1
|
Santos M, Melo T, Maurício T, Ferreira H, Domingues P, Domingues R. The non-enzymatic oxidation of phosphatidylethanolamine and phosphatidylserine and their intriguing roles in inflammation dynamics and diseases. FEBS Lett 2024; 598:2174-2189. [PMID: 39097985 DOI: 10.1002/1873-3468.14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
Phosphatidylethanolamine (PE) and phosphatidylserine (PS), along with phosphatidylcholine (PC), are key phospholipids (PL) in cell membranes and lipoproteins, prone to oxidative modifications. Their oxidized forms, OxPE and OxPS, play significant roles in inflammation and immune response. This review explores their structural oxidative changes under non-enzymatic conditions and their roles in physiological and pathological contexts, influencing inflammation, and immunity. Specific oxidations of PE and PS significantly alter their physicochemical properties, leading to enhanced biological functions, reduced activity, or inactivation. OxPE may show pro-inflammatory actions, similar to well-documented OxPC, while the OxPS pro-inflammatory effects are less noted. However, OxPS and OxPE have also shown an antagonistic effect against lipopolysaccharides (LPS), suggesting a protective role against exacerbated immune responses, similar to OxPC. Further research is needed to deepen our understanding of these less-studied OxPL classes. The role of OxPE and OxPS in disease pathogenesis remains largely unexplored, with limited studies linking them to Alzheimer's disease, diabetes, rheumatoid arthritis, traumatic brain injury, and skin inflammation. These findings highlight the potential of OxPE and OxPS as biomarkers for disease diagnosis, monitoring, and therapeutic targeting.
Collapse
Affiliation(s)
- Matilde Santos
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tânia Melo
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tatiana Maurício
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Helena Ferreira
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Pedro Domingues
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Rosário Domingues
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| |
Collapse
|
2
|
Zhai Z, Schoenmakers PJ, Gargano AFG. Identification of heavily glycated proteoforms by hydrophilic-interaction liquid chromatography and native size-exclusion chromatography - High-resolution mass spectrometry. Anal Chim Acta 2024; 1304:342543. [PMID: 38637052 DOI: 10.1016/j.aca.2024.342543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The non-enzymatic glycation of proteins and their advanced glycation end products (AGEs) are associated with protein transformations such as in the development of diseases and biopharmaceutical storage. The characterization of heavily glycated proteins at the intact level is of high interest as it allows to describe co-occurring protein modifications. However, the high heterogeneity of glycated protein makes this process challenging, and novel methods are required to accomplish this. RESULTS In this study, we investigated two novel LC-HRMS methods to study glycated reference proteins at the intact protein level: low-flow hydrophilic-interaction liquid chromatography (HILIC) and native size-exclusion chromatography (SEC). Model proteins were exposed to conditions that favored extensive glycation and the formation of AGEs. After glycation, complicated MS spectra were observed, along with a sharply reduced signal response, possibly due to protein denaturation and the formation of aggregates. When using HILIC-MS, the glycated forms of the proteins could be resolved based on the number of reducing monosaccharides. Moreover, some positional glycated isomers were separated. The SEC-MS method under non-denaturing conditions provided insights into glycated aggregates but offered only a limited separation of glycated species based on molar mass. Overall, more than 25 different types of species were observed in both methods, differing in molar mass by 14-162 Da. 19 of these species have not been previously reported. SIGNIFICANCE The proposed strategies show great potential to characterize highly glycated intact proteins from native and denaturing perspectives and provide new opportunities for fast clinical diagnoses and investigating glycation-related diseases.
