1
|
Trimpin S, Marshall DD, Karki S, Madarshahian S, Hoang K, Meher AK, Pophristic M, Richards AL, Lietz CB, Fischer JL, Elia EA, Wang B, Pagnotti VS, Lutomski CA, El-Baba TJ, Lu IC, Wager-Miller J, Mackie K, McEwen CN, Inutan ED. An overview of biological applications and fundamentals of new inlet and vacuum ionization technologies. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35 Suppl 1:e8829. [PMID: 32402102 DOI: 10.1002/rcm.8829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE The developments of new ionization technologies based on processes previously unknown to mass spectrometry (MS) have gained significant momentum. Herein we address the importance of understanding these unique ionization processes, demonstrate the new capabilities currently unmet by other methods, and outline their considerable analytical potential. METHODS The inlet and vacuum ionization methods of solvent-assisted ionization (SAI), matrix-assisted ionization (MAI), and laserspray ionization can be used with commercial and dedicated ion sources producing ions from atmospheric or vacuum conditions for analyses of a variety of materials including drugs, lipids, and proteins introduced from well plates, pipet tips and plate surfaces with and without a laser using solid or solvent matrices. Mass spectrometers from various vendors are employed. RESULTS Results are presented highlighting strengths relative to ionization methods of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization. We demonstrate the utility of multi-ionization platforms encompassing MAI, SAI, and ESI and enabling detection of what otherwise is missed, especially when directly analyzing mixtures. Unmatched robustness is achieved with dedicated vacuum MAI sources with mechanical introduction of the sample to the sub-atmospheric pressure (vacuum MAI). Simplicity and use of a wide array of matrices are attained using a conduit (inlet ionization), preferably heated, with sample introduction from atmospheric pressure. Tissue, whole blood, urine (including mouse, chicken, and human origin), bacteria strains and chemical on-probe reactions are analyzed directly and, especially in the case of vacuum ionization, without concern of carryover or instrument contamination. CONCLUSIONS Examples are provided highlighting the exceptional analytical capabilities associated with the novel ionization processes in MS that reduce operational complexity while increasing speed and robustness, achieving mass spectra with low background for improved sensitivity, suggesting the potential of this simple ionization technology to drive MS into areas currently underserved, such as clinical and medical applications.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MS™, LLC, Newark, DE, 19711, USA
| | - Darrell D Marshall
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MS™, LLC, Newark, DE, 19711, USA
| | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MS™, LLC, Newark, DE, 19711, USA
| | | | - Khoa Hoang
- MS™, LLC, Newark, DE, 19711, USA
- University of the Sciences, Philadelphia, PA, 19104, USA
| | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MS™, LLC, Newark, DE, 19711, USA
| | - Milan Pophristic
- MS™, LLC, Newark, DE, 19711, USA
- University of the Sciences, Philadelphia, PA, 19104, USA
| | - Alicia L Richards
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | | | - Joshua L Fischer
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Efstathios A Elia
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Beixi Wang
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | | | - Corinne A Lutomski
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Tarick J El-Baba
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - I-Chung Lu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - James Wager-Miller
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Charles N McEwen
- MS™, LLC, Newark, DE, 19711, USA
- University of the Sciences, Philadelphia, PA, 19104, USA
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MS™, LLC, Newark, DE, 19711, USA
- Mindanao State University Iligan Institute of Technology, Iligan City, 9200, Philippines
| |
Collapse
|
2
|
Trimpin S. Novel ionization processes for use in mass spectrometry: 'Squeezing' nonvolatile analyte ions from crystals and droplets. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 3:96-120. [PMID: 30138957 DOI: 10.1002/rcm.8269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/29/2018] [Accepted: 08/15/2018] [Indexed: 05/25/2023]
Abstract
Together with my group and collaborators, I have been fortunate to have had a key role in the discovery of new ionization processes that we developed into new flexible, sensitive, rapid, reliable, and robust ionization technologies and methods for use in mass spectrometry (MS). Our current research is focused on how best to understand, improve, and use these novel ionization processes which convert volatile and nonvolatile compounds from solids or liquids into gas-phase ions for analysis by MS using e.g. mass-selected fragmentation and ion mobility spectrometry to provide reproducible, accurate, and improved mass and drift time resolution. In my view, the apex was the discovery of vacuum matrix-assisted ionization (vMAI) in 2012 on an intermediate pressure matrix-assisted laser desorption/ionization (MALDI) source without the use of a laser, high voltages, or any other added energy. Only exposure of the matrix:analyte to the sub-atmospheric pressure of the mass spectrometer was necessary to initiate ionization. These findings were initially rejected by three different scientific journals, with comments related to 'how can this work?', 'where do the charges come from?', and 'it is not analytically useful'. Meanwhile, we and others have demonstrated analytical utility without a complete understanding of the mechanism. In reality, MALDI and electrospray ionization are widely used in science and their mechanisms are still controversially discussed despite use and optimization of now 30 years. This Perspective covers the applications and mechanistic aspects of the novel ionization processes for use in MS that guided us in instrument developments, and provides our perspective on how they relate to traditional ionization processes.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- MSTM, LLC, Newark, DE, 19711, USA
