1
|
Körmöczi T, Barta A, Bogár F, Ali Z, Bús C, Hohmann J, Domoki F, Ilisz I, Weiczner R, Vasas A, Berkecz R. Study of phenanthrenes from their unique mass spectrometric behavior through quantum chemical calculations to liquid chromatographic quantitation. Talanta 2025; 281:126799. [PMID: 39243441 DOI: 10.1016/j.talanta.2024.126799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Phenanthrenes and their derivatives have biological relevance owing to their antimicrobial, antioxidant, and cytotoxic effects on cancer cells. They can be efficiently analyzed through ultrahigh-performance liquid chromatography coupled to tandem high-resolution mass spectrometry (UHPLC-MS/HRMS). Herein, we first studied the unique fragmentation behavior of phenanthrenes based on direct infusion MS/HRMS analysis. As a newly described phenomenon, "organ pipe distribution", we found a structural connection linking their unique fragmentation pattern to serial H radical losses. The bonds responsible for this behavior were identified through quantum chemical calculations using a stepwise approach. Furthermore, the chromatographic aspect of this study was enhanced by developing, validating, and applying a new unscheduled targeted UHPLC-MS/HRMS method for quantifying phenanthrenes in Juncus compressus herb. Targeted compounds were efficiently separated within 4 min upon utilizing the Accucore C30 column, and the unscheduled targeted analytical approach afforded five new isomers. Compounds 1 (effususol), 3 (dehydroeffusol), and 6 (7-hydroxy-1-methyl-2-methoxy-5-vinyl-9,10-dihydrophenanthrene) had their linearity limits determined within 10-5000 nM, and Compounds 2 (effusol), 4 (juncusol), 5 (effususin A), and 7 (compressin A) within 25-5000 nM. The coefficients of variation for precision ranged from 1.4 % to 15.2 %. The obtained matrix effects and accuracy values were also within acceptable ranges. Compounds 2 (effusol) and 3 (dehydroeffusol) were present in both methanolic and dichloromethanolic extracts of Plants 1 and 3 at the highest concentrations. Furthermore, the relationship between phenanthrene fingerprints, obtained through ANOVA statistical analysis of quantitative data, and the geographical location of herbs was also established.
Collapse
Affiliation(s)
- Tímea Körmöczi
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Somogyi utca 4, H-6720, Szeged, Hungary
| | - Anita Barta
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - Ferenc Bogár
- HUN-REN-SZTE Biomimetic Systems Research Group, Hungarian Research Network, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Zahraa Ali
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Somogyi utca 4, H-6720, Szeged, Hungary
| | - Csaba Bús
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary; Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Judit Hohmann
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - Ferenc Domoki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - István Ilisz
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Somogyi utca 4, H-6720, Szeged, Hungary
| | - Roland Weiczner
- Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos sgt. 40, H-6724, Szeged, Hungary
| | - Andrea Vasas
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Somogyi utca 4, H-6720, Szeged, Hungary; Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos sgt. 40, H-6724, Szeged, Hungary.
| |
Collapse
|
2
|
Chen J, Pelc A, Ameixa J, Kossoski F, Denifl S. Low-Energy Electron Interactions with Methyl-p-benzoquinone: A Study of Negative Ion Formation. ACS OMEGA 2024; 9:38032-38043. [PMID: 39281892 PMCID: PMC11391464 DOI: 10.1021/acsomega.4c04899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
Methyl-p-benzoquinone (MpBQ, CH3C6H3(=O)2) is a prototypical molecule in the study of quinones, which are compounds of relevance in biology and several redox reactions. Understanding the electron attachment properties of MpBQ and its ability to form anions is crucial in elucidating its role in these reactions. In this study, we investigate electron attachment to MpBQ employing a crossed electron-molecular beam experiment in the electron energy range of approximately 0 to 12 eV, as well as theoretical approaches using quantum chemical and electron scattering calculations. Six anionic species were identified: C7H6O2 -, C7H5O2 -, C6H5O-, C4HO-, C2H2 -, and O-. The parent anion is formed most efficiently, with large cross sections, through two resonances at electron energies between 1 and 2 eV. Potential reaction pathways for all negative ions observed are explored, and the experimental appearance energies are compared with calculated thermochemical thresholds. Although exhibiting similar electron attachment properties to pBQ, MpBQ's additional methyl group introduces entirely new dissociative reactions, while quenching others, underscoring its distinctive chemical behavior.