Collapse
Affiliation(s)
- Ziran Zhai
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| | - Peter J Schoenmakers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Andrea F G Gargano
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
4
|
Damiani T, Bonciarelli S, Thallinger GG, Koehler N, Krettler CA, Salihoğlu AK, Korf A, Pauling JK, Pluskal T, Ni Z, Goracci L. Software and Computational Tools for LC-MS-Based Epilipidomics: Challenges and Solutions. Anal Chem 2023; 95:287-303. [PMID: 36625108 PMCID: PMC9835057 DOI: 10.1021/acs.analchem.2c04406] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tito Damiani
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Praha 6, Czech Republic
| | - Stefano Bonciarelli
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Gerhard G. Thallinger
- Institute
of Biomedical Informatics, Graz University
of Technology, 8010 Graz, Austria,
| | - Nikolai Koehler
- LipiTUM,
Chair of Experimental Bioinformatics, Technical
University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany
| | | | - Arif K. Salihoğlu
- Department
of Physiology, Faculty of Medicine and Institute of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ansgar Korf
- Bruker Daltonics
GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Josch K. Pauling
- LipiTUM,
Chair of Experimental Bioinformatics, Technical
University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany
| | - Tomáš Pluskal
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Praha 6, Czech Republic
| | - Zhixu Ni
- Center of
Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy,
| | - Laura Goracci
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy,
| |
Collapse
|
5
|
Xu T, Xu X, Zhang L, Zhang K, Wei Q, Zhu L, Yu Y, Xiao L, Lin L, Qian W, Wang J, Ke M, An X, Liu S. Lipidomics Reveals Serum Specific Lipid Alterations in Diabetic Nephropathy. Front Endocrinol (Lausanne) 2021; 12:781417. [PMID: 34956093 PMCID: PMC8695735 DOI: 10.3389/fendo.2021.781417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
In diabetes mellitus (DM), disorders of glucose and lipid metabolism are significant causes of the onset and progression of diabetic nephropathy (DN). However, the exact roles of specific lipid molecules in the pathogenesis of DN remain unclear. This study recruited 577 participants, including healthy controls (HCs), type-2 DM (2-DM) patients, and DN patients, from the clinic. Serum samples were collected under fasting conditions. Liquid chromatography-mass spectrometry-based lipidomics methods were used to explore the lipid changes in the serum and identify potential lipid biomarkers for the diagnosis of DN. Lipidomics revealed that the combination of lysophosphatidylethanolamine (LPE) (16:0) and triacylglycerol (TAG) 54:2-FA18:1 was a biomarker panel for predicting DN. The receiver operating characteristic analysis showed that the panel had a sensitivity of 89.1% and 73.4% with a specificity of 88.1% and 76.7% for discriminating patients with DN from HCs and 2-DM patients. Then, we divided the DN patients in the validation cohort into microalbuminuria (diabetic nephropathy at an early stage, DNE) and macroalbuminuria (diabetic nephropathy at an advanced stage, DNA) groups and found that LPE(16:0), phosphatidylethanolamine (PE) (16:0/20:2), and TAG54:2-FA18:1 were tightly associated with the stages of DN. The sensitivity of the biomarker panel to distinguish between patients with DNE and 2-DM, DNA, and DNE patients was 65.6% and 85.9%, and the specificity was 76.7% and 75.0%, respectively. Our experiment showed that the combination of LPE(16:0), PE(16:0/20:2), and TAG54:2-FA18:1 exhibits excellent performance in the diagnosis of DN.