| |
Collapse
|
3
|
Lou X, Li B, de Waal BFM, Schill J, Baker MB, Bovee RAA, van Dongen JLJ, Milroy LG, Meijer EW. Fragmentation of organic ions bearing fixed multiple charges observed in MALDI MS. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:39-47. [PMID: 28963745 DOI: 10.1002/jms.4035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was used to analyze a series of synthetic organic ions bearing fixed multiple charges. Despite the multiple intrinsic charges, only singly charged ions were recorded in each case. In addition to the pseudo-molecular ions formed by counterion adduction, deprotonation and electron capture, a number of fragment ions were also observed. Charge splitting by fragmentation was found to be a viable route for charge reduction leading to the formation of the observed singly charged fragment ions. Unlike multivalent metal ions, organic ions can rearrange and/or fragment during charge reduction. This fragmentation process will evidently complicate the interpretation of the MALDI MS spectrum. Because MALDI MS is usually considered as a soft ionization technique, the fragment ion peaks can easily be erroneously interpreted as impurities. Therefore, the awareness and understanding of the underlying MALDI-induced fragmentation pathways is essential for a proper interpretation of the corresponding mass spectra. Due to the fragment ions generated during charge reduction, special care should be taken in the MALDI MS analysis of multiply charged ions. In this work, the possible mechanisms by which the organic ions bearing fixed multiple charges fragment are investigated. With an improved understanding of the fragmentation mechanisms, MALDI TOF MS should still be a useful technique for the characterization of organic ions with fixed multiple charges.
Collapse
Affiliation(s)
- Xianwen Lou
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Bao Li
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Bas F M de Waal
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Jurgen Schill
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Matthew B Baker
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ralf A A Bovee
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Joost L J van Dongen
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - E W Meijer
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Castellanos-García LJ, Agudelo BC, Rosales HF, Cely M, Ochoa-Puentes C, Blanco-Tirado C, Sierra CA, Combariza MY. Oligo p-Phenylenevinylene Derivatives as Electron Transfer Matrices for UV-MALDI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2548-2560. [PMID: 28879637 DOI: 10.1007/s13361-017-1783-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023]
Abstract
Phenylenevinylene oligomers (PVs) have outstanding photophysical characteristics for applications in the growing field of organic electronics. Yet, PVs are also versatile molecules, the optical and physicochemical properties of which can be tuned by manipulation of their structure. We report the synthesis, photophysical, and MS characterization of eight PV derivatives with potential value as electron transfer (ET) matrices for UV-MALDI. UV-vis analysis show the presence of strong characteristic absorption bands in the UV region and molar absorptivities at 355 nm similar or higher than those of traditional proton (CHCA) and ET (DCTB) MALDI matrices. Most of the PVs exhibit non-radiative quantum yields (φ) above 0.5, indicating favorable thermal decay. Ionization potential values (IP) for PVs, calculated by the Electron Propagator Theory (EPT), range from 6.88 to 7.96 eV, making these oligomers good candidates as matrices for ET ionization. LDI analysis of PVs shows only the presence of radical cations (M+.) in positive ion mode and absence of clusters, adducts, or protonated species; in addition, M+. threshold energies for PVs are lower than for DCTB. We also tested the performance of four selected PVs as ET MALDI matrices for analytes ranging from porphyrins and phthalocyanines to polyaromatic compounds. Two of the four PVs show S/N enhancement of 1961% to 304% in comparison to LDI, and laser energy thresholds from 0.17 μJ to 0.47 μJ compared to 0.58 μJ for DCTB. The use of PV matrices also results in lower LODs (low fmol range) whereas LDI LODs range from pmol to nmol. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | | | - Hernando F Rosales
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Melissa Cely
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Cristian Blanco-Tirado
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Cesar A Sierra
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Marianny Y Combariza
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia.
