1
|
Fan J, Chen N, Rao W, Ding W, Wang Y, Duan Y, Wu J, Xing S. Genome-wide analysis of bZIP transcription factors and their expression patterns in response to methyl jasmonate and low-temperature stresses in Platycodon grandiflorus. PeerJ 2024; 12:e17371. [PMID: 38708338 PMCID: PMC11067905 DOI: 10.7717/peerj.17371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Background Platycodon grandiflorus belongs to the genus Platycodon and has many pharmacological effects, such as expectorant, antitussive, and anti-tumor properties. Among transcription factor families peculiar to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important, which exists widely in plants and participates in many biological processes, such as plant growth, development, and stress responses. However, genomic analysis of the bZIP gene family and related stress response genes has not yet been reported in P. grandiflorus. Methods P. grandiflorus bZIP (PgbZIP) genes were first identified here, and the phylogenetic relationships and conserved motifs in the PgbZIPs were also performed. Meanwhile, gene structures, conserved domains, and the possible protein subcellular localizations of these PgbZIPs were characterized. Most importantly, the cis-regulatory elements and expression patterns of selected genes exposed to two different stresses were analyzed to provide further information on PgbZIPs potential biological roles in P. grandiflorus upon exposure to environmental stresses. Conclusions Forty-six PgbZIPs were identified in P. grandiflorus and divided into nine groups, as displayed in the phylogenetic tree. The results of the chromosomal location and the collinearity analysis showed that forty-six PgbZIP genes were distributed on eight chromosomes, with one tandem duplication event and eleven segmental duplication events identified. Most PgbZIPs in the same phylogenetic group have similar conserved motifs, domains, and gene structures. There are cis-regulatory elements related to the methyl jasmonate (MeJA) response, low-temperature response, abscisic acid response, auxin response, and gibberellin response. Ten PgbZIP genes were selected to study their expression patterns upon exposure to low-temperature and MeJA treatments, and all ten genes responded to these stresses. The real-time quantitative polymerase chain reaction (RT-qPCR) results suggest that the expression levels of most PgbZIPs decreased significantly within 6 h and then gradually increased to normal or above normal levels over the 90 h following MeJA treatment. The expression levels of all PgbZIPs were significantly reduced after 3 h of the low-temperature treatment. These results reveal the characteristics of the PgbZIP family genes and provide valuable information for improving P. grandiflorus's ability to cope with environmental stresses during growth and development.
Collapse
Affiliation(s)
- Jizhou Fan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Na Chen
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Joint Research Center for Chinese Herbal Medicine of Anhui, Bozhou, Anhui, China
- College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, Anhui, China
| | - Weiyi Rao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yuqing Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yingying Duan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Joint Research Center for Chinese Herbal Medicine of Anhui, Bozhou, Anhui, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
2
|
Chen H, Li X, Chi H, Li Z, Wang C, Wang Q, Feng H, Li P. A Qualitative Analysis of Cultured Adventitious Ginseng Root's Chemical Composition and Immunomodulatory Effects. Molecules 2023; 29:111. [PMID: 38202694 PMCID: PMC10780104 DOI: 10.3390/molecules29010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The cultivation of ginseng in fields is time-consuming and labor-intensive. Thus, culturing adventitious ginseng root in vitro constitutes an effective approach to accumulating ginsenosides. In this study, we employed UPLC-QTOF-MS to analyze the composition of the cultured adventitious root (cAR) of ginseng, identifying 60 chemical ingredients. We also investigated the immunomodulatory effect of cAR extract using various mouse models. The results demonstrated that the cAR extract showed significant activity in enhancing the immune response in mice. The mechanism underlying the immunomodulatory effect of cAR was analyzed through network pharmacology analysis, revealing potential 'key protein targets', namely TNF, AKT1, IL-6, VEGFA, and IL-1β, affected by potential 'key components', namely the ginsenosides PPT, F1, Rh2, CK, and 20(S)-Rg3. The signaling pathways PI3K-Akt, AGE-RAGE, and MAPK may play a vital role in this process.
Collapse
Affiliation(s)
- Hong Chen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Xiangzhu Li
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Hang Chi
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Qianyun Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Hao Feng
- College of Basic Medicine Sciences, Jilin University, Changchun 130021, China;
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| |
Collapse
|
3
|
Li G, Chen J, Yang Q, Yang X, Wang P, Lei H, Mi M, Ma Q. Identification of chemical constituents in pomegranate seeds based on ultra-high-performance supercritical fluid chromatography coupled with quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37 Suppl 1:e9482. [PMID: 36718938 DOI: 10.1002/rcm.9482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Pomegranate seeds are a potential source of bioactive compounds. Nonetheless, most pomegranate seeds are discarded in the food processing industry, likely due to the lack of convincing data on their component analysis. METHODS To reveal the main chemical constituents of pomegranate seeds, a reliable and sensitive method based on ultra-high-performance supercritical fluid chromatography coupled with electrospray ionization and quadrupole time-of-flight mass spectrometry (MS) was developed. A time-dependent MSE data acquisition mode was applied to acquire the mass spectrometric data. The chemical constituents were identified by an automatic retrieval of a traditional Chinese medicine library and relevant literature. RESULTS A total number of 59 compounds, including fatty acids, sterols, vitamins, cerebrosides, phospholipids, flavonoids, phenylpropanoids, and others, were tentatively identified. Their possible fragmentation pathways and characteristic ions were proposed and elucidated. CONCLUSIONS The findings of this study, along with the developed methodology, could provide a reference for basic research on the pharmacodynamic substances of pomegranate seeds and shed light on their potential nutritional and therapeutic applications in the future.
Collapse
Affiliation(s)
- Guoping Li
- Chinese Academy of Inspection and Quarantine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Chen
- Tibetan Traditional Medical College, Lhasa, China
| | - Qing Yang
- Waters Technology Co., Ltd., Beijing, China
| | | | - Penglong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ma Mi
- Tibetan Traditional Medical College, Lhasa, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
4
|
Li Y, Wang J, Li L, Song W, Li M, Hua X, Wang Y, Yuan J, Xue Z. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Nat Prod Rep 2023; 40:1303-1353. [PMID: 36454108 DOI: 10.1039/d2np00063f] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Covering: up to 2022Pentacyclic triterpenoids are important natural bioactive substances that are widely present in plants and fungi. They have significant medicinal efficacy, play an important role in reducing blood glucose and protecting the liver, and have anti-inflammatory, anti-oxidation, anti-fatigue, anti-viral, and anti-cancer activities. Pentacyclic triterpenoids are derived from the isoprenoid biosynthetic pathway, which generates common precursors of triterpenes and steroids, followed by cyclization with oxidosqualene cyclases (OSCs) and decoration via cytochrome P450 monooxygenases (CYP450s) and glycosyltransferases (GTs). Many biosynthetic pathways of triterpenoid saponins have been elucidated by studying their metabolic regulation network through the use of multiomics and identifying their functional genes. Unfortunately, natural resources of pentacyclic triterpenoids are limited due to their low content in plant tissues and the long growth cycle of plants. Based on the understanding of their biosynthetic pathway and transcriptional regulation, plant bioreactors and microbial cell factories are emerging as alternative means for the synthesis of desired triterpenoid saponins. The rapid development of synthetic biology, metabolic engineering, and fermentation technology has broadened channels for the accumulation of pentacyclic triterpenoid saponins. In this review, we summarize the classification, distribution, structural characteristics, and bioactivity of pentacyclic triterpenoids. We further discuss the biosynthetic pathways of pentacyclic triterpenoids and involved transcriptional regulation. Moreover, the recent progress and characteristics of heterologous biosynthesis in plants and microbial cell factories are discussed comparatively. Finally, we propose potential strategies to improve the accumulation of triterpenoid saponins, thereby providing a guide for their future biomanufacturing.
Collapse
Affiliation(s)
- Yanlin Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Linyong Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Wenhui Song
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Min Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xin Hua
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Yu Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, PR China.