Collapse
Affiliation(s)
- Tingting Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyan Xu
- Core Facility Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lu Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Zhang
- Renal Division, The 3 Xiangya Hospital-Central South University, Changsha, China
| | - Qiong Wei
- Department of Endocrinology, Zhongda Hospital Southeast University, Nanjing, China
| | - Lin Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Yu
- Division of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangxiang Xiao
- Division of Nephrology, Zhongshan Hospital, Xiamen University School of Medicine, Xiamen, China
| | - Lili Lin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjuan Qian
- College of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jue Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Traditional Chinese Medicine (TCM) Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Mengying Ke
- College of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofei An
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Association between daily sunlight exposure duration and diabetic retinopathy in Korean adults with diabetes: A nationwide population-based cross-sectional study. PLoS One 2020; 15:e0237149. [PMID: 32764774 PMCID: PMC7413474 DOI: 10.1371/journal.pone.0237149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/21/2020] [Indexed: 11/21/2022] Open
Abstract
Purpose To investigate the association between daily sunlight exposure duration and diabetic retinopathy in Korean adults with diabetes. Methods This study used data from the 2008–2011 Korea National Health and Nutrition Examination Survey. Overall, 1,089 patients with diabetes aged >40 years were included. The duration of daily sunlight exposure was assessed via health interviews. Comprehensive ophthalmic evaluations, including standard retinal fundus photography after pupil dilation, were conducted. Diabetic retinopathy was graded using the modified Airlie House Classification. Multivariate logistic regression analysis was performed to analyze the association between daily sunlight exposure duration and the diagnosis of diabetic retinopathy and non-proliferative diabetic retinopathy. Results The risk of diabetic retinopathy was 2.66 times higher in the group with ≥5 h of daily sunlight exposure than in the group with less exposure after adjusting for risk factors such as duration of diabetes, serum hemoglobin A1c level, hypertension, and dyslipidemia (P = 0.023). Furthermore, the risk of non-proliferative diabetic retinopathy was 3.13 times higher in the group with ≥5 h of daily sunlight exposure than in the group with less exposure (P = 0.009). In patients with diabetes for <10 years, the risks of diabetic retinopathy and non-proliferative diabetic retinopathy were 4.26 and 4.82 times higher in the group with ≥5 h of daily sunlight exposure than the group with less exposure, respectively (P < 0.05). Conclusions This study revealed that sunlight exposure for ≥5 h a day was significantly associated with an increased risk of diabetic retinopathy and non-proliferative diabetic retinopathy in Korean patients with diabetes. The risks were significantly higher in patients with diabetes for <10 years. Therefore, reducing daily sunlight exposure could be an early preventive strategy against diabetic retinopathy in people with diabetes.
Collapse
|
7
|
Spickett CM. Formation of Oxidatively Modified Lipids as the Basis for a Cellular Epilipidome. Front Endocrinol (Lausanne) 2020; 11:602771. [PMID: 33408694 PMCID: PMC7779974 DOI: 10.3389/fendo.2020.602771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
While often regarded as a subset of metabolomics, lipidomics can better be considered as a field in its own right. While the total number of lipid species in biology may not exceed the number of metabolites, they can be modified chemically and biochemically leading to an enormous diversity of derivatives, many of which retain the lipophilic properties of lipids and thus expand the lipidome greatly. Oxidative modification by radical oxygen species, either enzymatically or chemically, is one of the major mechanisms involved, although attack by non-radical oxidants also occurs. The modified lipids typically contain more oxygens in the form of hydroxyl, epoxide, carbonyl and carboxylic acid groups, and nitration, nitrosylation, halogenation or sulfation can also occur. This article provides a succinct overview of the types of species formed, the reactive compounds involved and the specific molecular sites that they react with, and the biochemical or chemical mechanisms involved. In many cases, these modifications reduce the stability of the lipid, and breakdown products are formed, which themselves have interesting properties such as the ability to react with other biomolecules. Publications on the biological effects of modified lipids are growing rapidly, supporting the concept that some of these biomolecules have potential signaling and regulatory effects. The question therefore arises whether modified lipids represent an "epilipidome", analogous to the epigenetic modifications that can control gene expression.