Collapse
Affiliation(s)
- Jiakuan Chen
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Andrzej Pelc
- Department of Biophysics, Mass Spectrometry Laboratory, Maria Curie-Skłodowska University, Pl. M. C.-Skłodowskiej 1, 20-031 Lublin, Poland
| | - João Ameixa
- Institute of Chemistry, Hybrid Nanostructures, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| |
Collapse
|
3
|
Saqib M, Izadi F, Isierhienrhien LU, Ončák M, Denifl S. Decomposition of triazole and 3-nitrotriazole upon low-energy electron attachment. Phys Chem Chem Phys 2023; 25:13892-13901. [PMID: 37183636 PMCID: PMC10207873 DOI: 10.1039/d3cp01162c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Compounds based on nitrotriazole have been studied for their application as potential radiosensitizers for the treatment of tumors and as energetic materials. In the former application, the initial reduction of the compounds may serve as a mechanism which leads to the formation of tumor-active species. In this study, we investigated the fundamental properties of anion formation in isolated 3-nitro-1,2,4-triazole (3NTR) molecules upon attachment of low-energy electrons. The resulting product anions formed were detected via mass spectrometry. Quantum chemical calculations were performed to study the dissociation pathways and to derive the threshold energies. We also studied the attachment of electrons to the native 1H-1,2,4-triazole (TR) molecule, revealing the influence of the nitro group on anion formation. Comparing the results for these two systems, we computationally observed a considerable more stable parent anion for 3NTR, which results in significantly more effective degradation of the molecule at lower electron energies. Although characteristic fragmentation reactions in the presence of the nitro group were observed (like formation of NO2- or the release of an OH radical), the main dissociation channel for the 3NTR anion turned out to be the direct dissociation of a hydrogen radical by a single bond cleavage, which we also observed for TR as the main channel. Thus, the triazole ring shows a pronounced stability against electron attachment-induced cleavage compared, for example, to the imidazole ring, which is found in common nitroimidazolic radiosensitizers.
Collapse
Affiliation(s)
- Muhammad Saqib
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
- Center for Biomolecular Sciences Innsbruck, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Farhad Izadi
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
- Center for Biomolecular Sciences Innsbruck, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Leon U Isierhienrhien
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
- Center for Biomolecular Sciences Innsbruck, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Izadi F, Szczyrba A, Datta M, Ciupak O, Demkowicz S, Rak J, Denifl S. Electron-Induced Decomposition of 5-Bromo-4-thiouracil and 5-Bromo-4-thio-2'-deoxyuridine: The Effect of the Deoxyribose Moiety on Dissociative Electron Attachment. Int J Mol Sci 2023; 24:ijms24108706. [PMID: 37240053 DOI: 10.3390/ijms24108706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
When modified uridine derivatives are incorporated into DNA, radical species may form that cause DNA damage. This category of molecules has been proposed as radiosensitizers and is currently being researched. Here, we study electron attachment to 5-bromo-4-thiouracil (BrSU), a uracil derivative, and 5-bromo-4-thio-2'-deoxyuridine (BrSdU), with an attached deoxyribose moiety via the N-glycosidic (N1-C) bond. Quadrupole mass spectrometry was used to detect the anionic products of dissociative electron attachment (DEA), and the experimental results were supported by quantum chemical calculations performed at the M062X/aug-cc-pVTZ level of theory. Experimentally, we found that BrSU predominantly captures low-energy electrons with kinetic energies near 0 eV, though the abundance of bromine anions was rather low compared to a similar experiment with bromouracil. We suggest that, for this reaction channel, proton-transfer reactions in the transient negative ions limit the release of bromine anions.
