1
|
Pereverzeva L, van Linge CCA, Schuurman AR, Klarenbeek AM, Ramirez Moral I, Otto NA, Peters-Sengers H, Butler JM, Schomakers BV, van Weeghel M, Houtkooper RH, Wiersinga WJ, Bonta PI, Annema JT, de Vos AF, van der Poll T. Human alveolar macrophages do not rely on glucose metabolism upon activation by lipopolysaccharide. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166488. [PMID: 35835414 DOI: 10.1016/j.bbadis.2022.166488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Most macrophages generate energy to mount an inflammatory cytokine response by increased glucose metabolism through intracellular glycolysis. Previous studies have suggested that alveolar macrophages (AMs), which reside in a glucose-poor natural environment, are less capable to utilize glycolysis and instead rely on other substrates to fuel oxidative phosphorylation (OXPHOS) for energy supply. At present, it is not known whether AMs are capable to use glucose metabolism to produce cytokines when other metabolic options are blocked. Here, we studied human AMs retrieved by bronchoalveolar lavage from healthy subjects, and examined their glucose metabolism in response to activation by the gram-negative bacterial component lipopolysaccharide (LPS) ex vivo. The immunological and metabolic responses of AMs were compared to those of cultured blood monocyte-derived macrophages (MDMs) from the same subjects. LPS stimulation enhanced cytokine release by both AMs and MDMs, which was associated with increased lactate release by MDMs (reflecting glycolysis), but not by AMs. In agreement, LPS induced higher mRNA expression of multiple glycolytic regulators in MDMs, but not in AMs. Flux analyses of [13C]-glucose revealed no differences in [13C]-incorporation in glucose metabolism intermediates in AMs. Inhibition of OXPHOS by oligomycin strongly reduced LPS-induced cytokine production by AMs, but not by MDMs. Collectively, these results indicate that human AMs, in contrast to MDMs, do not use glucose metabolism during LPS-induced activation and fully rely on OXPHOS for cytokine production.
Collapse
Affiliation(s)
- Liza Pereverzeva
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.
| | - Christine C A van Linge
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Alex R Schuurman
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Augustijn M Klarenbeek
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ivan Ramirez Moral
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Natasja A Otto
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joe M Butler
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter I Bonta
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jouke T Annema
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands; Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
mTOR-driven glycolysis governs induction of innate immune responses by bronchial epithelial cells exposed to the bacterial component flagellin. Mucosal Immunol 2021; 14:594-604. [PMID: 33542495 DOI: 10.1038/s41385-021-00377-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/05/2020] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Human bronchial epithelial (HBE) cells play an essential role during bacterial infections of the airways by sensing pathogens and orchestrating protective immune responses. We here sought to determine which metabolic pathways are utilized by HBE cells to mount innate immune responses upon exposure to a relevant bacterial agonist. Stimulation of HBE cells by the bacterial component flagellin triggered activation of the mTOR pathway resulting in an increased glycolytic flux that sustained the secretory activity of immune mediators by HBE cells. The mTOR inhibitor rapamycin impeded glycolysis and limited flagellin-induced secretion of immune mediators. The role of the mTOR pathway was recapitulated in vivo in a mouse model of flagellin-triggered lung innate immune responses. These data demonstrate that metabolic reprogramming via the mTOR pathway modulates activation of the respiratory epithelium, identifying mTOR as a potential therapeutic target to modulate mucosal immunity in the context of bacterial infections.
Collapse
|
3
|
Wüst RCI, Coolen BF, Held NM, Daal MRR, Alizadeh Tazehkandi V, Baks-te Bulte L, Wiersma M, Kuster DWD, Brundel BJJM, van Weeghel M, Strijkers GJ, Houtkooper RH. The Antibiotic Doxycycline Impairs Cardiac Mitochondrial and Contractile Function. Int J Mol Sci 2021; 22:4100. [PMID: 33921053 PMCID: PMC8071362 DOI: 10.3390/ijms22084100] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Tetracycline antibiotics act by inhibiting bacterial protein translation. Given the bacterial ancestry of mitochondria, we tested the hypothesis that doxycycline-which belongs to the tetracycline class-reduces mitochondrial function, and results in cardiac contractile dysfunction in cultured H9C2 cardiomyoblasts, adult rat cardiomyocytes, in Drosophila and in mice. Ampicillin and carbenicillin were used as control antibiotics since these do not interfere with mitochondrial translation. In line with its specific inhibitory effect on mitochondrial translation, doxycycline caused a mitonuclear protein imbalance in doxycycline-treated H9C2 cells, reduced maximal mitochondrial respiration, particularly with complex I substrates, and mitochondria appeared fragmented. Flux measurements using stable isotope tracers showed a shift away from OXPHOS towards glycolysis after doxycycline exposure. Cardiac contractility measurements in adult cardiomyocytes and Drosophila melanogaster hearts showed an increased diastolic calcium concentration, and a higher arrhythmicity index. Systolic and diastolic dysfunction were observed after exposure to doxycycline. Mice treated with doxycycline showed mitochondrial complex I dysfunction, reduced OXPHOS capacity and impaired diastolic function. Doxycycline exacerbated diastolic dysfunction and reduced ejection fraction in a diabetes mouse model vulnerable for metabolic derangements. We therefore conclude that doxycycline impairs mitochondrial function and causes cardiac dysfunction.