Collapse
|
8
|
Colombo S, Criscuolo A, Zeller M, Fedorova M, Domingues MR, Domingues P. Analysis of oxidised and glycated aminophospholipids: Complete structural characterisation by C30 liquid chromatography-high resolution tandem mass spectrometry. Free Radic Biol Med 2019; 144:144-155. [PMID: 31150763 DOI: 10.1016/j.freeradbiomed.2019.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Abstract
The aminophospholipids (APL), phosphatidylethanolamine (PE) and phosphatidylserine (PS) are widely present in cell membranes and lipoproteins. Glucose and reactive oxygen species (ROS), such as the hydroxyl radical (•OH), can react with APL leading to an array of oxidised, glycated and glycoxidised derivatives. Modified APL have been implicated in inflammatory diseases and diabetes, and were identified as signalling molecules regulating cell death. However, the biological relevance of these molecules has not been completely established, since they are present in very low amounts, and new sensitive methodologies are needed to detect them in biological systems. Few studies have focused on the characterisation of APL modifications using liquid chromatography-tandem mass spectrometry (LC-MS/MS), mainly using C5 or C18 reversed phase (RP) columns. In the present study, we propose a new analytical approach for the characterisation of complex mixtures of oxidised, glycated and glycoxidised PE and PS. This LC approach was based on a reversed-phase C30 column combined with high-resolution MS, and higher energy C-trap dissociation (HCD) MS/MS. C30 RP-LC separated short and long fatty acyl oxidation products, along with glycoxidised APL bearing oxidative modifications on the glucose moiety and the fatty acyl chains. Functional isomers (e.g. hydroxy-hydroperoxy-APL and tri-hydroxy-APL) and positional isomers (e.g. 9-hydroxy-APL and 13-hydroxy-APL) were also discriminated by the method. HCD fragmentation patterns allowed unequivocal structural characterisation of the modified APL, and are translatable into targeted MS/MS fingerprinting of the modified derivatives in biological samples.
Collapse
Affiliation(s)
- Simone Colombo
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Angela Criscuolo
- Thermo Fisher Scientific, Hanna-Kunath-Straße 11, 28199, Bremen, Germany; Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Germany
| | - Martin Zeller
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Germany
| | - M Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Department of Chemistry & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
Varandas PAMM, Cobb AJA, Segundo MA, Silva EMP. Emergent Glycerophospholipid Fluorescent Probes: Synthesis and Applications. Bioconjug Chem 2019; 31:417-435. [DOI: 10.1021/acs.bioconjchem.9b00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pedro A. M. M. Varandas
- LAQV, REQUIMTE, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alexander J. A. Cobb
- Department of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Marcela A. Segundo
- LAQV, REQUIMTE, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Eduarda M. P. Silva
- LAQV, REQUIMTE, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
10
|
Colombo S, Domingues P, Domingues MR. Mass spectrometry strategies to unveil modified aminophospholipids of biological interest. MASS SPECTROMETRY REVIEWS 2019; 38:323-355. [PMID: 30597614 DOI: 10.1002/mas.21584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
The biological functions of modified aminophospholipids (APL) have become a topic of interest during the last two decades, and distinct roles have been found for these biomolecules in both physiological and pathological contexts. Modifications of APL include oxidation, glycation, and adduction to electrophilic aldehydes, altogether contributing to a high structural variability of modified APL. An outstanding technique used in this challenging field is mass spectrometry (MS). MS has been widely used to unveil modified APL of biological interest, mainly when associated with soft ionization methods (electrospray and matrix-assisted laser desorption ionization) and coupled with separation techniques as liquid chromatography. This review summarizes the biological roles and the chemical mechanisms underlying APL modifications, and comprehensively reviews the current MS-based knowledge that has been gathered until now for their analysis. The interpretation of the MS data obtained by in vitro-identification studies is explained in detail. The perspective of an analytical detection of modified APL in clinical samples is explored, highlighting the fundamental role of MS in unveiling APL modifications and their relevance in pathophysiology.
