of the literature, however, suggests that cases where preclinical or clinical toxicity has been explicitly linked to the metabolic activation of a cycloalkyl amine group are extremely rare. Moreover, there is a distinct possibility for the formation of electrophilic iminium/amino-aldehyde metabolites with numerous cycloalkyl amine-containing marketed drugs, since stable ring cleavage products have been characterized as metabolites in human mass balance studies. In the present work, a critical analysis of the evidence for and against the role of iminium ions/aldehydes as mediators of toxicity is discussed with a special emphasis on often time overlooked detoxication pathways of these reactive species to innocuous metabolites.
Collapse
|
12
|
Chavan BB, Kalariya PD, Tiwari S, Nimbalkar RD, Garg P, Srinivas R, Talluri MVNK. Identification and characterization of vilazodone metabolites in rats and microsomes by ultrahigh-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1974-1984. [PMID: 28875544 DOI: 10.1002/rcm.7982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Vilazodone is a selective serotonin reuptake inhibitor (SSRI) used for the treatment of major depressive disorder (MDD). An extensive literature search found few reports on the in vivo and in vitro metabolism of vilazodone. Therefore, we report a comprehensive in vivo and in vitro metabolic identification and structural characterization of vilazodone using ultrahigh-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF/MS/MS) and in silico toxicity study of the metabolites. METHODS To identify in vivo metabolites of vilazodone, blood, urine and faeces samples were collected at different time intervals starting from 0 h to 48 h after oral administration of vilazodone to Sprague-Dawley rats. The in vitro metabolism study was conducted with human liver microsomes (HLM) and rat liver microsomes (RLM). The samples were prepared using an optimized sample preparation approach involving protein precipitation followed by solid-phase extraction. The metabolites have been identified and characterized by using LC/ESI-MS/MS. RESULTS A total of 12 metabolites (M1-M12) were identified in in vivo and in vitro matrices and characterized by LC/ESI-MS/MS. The majority of the metabolites were observed in urine, while a few metabolites were present in faeces and plasma. Two metabolites were observed in the in vitro study. A semi-quantitative study based on percentage counts shows that metabolites M11, M6 and M8 were observed in higher amounts in urine, faeces and plasma, respectively. CONCLUSIONS The structures of all the 12 metabolites were elucidated by using LC/ESI-MS/MS. The study suggests that vilazodone was metabolized via hydroxylation, dihydroxylation, glucuronidation, oxidative deamination, dealkylation, dehydrogenation and dioxidation. All the metabolites were screened for toxicity using an in silico tool.
Collapse
Affiliation(s)
- Balasaheb B Chavan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| | - Pradipbhai D Kalariya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| | - Shristy Tiwari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| | - Rakesh D Nimbalkar
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, 160 062, Punjab, India
| | - Prabha Garg
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, 160 062, Punjab, India
| | - R Srinivas
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
- National Center for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 607, India
| | - M V N Kumar Talluri
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| |
Collapse
|
13
|
Kalgutkar AS. Liabilities Associated with the Formation of “Hard” Electrophiles in Reactive Metabolite Trapping Screens. Chem Res Toxicol 2016; 30:220-238. [DOI: 10.1021/acs.chemrestox.6b00332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amit S. Kalgutkar
- Pharmacokinetics, Dynamics, and Metabolism − New Chemical
Entities, Pfizer Worldwide Research and Development, 610 Main
Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
An integrated approach for profiling oxidative metabolites and glutathione adducts using liquid chromatography coupled with ultraviolet detection and triple quadrupole-linear ion trap mass spectrometry. J Pharm Biomed Anal 2016; 129:482-491. [DOI: 10.1016/j.jpba.2016.07.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 11/18/2022]
|
15
|
Multiple stage MS in analysis of plasma, serum, urine and in vitro samples relevant to clinical and forensic toxicology. Bioanalysis 2016; 8:457-81. [DOI: 10.4155/bio.16.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This paper reviews MS approaches applied to metabolism studies, structure elucidation and qualitative or quantitative screening of drugs (of abuse) and/or their metabolites. Applications in clinical and forensic toxicology were included using blood plasma or serum, urine, in vitro samples, liquids, solids or plant material. Techniques covered are liquid chromatography coupled to low-resolution and high-resolution multiple stage mass analyzers. Only PubMed listed studies published in English between January 2008 and January 2015 were considered. Approaches are discussed focusing on sample preparation and mass spectral settings. Comments on advantages and limitations of these techniques complete the review.