Collapse
Affiliation(s)
- Rob C. I. Wüst
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije University Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Bram F. Coolen
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
| | - Ntsiki M. Held
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| | - Mariah R. R. Daal
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
| | - Vida Alizadeh Tazehkandi
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| | - Luciënne Baks-te Bulte
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Marit Wiersma
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Diederik W. D. Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| | - Gustav J. Strijkers
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| |
Collapse
|
4
|
Otto NA, Butler JM, Ramirez-Moral I, van Weeghel M, van Heijst JWJ, Scicluna BP, Houtkooper RH, de Vos AF, van der Poll T. Adherence Affects Monocyte Innate Immune Function and Metabolic Reprogramming after Lipopolysaccharide Stimulation In Vitro. THE JOURNAL OF IMMUNOLOGY 2021; 206:827-838. [PMID: 33408258 DOI: 10.4049/jimmunol.2000702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
Circulating nonadherent monocytes can migrate to extravascular sites by a process that involves adherence. Alterations in intracellular metabolism shape the immunological phenotype of phagocytes upon activation. To determine the effect of adherence on their metabolic and functional response human monocytes were stimulated with LPS under nonadherent and adherent conditions. Adherent monocytes (relative to nonadherent monocytes) produced less TNF and IL-1β (proinflammatory) and more IL-10 (anti-inflammatory) upon LPS stimulation and had an increased capacity to phagocytose and produce reactive oxygen species. RNA sequencing analysis confirmed that adherence modified the LPS-induced response of monocytes, reducing expression of proinflammatory genes involved in TLR signaling and increasing induction of genes involved in pathogen elimination. Adherence resulted in an increased glycolytic response as indicated by lactate release, gene set enrichment, and [13C]-glucose flux analysis. To determine the role of glycolysis in LPS-induced immune responses, this pathway was inhibited by glucose deprivation or the glucose analogue 2-deoxy-d-glucose (2DG). Although both interventions equally inhibited glycolysis, only 2DG influenced monocyte functions, inhibiting expression of genes involved in TLR signaling and pathogen elimination, as well as cytokine release. 2DG, but not glucose deprivation, reduced expression of genes involved in oxidative phosphorylation. Inhibition of oxidative phosphorylation affected TNF and IL-10 release in a similar way as 2DG. Collectively, these data suggest that adherence may modify the metabolic and immunological profile of monocytes and that inhibition of glycolysis and oxidative phosphorylation, but not inhibition of glycolysis alone, has a profound effect on immune functions of monocytes exposed to LPS.
Collapse
Affiliation(s)
- Natasja A Otto
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; .,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Joe M Butler
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Ivan Ramirez-Moral
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Core Facility Metabolomics, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Gastroenterology and Metabolism, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, the Netherlands
| | | | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; and
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Gastroenterology and Metabolism, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, the Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
5
|
Schnitzler JG, Hoogeveen RM, Ali L, Prange KHM, Waissi F, van Weeghel M, Bachmann JC, Versloot M, Borrelli MJ, Yeang C, De Kleijn DPV, Houtkooper RH, Koschinsky ML, de Winther MPJ, Groen AK, Witztum JL, Tsimikas S, Stroes ESG, Kroon J. Atherogenic Lipoprotein(a) Increases Vascular Glycolysis, Thereby Facilitating Inflammation and Leukocyte Extravasation. Circ Res 2020; 126:1346-1359. [PMID: 32160811 PMCID: PMC7208285 DOI: 10.1161/circresaha.119.316206] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Patients with elevated levels of lipoprotein(a) [Lp(a)] are hallmarked by increased metabolic activity in the arterial wall on positron emission tomography/computed tomography, indicative of a proinflammatory state. Objective: We hypothesized that Lp(a) induces endothelial cell inflammation by rewiring endothelial metabolism. Methods and Results: We evaluated the impact of Lp(a) on the endothelium and describe that Lp(a), through its oxidized phospholipid content, activates arterial endothelial cells, facilitating increased transendothelial migration of monocytes. Transcriptome analysis of Lp(a)-stimulated human arterial endothelial cells revealed upregulation of inflammatory pathways comprising monocyte adhesion and migration, coinciding with increased 6-phophofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)-3–mediated glycolysis. ICAM (intercellular adhesion molecule)-1 and PFKFB3 were also found to be upregulated in carotid plaques of patients with elevated levels of Lp(a). Inhibition of PFKFB3 abolished the inflammatory signature with concomitant attenuation of transendothelial migration. Conclusions: Collectively, our findings show that Lp(a) activates the endothelium by enhancing PFKFB3-mediated glycolysis, leading to a proadhesive state, which can be reversed by inhibition of glycolysis. These findings pave the way for therapeutic agents targeting metabolism aimed at reducing inflammation in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Johan G Schnitzler