Collapse
Affiliation(s)
- Farhad Izadi
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Adrian Szczyrba
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magdalena Datta
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Janusz Rak
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
5
|
Ameixa J, Arthur-Baidoo E, Pereira-da-Silva J, Ončák M, Ruivo J, Varella MDN, Ferreira da Silva F, Denifl S. Parent anion radical formation in coenzyme Q 0: Breaking ubiquinone family rules. Comput Struct Biotechnol J 2022; 21:346-353. [PMID: 36582437 PMCID: PMC9792397 DOI: 10.1016/j.csbj.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
We report electron attachment (EA) measurements for the parent anion radical formation from coenzyme Q0 (CoQ0) at low electron energies (<2 eV) along with quantum chemical calculations. CoQ0 may be considered a prototype for the electron withdrawing properties of the larger CoQ n molecules, in particular ubiquinone (CoQ10), an electron carrier in aerobic cell respiration. Herein, we show that the mechanisms for the parent anion radical formation of CoQ0 and CoQ n (n = 1,2,4) are remarkably distinct. Reported EA data for CoQ1, CoQ2, CoQ4 and para-benzoquinone indicated stabilization of the parent anion radicals around 1.2-1.4 eV. In contrast, we observe for the yield of the parent anion radical of CoQ0 a sharp peak at ∼ 0 eV, a shoulder at 0.07 eV and a peak around 0.49 eV. Although the mechanisms for the latter feature remain unclear, our calculations suggest that a dipole bound state (DBS) would account for the lower energy signals. Additionally, the isoprenoid side chains in CoQ n (n = 1,2,4) molecules seem to influence the DBS formation for these compounds. In contrast, the side chains enhance the parent anion radical stabilization around 1.4 eV. The absence of parent anion radical formation around 1.4 eV for CoQ0 can be attributed to the short auto-ionization lifetimes. The present results shed light on the underappreciated role played by the side chains in the stabilization of the parent anion radical. The isoprenoid tails should be viewed as co-responsible for the electron-accepting properties of ubiquinone, not mere spectators of electron transfer reactions.
Collapse
Affiliation(s)
- J. Ameixa
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
- CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Center for Molecular Biosciences (CMBI), Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - E. Arthur-Baidoo
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
- Center for Molecular Biosciences (CMBI), Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - J. Pereira-da-Silva
- CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - M. Ončák
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - J.C. Ruivo
- Institute of Physics, University of São Paulo, Rua do Matão 1731, 05508-090 São Paulo, Brazil
| | - M.T. do N. Varella
- Institute of Physics, University of São Paulo, Rua do Matão 1731, 05508-090 São Paulo, Brazil
| | - F. Ferreira da Silva
- CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - S. Denifl
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
- Center for Molecular Biosciences (CMBI), Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Lochmann C, Luxford TFM, Makurat S, Pysanenko A, Kočišek J, Rak J, Denifl S. Low-Energy Electron Induced Reactions in Metronidazole at Different Solvation Conditions. Pharmaceuticals (Basel) 2022; 15:701. [PMID: 35745620 PMCID: PMC9227036 DOI: 10.3390/ph15060701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
Metronidazole belongs to the class of nitroimidazole molecules and has been considered as a potential radiosensitizer for radiation therapy. During the irradiation of biological tissue, secondary electrons are released that may interact with molecules of the surrounding environment. Here, we present a study of electron attachment to metronidazole that aims to investigate possible reactions in the molecule upon anion formation. Another purpose is to elucidate the effect of microhydration on electron-induced reactions in metronidazole. We use two crossed electron/molecular beam devices with the mass-spectrometric analysis of formed anions. The experiments are supported by quantum chemical calculations on thermodynamic properties such as electron affinities and thresholds of anion formation. For the single molecule, as well as the microhydrated condition, we observe the parent radical anion as the most abundant product anion upon electron attachment. A variety of fragment anions are observed for the isolated molecule, with NO2- as the most abundant fragment species. NO2- and all other fragment anions except weakly abundant OH- are quenched upon microhydration. The relative abundances suggest the parent radical anion of metronidazole as a biologically relevant species after the physicochemical stage of radiation damage. We also conclude from the present results that metronidazole is highly susceptible to low-energy electrons.