Collapse
|
16
|
Tailor A, Faulkner L, Naisbitt DJ, Park BK. The chemical, genetic and immunological basis of idiosyncratic drug–induced liver injury. Hum Exp Toxicol 2015; 34:1310-7. [DOI: 10.1177/0960327115606529] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Idiosyncratic drug reactions can be extremely severe and are not accounted for by the regular pharmacology of a drug. Thus, the mechanism of idiosyncratic drug–induced liver injury (iDILI), a phenomenon that occurs with many drugs including β-lactams, anti-tuberculosis drugs and non-steroidal anti-inflammatories, has been difficult to determine and remains a pressing issue for patients and drug companies. Evidence has shown that iDILI is multifactorial and multifaceted, which suggests that multiple cellular mechanisms may be involved. However, a common initiating event has been proposed to be the formation of reactive drug metabolites and covalently bound adducts. Although the fate of these metabolites are unclear, recent evidence has shown a possible link between iDILI and the adaptive immune system. This review highlights the role of reactive metabolites, the recent genetic innovations which have provided molecular targets for iDILI, and the current literature which suggests an immunological basis for iDILI.
Collapse
Affiliation(s)
- A Tailor
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, England
| | - L Faulkner
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, England
| | - DJ Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, England
| | - BK Park
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, England
| |
Collapse
|
17
|
Lopez-Tapia F, Walker KAM, Brotherton-Pleiss C, Caroon J, Nitzan D, Lowrie L, Gleason S, Zhao SH, Berger J, Cockayne D, Phippard D, Suttmann R, Fitch WL, Bourdet D, Rege P, Huang X, Broadbent S, Dvorak C, Zhu J, Wagner P, Padilla F, Loe B, Jahangir A, Alker A. Novel Series of Dihydropyridinone P2X7 Receptor Antagonists. J Med Chem 2015; 58:8413-26. [DOI: 10.1021/acs.jmedchem.5b00365] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Francisco Lopez-Tapia
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Keith A. M. Walker
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | | | - Joanie Caroon
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Dov Nitzan
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Lee Lowrie
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Shelley Gleason
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Shu-Hai Zhao
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Jacob Berger
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Debra Cockayne
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Deborah Phippard
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Rebecca Suttmann
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - William L. Fitch
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - David Bourdet
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Pankaj Rege
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Xiaojun Huang
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Scott Broadbent
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Charles Dvorak
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Jiang Zhu
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Paul Wagner
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Fernando Padilla
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Brad Loe
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Alam Jahangir
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - André Alker
- Hoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| |
Collapse
|
18
|
Lassila T, Rousu T, Mattila S, Chesné C, Pelkonen O, Turpeinen M, Tolonen A. Formation of GSH-trapped reactive metabolites in human liver microsomes, S9 fraction, HepaRG-cells, and human hepatocytes. J Pharm Biomed Anal 2015; 115:345-51. [DOI: 10.1016/j.jpba.2015.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/19/2015] [Accepted: 07/21/2015] [Indexed: 12/22/2022]
|
19
|
Metabolites characterization of timosaponin AIII in vivo and in vitro by using liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 997:236-43. [DOI: 10.1016/j.jchromb.2015.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022]
|
20
|
Comparison of trapping profiles between d-peptides and glutathione in the identification of reactive metabolites. Toxicol Rep 2015; 2:1024-1032. [PMID: 28962444 PMCID: PMC5598498 DOI: 10.1016/j.toxrep.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 12/23/2022] Open
Abstract
Qualitative trapping profile of reactive metabolites arising from six structurally different compounds was tested with three different d-peptide isomers (Peptide 1, gly–tyr–pro–cys–pro–his-pro; Peptide 2, gly–tyr–pro–ala–pro–his–pro; Peptide 3, gly–tyr–arg–pro–cys–pro–his–lys–pro) and glutathione (GSH) using mouse and human liver microsomes as the biocatalyst. The test compounds were classified either as clinically “safe” (amlodipine, caffeine, ibuprofen), or clinically as “risky” (clozapine, nimesulide, ticlopidine; i.e., associated with severe clinical toxicity outcomes). Our working hypothesis was as follows: could the use of short different amino acid sequence containing d-peptides in adduct detection confer any add-on value to that obtained with GSH? All “risky” agents’ resulted in the formation of several GSH adducts in the incubation mixture and with at least one peptide adduct with both microsomal preparations. Amlodipine did not form any adducts with any of the trapping agents. No GSH and peptide 2 and 3 adducts were found with caffeine, but with peptide 1 one adduct with human liver microsomes was detected. Ibuprofen produced one Peptide 1-adduct with human and mouse liver microsomes but not with GSH. In conclusion, GSH still remains the gold trapping standard for reactive metabolites. However, targeted d-peptides could provide additional information about protein binding potential of electrophilic agents, but their clinical significance needs to be clarified using a wider spectrum of chemicals together with other safety estimates.