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
5
|
Lan L, Huang W, Zhou H, Yuan J, Miao S, Mao X, Hu Q, Ji S. Integrated Metabolome and Lipidome Strategy to Reveal the Action Pattern of Paclobutrazol, a Plant Growth Retardant, in Varying the Chemical Constituents of Platycodon Root. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206902. [PMID: 36296498 PMCID: PMC9609321 DOI: 10.3390/molecules27206902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
Abstract
Platycodon root, a medicinal food homology species which has been used in Asian countries for hundreds of years, is now widely cultivated in China. Treatment with paclobutrazol, a typical plant growth retardant, has raised uncertainties regarding the quality of Platycodon root, which have been rarely investigated. In the present study, metabolomic and lipidomic differences were revealed by ultra-high performance liquid chromatography coupled to ion mobility-quadrupole time of flight mass spectrometry (UPLC-IM-QTOF-MS). A significant decrease of platycodigenin-type saponins was observed in the paclobutrazol-treated sample. Carrying out a comprehensive quantitative analysis, the contents of total saponins and saccharides were determined to illustrate the mode of action of paclobutrazol on Platycodon root. This study demonstrated an exemplary research model in explaining how the exogenous matter influences the chemical properties of medicinal plants, and therefore might provide insights into the reasonable application of plant growth regulators.
Collapse
Affiliation(s)
- Lan Lan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Weizhen Huang
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Jiajia Yuan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Shui Miao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Xiuhong Mao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
- Correspondence: ; Tel.: +86-18001678046
| |
Collapse
|
6
|
Naboulsi I, El Fakhouri K, Lamzira R, Ramdani C, Bitchagno GTM, Boulamtat R, Bakrim WB, Mahdi I, Aboulmouhajir A, Yasri A, El Bouhssini M, Ward JL, Sobeh M. Insecticidal Activities of Atriplex halimus L., Salvia rosmarinus Spenn. and Cuminum cyminum L. against Dactylopius opuntiae (Cockerell) under Laboratory and Greenhouse Conditions. INSECTS 2022; 13:930. [PMID: 36292878 PMCID: PMC9603841 DOI: 10.3390/insects13100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The wild cochineal Dactylopius opuntiae (Hemiptera: Dactylopiidae) is one of the major insect pests of the prickly pear Opuntia ficus-indica (L.) in Morocco, a well-known fruit and vegetable crop of arid and semi-arid regions around the world. The present study investigated the insecticidal potential of six extracts (three aqueous and three hydroalcoholic (MeOH/H2O, 20/80 (v/v)) from Atriplex halimus (leaves), Salvia rosmarinus (leaves) and Cuminum cyminum (seeds) to control nymphs and adult females of D. opuntiae under laboratory and greenhouse conditions. Out of the tested samples, A. halimus aqueous extract showed the highest activity, inducing mortality rates of 67.04% (after 4 days) and 85% (after 8 days) on nymphs and adult females of D. opuntiae, respectively, at a concentration of 5% under laboratory conditions. It also showed the highest mortality rate of nymphs with 100% (4 days after application) and 83.75% of adult females (7 days after the second application) at a concentration of 5% when combined with black soap at 10 g/L under greenhouse conditions. The difference in the toxicity of plant species of the study was correlated with their saponin content. A total of 36 of these triterpene glucosides were suggested after a comprehensive LC-MSn profiling of the most active extract, A. halimus, in addition to phytoecdysones and glycosylated phenolic acids and flavonoids. These findings provided evidence that the aqueous leaf extract of A. halimus could be incorporated in the management of the wild cochineal as an alternative to chemical insecticides.
Collapse
Affiliation(s)
- Imane Naboulsi
- AgroBioSciences Program, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
- Organic Synthesis, Extraction and Valorization Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Km 8 El Jadida Road, Casablanca 20000, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Rachid Lamzira
- AgroBioSciences Program, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Chaimae Ramdani
- Entomology Laboratory, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Institutes, Rabat 10100, Morocco
| | - Gabin Thierry M. Bitchagno
- AgroBioSciences Program, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
- Computational and Analytical Sciences, Rothamsted Research, West Common, Harpenden AL5 2JQ, UK
| | - Rachid Boulamtat
- Entomology Laboratory, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Institutes, Rabat 10100, Morocco
| | - Widad Ben Bakrim
- AgroBioSciences Program, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune 70000, Morocco
| | - Ismail Mahdi
- AgroBioSciences Program, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Aziz Aboulmouhajir
- Organic Synthesis, Extraction and Valorization Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Km 8 El Jadida Road, Casablanca 20000, Morocco
| | - Abdelaziz Yasri
- AgroBioSciences Program, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Jane L. Ward
- Computational and Analytical Sciences, Rothamsted Research, West Common, Harpenden AL5 2JQ, UK
| | - Mansour Sobeh
- AgroBioSciences Program, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| |
Collapse
|
7
|
Su X, Meng F, Liu Y, Jiang W, Wang Z, Wu L, Guo X, Yao X, Wu J, Sun Z, Zha L, Gui S, Peng D, Xing S. Molecular Cloning and Functional Characterization of a β-Glucosidase Gene to Produce Platycodin D in Platycodon grandiflorus. FRONTIERS IN PLANT SCIENCE 2022; 13:955628. [PMID: 35860532 PMCID: PMC9289601 DOI: 10.3389/fpls.2022.955628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Platycodin D (PD) is a deglycosylated triterpene saponin with much higher pharmacological activity than glycosylated platycoside E (PE). Extensive studies in vitro showed that the transformation of platycoside E to platycodin D can be achieved using β-glucosidase extracted from several bacteria. However, whether similar enzymes in Platycodon grandiflorus could convert platycoside E to platycodin D, as well as the molecular mechanism underlying the deglycosylation process of platycodon E, remain unclear. Here, we identified a β-glucosidase in P. grandiflorus from our previous RNA-seq analysis, with a full-length cDNA of 1,488 bp encoding 495 amino acids. Bioinformatics and phylogenetic analyses showed that β-glucosidases in P. grandiflorus have high homology with other plant β-glucosidases. Subcellular localization showed that there is no subcellular preference for its encoding gene. β-glucosidase was successfully expressed as 6 × His-tagged fusion protein in Escherichia coli BL21 (DE3). Western blot analysis yielded a recombinant protein of approximately 68 kDa. In vitro enzymatic reactions determined that β-glucosidase was functional and could convert PE to PD. RT-qPCR analysis showed that the expression level of β-glucosidase was higher at night than during the day, with the highest expression level between 9:00 and 12:00 at night. Analysis of the promoter sequence showed many light-responsive cis-acting elements, suggesting that the light might regulate the gene. The results will contribute to the further study of the biosynthesis and metabolism regulation of triterpenoid saponins in P. grandiflorus.