Collapse
Affiliation(s)
- Christine Lochmann
- Institut für Ionenphysik und Angewandte Physik and Center for Biomolecular Sciences Innsbruck, Leopold-Franzens Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria;
| | - Thomas F. M. Luxford
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223 Prague, Czech Republic; (T.F.M.L.); (A.P.); (J.K.)
| | - Samanta Makurat
- Laboratory of Biological Sensitizers, Physical Chemistry Department, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland; (S.M.); (J.R.)
| | - Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223 Prague, Czech Republic; (T.F.M.L.); (A.P.); (J.K.)
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223 Prague, Czech Republic; (T.F.M.L.); (A.P.); (J.K.)
| | - Janusz Rak
- Laboratory of Biological Sensitizers, Physical Chemistry Department, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland; (S.M.); (J.R.)
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik and Center for Biomolecular Sciences Innsbruck, Leopold-Franzens Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria;
| |
Collapse
|
7
|
Ameixa J, Arthur‐Baidoo E, Pereira‐da‐Silva J, Ruivo JC, T. do N. Varella M, Beyer MK, Ončák M, Ferreira da Silva F, Denifl S. Formation of Temporary Negative Ions and Their Subsequent Fragmentation upon Electron Attachment to CoQ 0 and CoQ 0 H 2. Chemphyschem 2022; 23:e202100834. [PMID: 35146888 PMCID: PMC9306667 DOI: 10.1002/cphc.202100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/05/2022] [Indexed: 11/06/2022]
Abstract
Ubiquinone molecules have a high biological relevance due to their action as electron carriers in the mitochondrial electron transport chain. Here, we studied the dissociative interaction of free electrons with CoQ0 , the smallest ubiquinone derivative with no isoprenyl units, and its fully reduced form, 2,3-dimethoxy-5-methylhydroquinone (CoQ0 H2 ), an ubiquinol derivative. The anionic products produced upon dissociative electron attachment (DEA) were detected by quadrupole mass spectrometry and studied theoretically through quantum chemical and electron scattering calculations. Despite the structural similarity of the two studied molecules, remarkably only a few DEA reactions are present for both compounds, such as abstraction of a neutral hydrogen atom or the release of a negatively charged methyl group. While the loss of a neutral methyl group represents the most abundant reaction observed in DEA to CoQ0 , this pathway is not observed for CoQ0 H2 . Instead, the loss of a neutral OH radical from the CoQ0 H2 temporary negative ion is observed as the most abundant reaction channel. Overall, this study gives insights into electron attachment properties of simple derivatives of more complex molecules found in biochemical pathways.
Collapse
Affiliation(s)
- João Ameixa
- Institut für Ionenphysik und Angewandte PhysikLeopold-Franzens Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
- Center for Biomolecular Sciences Innsbruck (CMBI)Leopold-Franzens Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
- Centre of Physics and Technological ResearchDepartamento de FísicaFaculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516CaparicaPortugal
| | - Eugene Arthur‐Baidoo
- Institut für Ionenphysik und Angewandte PhysikLeopold-Franzens Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
- Center for Biomolecular Sciences Innsbruck (CMBI)Leopold-Franzens Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - João Pereira‐da‐Silva
- Centre of Physics and Technological ResearchDepartamento de FísicaFaculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516CaparicaPortugal
| | - Júlio C. Ruivo
- Instituto de FísicaUniversidade de São PauloRua do Matão 173105508-090São PauloBrazil
| | | | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikLeopold-Franzens Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikLeopold-Franzens Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Filipe Ferreira da Silva
- Centre of Physics and Technological ResearchDepartamento de FísicaFaculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516CaparicaPortugal
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte PhysikLeopold-Franzens Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
- Center for Biomolecular Sciences Innsbruck (CMBI)Leopold-Franzens Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
8
|
Liu C, Zheng Y, Sanche L. Damage Induced to DNA and Its Constituents by 0-3 eV UV Photoelectrons †. Photochem Photobiol 2021; 98:546-563. [PMID: 34767635 DOI: 10.1111/php.13559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/07/2021] [Indexed: 11/28/2022]
Abstract
The complex physical and chemical interactions between DNA and 0-3 eV electrons released by UV photoionization can lead to the formation of various lesions such as base modifications and cleavage, crosslinks and single strand breaks. Furthermore, in the presence of platinum chemotherapeutic agents, these electrons can cause clustered lesions, including double strand breaks. We explain the mechanisms responsible for these damages via the production 0-3 eV electrons by UVC radiation, and by UV photons of any wavelengths, when they are produced by photoemission from nanoparticles lying within about 10 nm from DNA. We review experimental evidence showing that a single 0-3 eV electron can produce these damages. The foreseen benefits UV-irradiation of nanoparticles targeted to the cell nucleus are mentioned in the context of cancer therapy, as well as the potential hazards to human health when they are present in cells.
