1
|
Lin J, Yun K, Sun Q, Xiang P, Wu L, Yang S, Dun J, Fu S, Chen H. How to sample a seizure plant: the role of the visualization spatial distribution analysis of Lophophora williamsii as an example. Forensic Sci Res 2023; 8:140-151. [PMID: 37621449 PMCID: PMC10445667 DOI: 10.1093/fsr/owad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/16/2023] [Indexed: 08/26/2023] Open
Abstract
Natural compounds in plants are often unevenly distributed, and determining the best sampling locations to obtain the most representative results is technically challenging. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can provide the basis for formulating sampling guideline. For a succulent plant sample, ensuring the authenticity and in situ nature of the spatial distribution analysis results during MSI analysis also needs to be thoroughly considered. In this study, we developed a well-established and reliable MALDI-MSI method based on preservation methods, slice conditions, auxiliary matrices, and MALDI parameters to detect and visualize the spatial distribution of mescaline in situ in Lophophora williamsii. The MALDI-MSI results were validated using liquid chromatography-tandem mass spectrometry. Low-temperature storage at -80°C and drying of "bookmarks" were the appropriate storage methods for succulent plant samples and their flower samples, and cutting into 40 μm thick sections at -20°C using gelatin as the embedding medium is the appropriate sectioning method. The use of DCTB (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile) as an auxiliary matrix and a laser intensity of 45 are favourable MALDI parameter conditions for mescaline analysis. The region of interest semi-quantitative analysis revealed that mescaline is concentrated in the epidermal tissues of L. williamsii as well as in the meristematic tissues of the crown. The study findings not only help to provide a basis for determining the best sampling locations for mescaline in L. williamsii, but they also provide a reference for the optimization of storage and preparation conditions for raw plant organs before MALDI detection. Key Points An accurate in situ MSI method for fresh water-rich succulent plants was obtained based on multi-parameter comparative experiments.Spatial imaging analysis of mescaline in Lophophora williamsii was performed using the above method.Based on the above results and previous results, a sampling proposal for forensic medicine practice is tentatively proposed.
Collapse
Affiliation(s)
- Jiaman Lin
- School of Forensic Medicine, Shanxi Medical University, Key Laboratory of Forensic Medicine in Shanxi Province, Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, China
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Key Laboratory of Forensic Medicine in Shanxi Province, Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, China
| | - Qiran Sun
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Lina Wu
- School of Forensic Medicine, Shanxi Medical University, Key Laboratory of Forensic Medicine in Shanxi Province, Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, China
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Shuo Yang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | | | - Shanlin Fu
- School of Forensic Medicine, Shanxi Medical University, Key Laboratory of Forensic Medicine in Shanxi Province, Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, China
| | - Hang Chen
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
2
|
Wang JQ, Zhao J, Nie SP, Xie MY, Li SP. Matrix Assisted Laser Desorption Ionization – Tandem Time-of-Flight – Mass Spectrometry (MALDI-TOF/TOF-MS) Characterization of Oligosaccharides: Structural Identification and Differentiation. ANAL LETT 2023. [DOI: 10.1080/00032719.2022.2157421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jun-Qiao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, Macau, China
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, Taipa, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, Macau, China
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, Taipa, Macau, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, Macau, China
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, Taipa, Macau, China
| |
Collapse
|
3
|
Jiang H, Zhang Y, Liu Z, Wang X, He J, Jin H. Advanced applications of mass spectrometry imaging technology in quality control and safety assessments of traditional Chinese medicines. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114760. [PMID: 34678417 PMCID: PMC9715987 DOI: 10.1016/j.jep.2021.114760] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicines (TCMs) have made great contributions to the prevention and treatment of human diseases in China, and especially in cases of COVID-19. However, due to quality problems, the lack of standards, and the diversity of dosage forms, adverse reactions to TCMs often occur. Moreover, the composition of TCMs makes them extremely challenging to extract and isolate, complicating studies of toxicity mechanisms. AIM OF THE REVIEW The aim of this paper is therefore to summarize the advanced applications of mass spectrometry imaging (MSI) technology in the quality control, safety evaluations, and determination of toxicity mechanisms of TCMs. MATERIALS AND METHODS Relevant studies from the literature have been collected from scientific databases, such as "PubMed", "Scifinder", "Elsevier", "Google Scholar" using the keywords "MSI", "traditional Chinese medicines", "quality control", "metabolomics", and "mechanism". RESULTS MSI is a new analytical imaging technology that can detect and image the metabolic changes of multiple components of TCMs in plants and animals in a high throughput manner. Compared to other chemical analysis methods, such as liquid chromatography-mass spectrometry (LC-MS), this method does not require the complex extraction and separation of TCMs, and is fast, has high sensitivity, is label-free, and can be performed in high-throughput. Combined with chemometrics methods, MSI can be quickly and easily used for quality screening of TCMs. In addition, this technology can be used to further focus on potential biomarkers and explore the therapeutic/toxic mechanisms of TCMs. CONCLUSIONS As a new type of analysis method, MSI has unique advantages to metabolic analysis, quality control, and mechanisms of action explorations of TCMs, and contributes to the establishment of quality standards to explore the safety and toxicology of TCMs.