Collapse
Affiliation(s)
- Simone Colombo
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Department of Chemistry and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
11
|
Multi-class polar lipid profiling in fresh and roasted hazelnut (Corylus avellana cultivar “Tonda di Giffoni”) by LC-ESI/LTQOrbitrap/MS/MSn. Food Chem 2018; 269:125-135. [DOI: 10.1016/j.foodchem.2018.06.121] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 06/15/2018] [Accepted: 06/23/2018] [Indexed: 12/25/2022]
|
12
|
Colombo S, Coliva G, Kraj A, Chervet JP, Fedorova M, Domingues P, Domingues MR. Electrochemical oxidation of phosphatidylethanolamines studied by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:223-233. [PMID: 29282829 DOI: 10.1002/jms.4056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Simone Colombo
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Giulia Coliva
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | | | | | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
13
|
Melo T, Domingues P, Ribeiro-Rodrigues TM, Girão H, Segundo MA, Domingues MRM. Characterization of phospholipid nitroxidation by LC-MS in biomimetic models and in H9c2 Myoblast using a lipidomic approach. Free Radic Biol Med 2017; 106:219-227. [PMID: 28219782 DOI: 10.1016/j.freeradbiomed.2017.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/30/2017] [Accepted: 02/15/2017] [Indexed: 11/17/2022]
Abstract
Under nitroxidative stress conditions, lipids are prone to be modified by reaction with reactive nitrogen species (RNS) and different modifications were reported to occur in fatty acids. However, in the case of phospholipids (PL) studied under nitroxidative stress conditions, only nitroalkene derivatives of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), were reported when using both in vitro biomimetic conditions and in vivo model system of type 1 diabetes mellitus. Therefore, in order to further explore other nitroxidative modifications of PL, a biomimetic model of nitroxidation combined with liquid chromatography mass spectrometry (MS) and MS/MS approaches were used to characterize the nitrated and nitroxidized derivatives of PCs and PEs. Single and multiple nitrated derivatives of phospholipids (PLs) such as nitroso and dinitroso, nitro, dinitro, and nitronitroso derivatives, together with nitroxidized derivatives were identified. Further, the specific MS/MS fragmentation pathways of these products were studied. Product ions arising from loss of HNO and HNO2, from the combined loss of HNO (or HNO2) and polar head groups, [NOn-FA+On+H]+ and [NOn-FA+On-H]- (n=1-2) product ions corresponding to the modified fatty acyl chains were observed, depending on each modification. The knowledge obtained from the study of the MS/MS fragmentation pattern has allowed us to identify nitrated PCs, including NO2-PC, (NO2)2-PCs, (NO2)(NO)-PC, NO-PC; nitrated PEs, NO2-PEs; and nitroxidized PCs, (NO2)(2O)-PC in H9c2 cells under starvation, but not under ischemia or control conditions. The physiological relevance of this nitrated and nitroxidized PCs and PEs species observed exclusively in cardiomyoblast cells (H9c2) under starvation is still unknown but deserves to be explored.
Collapse
Affiliation(s)
- Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa M Ribeiro-Rodrigues
- Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Henrique Girão
- Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Marcela A Segundo
- UCIBIO, REQUIMTE, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Rosário M Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
14
|
da Costa E, Melo T, Moreira ASP, Bernardo C, Helguero L, Ferreira I, Cruz MT, Rego AM, Domingues P, Calado R, Abreu MH, Domingues MR. Valorization of Lipids from Gracilaria sp. through Lipidomics and Decoding of Antiproliferative and Anti-Inflammatory Activity. Mar Drugs 2017; 15:E62. [PMID: 28257116 PMCID: PMC5367019 DOI: 10.3390/md15030062] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 01/15/2023] Open
Abstract
The lipidome of the red seaweed Gracilaria sp., cultivated on land-based integrated multitrophic aquaculture (IMTA) system, was assessed for the first time using hydrophilic interaction liquid chromatography-mass spectrometry and tandem mass spectrometry (HILIC-MS and MS/MS). One hundred and forty-seven molecular species were identified in the lipidome of the Gracilaria genus and distributed between the glycolipids classes monogalactosyl diacylglyceride (MGDG), digalactosyl diacylglyceride (DGDG), sulfoquinovosyl monoacylglyceride (SQMG), sulfoquinovosyl diacylglyceride (SQDG), the phospholipids phosphatidylcholine (PC), lyso-PC, phosphatidylglycerol (PG), lyso-PG, phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatic acid (PA), inositolphosphoceramide (IPC), and betaine lipids monoacylglyceryl- and diacylglyceryl-N,N,N-trimethyl homoserine (MGTS and DGTS). Antiproliferative and anti-inflammatory effects promoted by lipid extract of Gracilaria sp. were evaluated by monitoring cell viability in human cancer lines and by using murine macrophages, respectively. The lipid extract decreased cell viability of human T-47D breast cancer cells and of 5637 human bladder cancer cells (estimated half-maximal inhibitory concentration (IC50) of 12.2 μg/mL and 12.9 μg/mL, respectively) and inhibited the production of nitric oxide (NO) evoked by the Toll-like receptor 4 agonist lipopolysaccharide (LPS) on the macrophage cell line RAW 264.7 (35% inhibition at a concentration of 100 μg/mL). These findings contribute to increase the ranking in the value-chain of Gracilaria sp. biomass cultivated under controlled conditions on IMTA systems.