Collapse
|
21
|
Wen B, Zhu M. Applications of mass spectrometry in drug metabolism: 50 years of progress. Drug Metab Rev 2015; 47:71-87. [DOI: 10.3109/03602532.2014.1001029] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Ni P, Sun Y, Dai H, Hu J, Jiang S, Wang Y, Li Z. Highly sensitive and selective colorimetric detection of glutathione based on Ag [I] ion–3,3′,5,5′-tetramethylbenzidine (TMB). Biosens Bioelectron 2015; 63:47-52. [DOI: 10.1016/j.bios.2014.07.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/25/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
|
23
|
Thibaut HJ, van der Linden L, Jiang P, Thys B, Canela MD, Aguado L, Rombaut B, Wimmer E, Paul A, Pérez-Pérez MJ, van Kuppeveld FJM, Neyts J. Binding of glutathione to enterovirus capsids is essential for virion morphogenesis. PLoS Pathog 2014; 10:e1004039. [PMID: 24722756 PMCID: PMC3983060 DOI: 10.1371/journal.ppat.1004039] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/17/2014] [Indexed: 11/18/2022] Open
Abstract
Enteroviruses (family of the Picornaviridae) cover a large group of medically important human pathogens for which no antiviral treatment is approved. Although these viruses have been extensively studied, some aspects of the viral life cycle, in particular morphogenesis, are yet poorly understood. We report the discovery of TP219 as a novel inhibitor of the replication of several enteroviruses, including coxsackievirus and poliovirus. We show that TP219 binds directly glutathione (GSH), thereby rapidly depleting intracellular GSH levels and that this interferes with virus morphogenesis without affecting viral RNA replication. The inhibitory effect on assembly was shown not to depend on an altered reducing environment. Using TP219, we show that GSH is an essential stabilizing cofactor during the transition of protomeric particles into pentameric particles. Sequential passaging of coxsackievirus B3 in the presence of low GSH-levels selected for GSH-independent mutants that harbored a surface-exposed methionine in VP1 at the interface between two protomers. In line with this observation, enteroviruses that already contained this surface-exposed methionine, such as EV71, did not rely on GSH for virus morphogenesis. Biochemical and microscopical analysis provided strong evidence for a direct interaction between GSH and wildtype VP1 and a role for this interaction in localizing assembly intermediates to replication sites. Consistently, the interaction between GSH and mutant VP1 was abolished resulting in a relocalization of the assembly intermediates to replication sites independent from GSH. This study thus reveals GSH as a novel stabilizing host factor essential for the production of infectious enterovirus progeny and provides new insights into the poorly understood process of morphogenesis. Enteroviruses contain many significant human pathogens, including poliovirus, enterovirus 71, coxsackieviruses and rhinoviruses. Most enterovirus infections subside mild or asymptomatically, but may also result in severe morbidity and mortality. Here, we report on the mechanism of antiviral action of a small molecule, TP219, as an inhibitor of enterovirus morphogenesis. Morphogenesis represents an important stage at the end of the virus replication cycle and requires multiple steps, of which some are only poorly understood. Better understanding of this process holds much potential to facilitate the development of new therapies to combat enterovirus infections. We demonstrate that TP219 rapidly depletes intracellular glutathione (GSH) by covalently binding free GSH resulting in the inhibition of virus morphogenesis without affecting viral RNA replication. We discovered that GSH directly interacts with viral capsid precursors and mature virions and that this interaction is required for the formation of an assembly intermediate (pentameric particles) and consequently infectious progeny. Remarkably, enteroviruses that were capable of replicating in the absence of GSH contained a surface-exposed methionine at the protomeric interface. We propose that GSH is an essential and stabilizing host factor during morphogenesis and that this stabilization is a prerequisite for a functional encapsidation of progeny viral RNA.
Collapse
Affiliation(s)
- Hendrik Jan Thibaut
- Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lonneke van der Linden
- Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
- Department Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ping Jiang
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Bert Thys
- Department of Pharmaceutical Biotechnology & Molecular Biology, Vrije Universiteit Brussel, Brussel, Belgium
| | | | - Leire Aguado
- Instituto de Química Médica (IQM-CSIC), Madrid, Spain
| | - Bart Rombaut
- Department of Pharmaceutical Biotechnology & Molecular Biology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Aniko Paul
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | | | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Johan Neyts
- Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
24
|
Identification of urinary metabolites of imperatorin with a single run on an LC/Triple TOF system based on multiple mass defect filter data acquisition and multiple data mining techniques. Anal Bioanal Chem 2013; 405:6721-38. [DOI: 10.1007/s00216-013-7132-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/18/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
|
25
|
Lv H. Mass spectrometry-based metabolomics towards understanding of gene functions with a diversity of biological contexts. MASS SPECTROMETRY REVIEWS 2013; 32:118-128. [PMID: 22890819 DOI: 10.1002/mas.21354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 01/25/2012] [Accepted: 03/30/2012] [Indexed: 06/01/2023]
Abstract
Currently, mass spectrometry-based metabolomics studies extend beyond conventional chemical categorization and metabolic phenotype analysis to understanding gene function in various biological contexts (e.g., mammalian, plant, and microbial). These novel utilities have led to many innovative discoveries in the following areas: disease pathogenesis, therapeutic pathway or target identification, the biochemistry of animal and plant physiological and pathological activities in response to diverse stimuli, and molecular signatures of host-pathogen interactions during microbial infection. In this review, we critically evaluate the representative applications of mass spectrometry-based metabolomics to better understand gene function in diverse biological contexts, with special emphasis on working principles, study protocols, and possible future development of this technique. Collectively, this review raises awareness within the biomedical community of the scientific value and applicability of mass spectrometry-based metabolomics strategies to better understand gene function, thus advancing this application's utility in a broad range of biological fields.