Collapse
Affiliation(s)
- Xinglong Su
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Fei Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, China
| | - Weimin Jiang
- College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Zhaojian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Liping Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohu Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoyan Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zongping Sun
- Engineering Technology Research Center of Anti-aging, Chinese Herbal Medicine, Fuyang Normal University, Fuyang, China
| | - Liangping Zha
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui, Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shihai Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
8
|
Zhang Y, Zhang Y, Liang J, Kuang HX, Xia YG. Exploring the effects of different processing techniques on the composition and biological activity of Platycodon grandiflorus (Jacq.) A.DC. by metabonomics and pharmacologic design. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:114991. [PMID: 35038566 DOI: 10.1016/j.jep.2022.114991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycodon grandiflorus (Jacq.) A.DC. (PG) is a common natural medicine with a history of thousands of years. The processing products were mainly recorded as raw, honey-processed, wine-fried, yellow-fried, and bran-fried PG, which were respectively used for different clinical purposes. Therefore, it is necessary to study the chemical composition and pharmacological activity of PG after processing. AIM OF THE STUDY To explore the effects of different processing methods on the composition and biological activity of PG using metabonomics and pharmacologic design. MATERIALS AND METHODS UPLC-QTOF-MS combined with multivariate statistical analysis was used to identify different metabolites before and after the processing of PG. Network pharmacology was used to construct the metabolite-target-disease network. CCK-8 assay, flow cytometry, and western blotting were used to detect cell viability, apoptosis, and the expression of related proteins, respectively. RESULT A total of 43 differentially expressed metabolites (VIP >10) were detected and identified in the analyzed groups. Based on their chemical nature, these metabolites were divided into five categories, namely, saccharolipids, flavonoid glycosides, alkynes, saponins, and lipids (including fatty acids, phospholipids, fatty aldehydes, and sterols). The content of lipids in the five processed groups (CH, FC, JZ, MZI, and MZG) was found to be higher than that in raw PG. In particular, the processing approaches explored herein increased the contents of many phospholipids, such as, glycerophosphoinositols, phosphatidic acids, and lysophosphatidyle·thanolamines. The 8 metabolites were found by venn diagram to distinguish different processed products (metabolites 2, 6, 19, 20, 21, 26, 28, and 38). The results of network pharmacology analysis showed that the primary anti-cancer targets of 43 metabolites of PG processing products are PIK3CA, Akt, and STAT3, and based on CCK-8 assay, MZI has a significant killing effect on A549 cells, compared to other processing techniques. Moreover, flow cytometry analysis showed that the cells treated with MZI exhibit significantly increased cell apoptosis, and that the effect is dose-dependent. Finally, the western blots performed herein demonstrated that the MZI effectively inhibits the expression of p-Akt and p-STAT3, which is consistent with the network pharmacology results. CONCLUSION Depending on the processing technique, the contents of 43 different metabolites in PG were varied significantly. Specifically, the contents of phospholipids and fatty acids increase, whereas the contents of large Mw saponins decrease. Compared to the other investigated processing methods, MZI increases the potential of PG in inducing cell apoptosis and inhibiting cell proliferation by affecting the Akt and STAT3 signaling pathways. The increased levels of 3-O-β-glucopyranosyl polygalacic acid and platycoside F after honey-frying confirm these results.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Yi Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China.
| |
Collapse
|
9
|
Efficacy of the Nourishing Yin and Clearing Heat Therapy Based on Traditional Chinese Medicine in the Prevention and Treatment of Radiotherapy-Induced Oral Mucositis in Nasopharyngeal Carcinomas: A Systematic Review and Meta-Analysis of Thirty Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4436361. [PMID: 35529930 PMCID: PMC9068295 DOI: 10.1155/2022/4436361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to evaluate the efficacy of nourishing Yin and clearing heat therapy (NYCH therapy) based on traditional Chinese medicine (TCM) in the treatment of radiotherapy-induced oral mucositis (RTOM) in nasopharyngeal carcinomas (NPCs). A total of eight online databases were searched from inception to September 2021 for randomized controlled trials (RCTs). The control group was treated with Western medicine (WM) alone, whereas the experimental group was treated with a combined NYCH and WM therapy. A total of 30 RCTs involving 2562 participants were ultimately included. NYCH therapy combined with conventional WM delayed the onset time (days) of RTOM (MD = 10.80, p < 0.001), and at that time, a higher cumulative radiotherapy dose (Gy) (MD = 5.72, p < 0.001) was completed in the experimental group. The combination regimen also reduced the incidence of severe oral mucositis (Grade III–IV) (RR = 0.25, p < 0.001). In addition, the treatment efficacy of the experimental group was significantly better than that of the control group (RR = 1.31, p < 0.001). Compared with the patients in the control group, the experimental group had lower xerostomia scores (MD = -1.07, p < 0.001) and more saliva (MD = 0.36, p < 0.001). NYCH combined with WM improved the efficacy of treating RTOM in NPC. This study provides a sufficient basis for conducting further large RCTs to prove the efficacy of NYCH.
Collapse
|
10
|
Liu J, Dong Q, Du G, Wang J, An Y, Liu J, Su J, Xie H, Yin J. Identification of metabolites in plasma related to different biological activities of Panax ginseng and American ginseng. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9219. [PMID: 34740284 DOI: 10.1002/rcm.9219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Panax ginseng (PG) and American ginseng (AMG) are both medicinal plants of the Panax genus in the Acanthopanax family. Although PG and AMG have similar components of ginsenosides, there are many differences of their bioactivities. In this study, the biochemical mechanisms of different bioactivities of PG and AMG were explored by researching the differential metabolites in plasma after administration of each of PG and AMG. METHODS In order to explore the material basis of differential bioactivities, two groups of mice were administrated orally with PG and AMG, and the method of metabolomics was used to identify the differential metabolites in plasma. Then network pharmacology was used based on the differential metabolites. Afterward, the metabolite-target-pathway network of PG and AMG was constructed; thus the pathways related to different bioactivities were analyzed. RESULTS Through principal component analysis and orthogonal projections to latent structures discriminant analysis, there were 10 differential metabolites identified in the PG group and 8 differential metabolites identified in the AMG group. Based on network pharmacology, the differential metabolites were classified and related to differential bioactivities of PG and AMG. In the PG group, there were 6 metabolites related to aphrodisiac effect and exciting the nervous system, and 5 metabolites associated with raised blood pressure. In the AMG group, 5 metabolites were classified as having the effect of inhibiting the nervous system, and 6 metabolites were related to antihypertensive effect. CONCLUSIONS This study explored the material basis of the differential biological activities between PG and AMG, which is significant for the research of PG and AMG use and to promote human health.
Collapse
Affiliation(s)
- Jihua Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Qinghai Dong
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Guangguang Du
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Jia Wang
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Yang An
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Jiayin Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Jun Su
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Hongliu Xie
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Jianyuan Yin
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| |
Collapse
|
11
|
Huang W, Lan L, Zhou H, Yuan J, Shui Miao, Mao X, Hu Q, Ji S. Comprehensive profiling of Platycodonis radix in different growing regions using liquid chromatography coupled with mass spectrometry: from metabolome and lipidome aspects. RSC Adv 2022; 12:3897-3908. [PMID: 35425426 PMCID: PMC8981106 DOI: 10.1039/d1ra08285j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/22/2022] [Indexed: 11/21/2022] Open
Abstract
Platycodon grandiflorus (Jacq.) A. DC. is widely cultivated across the south and north of China. Its root, Platycodonis radix, is commonly used as a vegetable, functional food, and traditional herbal medicine with various biological benefits. It is critical to fully clarify the chemical composition of Platycodonis radix for the sake of the food industry and traditional herb markets. In this study, a strategy of metabolome and lipidome profiling based on ultra-high performance liquid chromatography coupled to ion mobility-quadrupole time of flight mass spectrometry (UPLC-IM-QTOF-MS) was developed to reveal the overall chemical composition of Platycodonis radix. IN particular, comprehensive lipidome profiling was first performed for Platycodonis radix, in which 170 lipid molecular species including 55.9% glycerophospholipids, 31.2% glycerolipids, and 12.9% sphingolipids were identified. Platycodonis radix from two major production regions in China, Inner Mongolia and Anhui province, were collected and analyzed by the MS based approach combined with multivariate statistical analysis from both the metabolome and lipidome aspects. This study threw focus on the profiling investigations of Platycodonis radix from different growing regions and provided new potential in the lipidome analysis of medicinal food.
Collapse
Affiliation(s)
- Weizhen Huang
- School of Pharmacy, Fudan University Shanghai 201203 PR China.,NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Lan Lan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Jiajia Yuan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Shui Miao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Xiuhong Mao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control Shanghai 201203 PR China
| |
Collapse
|
12
|
Dong Q, An Y, Du G, Wang J, Liu J, Su J, Xie H, Liang C, Liu J. Identification of ginsenoside metabolites in plasma related to different bioactivities of Panax notoginseng and Panax Ginseng. Biomed Chromatogr 2022; 36:e5334. [PMID: 35045586 DOI: 10.1002/bmc.5334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022]
Abstract
Although the chemical components of Panax notoginseng (PN) and Panax ginseng (PG) are similar, the bioactivities of them are different. In this study, the differential bioactivities of PN and PG were used as the research object. First, the different metabolites in the plasma after oral administration of PN and PG were analyzed by a UPLC-Q/TOF-MS-based metabolomics approach. Afterward, the metabolite-target- pathway network of PN and PG was constructed, thus the pathways related to different bioactivities were analyzed. As the results, 7 different metabolites were identified in PN group, and 10 different metabolites were identified in the PG group. In the PN group, the metabolite of N1 was related to hemostasis, N1 and N3 were related to inhibiting the nerve center, antihypertensive, and abirritation. The metabolites of N1, N3, N4, N5, and N6 were related to protecting the liver. The results showed that the metabolites of G1, G2, G3, G5, and G6 in PG group were related to anti-heart failure, and G1, G2, G6, and G9 were related to raising blood pressure. There were 13 signaling pathways related to different biological activities of PN (eight pathways) and PG (five pathways). These pathways further clarified the mechanism of action that caused the different bioactivities between PN and PG. In summary, metabolomics combined with network pharmacology could be helpful to clarify the material basis of different bioactivities between PN and PG, promoting the research on PN and PG.