Collapse
Affiliation(s)
- Chaochao Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, China
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, China
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
9
|
Ziegler P, Pelc A, Arthur-Baidoo E, Ameixa J, Ončák M, Denifl S. Negative ion formation and fragmentation upon dissociative electron attachment to the nicotinamide molecule. RSC Adv 2021; 11:32425-32434. [PMID: 35495526 PMCID: PMC9041917 DOI: 10.1039/d1ra06083j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide (C6H6N2O) is a biologically relevant molecule. This compound has several important roles related to the anabolic and metabolic processes that take place in living organisms. It is also used as a radiosensitizer in tumor therapy. As a result of the interaction of high-energy radiation with matter, low-energy electrons are also released, which can also interact with other molecules, forming several types of ions. In the present investigation, dissociative electron attachment to C6H6N2O has been studied in a crossed electron-molecular beams experiment in the electron energy range of about 0-15 eV. In the experiment, six anionic species were detected: C6H5N2O-, C5H4N-, NCO-, O-/NH2 -, and CN-, with NCO- being the most prominent anion. We also provide detailed computational results regarding the energetic thresholds and pathways of the respective dissociative electron attachment (DEA) channels. The experimental results are compared with the theoretical ones and on this basis, the possible DEA reactions for the formation of anions at a given resonance energy were assigned as well as the generation of neutrals fragments such as pyridine and its several derivatives and radicals are predicted. The pyridine ring seems to stay intact during the DEA process.
Collapse
Affiliation(s)
- Patrick Ziegler
- Institute for Ion Physics and Applied Physics, University of Innsbruck Technikerstrasse 25 6020 Innsbruck Austria
| | - Andrzej Pelc
- Maria Curie-Skłodowska University, Department of Biophysics, Mass Spectrometry Laboratory Pl. M. C.-Skłodowskiej 1 20-031 Lublin Poland
| | - Eugene Arthur-Baidoo
- Institute for Ion Physics and Applied Physics, University of Innsbruck Technikerstrasse 25 6020 Innsbruck Austria
| | - Joao Ameixa
- Institute for Ion Physics and Applied Physics, University of Innsbruck Technikerstrasse 25 6020 Innsbruck Austria
- Centre of Physics and Technological Research, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Milan Ončák
- Institute for Ion Physics and Applied Physics, University of Innsbruck Technikerstrasse 25 6020 Innsbruck Austria
| | - Stephan Denifl
- Institute for Ion Physics and Applied Physics, University of Innsbruck Technikerstrasse 25 6020 Innsbruck Austria
| |
Collapse
|
10
|
Pereira-da-Silva J, Rodrigues R, Ramos J, Brígido C, Botnari A, Silvestre M, Ameixa J, Mendes M, Zappa F, Mullock SJ, Araújo JMM, Varella MTDN, Cornetta LM, da Silva FF. Electron Driven Reactions in Tetrafluoroethane: Positive and Negative Ion Formation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1459-1468. [PMID: 33998788 DOI: 10.1021/jasms.1c00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the search for alternatives to chlorine-containing gases, tetrafluoroethane, CF3CH2F (R134a), a widely used refrigerant gas, has been recognized as a promising substitute for dichlorodifluoromethane, CCl2F2 (R12). When R12 is replaced by R134a, the global warming potential drops from 8100 to 1430, the ozone depletion potential changes from 1 to 0, and the atmospheric lifetime decreases from 100 to 14 years. Electron interactions in the gas phase play a fundamental role in the atmospheric sciences. Here, we present a detailed study on electron-driven fragmentation pathways of CF3CH2F, in which we have investigated processes induced by both electron ionization and electron attachment. The measurements allow us to report the ion efficiency curves for ion formation in the energy range of 0 up to 25 eV. For positive ion formation, R134a dissociates into a wide assortment of ions, in which CF3+ is observed as the most abundant out of seven ions with a relative intensity above 2%. The results are supported by quantum chemical calculations based on bound state techniques, electron-impact ionization models, and electron-molecule scattering simulations, showing a good agreement. Moreover, the experimental first ionization potential was found at 13.10 ± 0.17 eV and the second at around 14.25 eV. For negative ion formation, C2F3- was detected as the only anion formed, above 8.3 eV. This study demonstrates the role of electrons in the dissociation of R134a, which is relevant for an improvement of the refrigeration processes as well as in atmospheric chemistry and plasma sciences.