Collapse
Affiliation(s)
- Haitao Lv
- Center for Women's Infectious Diseases Research, Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
26
|
Stachulski AV, Baillie TA, Kevin Park B, Scott Obach R, Dalvie DK, Williams DP, Srivastava A, Regan SL, Antoine DJ, Goldring CEP, Chia AJL, Kitteringham NR, Randle LE, Callan H, Castrejon JL, Farrell J, Naisbitt DJ, Lennard MS. The Generation, Detection, and Effects of Reactive Drug Metabolites. Med Res Rev 2012; 33:985-1080. [DOI: 10.1002/med.21273] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrew V. Stachulski
- Department of Chemistry, Robert Robinson Laboratories; University of Liverpool; Liverpool; L69 7ZD; UK
| | - Thomas A. Baillie
- School of Pharmacy; University of Washington; Box 357631; Seattle; Washington; 98195-7631
| | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - R. Scott Obach
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Worldwide Research & Development; Groton; Connecticut 06340
| | - Deepak K. Dalvie
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Worldwide Research & Development; La Jolla; California 94121
| | - Dominic P. Williams
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Abhishek Srivastava
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Sophie L. Regan
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Daniel J. Antoine
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Christopher E. P. Goldring
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Alvin J. L. Chia
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Neil R. Kitteringham
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Laura E. Randle
- School of Pharmacy and Biomolecular Sciences, Faculty of Science; Liverpool John Moores University; James Parsons Building, Byrom Street; Liverpool L3 3AF; UK
| | - Hayley Callan
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - J. Luis Castrejon
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - John Farrell
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Martin S. Lennard
- Academic Unit of Medical Education; University of Sheffield; 85 Wilkinson Street; Sheffield S10 2GJ; UK
| |
Collapse
|
27
|
Li L, Chen X, Zhou J, Zhong D. In Vitro Studies on the Oxidative Metabolism of 20(S)-Ginsenoside Rh2 in Human, Monkey, Dog, Rat, and Mouse Liver Microsomes, and Human Liver S9. Drug Metab Dispos 2012; 40:2041-53. [DOI: 10.1124/dmd.112.046995] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Held JM, Gibson BW. Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes. Mol Cell Proteomics 2011; 11:R111.013037. [PMID: 22159599 DOI: 10.1074/mcp.r111.013037] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidation is a double-edged sword for cellular processes and its role in normal physiology, cancer and aging remains only partially understood. Although oxidative stress may disrupt biological function, oxidation-reduction (redox) reactions in a cell are often tightly regulated and play essential physiological roles. Cysteines lie at the interface between these extremes since the chemical properties that make specific thiols exquisitely redox-sensitive also predispose them to oxidative damage by reactive oxygen or nitrogen species during stress. Thus, these modifications can be either under reversible redox regulatory control or, alternatively, a result of reversible or irreversible oxidative damage. In either case, it has become increasingly important to assess the redox status of protein thiols since these modifications often impact such processes as catalytic activity, conformational alterations, or metal binding. To better understand the redox changes that accompany protein cysteine residues in complex biological systems, new experimental approaches have been developed to identify and characterize specific thiol modifications and/or changes in their overall redox status. In this review, we describe the recent technologies in redox proteomics that have pushed the boundaries for detecting and quantifying redox cysteine modifications in a cellular context. While there is no one-size-fits-all analytical solution, we highlight the rationale, strengths, and limitations of each technology in order to effectively apply them to specific biological questions. Several technological limitations still remain unsolved, however these approaches and future developments play an important role toward understanding the interplay between oxidative stress and redox signaling in health and disease.