Collapse
Affiliation(s)
- Qinghai Dong
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Yang An
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Guangguang Du
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Jia Wang
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Jiayin Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Jun Su
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | | | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun, P. R. China
| | - Jihua Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| |
Collapse
|
13
|
Lee SJ, Kim HW, Lee S, Kwon RH, Na H, Kim JH, Wee CD, Yoo SM, Lee SH. Characterization of Saponins from Various Parts of Platycodon grandiflorum Using UPLC-QToF/MS. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010107. [PMID: 35011337 PMCID: PMC8746516 DOI: 10.3390/molecules27010107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
Platycodon grandiflorum (PG) is known as a high-potential material in terms of its biological activity. The objective of this report is to provide chromatographic and mass fragment ion data of 38 simultaneously identified saponins, including novel compounds, by analyzing them through ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QToF/MS). In so doing, we investigated their diverse conditions, including morphological parts (stems, roots, buds, and leaves), peeling (or not), and blanching of PG. The total contents of individual saponins indicated an order of roots (containing peel, 1674.60 mg/100 g, dry weight) > buds (1364.05) > roots (without peel, 1058.83) ≈ blanched roots (without peel, 945.17) ≈ stems (993.71) ≈ leaves (881.16). When considering three types of aglycone, the platycodigenin group (55.04 ~ 68.34%) accounted for the largest proportion of the total content, whereas the platycogenic acid A group accounted for 17.83 ~ 22.61%, and the polygalacic acid group represented 12.06 ~ 22.35%. As they are classified as major compounds, novel saponins might be utilized for their role in healthy food for human consumption. Additionally, during blanching, the core temperature of PG was satisfied with the optimal condition, thus activating the enzymes related to biotransformation. Furthermore, through the use of this comprehensive data, additional studies related to buds, as well as roots or the characterization of individual saponins, can be conducted in a rapid and achievable manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sang Hoon Lee
- Correspondence: ; Tel.: +82-63-238-3562; Fax: +82-63-238-3841
| |
Collapse
|
14
|
Si Y, Jiao Y, Li L, Lin H, Wang C, Zhou B, Liu Y, Li Z, Li P. Comprehensive investigation on metabolites of Panax quinquefolium L. in two main producing areas of China based on ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4791. [PMID: 34905806 DOI: 10.1002/jms.4791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/04/2021] [Accepted: 09/23/2021] [Indexed: 06/14/2023]
Abstract
Jilin Province and Shandong Province are two main American ginseng (AG) producing areas in China. The geographical difference existed in these two provinces. Aiming at evaluating the similarities and differences of the secondary metabolites, the comprehensive metabolite profiling of AG from Jilin Province (AGJ) and Shandong Province (AGS) was performed based on UPLC-QTOF-MS for the first time. In screening analysis, a total of 111 shared compounds, with ginsenosides being major components, were identified or tentatively characterized, which indicated that AGJ and AGS were all rich in phytochemicals and contained similar structural types. Untargeted metabolomics analysis indicated that there were significant differences in the contents of certain constituents in AGJ and AGS. Nineteen (12 for AGJ, 7 for AGS) potential producing area-dependent chemical markers were discovered. Based on the contents and MS responses, ginsenoside Rg1, Re, and pseudoginsenoside F11 could be considered as the characteristical markers of AGJ, whereas ginsenoside Rg3 and Rh2 of AGS. This comprehensive phytochemical profile study could provide valuable chemical evidence for evaluating the characteristics qualities of AG from various producing areas.
Collapse
Affiliation(s)
- Yu Si
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yufeng Jiao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Le Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- Research Center of Natural Drug, Jilin University, Changchun, Jilin, China
| | - Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- Research Center of Natural Drug, Jilin University, Changchun, Jilin, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- Research Center of Natural Drug, Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Jiao Y, Si Y, Li L, Wang C, Lin H, Liu J, Liu Y, Liu J, Li P, Li Z. Comprehensive phytochemical profiling of American ginseng in Jilin province of China based on ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4787. [PMID: 34725896 DOI: 10.1002/jms.4787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
American ginseng (AG), the underground part of Panax quinquefolium L., is composed of four morphological regions, including main root (MR), lateral root (LR), fibrous root (FR), and rhizome (RH). In the clinical, MR is the main medicinal region, other regions are rarely attention. Aiming at revealing the chemical composition of AG and making better use of AG, screening analysis and metabolomic analysis were both performed to profile MR, LR, FR, and RH. First, in the systematical screening analysis, a total of 134 compounds (including 122 shared components) with various structural patterns were identified and tentatively characterized. The results indicated that the phytochemicals with various structural types were rich in MR, LR, FR, and RH. Second, 6, 4, 8, and 11 chemical markers were identified from MR, LR, FR, and RH, respectively. Seven triterpene saponins (protopanaxatriol, quinquenoside R1 , ginsenoside Rc, Rk1 , Rg1 , Re, and vinaginsenoside R1 ) might be used for rapid differentiation of four morphological regions. This comprehensive profile study of metabolites illustrated the similarities and differences of phytochemicals in four morphological regions of AG. The results could be used for the quality control of AG and furnish a basis for the further development and utilization of AG sources.
Collapse
Affiliation(s)
- Yufeng Jiao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yu Si
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Le Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Junli Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Research Center of Natural Drug, Jilin University, Changchun, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Research Center of Natural Drug, Jilin University, Changchun, China
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
16
|
Huang W, Zhou H, Yuan M, Lan L, Hou A, Ji S. Comprehensive characterization of the chemical constituents in Platycodon grandiflorum by an integrated liquid chromatography-mass spectrometry strategy. J Chromatogr A 2021; 1654:462477. [PMID: 34433124 DOI: 10.1016/j.chroma.2021.462477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Platycodon grandiflorum (PG), as a well-known medicine food homology species, possess various pharmacological effects and health benefits. Aiming to facilitate in-depth and global characterization of the chemical compositions of PG, a profiling method based on ultra-high performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry (UPLC/IM-QTOF-MS) was conducted. Consequently, as many as 187 compounds were plausibly or unambiguously identified. Most importantly, phospholipids (PLs) were first observed and identified in PG. Due to their widely confirmed bioactivities, an analysis scheme was developed by hydrophilic interaction liquid chromatography and electrospray ionization tandem mass spectrometry combined with the online Paternò-Büchi reaction (HILIC-PB-MS/MS). The fatty acyl chains and C=C locations of 180 PLs molecular species, which fell into four classes, were unprecedently characterized. This exposure strategy of multi-type constituents greatly enriches the chemical profiling of PG, and helps promoting the further development of therapeutic agents and nutraceutical products from PG.
