1
|
Zhong R, Zhou D, Chen L, Rose JP, Wang BC, Ye ZH. Plant Cell Wall Polysaccharide O-Acetyltransferases. PLANTS (BASEL, SWITZERLAND) 2024; 13:2304. [PMID: 39204739 PMCID: PMC11360243 DOI: 10.3390/plants13162304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Plant cell walls are largely composed of polysaccharide polymers, including cellulose, hemicelluloses (xyloglucan, xylan, mannan, and mixed-linkage β-1,3/1,4-glucan), and pectins. Among these cell wall polysaccharides, xyloglucan, xylan, mannan, and pectins are often O-acetylated, and polysaccharide O-acetylation plays important roles in cell wall assembly and disease resistance. Genetic and biochemical analyses have implicated the involvement of three groups of proteins in plant cell wall polysaccharide O-acetylation: trichome birefringence-like (TBL)/domain of unknown function 231 (DUF231), reduced wall acetylation (RWA), and altered xyloglucan 9 (AXY9). Although the exact roles of RWAs and AXY9 are yet to be identified, members of the TBL/DUF231 family have been found to be O-acetyltransferases responsible for the O-acetylation of xyloglucan, xylan, mannan, and pectins. Here, we provide a comprehensive overview of the occurrence of O-acetylated cell wall polysaccharides, the biochemical properties, structural features, and evolution of cell wall polysaccharide O-acetyltransferases, and the potential biotechnological applications of manipulations of cell wall polysaccharide acetylation. Further in-depth studies of the biochemical mechanisms of cell wall polysaccharide O-acetylation will not only enrich our understanding of cell wall biology, but also have important implications in engineering plants with increased disease resistance and reduced recalcitrance for biofuel production.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dayong Zhou
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - John P. Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Zhang M, Zu H, Zhuang X, Yu Y, Wang Y, Zhao Z, Zhou Y. Structural analyses of the HG-type pectin from notopterygium incisum and its effects on galectins. Int J Biol Macromol 2020; 162:1035-1043. [DOI: 10.1016/j.ijbiomac.2020.06.216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/08/2020] [Accepted: 06/23/2020] [Indexed: 01/24/2023]
|
3
|
Zeuner B, Thomsen TB, Stringer MA, Krogh KBRM, Meyer AS, Holck J. Comparative Characterization of Aspergillus Pectin Lyases by Discriminative Substrate Degradation Profiling. Front Bioeng Biotechnol 2020; 8:873. [PMID: 32850731 PMCID: PMC7406575 DOI: 10.3389/fbioe.2020.00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/07/2020] [Indexed: 11/13/2022] Open
Abstract
Fungal genomes often contain several copies of genes that encode carbohydrate active enzymes having similar activity. The copies usually have slight sequence variability, and it has been suggested that the multigenecity represents distinct reaction optima versions of the enzyme. Whether the copies represent differences in substrate attack proficiencies of the enzyme have rarely been considered. The genomes of Aspergillus species encode several pectin lyases (EC 4.2.2.10), which all belong to polysaccharide lyase subfamily PL1_4 in the CAZy database. The enzymes differ in terms of sequence identity and phylogeny, and exhibit structural differences near the active site in their homology models. These enzymes catalyze pectin degradation via eliminative cleavage of the α-(1,4) glycosidic linkages in homogalacturonan with a preference for linkages between methyl-esterified galacturonate residues. This study examines four different pectin lyases (PelB, PelC, PelD, and PelF) encoded by the same Aspergillus sp. (namely A. luchuensis), and further compares two PelA pectin lyases from two related Aspergillus spp. (A. aculeatus and A. tubingensis). We report the phylogeny, enzyme kinetics, and enzymatic degradation profiles of the enzymes' action on apple pectin, citrus pectin, and sugar beet pectin. All the pectin lyases exerted highest reaction rate on apple pectin [degree of methoxylation (DM) 69%, degree of acetylation (DAc) 2%] and lowest reaction rate on sugar beet pectin (DM 56%, DAc 19%). Activity comparison at pH 5-5.5 produced the following ranking: PelB > PelA > PelD > PelF > PelC. The evolution of homogalacturonan-oligomer product profiles during reaction was analyzed by liquid chromatography with mass spectrometry (LC-MS) detection. This analyses revealed subtle differences in the product profiles indicating distinct substrate degradation preferences amongst the enzymes, notably with regard to acetyl substitutions. The LC-MS product profiling analysis thus disclosed that the multigenecity appears to provide the fungus with additional substrate degradation versatility. This product profiling furthermore represents a novel approach to functionally compare pectin-degrading enzymes, which can help explain structure-function relations and reaction properties of disparate copies of carbohydrate active enzymes. A better understanding of the product profiles generated by pectin modifying enzymes has significant implications for targeted pectin modification in food and biorefinery processes.