Collapse
Affiliation(s)
- Jason M Held
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | |
Collapse
|
29
|
Zhu X, Kalyanaraman N, Subramanian R. Enhanced screening of glutathione-trapped reactive metabolites by in-source collision-induced dissociation and extraction of product ion using UHPLC-high resolution mass spectrometry. Anal Chem 2011; 83:9516-23. [PMID: 22077671 DOI: 10.1021/ac202280f] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A selective and sensitive approach, called extraction of product ion (XoPI) method, was developed for the detection of l-glutathione (GSH)-trapped reactive metabolites employing an Orbitrap high resolution mass spectrometer. Fragmentation of GSH conjugates in the negative ion mode leads to a product ion, deprotonated γ-glutamyl-dehydroalanyl-glycine (m/z 272.0888). As a means of utilizing this property, negative ion high resolution MS data were collected from in vitro incubations by monitoring ions from m/z 269.5 to 274.5 under in-source collision-induced dissociation. Extraction of product ions at m/z 272.0888 ± 5 ppm from this data resulted in a chromatogram exhibiting deprotonated γ-glutamyl-dehydroalanyl-glycine as the major peaks with no or very few interferences. Therefore, peaks in this extracted product ion chromatogram potentially came from GSH-trapped reactive metabolites. The GSH conjugate parent ions were then confirmed in the corresponding full scan MS data, and their structures were identified from their MS(2) fragmentation patterns. The effectiveness of the approach was assessed with four model compounds, amodiaquine, clozapine, diclofenac, and fipexide, all well-known to form GSH-trapped reactive metabolites, following incubation in human liver microsomes supplemented with β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt (NADPH) and GSH. The results from XoPI method were compared to two other commonly employed liquid chromatography-mass spectrometry (LC-MS) methods: precursor ion scan method and mass defect filter method. Overall, the XoPI method was more selective and sensitive in detecting the GSH conjugates. Many GSH conjugates previously not reported were detected and characterized in this study.
Collapse
Affiliation(s)
- Xiaochun Zhu
- Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, California 91320, United States.
| | | | | |
Collapse
|
30
|
Chan CY, New LS, Ho HK, Chan ECY. Reversible time-dependent inhibition of cytochrome P450 enzymes by duloxetine and inertness of its thiophene ring towards bioactivation. Toxicol Lett 2011; 206:314-24. [PMID: 21839818 DOI: 10.1016/j.toxlet.2011.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/15/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
Abstract
Duloxetine is a selective serotonin-norepinephrine reuptake inhibitor (SNRI) approved to treat major depressive disorder and diabetic peripheral neuropathic pain. It is known to cause hepatotoxicity, in some cases leading to death. It has been reported that duloxetine causes time-dependent inhibition (TDI) of CYP1A2, CYP2B6, CYP2C19 and CYP3A4/5; but the nature of these TDI (whether reversible or irreversible) is not known. Irreversible TDI can cause clinically significant drug-drug interactions and also immune-mediated hepatotoxicity. Structurally, duloxetine possesses several toxicophores, i.e. the naphthyl and thiophene rings. It has been reported that the naphthyl ring undergoes epoxidation and was subsequently adducted to glutathione, but bioactivation related to the thiophene ring has not been completely elucidated. In this paper, the potential of duloxetine in causing irreversible TDI and generating reactive metabolites was investigated. Human liver microsomal assays demonstrated that duloxetine did not cause irreversible TDI of CYP1A2, CYP2B6, CYP2D6, CYP2C19 and CYP3A4/5. Subsequently, reactive metabolite trapping assays using soft nucleophiles (glutathione and glutathione ethyl ester) revealed a previously reported adduct at the naphthyl ring of duloxetine but not at the thiophene ring. Trapping assays utilizing a hard nucleophile (semicarbazide) did not demonstrate adducts with the thiophene ring, indicating an absence of thiophene ring opening. The hepatotoxicity of duloxetine is possibly not related to the irreversible TDI of CYP450 or the bioactivation of its thiophene moiety, but might be due to the epoxidation of its naphthyl ring.