Collapse
Affiliation(s)
- Weizhen Huang
- School of Pharmacy, Fudan University, Shanghai 201203, PR China; NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China
| | - Ming Yuan
- Waters Corporation (China), Shanghai 201206, PR China
| | - Lan Lan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China.
| | - Aijun Hou
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China.
| |
Collapse
|
17
|
Chang X, Li J, Ju M, Yu H, Zha L, Peng H, Wang J, Peng D, Gui S. Untargeted metabolomics approach reveals the tissue-specific markers of balloon flower root (Platycodi Radix) using UPLC-Q-TOF/MS. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Crescenzi MA, D’Urso G, Piacente S, Montoro P. LC-ESI/LTQOrbitrap/MS Metabolomic Analysis of Fennel Waste ( Foeniculum vulgare Mill.) as a Byproduct Rich in Bioactive Compounds. Foods 2021; 10:foods10081893. [PMID: 34441670 PMCID: PMC8392248 DOI: 10.3390/foods10081893] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Food industries produce a high amount of waste every year. These wastes represent a source of bioactive compounds to be used to produce cosmetic and nutraceutical products. In this study, the possibility to retrain food waste as a potential source of bioactive metabolites is evaluated. In particular, metabolite profiles of different parts (bulb, leaves, stems and little stems) of fennel waste were investigated by liquid chromatography coupled with mass spectrometry (LC-ESI/LTQ Orbitrap MS). To discriminate the different plant parts, a Multivariate Data Analysis approach was developed. Metabolomic analysis allowed the identification of different metabolites mainly belonging to hydroxycinnamic acid derivatives, flavonoid glycosides, flavonoid aglycons, phenolic acids, iridoid derivatives and lignans. The identification of compounds was based on retention times, accurate mass measurements, MS/MS data, exploration on specific metabolites database and comparison with data reported in the literature for F. vulgare. Moreover, the presence of different oxylipins was relieved; these metabolites for the first time were identified in fennel. Most of the metabolites identified in F. vulgare possess anti-inflammatory, antioxidant and/or immunomodulatory properties. Considering that polyphenols are described to possess antioxidant activity, spectrophotometric tests were performed to evaluate the antioxidant activity of each part of the fennel.
Collapse
|
19
|
Lee W, Lee CH, Lee J, Jeong Y, Park JH, Nam IJ, Lee DS, Lee HM, Lee J, Yun N, Song J, Choi S, Kim S. Botanical formulation, TADIOS, alleviates lipopolysaccharide (LPS)-Induced acute lung injury in mice via modulation of the Nrf2-HO-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113795. [PMID: 33421604 PMCID: PMC7832766 DOI: 10.1016/j.jep.2021.113795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE TADIOS is an herbal formulation prepared from a mixture of Taraxacum officinale (L.) Weber ex F.H.Wigg, Dioscorea batatas Decaisne and Schizonepeta tenuifolia (Benth.) Briquet. These plants have traditionally been used in Asia to treat a variety of respiratory diseases. A bulk of literature on traditional Korean medicine describe their activities and functions for respiratory problems. Therefore, we hypothesized that the combination of these plants might be effective in alleviating respiratory symptoms. AIM OF THE STUDY In this study, we investigated whether TADIOS ameliorates LPS-induced acute lung injury via regulation of the Nrf2-HO-1 signaling pathway. MATERIALS AND METHODS The LPS-induced acute lung injury mouse model was used to determine the anti-inflammatory and anti-oxidative stress effects of TADIOS. The amount of marker compounds contained in TADIOS was quantified using high-performance liquid chromatography (HPLC) analysis. The protein level of pro-inflammatory cytokines in culture supernatant was measured by ELISA. Changes in the RNA level of pro-inflammatory cytokines in mice lungs and RAW264.7 cells were measured by quantitative RT-PCR. The relative amounts of reactive oxygen species (ROS) were measured by DCF-DA assay. Western blot analysis was used to evaluate expression of cellular proteins. Effects of TADIOS on antioxidant responsive elements (AREs) were determined by luciferase assay. The severity of acute lung injury was evaluated by Hematoxylin & Eosin (H&E) staining. To test the effects of TADIOS on LPS-induced oxidative stress, myeloperoxidase (MPO) activity and the total antioxidant capacity were measured. RESULTS TADIOS was prepared by extraction of a blend of these three plants by ethanol, and quality control was performed through quantification of marker compounds by HPLC and measurement of bioactivities using cell-based bioassays. In the murine macrophage cell line RAW264.7, TADIOS effectively suppressed the production of pro-inflammatory cytokines such as IL-6 and IL-1β, and also ROS induced by LPS. When RAW264.7 cells were transfected with a luciferase reporter plasmid containing nucleotide sequences for AREs, TADIOS treatment increased the level of relative luciferase units in a dose-dependent manner. In the LPS-induced acute lung injury mouse model, orally administered TADIOS alleviated lung damage and neutrophil infiltration induced by LPS. Consistent with the in vitro data, treatment with TADIOS inhibited the LPS-mediated expression of pro-inflammatory cytokines and oxidative stress, and activated the Nrf2-HO-1 axis. CONCLUSION Our data suggest the potential for TADIOS to be developed as a safe and effective therapeutics for the treatment of acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Wonwoo Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Chang Hyung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jungkyu Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Yoonseon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jong-Hyung Park
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - In-Jeong Nam
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Doo Suk Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Hyun Myung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jaehyun Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Nayoung Yun
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Jisun Song
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Sooyeon Choi
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| | - Sunyoung Kim
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, 07794, South Korea.
| |
Collapse
|
20
|
Pei H, Su W, Gui M, Dou M, Zhang Y, Wang C, Lu D. Comparative Analysis of Chemical Constituents in Different Parts of Lotus by UPLC and QToF-MS. Molecules 2021; 26:molecules26071855. [PMID: 33806084 PMCID: PMC8036816 DOI: 10.3390/molecules26071855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Six parts of lotus (seeds, leaves, plumule, stamens, receptacles and rhizome nodes) are herbal medicines that are listed in the Chinese Pharmacopoeia. Their indications and functions have been confirmed by a long history of clinical practice. To fully understand the material basis of clinical applications, UPLC-QToF-MS combined with the UNIFI platform and multivariate statistical analysis was used in this study. As a result, a total of 171 compounds were detected and characterized from the six parts, and 23 robust biomarkers were discovered. The method can be used as a standard protocol for the direct identification and prediction of the six parts of lotus. Meanwhile, these discoveries are valuable for improving the quality control method of herbal medicines. Most importantly, this was the first time that alkaloids were detected in the stamen, and terpenoids were detected in the cored seed. The stamen is a noteworthy part because it contains the greatest diversity of flavonoids and terpenoids, but research on the stamen is rather limited.
Collapse
|
21
|
Cao GY, Geng SX, Luo Y, Tian S, Ning B, Zhuang XS, Meng ZQ. The rapid identification of chemical constituents in Fufang Xiling Jiedu capsule, a modern Chinese medicine, by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry and data mining strategy. J Sep Sci 2021; 44:1815-1823. [PMID: 33576573 DOI: 10.1002/jssc.202001093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/06/2022]
Abstract
Fufang Xiling Jiedu capsule is an effective Chinese medicine widely used for the treatment of cold and influenza. However, its chemical constituents had not been determined, which entailed a huge obstacle to further pharmacological studies, clinical-safe medication administration, and quality evaluation. To identify the chemical constituents in Fufang Xiling Jiedu capsule, an efficient and systematic approach using ultra-high-performance liquid chromatography coupled with a quadrupole time-of-flight mass spectrometry in conjunction with a data mining strategy was adopted in this study. As a result, 145 compounds were qualitatively identified, including 26 phenolic acids, 46 flavonoids, 39 triterpenes, and 34 other compounds, among which 6 were potentially new and 144 were being reported from Fufang Xiling Jiedu capsule for the first time. This research not only provides useful information for quality control of Fufang Xiling Jiedu capsule and its involved single herbs but also serve as basis data for further study of Fufang Xiling Jiedu capsule in vivo. Moreover, it provides a reference for the characterization of the chemical constituents of other Chinese medicine preparations.