Collapse
Affiliation(s)
- Elisabete da Costa
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Tânia Melo
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana S P Moreira
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carina Bernardo
- Instituto de Biomedicina (IBIMED), Departamento de Ciências Médicas, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Luisa Helguero
- Instituto de Biomedicina (IBIMED), Departamento de Ciências Médicas, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Isabel Ferreira
- Centro de Neurociências e Biologia Celular (CNC), Universidade de Coimbra, 3004-517 Coimbra & Faculdade de Farmácia, Universidade de Coimbra, 3000-548 Coimbra, Portugal.
| | - Maria Teresa Cruz
- Centro de Neurociências e Biologia Celular (CNC), Universidade de Coimbra, 3004-517 Coimbra & Faculdade de Farmácia, Universidade de Coimbra, 3000-548 Coimbra, Portugal.
| | - Andreia M Rego
- ALGAplus-Produção e Comercialização de Algas e seus Derivados, Lda., 3830-196 Ílhavo, Portugal.
| | - Pedro Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ricardo Calado
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Maria H Abreu
- ALGAplus-Produção e Comercialização de Algas e seus Derivados, Lda., 3830-196 Ílhavo, Portugal.
| | - Maria Rosário Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
15
|
Annibal A, Riemer T, Jovanovic O, Westphal D, Griesser E, Pohl EE, Schiller J, Hoffmann R, Fedorova M. Structural, biological and biophysical properties of glycated and glycoxidized phosphatidylethanolamines. Free Radic Biol Med 2016; 95:293-307. [PMID: 27012418 PMCID: PMC5937679 DOI: 10.1016/j.freeradbiomed.2016.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/05/2016] [Accepted: 03/12/2016] [Indexed: 12/17/2022]
Abstract
Glycation and glycoxidation of proteins and peptides have been intensively studied and are considered as reliable diagnostic biomarkers of hyperglycemia and early stages of type II diabetes. However, glucose can also react with primary amino groups present in other cellular components, such as aminophospholipids (aminoPLs). Although it is proposed that glycated aminoPLs can induce many cellular responses and contribute to the development and progression of diabetes, the routes of their formation and their biological roles are only partially revealed. The same is true for the influence of glucose-derived modifications on the biophysical properties of PLs. Here we studied structural, signaling, and biophysical properties of glycated and glycoxidized phosphatidylethanolamines (PEs). By combining high resolution mass spectrometry and nuclear magnetic resonance spectroscopy it was possible to deduce the structures of several intermediates indicating an oxidative cleavage of the Amadori product yielding glycoxidized PEs including advanced glycation end products, such as carboxyethyl- and carboxymethyl-ethanolamines. The pro-oxidative role of glycated PEs was demonstrated and further associated with several cellular responses including activation of NFκB signaling pathways. Label free proteomics indicated significant alterations in proteins regulating cellular metabolisms. Finally, the biophysical properties of PL membranes changed significantly upon PE glycation, such as melting temperature (Tm), membrane surface charge, and ion transport across the phospholipid bilayer.