Collapse
Affiliation(s)
- Birgitte Zeuner
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Thore Bach Thomsen
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
4
|
Philippe F, Pelloux J, Rayon C. Plant pectin acetylesterase structure and function: new insights from bioinformatic analysis. BMC Genomics 2017; 18:456. [PMID: 28595570 PMCID: PMC5465549 DOI: 10.1186/s12864-017-3833-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background Pectins are plant cell wall polysaccharides that can be acetylated on C2 and/or C3 of galacturonic acid residues. The degree of acetylation of pectin can be modulated by pectin acetylesterase (EC 3.1.1.6, PAE). The function and structure of plant PAEs remain poorly understood and the role of the fine-tuning of pectin acetylation on cell wall properties has not yet been elucidated. Results In the present study, a bioinformatic approach was used on 72 plant PAEs from 16 species among 611 plant PAEs available in plant genomic databases. An overview of plant PAE proteins, particularly Arabidopsis thaliana PAEs, based on phylogeny analysis, protein motif identification and modeled 3D structure is presented. A phylogenetic tree analysis using protein sequences clustered the plant PAEs into five clades. AtPAEs clustered in four clades in the plant kingdom PAE tree while they formed three clades when a phylogenetic tree was performed only on Arabidopsis proteins, due to isoform AtPAE9. Primitive plants that display a smaller number of PAEs clustered into two clades, while in higher plants, the presence of multiple members of PAE genes indicated a diversification of AtPAEs. 3D homology modeling of AtPAE8 from clade 2 with a human Notum protein showed an α/β hydrolase structure with the hallmark Ser-His-Asp of the active site. A 3D model of AtPAE4 from clade 1 and AtPAE10 from clade 3 showed a similar shape suggesting that the diversification of AtPAEs is unlikely to arise from the shape of the protein. Primary structure prediction analysis of AtPAEs showed a specific motif characteristic of each clade and identified one major group of AtPAEs with a signal peptide and one group without a signal peptide. A multiple sequence alignment of the putative plant PAEs revealed consensus sequences with important putative catalytic residues: Ser, Asp, His and a pectin binding site. Data mining of gene expression profiles of AtPAE revealed that genes from clade 2 including AtPAE7, AtPAE8 and AtPAE11, which are duplicated genes, are highly expressed during plant growth and development while AtPAEs without a signal peptide, including AtPAE2 and AtPAE4, are more regulated in response to plant environmental conditions. Conclusion Bioinformatic analysis of plant, and particularly Arabidopsis, AtPAEs provides novel insights, including new motifs that could play a role in pectin binding and catalytic sites. The diversification of AtPAEs is likely to be related to neofunctionalization of some AtPAE genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3833-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Philippe
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039, Amiens, France
| | - Jérôme Pelloux
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039, Amiens, France
| | - Catherine Rayon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039, Amiens, France.
| |
Collapse
|
5
|
Lv Y, Shan X, Zhao X, Cai C, Zhao X, Lang Y, Zhu H, Yu G. Extraction, Isolation, Structural Characterization and Anti-Tumor Properties of an Apigalacturonan-Rich Polysaccharide from the Sea Grass Zostera caespitosa Miki. Mar Drugs 2015; 13:3710-31. [PMID: 26110894 PMCID: PMC4483652 DOI: 10.3390/md13063710] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/03/2023] Open
Abstract
An apigalacturonan (AGA)-rich polysaccharide, ZCMP, was isolated from the sea grass Zostera caespitosa Miki. The depolymerized fragments derived from ZCMP were obtained by either acidic degradation or pectinase degradation, and their structures were characterized by electrospray ionization collision-induced-dissociation mass spectrometry (ESI-CID-MS2) and nuclear magnetic resonance (NMR) spectroscopy. The average molecular weight of ZCMP was 77.2 kD and it consisted of galacturonic acid (GalA), apiosefuranose (Api), galactose (Gal), rhamnose (Rha), arabinose (Ara), xylose (Xyl), and mannose (Man), at a molar ratio of 51.4꞉15.5꞉6.0꞉11.8꞉4.2꞉4.4꞉4.2. There were two regions of AGA (70%) and rhamnogalacturonan-I (RG-Ι, 30%) in ZCMP. AGA was composed of an α-1,4-D-galactopyranosyluronan backbone mainly substituted at the O-3 position by single Api residues. RG-Ι possessed a backbone of repeating disaccharide units of →4GalAα1,2Rhaα1→, with a few α-L-arabinose and β-D-galactose residues as side chains. The anti-angiogenesis assay showed that ZCMP inhibited the migratory activity of human umbilical vein endothelial cell (HUVECs), with no influence on endothelial cells growth. ZCMP also promoted macrophage phagocytosis. These findings of the present study demonstrated the potential anti-tumor activity of ZCMP through anti-angiogenic and immunoregulatory pathways.