Collapse
Affiliation(s)
- Gui-Yun Cao
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Shao-Xuan Geng
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Yi Luo
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Shuo Tian
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Bo Ning
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Xue-Song Zhuang
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Zhao-Qing Meng
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| |
Collapse
|
22
|
Deng Y, Ye X, Chen Y, Ren H, Xia L, Liu Y, Liu M, Liu H, Zhang H, Wang K, Zhang J, Zhang Z. Chemical Characteristics of Platycodon grandiflorum and its Mechanism in Lung Cancer Treatment. Front Pharmacol 2021; 11:609825. [PMID: 33643040 PMCID: PMC7906976 DOI: 10.3389/fphar.2020.609825] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: The technology, network pharmacology and molecular docking technology of the ultra performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) were used to explore the potential molecular mechanism of Platycodon grandiflorum (PG) in the treatment of lung cancer (LC). Methods: UPLC-Q-TOF-MS/MS technology was used to analyze the ingredients of PG and the potential LC targets were obtained from the Traditional Chinese Medicine Systems Pharmacology database, and the Analysis Platform (TCMSP), GeneCards and other databases. The interaction network of the drug-disease targets was constructed with the additional use of STRING 11.0. The pathway enrichment analysis was carried out using Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) in Metascape, and then the “Drug-Ingredients-Targets-Pathways-Disease” (D-I-T-P-D) network was constructed using Cytoscape v3.7.1. Finally, the Discovery Studio 2016 (DS) software was used to evaluate the molecular docking. Results: Forty-seven compounds in PG, including triterpenoid saponins, steroidal saponins and flavonoids, were identified and nine main bioactive components including platycodin D were screened. According to the method of data mining, 545 potential drug targets and 2,664 disease-related targets were collected. The results of topological analysis revealed 20 core targets including caspase 3 (CASP3) and prostaglandin-endoperoxide synthase 2 (PTGS2) suggesting that the potential signaling pathway potentially involved in the treatment of LC included MAPK signaling pathway and P13K-AKT signaling pathway. The results of molecular docking proved that the bound of the ingredients with potential key targets was excellent. Conclusion: The results in this study provided a novel insight in the exploration of the mechanism of action of PG against LC.
Collapse
Affiliation(s)
- Yaling Deng
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xianwen Ye
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yufan Chen
- Patient Service Center, Ganzhou People's Hospital, Ganzhou, China
| | - Hongmin Ren
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lanting Xia
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ying Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Minmin Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Haiping Liu
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Huangang Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Kairui Wang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jinlian Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhongwei Zhang
- School of Pharmacy, Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
23
|
Gao Y, Wu Y, Liu S, Liu Z, Song F, Liu Z. A strategy to comprehensively and quickly identify the chemical constituents in Platycodi Radix by ultra-performance liquid chromatography coupled with traveling wave ion mobility quadrupole time-of-flight mass spectrometry. J Sep Sci 2020; 44:691-708. [PMID: 33289296 DOI: 10.1002/jssc.202000913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 01/02/2023]
Abstract
Quick identification of the complex composition of traditional Chinese medicine only through liquid-mass spectrometry technology is difficult. Especially the identification of isomers and co-eluting compounds is even more difficult. In this study, an approach of multidimensional data modes based on ultra-performance liquid chromatography coupled with traveling wave ion mobility quadrupole time-of-flight mass spectrometry was proposed to quickly and comprehensively identify the compounds in Platycodi Radix. First, data-independent acquisition, high-definition acquisition, and tandem mass spectrometry acquisition modes were used to acquire integrated multidimensional mass spectral data. Second, summarize the diagnostic ions of compounds according to the fragmentation pathway of references. Third, unknown compounds and isomers were identified via the UNIFI™ software with an in-house library. Finally, a total of 87 compounds were identified, seven compounds were explicitly identified by comparing the retention time and fragment ions with the references. Fourteen compounds were first detected in the Platycodi Radix, four of them tentatively were identified by comparing with previous literature, eight compounds were observed and reported for the first time by comparing typical fragmentation pathway with the known standard substances in this paper. This research strategy has a certain potential for the analysis of complex components of other traditional Chinese medicine.
Collapse
Affiliation(s)
- Yang Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, P. R. China
| | - Yi Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun, P. R. China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, P. R. China
| |
Collapse
|
24
|
Yang N, Wang H, Lin H, Liu J, Zhou B, Chen X, Wang C, Liu J, Li P. Comprehensive metabolomics analysis based on UPLC-Q/TOF-MS E and the anti-COPD effect of different parts of Celastrus orbiculatus Thunb. RSC Adv 2020; 10:8396-8420. [PMID: 35497836 PMCID: PMC9049960 DOI: 10.1039/c9ra09965d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/18/2020] [Indexed: 11/26/2022] Open
Abstract
The root, stem and leaf of Celastrus orbiculatus Thunb. (COT) have all been used as Chinese folk medicine. Aiming at revealing the secondary metabolites and screening the anti-COPD effect of COT, the comprehensive phytochemical and bioassay studies were performed. Based on the ultra-high performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MSE), the screening analysis of components in COT was conducted with the UNIFI platform, the metabolomics of the three parts were analyzed with multivariate statistical analysis. Cigarette smoke extract (CSE)-stimulated inflammatory model in A549 cells was used to investigate the biological effect of the three parts. A total of 120 compounds were identified or tentatively characterized from COT. Metabolomics analysis showed that the three parts of COT were differentiated, and there were 13, 8 and 5 potential chemical markers discovered from root, stem and leaf, respectively. Five robust chemical markers with high responses could be used for further quality control in different parts of COT. The root, stem and leaf of COT could evidently reduce the levels of pro-inflammatory factors in a dose-dependent way within a certain concentration range. The stem part had a stronger anti-COPD effect than root and leaf parts. This study clarified the structural diversity of secondary metabolites and the various patterns in different parts of COT, and provided a theoretical basis for further utilization and development of COT.
Collapse
Affiliation(s)
- Na Yang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Han Wang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Junli Liu
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Xiaoling Chen
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
- Research Center of Natural Drug, Jilin University Changchun 130021 Jilin China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
- Research Center of Natural Drug, Jilin University Changchun 130021 Jilin China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| |
Collapse
|
25
|
Rapid Characterizaiton of Chemical Constituents of the Tubers of Gymnadenia conopsea by UPLC-Orbitrap-MS/MS Analysis. Molecules 2020; 25:molecules25040898. [PMID: 32085417 PMCID: PMC7070944 DOI: 10.3390/molecules25040898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Gymnadenia conopsea R. Br. is a traditional Tibetan medicinal plant that grows at altitudes above 3000 m, which is used to treat neurasthenia, asthma, coughs, and chronic hepatitis. However, a comprehensive configuration of the chemical profile of this plant has not been reported because of the complexity of its chemical constituents. In this study, a rapid and precise method based on ultra-high performance liquid chromatography (UPLC) combined with an Orbitrap mass spectrometer (UPLC–Orbitrap–MS/MS) was established in both positive- and negative-ion modes to rapidly identify various chemical components in the tubers of G. conopsea for the first time. Finally, a total of 91 compounds, including 17 succinic acid ester glycosides, 9 stilbenes, 6 phenanthrenes, 19 alkaloids, 11 terpenoids and steroids, 20 phenolic acid derivatives, and 9 others, were identified in the tubers of G. conopsea based on the accurate mass within 3 ppm error. Furthermore, many alkaloids, phenolic acid derivates, and terpenes were reported from G. conopsea for the first time. This rapid method provides an important scientific basis for further study on the cultivation, clinical application, and functional food of G. conopsea.
Collapse
|
26
|
Kim YJ, Kwon EY, Kim JW, Lee Y, Ryu R, Yun J, Kim M, Choi MS. Intervention Study on the Efficacy and Safety of Platycodon grandiflorus Ethanol Extract in Overweight or Moderately Obese Adults: A Single-Center, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2019; 11:nu11102445. [PMID: 31615016 PMCID: PMC6836286 DOI: 10.3390/nu11102445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/27/2022] Open
Abstract
Platycodon grandiflorus root extract (PGE) has shown various properties, such as anti-hyperlipidemia, anti-diabetic, and anti-obesity, but mostly in animal studies. Therefore, we conducted a preliminary study on the anti-obesity effect of PGE in 108 Korean adults (aged 20–60 years, 30 kg/m2 ≥ body mass index ≥ 23 kg/m2). The participants were randomly assigned to four groups and were administered the placebo, PGE571 (571 mg as PGE), PGE1142 (1142 mg as PGE), and PGE2855 (2855 mg as PGE), independently, for 12 weeks. Body composition, nutrient intake, computed tomography scan, and plasma adipokines, as well as hepatic/renal function markers, were assessed. The PGE571 group revealed a significant decrease in body fat mass and body fat percentage when compared with the placebo group. Moreover, the total abdominal and subcutaneous fat areas were significantly decreased following PGE (PGE2855 group) supplementation. These results provide useful information on the anti-obesity effect of PGE for overweight and obese adult humans.