Collapse
Affiliation(s)
- Andrea Annibal
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Germany; Institute for Medical Physics and Biophysics, Faculty of Medicine, Universität Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Germany
| | - Thomas Riemer
- Institute for Medical Physics and Biophysics, Faculty of Medicine, Universität Leipzig, Germany
| | - Olga Jovanovic
- Institute of Physiology, Pathophysiology and Biophysics; University of Veterinary Medicine Vienna, Austria
| | - Dennis Westphal
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Germany
| | - Eva Griesser
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Germany
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics; University of Veterinary Medicine Vienna, Austria
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Faculty of Medicine, Universität Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Germany.
| |
Collapse
|
16
|
Santinha D, Ferreira-Fernandes E, Melo T, Silva EMP, Maciel E, Fardilha M, Domingues P, Domingues MRM. Evaluation of the photooxidation of galactosyl- and lactosylceramide by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2275-2284. [PMID: 25279740 DOI: 10.1002/rcm.7020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/18/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Glycosphingolipids are important lipid molecules namely as constituents of the plasma membrane organized in lipid rafts, in signal transduction, and cell-cell communication. Although many human diseases are associated with oxidative stress and lipid oxidation, a link between oxidative stress and modification of glycosphingolipids has never been addressed. METHODS In this study, the structural changes caused by UVA-induced photooxidation of galactosyl- (GalCer) and lactosylceramide (LacCer) molecular species were studied by electrospray ionization mass spectrometry (ESI-MS and MS/MS), using a quadrupole time-of-flight (QTOF) mass spectrometer and high-performance liquid chromatography/tandem mass spectrometry with a C5 stationary phase (C5 HPLC/MS/MS) using a linear ion trap. RESULTS ESI-MS spectra of GalCer and LacCer after photooxidation showed new ions with a mass shift of +32 Da when compared with the ions of the non-modified glycosphingolipids. These new species were assigned as hydroperoxyl derivatives, confirmed by HPLC/MS/MS and through FOX 2 assay. In the ESI-MS and LC/MS of lactosylceramide a new ion with lower m/z value, assigned as glucosylceramide (GlcCer) + 32 Da, was also detected and proposed to be formed due to oxidative cleavage of lactosyl moieties. ESI-MS/MS of the oxidized species allowed us to infer the presence of isomeric hydroperoxyl derivatives, with the hydroperoxyl moiety either linked to the sphingosine backbone or in the unsaturated acyl chain. Oxidation in the sugar moieties was observed in the case of LacCer, suggesting an oxidation via radical reactive oxygen species that can induce the oxidative cleavage of the lactosyl moiety. CONCLUSIONS This study shows that glycosphingolipids are prone to oxidation and the identified mass spectrometry fingerprint of oxidized galactosyl- and lactosylceramide species will support their future identification in lipidomic studies of biological samples under oxidative conditions.
Collapse
Affiliation(s)
- Deolinda Santinha
- Mass Spectrometry Centre, UI-QOPNA, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Calvano CD, De Ceglie C, Zambonin CG. Development of a direct in-matrix extraction (DIME) protocol for MALDI-TOF-MS detection of glycated phospholipids in heat-treated food samples. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:831-839. [PMID: 25230180 DOI: 10.1002/jms.3416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/02/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
In foodstuffs, one of the main factors inducing modifications in phospholipids (PLs) structure is the heat treatment. Among PLs, only phosphatidylethanolamines and phosphatidylserines, due to their free amino group, can be involved in Maillard reaction and can form adducts with reducing sugars, besides other by-products called advanced glycation end-products. To date, glycated lipid products are less characterized in comparison to proteins. The aim of this work was to develop a novel, rapid and sensitive extraction protocol for the detection and characterization of modified PLs (glycated and oxidized) by means of matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). At first, to investigate the formation of glycated and/or short chain by-products in different classes of PLs, representative standards were heated with or without sugar (lactose or glucose) and subjected to traditional lipid extraction methods as Bligh and Dyer and to the novel direct in matrix extraction (DIME) using 1,8-bis(dimethylamino)naphthalene as preconcentrating matrix. MALDI-MS analysis in negative ion mode allowed detecting glycation and oxidation products both on fatty acid and glucose moieties. Then, the procedure was successfully applied to different heat-treated and powdered samples (milk powders, pasteurized milk, ultra-high-temperature milk and soy flour) for the detection of modified PLs in complex foods. The currently developed DIME protocol could be a powerful tool for understanding lipid glycation also in biological samples.