Collapse
Affiliation(s)
- Chun Yip Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
31
|
Li F, Lu J, Ma X. Profiling the reactive metabolites of xenobiotics using metabolomic technologies. Chem Res Toxicol 2011; 24:744-51. [PMID: 21469730 DOI: 10.1021/tx200033v] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A predominant pathway of xenobiotic-induced toxicity is initiated by bioactivation. Characterizing reactive intermediates will provide information on the structure of reactive species, thereby defining a potential bioactivation mechanism. Because most reactive metabolites are not stable, it is difficult to detect them directly. Reactive metabolites can form adducts with trapping reagents, such as glutathione, which makes the reactive metabolites detectable. However, it is challenging to "fish" these adducts out from a complex biological matrix, especially for adducts generated via uncommon metabolic pathways. In this regard, we developed a novel approach based upon metabolomic technologies to screen trapped reactive metabolites. The bioactivation of pulegone, acetaminophen, and clozapine were reexamined by using this metabolomic approach. In all these cases, a large number of trapped reactive metabolites were readily identified. These data indicate that this metabolomic approach is an efficient tool to profile xenobiotic bioactivation.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City 66160, United States
| | | | | |
Collapse
|
32
|
Laine JE, Auriola S, Pasanen M, Juvonen RO. d-Isomer of gly-tyr-pro-cys-pro-his-pro peptide: A novel and sensitive in vitro trapping agent to detect reactive metabolites by electrospray mass spectrometry. Toxicol In Vitro 2011; 25:411-25. [DOI: 10.1016/j.tiv.2010.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/22/2010] [Accepted: 11/02/2010] [Indexed: 11/25/2022]
|
33
|
Gijsen HJM, Berthelot D, Zaja M, Brône B, Geuens I, Mercken M. Analogues of morphanthridine and the tear gas dibenz[b,f][1,4]oxazepine (CR) as extremely potent activators of the human transient receptor potential ankyrin 1 (TRPA1) channel. J Med Chem 2010; 53:7011-20. [PMID: 20806939 DOI: 10.1021/jm100477n] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The TRPA1 channel can be considered as a key biological sensor to irritant chemicals. In this paper, the discovery of 11H-dibenz[b,e]azepines (morphanthridines) and dibenz[b,f][1,4]oxazepines is described as extremely potent agonists of the TRPA1 receptor. This has led to the discovery that most of the known tear gases are potent TRPA1 activators. The synthesis and biological activity of a number of substituted morphanthridines and dibenz[b,f][1,4]oxazepines have given insight into the SAR around this class of TRPA1 agonists, with EC(50) values ranging from 1 μM to 0.1 nM. Compounds 6 and 32 can be considered as the most potent TRPA1 agonists known to date, with 6 now being used successfully as a screening tool in the discovery of TRPA1 antagonists. The use of ligands such as 6 and 32 as pharmacological tools may contribute to the basic knowledge of the TRPA1 channel and advance the development of TRPA1 antagonists as potential treatment for conditions involving TRPA1 activation, including asthma and pain.
Collapse
Affiliation(s)
- Harrie J M Gijsen
- Medicinal Chemistry Department, Johnson & Johnson Pharmaceutical Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | | | | | | | | | | |
Collapse
|
34
|
Zhang W, Saif MW, Dutschman GE, Li X, Lam W, Bussom S, Jiang Z, Ye M, Chu E, Cheng YC. Identification of chemicals and their metabolites from PHY906, a Chinese medicine formulation, in the plasma of a patient treated with irinotecan and PHY906 using liquid chromatography/tandem mass spectrometry (LC/MS/MS). J Chromatogr A 2010; 1217:5785-93. [PMID: 20696432 PMCID: PMC3668335 DOI: 10.1016/j.chroma.2010.07.045] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/02/2010] [Accepted: 07/13/2010] [Indexed: 11/20/2022]
Abstract
Traditional Chinese Medicine (TCM) is increasingly being used in combination with Western medicine. In general, TCM is comprised of multiple components in sharp contrast to Western medicine, where a single active chemical is used. Presently, there are no well-established standards for most of the chemical compounds of TCM and their respective metabolites. Moreover, there are no formal analytical methods for the identification of these chemicals, especially in trace amounts. The ability to measure the pharmacokinetic behaviors of chemicals and their metabolites from these herbal formulations are critical in understanding of the action of TCM. This paper describes the use of LC/MS/MS along with enzyme treatments and n-octanol/water partition coefficient, to investigate the chemical components of PHY906 and their metabolites in the plasma of a patient with metastatic colorectal cancer (mCRC) treated with irinotecan and PHY906. The chemicals from an aqueous extract of PHY906 and the plasma from a patient was prepared and separated on an Agilent ZORBAX-SB C(18) column, and eluted with acetonitrile/0.05% (v/v) formic acid. From the PHY906 aqueous extract, a total of 57 compounds and 27 metabolites were identified and tentatively assigned structures based on their identified mass spectrometry, enzyme digestion and n-octanol/water partition coefficient. In contrast, analysis of patient plasma identified only 33 chemicals and new metabolites. These findings demonstrated that LC/MS/MS was and effective and reliable method for studying the parent chemicals of the Chinese herbal medicine PHY906 and their metabolites in a patient with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Developmental Therapeutics Program, Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Muhammad W. Saif
- Developmental Therapeutics Program, Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Section of Medical Oncology, Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Ginger E. Dutschman
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Developmental Therapeutics Program, Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Xin Li