Collapse
Affiliation(s)
- Youjing Lv
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xindi Shan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China.
| | - Xiaoliang Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Yinzhi Lang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - He Zhu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Quéméner B, Vigouroux J, Rathahao E, Tabet JC, Dimitrijevic A, Lahaye M. Negative electrospray ionization mass spectrometry: a method for sequencing and determining linkage position in oligosaccharides from branched hemicelluloses. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:247-64. [PMID: 25601700 DOI: 10.1002/jms.3528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 05/04/2023]
Abstract
Xyloglucans of apple, tomato, bilberry and tamarind were hydrolyzed by commercial endo β-1-4-D-endoglucanase. The xylo-gluco-oligosaccharides (XylGos) released were separated on CarboPac PA 200 column in less than 15 min, and, after purification, they were structurally characterized by negative electrospray ionization mass spectrometry using a quadrupole time-of-flight (ESI-Q-TOF), a hybrid linear ion trap (LTQ)/Orbitrap and a hybrid quadrupole Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. In order to corroborate the fragmentation routes observed on XylGos, some commercial galacto-manno-oligosaccharides (GalMOs) and glucurono-xylo-oligosaccharides were also studied. The fragmentation pathways of the ionized GalMos were similar to those of XylGos ones. The product ion spectra were mainly characterized by prominent double cleavage (D) ions corresponding to the entire inner side chains. The directed fragmentation from the reducing end to the other end was observed for the main glycosylated backbone but also for the side-chains, allowing their complete sequencing. Relevant cross-ring cleavage ions from (0,2)X(j)-type revealed to be diagnostic of the 1-2-linked- glycosyl units from XylGos together with the 1-2-linked glucuronic acid unit from glucuronoxylans. Resonant activation in the LTQ Orbitrap allowed not only determining the type of all linkages but also the O-acetyl group location on fucosylated side-chains. Moreover, the fragmentation of the different side chains using the MS(n) capabilities of the LTQ/Orbitrap analyzer also allowed differentiating terminal arabinosyl and xylosyl substituents inside S and U side-chains of XylGos, respectively. The CID spectra obtained were very informative for distinction of isomeric structures differing only in their substitution pattern. These features together makes the fragmentation in negative ionization mode a relevant and powerful technique useful to highlight the subtle structural changes generally observed during the development of plant organs such as during fruit ripening and for the screening of cell wall mutants with altered hemicellulose structure.
Collapse
Affiliation(s)
- Bernard Quéméner
- INRA, Biopolymères, Interactions, Assemblage, Rue de la Géraudière BP 71627, F-44316, Nantes, France
| | | | | | | | | | | |
Collapse
|
7
|
Remoroza C, Wagenknecht M, Gu F, Buchholt H, Moerschbacher B, Schols H, Gruppen H. A Bacillus licheniformis pectin acetylesterase is specific for homogalacturonans acetylated at O-3. Carbohydr Polym 2014; 107:85-93. [DOI: 10.1016/j.carbpol.2014.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/21/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
|
8
|
Remoroza C, Buchholt H, Gruppen H, Schols H. Descriptive parameters for revealing substitution patterns of sugar beet pectins using pectolytic enzymes. Carbohydr Polym 2014; 101:1205-15. [DOI: 10.1016/j.carbpol.2013.10.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/12/2013] [Accepted: 10/13/2013] [Indexed: 11/16/2022]
|
9
|
Huang JH, Bakx EJ, Gruppen H, Schols HA. Characterisation of 3-aminoquinoline-derivatised isomeric oligogalacturonic acid by travelling-wave ion mobility mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2279-85. [PMID: 24019194 DOI: 10.1002/rcm.6692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 05/16/2023]
Abstract
RATIONALE Mass spectrometry has become a useful technique for elucidating the chemical structures of oligosaccharides. The combined use of chromatography and mass spectrometry for the separation and identification of oligosaccharides has shown much progress in recent years. However, no powerful method has yet been developed to quickly identify isomeric oligosaccharides in complex mixtures. METHODS A rapid travelling-wave ion mobility mass spectrometry (TWIMS-MS) method was developed for the identification of various isomeric oligogalacturonic acids in mixtures and determined their structures, using 3-aminoquinoline (3-AQ) as a labelling agent. RESULTS TWIMS successfully distinguished isomeric oligogalacturonic acids of various degrees of polymerisation (DPs) and levels of methyl-esterification. After derivatisation by 3-AQ, isomeric oligosaccharides of galacturonic acid, with the DP ranging from 2 to 9 and the number of methyl esters ranging from 1 to 5, were identified by 3-AQ-TWIMS-MS. The isomeric oligosaccharides with varying sites of methyl ester substitution were identified by the post-fragmentation mode of TWIMS using 3-AQ labelling to obtain simplified mass spectra. CONCLUSIONS Using the 3-AQ-TWIMS-MS method, the precise distribution of methyl esters within the pectin molecule and isomeric oligogalacturonic acids after enzyme degradation was determined. Simplified product ion mass spectra and precise analysis of the isomers were achieved by labelling 3-AQ at the reducing end of the oligosaccharides. Series of methyl-esterified galacturonic acid oligomers have predictable drift times, depending on the precise position of the methyl ester.