- From the Experimental Vascular Medicine (J.G.S., L.A., J.C.B., M.V., A.K.G., J.K.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Renate M Hoogeveen
- Vascular Medicine (R.M.H., E.S.G.S.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lubna Ali
- From the Experimental Vascular Medicine (J.G.S., L.A., J.C.B., M.V., A.K.G., J.K.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Koen H M Prange
- Medical Biochemistry (K.H.M.P., M.P.J.d.W.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Farahnaz Waissi
- Vascular Surgery, Netherlands (F.W., D.P.V.D.K.), UMC Utrecht, University Utrecht, the Netherlands.,Cardiology (F.W.), UMC Utrecht, University Utrecht, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism (M.v.W., R.H.H.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands.,Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, the Netherlands (M.v.W.)
| | - Julian C Bachmann
- From the Experimental Vascular Medicine (J.G.S., L.A., J.C.B., M.V., A.K.G., J.K.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Miranda Versloot
- From the Experimental Vascular Medicine (J.G.S., L.A., J.C.B., M.V., A.K.G., J.K.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Matthew J Borrelli
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada (M.J.B., M.L.K.)
| | - Calvin Yeang
- Vascular Medicine Program, Division of Cardiology, Department of Medicine, Sulpizio Cardiovascular Center (C.Y., S.T.), University of California San Diego, La Jolla
| | - Dominique P V De Kleijn
- Vascular Surgery, Netherlands (F.W., D.P.V.D.K.), UMC Utrecht, University Utrecht, the Netherlands.,Netherlands Heart Institute (D.P.V.D.K.), UMC Utrecht, University Utrecht, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism (M.v.W., R.H.H.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada (M.J.B., M.L.K.)
| | - Menno P J de Winther
- Medical Biochemistry (K.H.M.P., M.P.J.d.W.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands.,Institute for Cardiovascular Prevention, Munich, Germany (M.P.J.d.W.)
| | - Albert K Groen
- From the Experimental Vascular Medicine (J.G.S., L.A., J.C.B., M.V., A.K.G., J.K.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands.,Pediatrics, Laboratory of Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands (A.K.G.)
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, Department of Medicine (J.L.W.), University of California San Diego, La Jolla
| | - Sotirios Tsimikas
- Vascular Medicine Program, Division of Cardiology, Department of Medicine, Sulpizio Cardiovascular Center (C.Y., S.T.), University of California San Diego, La Jolla
| | - Erik S G Stroes
- Vascular Medicine (R.M.H., E.S.G.S.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Jeffrey Kroon
- From the Experimental Vascular Medicine (J.G.S., L.A., J.C.B., M.V., A.K.G., J.K.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
6
|
Loregger A, Raaben M, Nieuwenhuis J, Tan JME, Jae LT, van den Hengel LG, Hendrix S, van den Berg M, Scheij S, Song JY, Huijbers IJ, Kroese LJ, Ottenhoff R, van Weeghel M, van de Sluis B, Brummelkamp T, Zelcer N. Haploid genetic screens identify SPRING/C12ORF49 as a determinant of SREBP signaling and cholesterol metabolism. Nat Commun 2020; 11:1128. [PMID: 32111832 PMCID: PMC7048761 DOI: 10.1038/s41467-020-14811-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
The sterol-regulatory element binding proteins (SREBP) are central transcriptional regulators of lipid metabolism. Using haploid genetic screens we identify the SREBP Regulating Gene (SPRING/C12ORF49) as a determinant of the SREBP pathway. SPRING is a glycosylated Golgi-resident membrane protein and its ablation in Hap1 cells, Hepa1-6 hepatoma cells, and primary murine hepatocytes reduces SREBP signaling. In mice, Spring deletion is embryonic lethal yet silencing of hepatic Spring expression also attenuates the SREBP response. Mechanistically, attenuated SREBP signaling in SPRINGKO cells results from reduced SREBP cleavage-activating protein (SCAP) and its mislocalization to the Golgi irrespective of the cellular sterol status. Consistent with limited functional SCAP in SPRINGKO cells, reintroducing SCAP restores SREBP-dependent signaling and function. Moreover, in line with the role of SREBP in tumor growth, a wide range of tumor cell lines display dependency on SPRING expression. In conclusion, we identify SPRING as a previously unrecognized modulator of SREBP signaling.