Collapse
Affiliation(s)
- Cosima D Calvano
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica, Via Orabona 4, 70126, Bari, Italy
| | | | | |
Collapse
|
18
|
Melo T, Santos N, Lopes D, Alves E, Maciel E, Faustino MAF, Tomé JPC, Neves MGPMS, Almeida A, Domingues P, Segundo MA, Domingues MRM. Photosensitized oxidation of phosphatidylethanolamines monitored by electrospray tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1357-1365. [PMID: 24338891 DOI: 10.1002/jms.3301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 06/03/2023]
Abstract
Photodynamic therapy combines visible light and a photosensitizer (PS) in the presence of molecular oxygen to generate reactive oxygen species able to modify biological structures such as phospholipids. Phosphatidylethanolamines (PEs), being major phospholipid constituents of mammalian cells and membranes of Gram-negative bacteria, are potential targets of photosensitization. In this work, the oxidative modifications induced by white light in combination with cationic porphyrins (Tri-Py(+)-Me-PF and Tetra-Py(+)-Me) were evaluated on PE standards. Electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS) were used to identify and characterize the oxidative modifications induced in PEs (POPE: PE 16:0/18:1, PLPE: PE 16:0/18:2, PAPE: PE 16:0/20:4). Photo-oxidation products of POPE, PLPE and PAPE as hydroxy, hydroperoxy and keteno derivatives and products due to oxidation in ethanolamine polar head were identified. Hydroperoxy-PEs were found to be the major photo-oxidation products. Quantification of hydroperoxides (PE-OOH) allowed differentiating the potential effect in photodamage of the two porphyrins. The highest amounts of PE-OOH were notorious in the presence of Tri-Py(+)-Me-PF, a highly efficient PS against bacteria. The identification of these modifications in PEs is an important key point in the understanding cell damage processes underlying photodynamic therapy approaches.
Collapse
Affiliation(s)
- Tânia Melo
- Mass Spectrometry Centre, UI QOPNA, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Maciel E, da Silva RN, Simões C, Melo T, Ferreira R, Domingues P, Domingues MRM. Liquid chromatography-tandem mass spectrometry of phosphatidylserine advanced glycated end products. Chem Phys Lipids 2013; 174:1-7. [PMID: 23769760 DOI: 10.1016/j.chemphyslip.2013.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 12/01/2022]
Abstract
Phosphatidylserine (PS) is an aminophospholipid that is prone to glycation. In oxidative conditions, glycated PS may lead to the formation of Amadori compounds and advanced glycated end products (AGEs), which are known to accumulate in diabetic patients. Nevertheless, there have been no studies that identified products from the oxidative reaction of glycated PS. In this study, glycated 1-palmitoyl-2-oleoyl-PS was synthesized and further oxidized by Fenton reagent. The AGES formed were structurally characterized by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in negative mode. The oxidation products from glycated PS that we have found include products arising from the oxidation of the fatty acyl chains (hydroperoxides, hydroxides and keto derivatives), and arising from oxidative cleavage of serine polar head and lyso-glycated PS. Oxidation in C6 of glucose lead to the formation of glucuronyl-PS. In addition, new products arising from oxidative cleavage of glucose moiety (between C1C2, C2C3 and C3C4 bonds) were identified as PS-AGES. The current findings add substantially to the best of our knowledge of PS glycoxidation products, opening new perspectives for the detection of these products in complex biological matrices.
Collapse
Affiliation(s)
- Elisabete Maciel
- Mass Spectrometry Centre, UI QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
20
|
Maciel E, Faria R, Santinha D, Domingues MRM, Domingues P. Evaluation of oxidation and glyco-oxidation of 1-palmitoyl-2-arachidonoyl-phosphatidylserine by LC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 929:76-83. [DOI: 10.1016/j.jchromb.2013.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/08/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
|