- Developmental Therapeutics Program, Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Scott Bussom
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Developmental Therapeutics Program, Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Zaoli Jiang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Min Ye
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Edward Chu
- Developmental Therapeutics Program, Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Section of Medical Oncology, Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Developmental Therapeutics Program, Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
35
|
Ramírez-Molina C, Burton L. Screening strategy for the rapid detection of in vitro generated glutathione conjugates using high-performance liquid chromatography and low-resolution mass spectrometry in combination with LightSight software for data processing. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3501-3512. [PMID: 19844970 DOI: 10.1002/rcm.4275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The knowledge of drug metabolism in the early phases of the drug discovery process is vital for minimising compound failure at later stages. As chemically reactive metabolites may cause adverse drug reactions, it is generally accepted that avoiding formation of reactive metabolites increases the chances of success of a molecule. In order to generate this important information, a screening strategy for the rapid detection of in vitro generated reactive metabolites trapped by glutathione has been developed. The bioassay incorporated the use of native glutathione and its close analogue the glutathione ethyl ester. The generic conditions for detecting glutathione conjugates that undergo constant neutral loss of 129 Da were optimised using a glutathione-based test mix of four compounds. The final liquid chromatography/tandem mass spectrometry constant neutral loss method used low-resolution settings and a scanning window of 200 amu. Data mining was rapidly and efficiently performed using LightSight software. Unambiguous identification of the glutathione conjugates was significantly facilitated by the analytical characteristics of the conjugate pairs formed with glutathione and glutathione ethyl ester, i.e. by chromatographic retention time and mass differences. The reliability and robustness of the screening strategy was tested using a number of compounds known to form reactive metabolites. Overall, the developed screening strategy provided comprehensive and reliable identification of glutathione conjugates and is well suited for rapid routine detection of trapped reactive metabolites. This new approach allowed the identification of a previously unreported diclofenac glutathione conjugate.
Collapse
Affiliation(s)
- César Ramírez-Molina
- Immuno-Inflamation CEDD DMPK, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK.
| | | |
Collapse
|
36
|
Kopriva I, Jerić I. Multi-component analysis: blind extraction of pure components mass spectra using sparse component analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:1378-1388. [PMID: 19670286 DOI: 10.1002/jms.1627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The paper presents sparse component analysis (SCA)-based blind decomposition of the mixtures of mass spectra into pure components, wherein the number of mixtures is less than number of pure components. Standard solutions of the related blind source separation (BSS) problem that are published in the open literature require the number of mixtures to be greater than or equal to the unknown number of pure components. Specifically, we have demonstrated experimentally the capability of the SCA to blindly extract five pure components mass spectra from two mixtures only. Two approaches to SCA are tested: the first one based on l(1) norm minimization implemented through linear programming and the second one implemented through multilayer hierarchical alternating least square nonnegative matrix factorization with sparseness constraints imposed on pure components spectra. In contrast to many existing blind decomposition methods no a priori information about the number of pure components is required. It is estimated from the mixtures using robust data clustering algorithm together with pure components concentration matrix. Proposed methodology can be implemented as a part of software packages used for the analysis of mass spectra and identification of chemical compounds.
Collapse
Affiliation(s)
- Ivica Kopriva
- Division of Laser and Atomic Research and Development, Ruder Bosković Institute, Bijenicka cesta 54, HR-10000, Zagreb, Croatia.
| | | |
Collapse
|
37
|
Zhang H, Zhang D, Ray K, Zhu M. Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:999-1016. [PMID: 19598168 DOI: 10.1002/jms.1610] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Identification of drug metabolites by liquid chromatography/mass spectrometry (LC/MS) involves metabolite detection in biological matrixes and structural characterization based on product ion spectra. Traditionally, metabolite detection is accomplished primarily on the basis of predicted molecular masses or fragmentation patterns of metabolites using triple-quadrupole and ion trap mass spectrometers. Recently, a novel mass defect filter (MDF) technique has been developed, which enables high-resolution mass spectrometers to be utilized for detecting both predicted and unexpected drug metabolites based on narrow, well-defined mass defect ranges for these metabolites. This is a new approach that is completely different from, but complementary to, traditional molecular mass- or MS/MS fragmentation-based LC/MS approaches. This article reviews the mass defect patterns of various classes of drug metabolites and the basic principles of the MDF approach. Examples are given on the applications of the MDF technique to the detection of stable and chemically reactive metabolites in vitro and in vivo. Advantages, limitations, and future applications are also discussed on MDF and its combinations with other data mining techniques for the detection and identification of drug metabolites.