| |
Collapse
|
5
|
Trimpin S, Wang B. Inlet and Vacuum Ionization from Ambient Conditions. AMBIENT IONIZATION MASS SPECTROMETRY 2014. [DOI: 10.1039/9781782628026-00423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The discovery that laser ablation of a common MALDI matrix at atmospheric pressure without use of a voltage produced ions with nearly identical charge states to ESI led to a series of new ionization methods that we have given the general term inlet and vacuum ionization. The initial thought that the laser was necessary for matrix-assisted ionization gave way to ionization requiring a heated inlet with a pressure-drop region and then to a matrix that could be a solvent or no matrix. This in turn led to laser ablation in vacuum producing multiply charged ions without an inlet, and finally to the present where we have found matrices that lift molecules into the gas phase as ions without any external energy source. Our mechanistic view of this new ionization process developed into ionization methods for use in mass spectrometry will be discussed. These methods are simple to use, safe, robust, and sensitive. Several approaches for high-throughput analyses of compounds irrespective of their molecular weight will be presented using low- and high-performance mass spectrometers.
Collapse
Affiliation(s)
- Sarah Trimpin
- Wayne State University, Department of Chemistry Detroit, MI USA
| | - Beixi Wang
- Wayne State University, Department of Chemistry Detroit, MI USA
| |
Collapse
|
6
|
Liu P, Forni A, Chen H. Development of Solvent-Free Ambient Mass Spectrometry for Green Chemistry Applications. Anal Chem 2014; 86:4024-32. [DOI: 10.1021/ac500527q] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pengyuan Liu
- Center for Intelligent Chemical
Instrumentation, †Department
of Chemistry and Biochemistry, ‡Edison Biotechnology
Institute, Ohio University, Athens, Ohio 45701, United States
| | - Amanda Forni
- Center for Intelligent Chemical
Instrumentation, †Department
of Chemistry and Biochemistry, ‡Edison Biotechnology
Institute, Ohio University, Athens, Ohio 45701, United States
| | - Hao Chen
- Center for Intelligent Chemical
Instrumentation, †Department
of Chemistry and Biochemistry, ‡Edison Biotechnology
Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
7
|
Trimpin S, Wang B, Lietz CB, Marshall DD, Richards AL, Inutan ED. New ionization processes and applications for use in mass spectrometry. Crit Rev Biochem Mol Biol 2013; 48:409-29. [DOI: 10.3109/10409238.2013.806887] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Trimpin S, Inutan ED. Matrix assisted ionization in vacuum, a sensitive and widely applicable ionization method for mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:722-32. [PMID: 23526166 DOI: 10.1007/s13361-012-0571-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/07/2012] [Accepted: 12/14/2012] [Indexed: 05/25/2023]
Abstract
An astonishingly simple new method to produce gas-phase ions of small molecules as well as proteins from the solid state under cold vacuum conditions is described. This matrix assisted ionization vacuum (MAIV) mass spectrometry (MS) method produces multiply charged ions similar to those that typify electrospray ionization (ESI) and uses sample preparation methods that are nearly identical to matrix-assisted laser desorption/ionization (MALDI). Unlike these established methods, MAIV does not require a laser or voltage for ionization, and unlike the recently introduced matrix assisted ionization inlet method, does not require added heat. MAIV-MS requires only introduction of a crystalline mixture of the analyte incorporated with a suitable small molecule matrix compound such as 3-nitrobenzonitrile directly to the vacuum of the mass spectrometer. Vacuum intermediate pressure MALDI sources and modified ESI sources successfully produce ions for analysis by MS with this method. As in ESI-MS, ion formation is continuous and, without a laser, little chemical background is observed. MAIV, operating from a surface offers the possibility of significantly improved sensitivity relative to atmospheric pressure ionization because ions are produced in the vacuum region of the mass spectrometer eliminating losses associated with ion transfer from atmospheric pressure to vacuum. Mechanistic aspects and potential applications for this new ionization method are discussed.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
9
|