Collapse
Affiliation(s)
- João Pereira-da-Silva
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Rodrigo Rodrigues
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - João Ramos
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos Brígido
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Alexandru Botnari
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Miguel Silvestre
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - João Ameixa
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Mónica Mendes
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Fábio Zappa
- Departamento de Física-ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Stephen J Mullock
- Kore Technology Ltd., Cambridge Science Park, Cambridge CB4 4WF, U.K
| | - João M M Araújo
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Márcio T do N Varella
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, 05508-090 São Paulo, Brazil
| | - Lucas M Cornetta
- Instituto de Física Gleb Wataghin da Universidade Estadual de Campinas, 13083-859 Campinas, Brazil
| | - Filipe Ferreira da Silva
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
11
|
Arthur-Baidoo E, Ameixa J, Ončák M, Denifl S. Ring-Selective Fragmentation in the Tirapazamine Molecule upon Low-Energy Electron Attachment. Int J Mol Sci 2021; 22:ijms22063159. [PMID: 33808887 PMCID: PMC8003736 DOI: 10.3390/ijms22063159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
We investigate dissociative electron attachment to tirapazamine through a crossed electron-molecule beam experiment and quantum chemical calculations. After the electron is attached and the resulting anion reaches the first excited state, D1, we suggest a fast transition into the ground electronic state through a conical intersection with a distorted triazine ring that almost coincides with the minimum in the D1 state. Through analysis of all observed dissociative pathways producing heavier ions (90-161 u), we consider the predissociation of an OH radical with possible roaming mechanism to be the common first step. This destabilizes the triazine ring and leads to dissociation of highly stable nitrogen-containing species. The benzene ring is not altered during the process. Dissociation of small anionic fragments (NO2-, CN2-, CN-, NH2-, O-) cannot be conclusively linked to the OH predissociation mechanism; however, they again do not require dissociation of the benzene ring.
Collapse
Affiliation(s)
- Eugene Arthur-Baidoo
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria; (E.A.-B.); (J.A.)
- Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria
| | - Joao Ameixa
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria; (E.A.-B.); (J.A.)
- Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria
- Atomic and Molecular Collisions Laboratory, Department of Physics, CEFITEC, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Milan Ončák
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria; (E.A.-B.); (J.A.)
- Correspondence: (M.O.); (S.D.)
| | - Stephan Denifl
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria; (E.A.-B.); (J.A.)
- Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria
- Correspondence: (M.O.); (S.D.)
| |
Collapse
|
12
|
Meißner R, Feketeová L, Bayer A, Limão-Vieira P, Denifl S. Formation of negative and positive ions in the radiosensitizer nimorazole upon low-energy electron collisions. J Chem Phys 2021; 154:074306. [PMID: 33607883 DOI: 10.1063/5.0040045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A comprehensive investigation of low-energy electron attachment and electron ionization of the nimorazole radiosensitizer used in cancer radiation therapy is reported by means of a gas-phase crossed beam experiment in an electron energy range from 0 eV to 70 eV. Regarding negative ion formation, we discuss the formation of fifteen fragment anions in the electron energy range of 0 eV-10 eV, where the most intense signal is assigned to the nitrogen dioxide anion NO2 -. The other fragment anions have been assigned to form predominantly from a common temporary negative ion state close to 3 eV of the nitroimidazole moiety, while the morpholine moiety seems to act only as a spectator in the dissociative electron attachment event to nimorazole. Quantum chemical calculations have been performed to help interpreting the experimental data with thermochemical thresholds, electron affinities, and geometries of some of the neutral molecules. As far as positive ion formation is concerned, the mass spectrum at the electron energy of 70 eV shows a weakly abundant parent ion and C5H10NO+ as the most abundant fragment cation. We report appearance energy (AE) measurements for six cations. For the intact nimorazole molecular cation, the AE of 8.16 ± 0.05 eV was obtained, which is near the presently calculated adiabatic ionization energy.