Collapse
Affiliation(s)
- Haiyan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yaxin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhigang Liu
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiangyi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China.
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China.
| |
Collapse
|
4
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
5
|
Heijs B, Potthoff A, Soltwisch J, Dreisewerd K. MALDI-2 for the Enhanced Analysis of N-Linked Glycans by Mass Spectrometry Imaging. Anal Chem 2020; 92:13904-13911. [PMID: 32975931 PMCID: PMC7581013 DOI: 10.1021/acs.analchem.0c02732] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
N-glycans are important players in a variety of
pathologies including different types of cancer, (auto)immune diseases,
and also viral infections. Matrix-assisted laser desorption/ionization
mass spectrometry (MALDI-MS) is an important tool for high-throughput N-glycan profiling and, upon use of tandem MS, for structure
determination. By use of MALDI-MS imaging (MSI) in combination with
PNGase F treatment, also spatially correlated N-glycan
profiling from tissue sections becomes possible. Here we coupled laser-induced
postionization, or MALDI-2, to a trapped ion mobility quadrupole time-of-flight
mass spectrometer (timsTOF fleX MALDI-2, Bruker Daltonics). We demonstrate
that with MALDI-2 the sensitivity for the detection of molecular [M
– H]− species of N-glycans
increased by about 3 orders of magnitude. Compared to the current
gold standard, the positive ion mode analysis of [M + Na]+ adducts, a sensitivity increase by about a factor of 10 is achieved.
By exploiting the advantageous fragmentation behavior of [M –
H]− ions, exceedingly rich structural information
on the composition of complex N-glycans was moreover
obtained directly from thin tissue sections of human cerebellum and
upon use of low-energy collision-induced dissociation tandem MS. In
another set of experiments, in this case by use of a modified Synapt
G2-S QTOF mass spectrometer (Waters), we investigated the influence
of relevant input parameters, in particular pressure of the N2 cooling gas in the ion source, delay between the two laser
pulses, and that of their pulse energies. In this way, analytical
conditions were identified at which molecular ion abundances were
maximized and fragmentation reactions minimized. The use of negative
ion mode MALDI-2-MSI could constitute a valuable tool in glycobiology
research.