Collapse
Affiliation(s)
- Ye Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyungpook National University, Daegu 41566, Korea.
| | - Eun-Young Kwon
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk DongPuk-Ku, Daegu 41566, Korea.
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Ji-Won Kim
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk DongPuk-Ku, Daegu 41566, Korea.
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Youngmi Lee
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk DongPuk-Ku, Daegu 41566, Korea.
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Ri Ryu
- Research Institute of Applied Animal Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea.
| | - Jongbok Yun
- Business Deveopment Division, GC WellBeing Corporation, Gyeonggi-do, Seongnam 13595, Korea.
| | - Manheun Kim
- Business Deveopment Division, GC WellBeing Corporation, Gyeonggi-do, Seongnam 13595, Korea.
| | - Myung-Sook Choi
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk DongPuk-Ku, Daegu 41566, Korea.
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| |
Collapse
|
27
|
Lin H, Zhu H, Tan J, Wang C, Dong Q, Wu F, Wang H, Liu J, Li P, Liu J. Comprehensive Investigation on Metabolites of Wild-Simulated American Ginseng Root Based on Ultra-High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5801-5819. [PMID: 31050418 DOI: 10.1021/acs.jafc.9b01581] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aiming to evaluate the similarities and differences of the phytochemicals in different morphological regions of wild-simulated American ginseng (WsAG) root, the comprehensive metabolite profiling of main root (MR), branch root (BR), rhizome (RH), adventitious root (AR), and fibrous root (FR) was performed on the basis of ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for the first time. First, in the screening analysis, a total of 128 shared compounds were identified or tentatively characterized. The results showed that these five parts were all rich in phytochemicals and contained similar structure types. Second, in the untargeted metabolomic study, it was found that there indeed existed differences between the MR&BR group, RH&AR group, and FR part when considering the contents of every ingredient. A total of 31 (12, 7, and 12 for MR&BR, RH&AR, and FR, respectively) potential chemical markers enabling the differentiation were discovered. This comprehensive phytochemical profile study revealed the structural diversity of secondary metabolites and the similar/different patterns in five morphological regions of WsAG root. It could provide chemical evidence for the rational application of different parts of WsAG root.
Collapse
|
28
|
Lin H, Zhu H, Tan J, Wang H, Dong Q, Wu F, Liu Y, Li P, Liu J. Non-Targeted Metabolomic Analysis of Methanolic Extracts of Wild-Simulated and Field-Grown American Ginseng. Molecules 2019; 24:molecules24061053. [PMID: 30889792 PMCID: PMC6470646 DOI: 10.3390/molecules24061053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
Aiming at revealing the structural diversity of secondary metabolites and the different patterns in wild-simulated American ginseng (WsAG) and field-grown American ginseng (FgAG), a comprehensive and unique phytochemical profile study was carried out. In the screening analysis, a total of 121 shared compounds were characterized in FgAG and WsAG, respectively. The results showed that both of these two kinds of American ginseng were rich in natural components, and were similar in terms of the kinds of compound they contained. Furthermore, in non-targeted metabolomic analysis, when taking the contents of the constituents into account, it was found that there indeed existed quite a difference between FgAG and WsAG, and 22 robust known biomarkers enabling the differentiation were discovered. For WsAG, there were 12 potential biomarkers including two ocotillol-type saponins, two steroids, six damarane-type saponins, one oleanane-type saponins and one other compound. On the other hand, for FgAG, there were 10 potential biomarkers including two organic acids, six damarane-type saponins, one oleanane-type saponin, and one ursane. In a word, this study illustrated the similarities and differences between FgAG and WsAG, and provides a basis for explaining the effect of different growth environments on secondary metabolites.
Collapse
Affiliation(s)
- Hongqiang Lin
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Hailin Zhu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Jing Tan
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Han Wang
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Qinghai Dong
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Fulin Wu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Yunhe Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Pingya Li
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
29
|
Comparative Analysis of Chemical Constituents of Moringa oleifera Leaves from China and India by Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-Of-Flight Mass Spectrometry. Molecules 2019; 24:molecules24050942. [PMID: 30866537 PMCID: PMC6429208 DOI: 10.3390/molecules24050942] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/24/2022] Open
Abstract
With the aim to discuss the similarities and differences of phytochemicals in Moringa oleifera leaves collected from China (CML) and India (IML) in mind, comparative ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS) analysis was performed in this study. A screening analysis based on a UNIFI platform was first carried out to discuss the similarities. Next, untargeted metabolomic analysis based on multivariate statistical analysis was performed to discover the differences. As a result, a total of 122 components, containing 118 shared constituents, were characterized from CML and IML. The structure types included flavonoids, alkaloids, glyosides, organic acids and organic acid esters, iridoids, lignans, and steroids, etc. For CML, 121 compounds were characterized; among these, 18 potential biomarkers with higher contents enabled differentiation from IML. For IML, 119 compounds were characterized; among these, 12 potential biomarkers with higher contents enabled differentiation from CML. It could be concluded that both CML and IML are rich in phytochemicals and that CML is similar to IML in the kinds of the compounds it contains, except for the significant differences in the contents of some compounds. This comprehensive phytochemical profile study provides a basis for explaining the effect of different growth environments on secondary metabolites and exists as a reference for further research into or applications of CML in China.
Collapse
|
30
|
Rodrigues Carvalho K, Julião Zocolo G, Alves Pereira RDC, Chaves Custódio Martins FI, Vasconcelos Ribeiro PR, Sousa de Brito E, Rocha Silveira E, Marques Canuto K. Development of a UPLC-ESI-MS method for simultaneous determination of flavonoids and diterpenes in Egletes viscosa (L.) Less herbal products. J Pharm Biomed Anal 2019; 166:155-163. [DOI: 10.1016/j.jpba.2019.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 01/19/2023]
|
31
|
Rodríguez-Pérez C, Zengin G, Segura-Carretero A, Lobine D, Mahomoodally MF. Chemical fingerprint and bioactivity evaluation of Globularia orientalis L. and Globularia trichosantha Fisch. & C. A. Mey. using non-targeted HPLC-ESI-QTOF-MS approach. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:237-252. [PMID: 30511497 DOI: 10.1002/pca.2809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/30/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
INTRODUCTION In the quest for new sources of biologically-active compounds, the chemical, and biological profiles of two Globularia species (G. trichosantha Fisch. & C. A. Mey and G. orientalis L.) were investigated. METHODOLOGY Chemical profiles were evaluated by high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS), as well as by their total phenolic, flavonoids, and phenolic acids contents. The antioxidant abilities of the investigated extracts were done using different assays including free radical scavenging [1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS)], reducing power (cupric reducing antioxidant capacity and ferric reducing antioxidant power), phosphomolybdenum, and metal chelating. Inhibitory potential against key enzymes involved in neurodegenerative diseases (cholinesterases; AChE, and BChE), diabetes (α-glucosidase and α-amylase), hyperpigmentation (tyrosinase) and obesity (pancreatic lipase) were evaluated. RESULTS Globularia trichosantha and G. orientalis extracts showed remarkable antioxidant properties, with the water extracts being a better source of antioxidant compounds. Both species showed remarkable inhibitory effects against the target enzymes. However, for both species, only the acetyl acetate and methanolic extracts were potent against cholinesterases and lipase. CONCLUSION HPLC-ESI-QTOF-MS analysis revealed the presence of 107 compounds from G. trichosantha and G. orientalis, among which, 43 compounds have been preliminarily characterised for the first time from the Globulariaceae family. To date, this study can be considered as the most comprehensive research focused on the characterisation of G. trichosantha and G. orientalis. Results amassed from this study tend to show that these plants represent a rich source of biologically active compounds which can be further explored and validated for their therapeutic potential.