Collapse
Affiliation(s)
- R Meißner
- Institute for Ion Physics and Applied Physics and Center for Biomolecular Sciences (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - L Feketeová
- Institute for Ion Physics and Applied Physics and Center for Biomolecular Sciences (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - A Bayer
- Institute for Ion Physics and Applied Physics and Center for Biomolecular Sciences (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - P Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - S Denifl
- Institute for Ion Physics and Applied Physics and Center for Biomolecular Sciences (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
13
|
Powell T, Knight MJ, Wood A, O'Hara J, Burkitt W. Photoinduced cross-linking of formulation buffer amino acids to monoclonal antibodies. Eur J Pharm Biopharm 2021; 160:35-41. [PMID: 33508437 DOI: 10.1016/j.ejpb.2021.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/22/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022]
Abstract
The correct choice of formulation buffer is a critical aspect of drug development and is chosen primarily to improve the stability of a protein therapeutic and protect against degradation. Amino acids are frequently incorporated into formulation buffers. In this study we have identified and characterized light induced cross-links between the side chain of histidine residues in an IgG4 monoclonal antibody and different amino acids commonly used in formulation buffers. These reactions have the potential to impact the overall product quality of the drug. The structure of each cross-link identified was elucidated using high performance liquid chromatography (HPLC) hyphenated to tandem mass spectrometry (MS/MS) with higher energy collisional dissociation (HCD). Furthermore, we speculate on the role of amino acids in formulation buffers and their influence on mAb stability. We theorize that whilst the adduction of formulation buffer amino acids could have a negative impact on product quality, it may protect against other pathways of photo-degradation.
Collapse
Affiliation(s)
- Thomas Powell
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK.
| | - Michael J Knight
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| | - Amanda Wood
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| | - John O'Hara
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| | - William Burkitt
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| |
Collapse
|
14
|
Saqib M, Arthur-Baidoo E, Ončák M, Denifl S. Electron Attachment Studies with the Potential Radiosensitizer 2-Nitrofuran. Int J Mol Sci 2020; 21:ijms21238906. [PMID: 33255344 PMCID: PMC7727711 DOI: 10.3390/ijms21238906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Nitrofurans belong to the class of drugs typically used as antibiotics or antimicrobials. The defining structural component is a furan ring with a nitro group attached. In the present investigation, electron attachment to 2-nitrofuran (C4H3NO3), which is considered as a potential radiosensitizer candidate for application in radiotherapy, has been studied in a crossed electron-molecular beams experiment. The present results indicate that low-energy electrons with kinetic energies of about 0-12 eV effectively decompose the molecule. In total, twelve fragment anions were detected within the detection limit of the apparatus, as well as the parent anion of 2-nitrofuran. One major resonance region of ≈0-5 eV is observed in which the most abundant anions NO2-, C4H3O-, and C4H3NO3- are detected. The experimental results are supported by ab initio calculations of electronic states in the resulting anion, thermochemical thresholds, connectivity between electronic states of the anion, and reactivity analysis in the hot ground state.
Collapse
Affiliation(s)
- Muhammad Saqib
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Center for Biomolecular Sciences Innsbruck, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Eugene Arthur-Baidoo
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Center for Biomolecular Sciences Innsbruck, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Milan Ončák
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Correspondence: (M.O.); (S.D.)
| | - Stephan Denifl
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (M.S.); (E.A.-B.)
- Center for Biomolecular Sciences Innsbruck, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
- Correspondence: (M.O.); (S.D.)
| |
Collapse
|