Collapse
Affiliation(s)
- Jie-Hong Huang
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
10
|
Remoroza C, Cord-Landwehr S, Leijdekkers A, Moerschbacher B, Schols H, Gruppen H. Combined HILIC-ELSD/ESI-MSn enables the separation, identification and quantification of sugar beet pectin derived oligomers. Carbohydr Polym 2012; 90:41-8. [DOI: 10.1016/j.carbpol.2012.04.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/21/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
|
11
|
Bauer S. Mass spectrometry for characterizing plant cell wall polysaccharides. FRONTIERS IN PLANT SCIENCE 2012; 3:45. [PMID: 22645587 PMCID: PMC3355817 DOI: 10.3389/fpls.2012.00045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/23/2012] [Indexed: 05/23/2023]
Abstract
Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching, and modifications are obtained from characteristic fragmentation patterns.
Collapse
Affiliation(s)
- Stefan Bauer
- Energy Biosciences Institute, University of CaliforniaBerkeley, CA, USA
| |
Collapse
|
12
|
Gou JY, Miller LM, Hou G, Yu XH, Chen XY, Liu CJ. Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. THE PLANT CELL 2012; 24:50-65. [PMID: 22247250 PMCID: PMC3289554 DOI: 10.1105/tpc.111.092411] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/02/2011] [Accepted: 12/22/2011] [Indexed: 05/17/2023]
Abstract
Pectin is a major component of the primary cell wall of higher plants. Some galacturonyl residues in the backbone of pectinaceous polysaccharides are often O-acetylated at the C-2 or C-3 position, and the resulting acetylesters change dynamically during the growth and development of plants. The processes involve both enzymatic acetylation and deacetylation. Through genomic sequence analysis, we identified a pectin acetylesterase (PAE1) from black cottonwood (Populus trichocarpa). Recombinant Pt PAE1 exhibited preferential activity in releasing the acetate moiety from sugar beet (Beta vulgaris) and potato (Solanum tuberosum) pectin in vitro. Overexpressing Pt PAE1 in tobacco (Nicotiana tabacum) decreased the level of acetyl esters of pectin but not of xylan. Deacetylation engendered differential changes in the composition and/or structure of cell wall polysaccharides that subsequently impaired the cellular elongation of floral styles and filaments, the germination of pollen grains, and the growth of pollen tubes. Consequently, plants overexpressing PAE1 exhibited severe male sterility. Furthermore, in contrast to the conventional view, PAE1-mediated deacetylation substantially lowered the digestibility of pectin. Our data suggest that pectin acetylesterase functions as an important structural regulator in planta by modulating the precise status of pectin acetylation to affect the remodeling and physiochemical properties of the cell wall's polysaccharides, thereby affecting cell extensibility.