Collapse
Affiliation(s)
- Celia Rodríguez-Pérez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus/Konya, Turkey
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Granada, Spain
| | - Devina Lobine
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | | |
Collapse
|
32
|
UPLC-QTOF/MS-Based Nontargeted Metabolomic Analysis of Mountain- and Garden-Cultivated Ginseng of Different Ages in Northeast China. Molecules 2018; 24:molecules24010033. [PMID: 30583458 PMCID: PMC6337476 DOI: 10.3390/molecules24010033] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023] Open
Abstract
Aiming at further systematically comparing the similarities and differences of the chemical components in ginseng of different ages, especially comparing the younger or the older and mountain-cultivated ginseng (MCG), 4, 5, 6-year-old cultivated ginseng (CG) and 12, 20-year-old MCG were chosen as the analytical samples in the present study. The combination of UPLC-QTOF-MSE, UNIFI platform and multivariate statistical analysis were developed to profile CGs and MCGs. By the screening analysis based on UNIFI, 126 chemical components with various structural types were characterized or tentatively identified from all the CG and MCG samples for the first time. The results showed that all the CG and MCG samples had the similar chemical composition, but there were significant differences in the contents of markers. By the metabolomic analysis based on multivariate statistical analysis, it was shown that CG4⁻6 years, MCG12 years and MCG20 years samples were obviously divided into three different groups, and a total of 17 potential age-dependent markers enabling differentiation among the three groups of samples were discovered. For differentiation from other two kinds of samples, there were four robust makers such as α-linolenic acid, 9-octadecenoic acid, linoleic acid and panaxydol for CG4⁻6 years, five robust makers including ginsenoside Re₁, -Re₂, -Rs₁, malonylginsenoside Rb₂ and isomer of malonylginsenoside Rb₁ for MCG20 years, and two robust makers, 24-hydroxyoleanolic acid and palmitoleic acid, for MCG12 years were discovered, respectively. The proposed approach could be applied to directly distinguish MCG root ages, which is an important criterion for evaluating the quality of MCG. The results will provide the data for the further study on the chemical constituents of MCG.
Collapse
|
33
|
Pharmacokinetic and Metabolism Studies of 12-Riboside-Pseudoginsengenin DQ by UPLC-MS/MS and UPLC-QTOF-MS E. Molecules 2018; 23:molecules23102499. [PMID: 30274288 PMCID: PMC6222672 DOI: 10.3390/molecules23102499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/22/2018] [Accepted: 09/26/2018] [Indexed: 01/19/2023] Open
Abstract
Pharmacokinetic and metabolism studies of 12-riboside-pseudoginsengenin DQ (RPDQ), a novel ginsenoside with an anti-cancer effect, were carried out, aiming at discussing the characteristics of the ginsenoside with glycosylation site at C-12. In the pharmacokinetic analysis, we developed and validated a method by UPLC-MS to quantify RPDQ in rat plasma. In the range of 5–1000 ng/mL, the assay was linear (R2 > 0.9966), with the LLOQ (lower limit of quantification) being 5 ng/mL. The LOD (limit of detection) was 1.5 ng/mL. The deviations of intra-day and inter-day, expressed as relative standard deviation (RSD), were ≤ 3.51% and ≤ 5.41% respectively. The accuracy, expressed as relative error (RE), was in the range –8.82~3.47% and –5.61~2.87%, respectively. The recoveries were in the range 85.66~92.90%. The method was then applied to a pharmacokinetic study in rats intragastrically administrated with 6, 12, and 24 mg/kg RPDQ. The results showed that RPDQ exhibited slow oral absorption (Tmax = 7.0 h, 7.5 h, and 7.0 h, respectively), low elimination (t1/2 = 12.59 h, 12.83 h, and 13.74 h, respectively) and poor absolute bioavailability (5.55, 5.15, and 6.08%, respectively). Moreover, the investigation of metabolites were carried out by UPLC-QTOF-MS. Thirteen metabolites of RPDQ were characterized from plasma, bile, urine, and feces of rats. Some metabolic pathways, including oxidation, acetylation, hydration, reduction, hydroxylation, glycine conjugation, sulfation, phosphorylation, glucuronidation, glutathione conjugation, and deglycosylation, were profiled. In general, both the rapid quantitative method and a good understanding of the characteristics of RPDQ in vivo were provided in this study.
Collapse
|
34
|
Platycodon grandiflorum Saponins Ameliorate Cisplatin-Induced Acute Nephrotoxicity through the NF-κB-Mediated Inflammation and PI3K/Akt/Apoptosis Signaling Pathways. Nutrients 2018; 10:nu10091328. [PMID: 30235825 PMCID: PMC6164643 DOI: 10.3390/nu10091328] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022] Open
Abstract
Although cisplatin is a potent chemotherapeutic agent against cancers, its clinical application is seriously limited by its severe side effects of nephrotoxicity. Previous studies reported that saponins isolated from the roots of Platycodon grandiflorum (PGS) exerted protective effects in various animal models of renal injury, with no confirmation on cisplatin-induced injury. This study was designed to investigate the protective effect of PGS (15 and 30 mg/kg) on cisplatin-induced kidney injury in mice. The levels of serum creatinine (CRE) and blood urea nitrogen (BUN), and renal histopathology demonstrated the protective effect of PGS against cisplatin-induced kidney injury. PGS exerted anti-inflammation effects via suppressing nuclear factor-kappa B (NF-κB) activation and alleviating the cisplatin-induced increase in inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in kidney tissues. The expressions of phosphorylation of phosphatidylinositol 3-kinase/protein kinase B and its downstream apoptotic factors, such as Bcl-2 and caspase families were regulated by PGS in a dose-dependent manner. In conclusion, PGS exerted kidney protection effects against cisplatin-induced kidney injury by inhibiting the activation of NF-κB and regulating PI3K/Akt/apoptosis signaling pathways in mice.
Collapse
|
35
|
Wang Y, Wang C, Lin H, Liu Y, Li Y, Zhao Y, Li P, Liu J. Discovery of the Potential Biomarkers for Discrimination between Hedyotis diffusa and Hedyotis corymbosa by UPLC-QTOF/MS Metabolome Analysis. Molecules 2018; 23:E1525. [PMID: 29941819 PMCID: PMC6100407 DOI: 10.3390/molecules23071525] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 02/08/2023] Open
Abstract
Hedyotis diffuse Willd. (HD) and Hedyotis corymbosa (L.) Lam. (HC), two closely related species of the same genus, are both used for health benefits and disease prevention in China. HC is also indiscriminately sold as HD in the wholesale chain and food markets. This confusion has led to a growing concern about their identification and quality evaluation. In order to further understand the molecular diversification between them, we focus on the screening of chemical components and the analysis of non-targeted metabolites. In this study, UPLC-QTOF-MSE, UNIFI platform and multivariate statistical analyses were used to profile them. Firstly, a total of 113 compounds, including 80 shared chemical constituents of the two plants, were identified from HC and HD by using the UNIFI platform. Secondly, the differences between two herbs were highlighted with the comparative analysis. As a result, a total of 33 robust biomarkers enabling the differentiation were discovered by using multivariate statistical analyses. For HC, there were 18 potential biomarkers (either the contents were much greater than in HD or being detected only in HC) including three iridoids, eight flavonoids, two tannins, two ketones, one alcohol and two monoterpenes. For HD, there were15 potential biomarkers (either the contents were much greater than in HC or being detected only in HD) including two iridoids, eight flavonoids, one tannin, one ketone, and three anthraquinones. With a comprehensive consideration of the contents or the MS responses of the chemical composition, Hedycoryside A and B, detected only in HC, could be used for rapid identification of HC. The compounds 1,3-dihydroxy-2-methylanthraquinone and 2-hydroxy-3-methylanthraquinone, detected only in HD, could be used for rapid identification of that plant. The systematic comparison of similarities and differences between two confusing Chinese herbs will provide reliable characterization profiles to clarify the pharmacological fundamental substances. HC should not be used as the substitute of HD.
Collapse
Affiliation(s)
- Yaru Wang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Yameng Li
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agriculture University, Xincheng Street 2888, Changchun 130118, China.
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| |
Collapse
|