Laskin J, Laskin A, Nizkorodov SA. New mass spectrometry techniques for studying physical chemistry of atmospheric heterogeneous processes. INT REV PHYS CHEM 2013. [DOI: 10.1080/0144235x.2012.752904] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Li J, Inutan ED, Wang B, Lietz CB, Green DR, Manly CD, Richards AL, Marshall DD, Lingenfelter S, Ren Y, Trimpin S. Matrix assisted ionization: new aromatic and nonaromatic matrix compounds producing multiply charged lipid, peptide, and protein ions in the positive and negative mode observed directly from surfaces. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1625-43. [PMID: 22895857 DOI: 10.1007/s13361-012-0413-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 05/25/2023]
Abstract
Matrix assisted inlet ionization (MAII) is a method in which a matrix:analyte mixture produces mass spectra nearly identical to electrospray ionization without the application of a voltage or the use of a laser as is required in laserspray ionization (LSI), a subset of MAII. In MAII, the sample is introduced by, for example, tapping particles of dried matrix:analyte into the inlet of the mass spectrometer and, therefore, permits the study of conditions pertinent to the formation of multiply charged ions without the need of absorption at a laser wavelength. Crucial for the production of highly charged ions are desolvation conditions to remove matrix molecules from charged matrix:analyte clusters. Important factors affecting desolvation include heat, vacuum, collisions with gases and surfaces, and even radio frequency fields. Other parameters affecting multiply charged ion production is sample preparation, including pH and solvent composition. Here, findings from over 100 compounds found to produce multiply charged analyte ions using MAII with the inlet tube set at 450 °C are presented. Of the compounds tested, many have -OH or -NH(2) functionality, but several have neither (e.g., anthracene), nor aromaticity or conjugation. Binary matrices are shown to be applicable for LSI and solvent-free sample preparation can be applied to solubility restricted compounds, and matrix compounds too volatile to allow drying from common solvents. Our findings suggest that the physical properties of the matrix such as its morphology after evaporation of the solvent, its propensity to evaporate/sublime, and its acidity are more important than its structure and functional groups.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Trimpin S, Wang B, Inutan ED, Li J, Lietz CB, Harron A, Pagnotti VS, Sardelis D, McEwen CN. A mechanism for ionization of nonvolatile compounds in mass spectrometry: considerations from MALDI and inlet ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1644-60. [PMID: 22791582 DOI: 10.1007/s13361-012-0414-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 05/12/2023]
Abstract
Mechanistic arguments relative to matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) address observations that predominately singly charged ions are detected. However, recently a matrix assisted laser ablation method, laserspray ionization (LSI), was introduced that can use the same sample preparation and laser as MALDI, but produce highly charged ions from proteins. In MALDI, ions are generated from neutral molecules by the photon energy provided to a matrix, while in LSI ions are produced inside a heated inlet tube linking atmospheric pressure and the first vacuum region of the mass spectrometer. Some LSI matrices also produce highly charged ions with MALDI ion sources operated at intermediate pressure or high vacuum. The operational similarity of LSI to MALDI, and the large difference in charge states observed by these methods, provides information of fundamental importance to proposed ionization mechanisms for LSI and MALDI. Here, we present data suggesting that the prompt and delayed ionization reported for vacuum MALDI are both fast processes relative to producing highly charged ions by LSI. The energy supplied to produce these charged clusters/droplets as well as their size and time available for desolvation are determining factors in the charge states of the ions observed. Further, charged droplets/clusters may be a common link for ionization of nonvolatile compounds by a variety of MS ionization methods, including MALDI and LSI.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
TARGETED MASS spectrometry Imaging: Specific Targeting Mass Spectrometry imaging technologies from history to perspective. ACTA ACUST UNITED AC 2012; 47:133-74. [DOI: 10.1016/j.proghi.2012.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2012] [Indexed: 12/28/2022]
|
13
|
Jungmann JH, Heeren RMA. Emerging technologies in mass spectrometry imaging. J Proteomics 2012; 75:5077-5092. [PMID: 22469858 DOI: 10.1016/j.jprot.2012.03.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