Collapse
Affiliation(s)
- Bram Heijs
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Alexander Potthoff
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
6
|
Harvey DJ. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N-LINKED GLYCANS. MASS SPECTROMETRY REVIEWS 2020; 39:586-679. [PMID: 32329121 DOI: 10.1002/mas.21622] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 05/03/2023]
Abstract
N-glycans from glycoproteins are complex, branched structures whose structural determination presents many analytical problems. Mass spectrometry, usually conducted in positive ion mode, often requires extensive sample manipulation, usually by derivatization such as permethylation, to provide the necessary structure-revealing fragment ions. The newer but, so far, lesser used negative ion techniques, on the contrary, provide a wealth of structural information not present in positive ion spectra that greatly simplify the analysis of these compounds and can usually be conducted without the need for derivatization. This review describes the use of negative ion mass spectrometry for the structural analysis of N-linked glycans and emphasises the many advantages that can be gained by this mode of operation. Biosynthesis and structures of the compounds are described followed by methods for release of the glycans from the protein. Methods for ionization are discussed with emphasis on matrix-assisted laser desorption/ionization (MALDI) and methods for producing negative ions from neutral compounds. Acidic glycans naturally give deprotonated species under most ionization conditions. Fragmentation of negative ions is discussed next with particular reference to those ions that are diagnostic for specific features such as the branching topology of the glycans and substitution positions of moieties such as fucose and sulfate, features that are often difficult to identify easily by conventional techniques such as positive ion fragmentation and exoglycosidase digestions. The advantages of negative over positive ions for this structural work are emphasised with an example of a series of glycans where all other methods failed to produce a structure. Fragmentation of derivatized glycans is discussed next, both with respect to derivatives at the reducing terminus of the molecules, and to methods for neutralization of the acidic groups on sialic acids to both stabilize them for MALDI analysis and to produce the diagnostic fragments seen with the neutral glycans. The use of ion mobility, combined with conventional mass spectrometry is described with emphasis on its use to extract clean glycan spectra both before and after fragmentation, to separate isomers and its use to extract additional information from separated fragment ions. A section on applications follows with examples of the identification of novel structures from lower organisms and tables listing the use of negative ions for structural identification of specific glycoproteins, glycans from viruses and uses in the biopharmaceutical industry and in medicine. The review concludes with a summary of the advantages and disadvantages of the technique. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
7
|
Bowman AS, Asare SO, Lynn BC. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis for characterization of lignin oligomers using cationization techniques and 2,5-dihydroxyacetophenone (DHAP) matrix. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:811-819. [PMID: 30719787 DOI: 10.1002/rcm.8406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Effective analytical techniques are needed to characterize lignin products for the generation of renewable carbon sources. Application of matrix-assisted laser desorption/ionization (MALDI) in lignin analysis is limited because of poor ionization efficiency. In this study, we explored the potential of cationization along with a 2,5-dihydroxyacetophenone (DHAP) matrix to characterize model lignin oligomers. METHODS Synthesized lignin oligomers were analyzed using the developed MALDI method. Two matrix systems, DHAP and α-cyano-4-hydroxycinnamic acid (CHCA), and three cations (lithium, sodium, silver) were evaluated using a Bruker UltraFlextreme time-of-flight mass spectrometer. Instrumental parameters, cation concentration, matrix, sample concentrations, and sample spotting protocols were optimized for improved results. RESULTS The DHAP/Li+ combination was effective for dimer analysis as lithium adducts. Spectra from DHP and ferric chloride oligomers showed improved signal intensities up to decamers (m/z 1823 for the FeCl3 system) and provided insights into differences in the oligomerization mechanism. Spectra from a mixed DHP oligomer system containing H, G, and S units showed contributions from all monolignols within an oligomer level (e.g. tetramer level). CONCLUSIONS The DHAP/Li+ method presented in this work shows promise to be an effective analytical tool for lignin analysis by MALDI and may provide a tool to assess lignin break-down efforts facilitating renewable products from lignin.
Collapse
Affiliation(s)
- Amber S Bowman
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Shardrack O Asare
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
8
|
Huang C, Yan J, Zhan L, Zhao M, Zhou J, Gao H, Xie W, Li Y, Chai W. Linkage and sequence analysis of neutral oligosaccharides by negative-ion MALDI tandem mass spectrometry with laser-induced dissociation. Anal Chim Acta 2019; 1071:25-35. [PMID: 31128752 DOI: 10.1016/j.aca.2019.04.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 11/25/2022]
Abstract
Mass spectrometry (MS) has become the primary method for high-sensitivity structural determination of oligosaccharides. Fragmentation in the negative-ion MS can provide a wealth of structural information and these can be used for sequence determination. However, although negative-ion MS of neutral oligosaccharide using the deprotonated molecule [M-H]- as the precursor has been very successful for electrospray ionization (ESI), it has only limited success for matrix-assisted laser desorption/ionization (MALDI). In the present study, the features of negative-ion MALDI primary spectra were investigated in detail and the product-ion spectra using [M-H]- and [M+Cl]- as the precursors were carefully compared. The formation of [M-H]- was the main difficulty for MALDI while [M+Cl]- was proved to be useful as alternative precursor anion for MALDI-MS/MS to produce similar fragmentation for sequencing of neutral oligosaccharides. N-(1-naphthyl)ethylenediamine dihydrochloride was then used as both the matrix and the Cl- dopant to evaluate the extent of structural information that can be obtained by negative-ion fragmentation from [M+Cl]- using laser-induced dissociation (LID)-MS/MS for linkage assignment of gluco-oligosaccharides and for typing of blood-group ABO(H) and Lewis antigens on either type 1 or type 2 backbone-chains.