Collapse
Affiliation(s)
- Haiying Zhang
- Department of Biotransformation, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543, USA.
| | | | | | | |
Collapse
|
38
|
Jian W, Yao M, Zhang D, Zhu M. Rapid Detection and Characterization of in Vitro and Urinary N-Acetyl-l-cysteine Conjugates Using Quadrupole-Linear Ion Trap Mass Spectrometry and Polarity Switching. Chem Res Toxicol 2009; 22:1246-55. [DOI: 10.1021/tx900035j] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenying Jian
- Bioanalysis and Discovery Analytical Research and Biotransforamtion, Pharmaceutical Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543
| | - Ming Yao
- Bioanalysis and Discovery Analytical Research and Biotransforamtion, Pharmaceutical Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543
| | - Duxi Zhang
- Bioanalysis and Discovery Analytical Research and Biotransforamtion, Pharmaceutical Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543
| | - Mingshe Zhu
- Bioanalysis and Discovery Analytical Research and Biotransforamtion, Pharmaceutical Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543
| |
Collapse
|
39
|
Yao M, Ma L, Duchoslav E, Zhu M. Rapid screening and characterization of drug metabolites using multiple ion monitoring dependent product ion scan and postacquisition data mining on a hybrid triple quadrupole-linear ion trap mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1683-1693. [PMID: 19418486 DOI: 10.1002/rcm.4045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Multiple ion monitoring (MIM)-dependent acquisition with a triple quadrupole-linear ion trap mass spectrometer (Q-trap) was previously developed for drug metabolite profiling. In the analysis, multiple predicted metabolite ions are monitored in both Q1 and Q3 regardless of their fragmentations. The collision energy in Q2 is set to a low value to minimize fragmentation. Once an expected metabolite is detected by MIM, enhanced product ion (EPI) spectral acquisition of the metabolite is triggered. To analyze in vitro metabolites, MIM-EPI retains the sensitivity and selectivity similar to that of multiple reaction monitoring (MRM)-EPI in the analysis of in vitro metabolites. Here we present an improved approach utilizing MIM-EPI for data acquisition and multiple data mining techniques for detection of metabolite ions and recovery of their MS/MS spectra. The postacquisition data processing tools included extracted ion chromatographic analysis, product ion filtering and neutral loss filtering. The effectiveness of this approach was evaluated by analyzing oxidative metabolites of indinavir and glutathione (GSH) conjugates of clozapine and 4-ethylphenol in liver microsome incubations. Results showed that the MIM-EPI-based data mining approach allowed for comprehensive detection of metabolites based on predicted protonated molecules, product ions or neutral losses without predetermination of the parent drug MS/MS spectra. Additionally, it enabled metabolite detection and MS/MS acquisition in a single injection. This approach is potentially useful in high-throughout screening of metabolic soft spots and reactive metabolites at the drug discovery stage.
Collapse
Affiliation(s)
- Ming Yao
- Department of Biotransformation, Bristol-Myers Squibb Pharmaceutical Research and Development, PO Box 4000, Princeton, NJ 08543, USA.
| | | | | | | |
Collapse
|
40
|
Recent advances in applications of liquid chromatography–tandem mass spectrometry to the analysis of reactive drug metabolites. Chem Biol Interact 2009; 179:25-37. [DOI: 10.1016/j.cbi.2008.09.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 01/09/2023]
|
41
|
Li X, He Y, Ruiz CH, Koenig M, Cameron MD, Vojkovsky T. Characterization of dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways. Drug Metab Dispos 2009; 37:1242-50. [PMID: 19282395 DOI: 10.1124/dmd.108.025932] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dasatinib was approved in 2006 for the treatment of imatinib-resistant chronic myelogenous leukemia and functions primarily through the inhibition of BCR-ABL and Src kinase. Dasatinib is extensively metabolized in humans by CYP3A4. In this study, we report that the bioactivation of dasatinib by CYP3A4 proceeds through a reactive intermediate that leads to CYP3A4 inactivation with K(I) = 6.3 microM and k(inact) = 0.034 min(-1). The major mechanism of inactivation proceeds through hydroxylation at the para-position of the 2-chloro-6-methylphenyl ring followed by further oxidation, forming a reactive quinone-imine, similar to the reactive intermediates formed by acetaminophen and diclofenac. Formation of a reactive imine-methide was also detected but appears to be a minor pathway. When glutathione was added to human liver microsomal incubations, dasatinib-glutathione adducts were detected. Numerous dasatinib analogs were synthesized in an effort to understand what modifications would block the formation of reactive intermediates during dasatinib metabolism. It is interesting to note that blocking the site of hydroxylation with a methyl group was not effective because a reactive imine-methide was formed, nor was blocking the site with fluorine because the fluorine was removed through an oxidative defluorination mechanism and the reactive quinone-imine was still formed. Numerous analogs are presented that did effectively block the formation of glutathione adducts and prevent the inactivation of CYP3A4.
Collapse
Affiliation(s)
- Xiaohai Li
- Translational Research Institute, Scripps Florida, the Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | | | | | |
Collapse
|
42
|
Chapter 3 Applications of Quadrupole-Linear Ion Trap Mass Spectrometry to the Analysis of Reactive Metabolites in Drug Discovery and Development. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1872-0854(09)00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|