Mass spectrometry imaging (MSI) as an analytical tool for bio-molecular and bio-medical research targets accurate compound localization and identification. In terms of dedicated instrumentation, this translates into the demand for more detail in the image dimension (spatial resolution) and in the spectral dimension (mass resolution and accuracy), preferably combined in one instrument. At the same time, large area biological tissue samples require fast acquisition schemes, instrument automation and a robust data infrastructure. This review discusses the analytical capabilities of an "ideal" MSI instrument for bio-molecular and bio-medical molecular imaging. The analytical attributes of such an ideal system are contrasted with technological and methodological challenges in MSI. In particular, innovative instrumentation for high spatial resolution imaging in combination with high sample throughput is discussed. Detector technology that targets various shortcomings of conventional imaging detector systems is highlighted. The benefits of accurate mass analysis, high mass resolving power, additional separation strategies and multimodal three-dimensional data reconstruction algorithms are discussed to provide the reader with an insight in the current technological advances and the potential of MSI for bio-medical research.
Collapse
Affiliation(s)
- Julia H Jungmann
- FOM-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ron M A Heeren
- FOM-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Huang MZ, Cheng SC, Cho YT, Shiea J. Ambient ionization mass spectrometry: A tutorial. Anal Chim Acta 2011; 702:1-15. [PMID: 21819855 DOI: 10.1016/j.aca.2011.06.017] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
15
|
Wyatt MF. MALDI-TOFMS analysis of coordination and organometallic complexes: a nic(h)e area to work in. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:712-719. [PMID: 21744419 DOI: 10.1002/jms.1957] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A mini-review of the characterisation of metal-containing compounds by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is presented. Organometallic and coordination compounds have many varied applications, most notably in industrial catalytic processes and also in the electronics and healthcare sectors. In general, the compounds discussed, be they small or large molecules, have a high percentage metal content, rather than simply containing 'a metal atom'. A brief history of the field is given, but the main scope over the last 5 years is covered in some detail. How MALDI-TOFMS compliments electrospray for metal-containing compounds is highlighted. Perspectives on recent advances, such as solvent-free and air/moisture-sensitive sample preparation, and potential future challenges and developments, such as nanomaterials and metallodrug/metallometabolite imaging, are given.
Collapse
Affiliation(s)
- Mark F Wyatt
- EPSRC National Mass Spectrometry Service Centre (NMSSC), Institute of Mass Spectrometry (IMS), College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
16
|
Wang B, Lietz CB, Inutan ED, Leach SM, Trimpin S. Producing Highly Charged Ions without Solvent Using Laserspray Ionization: A Total Solvent-Free Analysis Approach at Atmospheric Pressure. Anal Chem 2011; 83:4076-84. [DOI: 10.1021/ac2000576] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Beixi Wang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christopher B. Lietz
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ellen D. Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Samantha M. Leach
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
17
|
Richards AL, Lietz CB, Wager-Miller JB, Mackie K, Trimpin S. Imaging mass spectrometry in transmission geometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:815-20. [PMID: 21337644 PMCID: PMC3677958 DOI: 10.1002/rcm.4927] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Affiliation(s)
| | | | - James B. Wager-Miller
- Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
- Correspondence to: S. Trimpin, Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
18
|
Vickerman JC. Molecular imaging and depth profiling by mass spectrometry—SIMS, MALDI or DESI? Analyst 2011; 136:2199-217. [DOI: 10.1039/c1an00008j] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Inutan ED, Wang B, Trimpin S. Commercial Intermediate Pressure MALDI Ion Mobility Spectrometry Mass Spectrometer Capable of Producing Highly Charged Laserspray Ionization Ions. Anal Chem 2010; 83:678-84. [DOI: 10.1021/ac102779e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ellen D. Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States
| | - Beixi Wang
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
20
|