Collapse
Affiliation(s)
- Anke Loregger
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Matthijs Raaben
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Joppe Nieuwenhuis
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Josephine M E Tan
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Lucas T Jae
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.,Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor Lynen-Str. 25, 81377, Munich, Germany
| | - Lisa G van den Hengel
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Sebastian Hendrix
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Marlene van den Berg
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Saskia Scheij
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Ivo J Huijbers
- Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Lona J Kroese
- Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory of Genetic and Metabolic Diseases and Core Facility Metabolomics, Academic Medical Center of the University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands.,iPSC/CRISPR Center Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Thijn Brummelkamp
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands. .,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, A-1090, Vienna, Austria. .,Cancer Genomics Center, Amsterdam, The Netherlands.
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Barth syndrome cells display widespread remodeling of mitochondrial complexes without affecting metabolic flux distribution. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3650-3658. [PMID: 30251684 DOI: 10.1016/j.bbadis.2018.08.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/25/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022]
Abstract
Barth syndrome (BTHS) is a rare X-linked disorder that is characterized by cardiac and skeletal myopathy, neutropenia and growth abnormalities. The disease is caused by mutations in the tafazzin (TAZ) gene encoding an enzyme involved in the acyl chain remodeling of the mitochondrial phospholipid cardiolipin (CL). Biochemically, this leads to decreased levels of mature CL and accumulation of the intermediate monolysocardiolipin (MLCL). At a cellular level, this causes mitochondrial fragmentation and reduced stability of the respiratory chain supercomplexes. However, the exact mechanism through which tafazzin deficiency leads to disease development remains unclear. We therefore aimed to elucidate the pathways affected in BTHS cells by employing proteomic and metabolic profiling assays. Complexome profiling of patient skin fibroblasts revealed significant effects for about 200 different mitochondrial proteins. Prominently, we found a specific destabilization of higher order oxidative phosphorylation (OXPHOS) supercomplexes, as well as changes in complexes involved in cristae organization and CL trafficking. Moreover, the key metabolic complexes 2-oxoglutarate dehydrogenase (OGDH) and branched-chain ketoacid dehydrogenase (BCKD) were profoundly destabilized in BTHS patient samples. Surprisingly, metabolic flux distribution assays using stable isotope tracer-based metabolomics did not show reduced flux through the TCA cycle. Overall, insights from analyzing the impact of TAZ mutations on the mitochondrial complexome provided a better understanding of the resulting functional and structural consequences and thus the pathological mechanisms leading to Barth syndrome.
Collapse
|
8
|
Pyruvate dehydrogenase complex plays a central role in brown adipocyte energy expenditure and fuel utilization during short-term beta-adrenergic activation. Sci Rep 2018; 8:9562. [PMID: 29934543 PMCID: PMC6015083 DOI: 10.1038/s41598-018-27875-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/12/2018] [Indexed: 12/27/2022] Open
Abstract
Activation of brown adipose tissue (BAT) contributes to total body energy expenditure through energy dissipation as heat. Activated BAT increases the clearance of lipids and glucose from the circulation, but how BAT accommodates large influx of multiple substrates is not well defined. The purpose of this work was to assess the metabolic fluxes in brown adipocytes during β3-adrenergic receptor (β3-AR) activation.T37i murine preadipocytes were differentiated into brown adipocytes and we used Seahorse respirometry employing a set of specific substrate inhibitors in the presence or absence of β3-AR agonist CL316,243. The main substrate used by these brown adipocytes were fatty acids, which were oxidized equally during activation as well as during resting condition. [U-13C]-glucose tracer-based metabolomics revealed that the flux through the TCA cycle was enhanced and regulated by pyruvate dehydrogenase (PDH) activity. Based on 13C-tracer incorporation in lipids, it appeared that most glucose was oxidized via TCA cycle activity, while some was utilized for glycerol-3-phosphate synthesis to replenish the triglyceride pool. Collectively, we show that while fatty acids are the main substrates for oxidation, glucose is also oxidized to meet the increased energy demand during short term β3-AR activation. PDH plays an important role in directing glucose carbons towards oxidation.
Collapse
|