Collapse
Affiliation(s)
- Chuncui Huang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; GuangDong Bio-healtech Advanced, Foshan, 528315, China
| | - Jingyu Yan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian, 116023, China
| | - Lingpeng Zhan
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Min Zhao
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jinyu Zhou
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Huanyu Gao
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Wenchun Xie
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; GuangDong Bio-healtech Advanced, Foshan, 528315, China
| | - Yan Li
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Wengang Chai
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, W12 0NN, UK
| |
Collapse
|
9
|
Huang X, Liu Q, Gao W, Wang Y, Nie Z, Yao S, Jiang G. Fast screening of short-chain chlorinated paraffins in indoor dust samples by graphene-assisted laser desorption/ionization mass spectrometry. Talanta 2018; 179:575-582. [DOI: 10.1016/j.talanta.2017.11.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
|
10
|
Challenges in Separations of Proteins and Small Biomolecules and the Role of Modern Mass Spectroscopy Tools for Solving Them, as Well as Bypassing Them, in Structural Analytical Studies of Complex Biomolecular Mixtures. SEPARATIONS 2018. [DOI: 10.3390/separations5010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Shi R, Dai X, Li W, Lu F, Liu Y, Qu H, Li H, Chen Q, Tian H, Wu E, Wang Y, Zhou R, Lee ST, Lifshitz Y, Kang Z, Liu J. Hydroxyl-Group-Dominated Graphite Dots Reshape Laser Desorption/Ionization Mass Spectrometry for Small Biomolecular Analysis and Imaging. ACS NANO 2017; 11:9500-9513. [PMID: 28850220 DOI: 10.1021/acsnano.7b05328] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Small molecules play critical roles in life science, yet their facile detection and imaging in physiological or pathological settings remain a challenge. Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) is a powerful tool for molecular analysis. However, conventional organic matrices (CHCA, DHB, etc.) used in assisting analyte ionization suffer from intensive background noise in the mass region below m/z 700, which hinders MALDI MS applications for small-molecule detection. Here, we report that a hydroxyl-group-dominated graphite dot (GD) matrix overcomes limitations of conventional matrices and allows MALDI MS to be used in fast and high-throughput analysis of small biomolecules. GDs exhibit extremely low background noise and ultrahigh sensitivity (with limit of detection <1 fmol) in MALDI MS. This approach allows identification of complex oligosaccharides, detection of low-molecular-weight components in traditional Chinese herbs, and facile analysis of puerarin and its metabolites in serum without purification. Moreover, we show that the GDs provide an effective matrix for the direct imaging or spatiotemporal mapping of small molecules and their metabolites (m/z < 700) simultaneously at the suborgan tissue level. Density functional theory calculations further provide the mechanistic basis of GDs as an effective MALDI matrix in both the positive-ion and negative-ion modes. Collectively, our work uncovered a useful matrix which reshapes MALDI MS technology for a wide range of applications in biology and medicine.
Collapse
Affiliation(s)
| | | | | | - Fang Lu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine , Beijing 100029, China
| | | | - Huihua Qu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine , Beijing 100029, China
| | | | - Qiongyang Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | - He Tian
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | | | - Yong Wang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University , Shenzhen, Guangdong Province 518060, China
| | - Ruhong Zhou
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | | | - Yeshayahu Lifshitz
- Department of Materials Science and Engineering, Technion Israel Institute of Technology , Haifa 3200003, Israel
| | | | | |
Collapse
|
12
|
Lai YH, Wang YS. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: Mechanistic Studies and Methods for Improving the Structural Identification of Carbohydrates. Mass Spectrom (Tokyo) 2017; 6:S0072. [PMID: 28959517 PMCID: PMC5610957 DOI: 10.5702/massspectrometry.s0072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Although matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is one of the most widely used soft ionization methods for biomolecules, the lack of detailed understanding of ionization mechanisms restricts its application in the analysis of carbohydrates. Structural identification of carbohydrates achieved by MALDI mass spectrometry helps us to gain insights into biological functions and pathogenesis of disease. In this review, we highlight mechanistic details of MALDI, including both ionization and desorption. Strategies to improve the ion yield of carbohydrates are also reviewed. Furthermore, commonly used fragmentation methods to identify the structure are discussed.
Collapse
|