Inutan ED, Richards AL, Wager-Miller J, Mackie K, McEwen CN, Trimpin S. Laserspray ionization, a new method for protein analysis directly from tissue at atmospheric pressure with ultrahigh mass resolution and electron transfer dissociation. Mol Cell Proteomics 2010; 10:M110.000760. [PMID: 20855542 PMCID: PMC3033668 DOI: 10.1074/mcp.m110.000760] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Laserspray ionization (LSI) mass spectrometry (MS) allows, for the first time, the analysis of proteins directly from tissue using high performance atmospheric pressure ionization mass spectrometers. Several abundant and numerous lower abundant protein ions with molecular masses up to ∼20,000 Da were detected as highly charged ions from delipified mouse brain tissue mounted on a common microscope slide and coated with 2,5-dihydroxyacetophenone as matrix. The ability of LSI to produce multiply charged ions by laser ablation at atmospheric pressure allowed protein analysis at 100,000 mass resolution on an Orbitrap Exactive Fourier transform mass spectrometer. A single acquisition was sufficient to identify the myelin basic protein N-terminal fragment directly from tissue using electron transfer dissociation on a linear trap quadrupole (LTQ) Velos. The high mass resolution and mass accuracy, also obtained with a single acquisition, are useful in determining protein molecular weights and from the electron transfer dissociation data in confirming database-generated sequences. Furthermore, microscopy images of the ablated areas show matrix ablation of ∼15 μm-diameter spots in this study. The results suggest that LSI-MS at atmospheric pressure potentially combines speed of analysis and imaging capability common to matrix-assisted laser desorption/ionization and soft ionization, multiple charging, improved fragmentation, and cross-section analysis common to electrospray ionization.
Collapse
Affiliation(s)
- Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|
21
|
Inutan ED, Trimpin S. Laserspray Ionization-Ion Mobility Spectrometry−Mass Spectrometry: Baseline Separation of Isomeric Amyloids without the Use of Solvents Desorbed and Ionized Directly from a Surface. J Proteome Res 2010; 9:6077-81. [DOI: 10.1021/pr1005923] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ellen D. Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
22
|
Inutan E, Trimpin S. Laserspray ionization (LSI) ion mobility spectrometry (IMS) mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1260-4. [PMID: 20435486 DOI: 10.1016/j.jasms.2010.03.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/24/2010] [Accepted: 03/16/2010] [Indexed: 05/25/2023]
Abstract
A simple device is described for desolvation of highly charged matrix/analyte clusters produced by laser ablation leading to multiply charged ions that are analyzed by ion mobility spectrometry-mass spectrometry. Thus, for example, highly charged ions of ubiquitin and lysozyme are cleanly separated in the gas phase according to size and mass (shape and molecular weight) as well as charge using Tri-Wave ion mobility technology coupled to mass spectrometry. This contribution confirms the mechanistic argument that desolvation is necessary to produce multiply charged matrix-assisted laser desorption/ionization (MALDI) ions and points to how these ions can be routinely formed on any atmospheric pressure mass spectrometer.
Collapse
Affiliation(s)
- Ellen Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
23
|
Trimpin S. A perspective on MALDI alternatives-total solvent-free analysis and electron transfer dissociation of highly charged ions by laserspray ionization. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:471-485. [PMID: 20446310 DOI: 10.1002/jms.1737] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Progress in research is hindered by analytical limitations, especially in biological areas in which sensitivity and dynamic range are critical to success. Inherent difficulties of characterization associated with complexity arising from heterogeneity of various materials including topologies (isomeric composition) and insolubility also limit progress. For this reason, we are developing methods for total solvent-free analysis by mass spectrometry consisting of solvent-free ionization followed by solvent-free gas-phase separation. We also recently constructed a novel matrix-assisted laser desorption ionization (MALDI) source that provides a simple, practical and sensitive way of producing highly charged ions by laserspray ionization (LSI) or singly charged ions commonly observed with MALDI by choice of matrix or matrix preparation. This is the first ionization source with such freedom-an extremely powerful analytical 'switch'. Multiply charged LSI ions allow molecules exceeding the mass-to-charge range of the instrument to be observed and permit for the first time electron transfer dissociation fragment ion analysis.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
| |
Collapse
|