Collapse
Affiliation(s)
- Jin-Ying Gou
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Lisa M. Miller
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973
| | - Guichuan Hou
- Appalachian State University, Boone, North Carolina 28608-2027
| | - Xiao-Hong Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, China
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
13
|
Leijdekkers A, Sanders M, Schols H, Gruppen H. Characterizing plant cell wall derived oligosaccharides using hydrophilic interaction chromatography with mass spectrometry detection. J Chromatogr A 2011; 1218:9227-35. [DOI: 10.1016/j.chroma.2011.10.068] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/19/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
|
14
|
Nguyen TB, Laskin J, Laskin A, Nizkorodov SA. Nitrogen-containing organic compounds and oligomers in secondary organic aerosol formed by photooxidation of isoprene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:6908-6918. [PMID: 21732631 DOI: 10.1021/es201611n] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Electrospray ionization high-resolution mass spectrometry (ESI HR-MS) was used to probe molecular structures of oligomers in secondary organic aerosol (SOA) generated in laboratory experiments on isoprene photooxidation at low- and high-NO(x) conditions. Approximately 80-90% of the observed products are oligomers and up to 33% by number are nitrogen-containing organic compounds (NOC). We observe oligomers with maximum 8 monomer units in length. Tandem mass spectrometry (MS(n)) confirms NOC compounds are organic nitrates and elucidates plausible chemical building blocks contributing to oligomer formation. Most organic nitrates are comprised of methylglyceric acid units. Other important multifunctional C(2)-C(5) monomer units are identified including methylglyoxal, hydroxyacetone, hydroxyacetic acid, and glycolaldehyde. Although the molar fraction of NOC in the high-NO(x) SOA is high, the majority of the NOC oligomers contain only one nitrate moiety resulting in a low average N:C ratio of 0.019. Average O:C ratios of the detected SOA compounds are 0.54 under the low-NO(x) conditions and 0.83 under the high-NO(x) conditions. Our results underscore the importance of isoprene photooxidation as a source of NOC in organic particulate matter.
Collapse
Affiliation(s)
- Tran B Nguyen
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
15
|
Madeira PJA, Rosa AM, Xavier NM, Rauter AP, Florêncio MH. Electrospray ionization mass spectrometric analysis of newly synthesized alpha,beta-unsaturated gamma-lactones fused to sugars. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:1049-1058. [PMID: 20213685 DOI: 10.1002/rcm.4490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Knowledge of the fragmentation mechanisms of lactones and their behaviour under electrospray ionization (ESI) conditions can be extended to larger and more complex natural products that contain an alpha,beta-unsaturated gamma-lactone moiety in their structure. Moreover, little is known about the gas-phase behaviour of alpha,beta-unsaturated gamma-lactones linked or fused to sugars. Therefore, five alpha,beta-unsaturated gamma-lactones (butenolides) fused to a pyranose ring, recently synthesized compounds with potential relevance regarding their biological properties, were investigated using ESI-MS and ESI-MS/MS in both positive and negative ion modes. Their fragmentation mechanisms and product ion structures were compared. It was observed that two isomers could be unambiguously distinguished in the negative ion mode by the fragmentation pathways of their deprotonated molecules as well as in the positive ion mode by the fragmentation pathways of either the protonated or the sodiated molecule. Fragmentation mechanisms are proposed taking into account the MS/MS data and semi-empirical calculations using the PM6 Hamiltonean. The semi-empirical calculations were also very useful in determining the most probable protonation and cationization sites.
Collapse
Affiliation(s)
- Paulo J Amorim Madeira
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
16
|
Normand J, Ralet MC, Thibault JF, Rogniaux H, Delavault P, Bonnin E. Purification, characterization, and mode of action of a rhamnogalacturonan hydrolase from Irpex lacteus, tolerant to an acetylated substrate. Appl Microbiol Biotechnol 2009; 86:577-88. [PMID: 19862512 DOI: 10.1007/s00253-009-2310-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 11/29/2022]
Abstract
A novel rhamnogalacturonase (RGase) acting on an acetylated substrate was detected in the commercial preparation Driselase, an enzymatic mixture derived from the basidiomycete Irpex lacteus. The activity was isolated by hydrophobic interaction chromatography, gel filtration, and preparative isoelectric focusing, resulting in the isolation of five different rhamnogalacturonan hydrolases exhibiting various isoelectric points from 6.2 to 7.7. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and mass spectrometry analyses after trypsin cleavage of the five fractions revealed that the five rhamnogalacturonases have a molar mass of 55 kDa without any divergences in the identified peptides. The RGase with a pI of 7.2 exhibited a pH optimum between 4.5 and 5 and a temperature optimum between 40 degrees C and 50 degrees C. Its mode of action was analyzed by mass spectrometry of the oligosaccharides produced after hydrolysis of acetylated and nonacetylated rhamnogalacturonan. Oligomers esterified by an acetyl group on the reducing galacturonic acid residue or fully acetylated were detected in the hydrolysate showing that the novel enzyme is able to bind acetylated galacturonic acid in its active site.
Collapse
Affiliation(s)
- Jessica Normand
- INRA, Unité de Recherche Biopolymères, Interactions, Assemblages, BP 71627, 44316, Nantes, Cedex 03, France
| | | | | | | | | | | |
Collapse
|
17
|
Ralet MC, Lerouge P, Quéméner B. Mass spectrometry for pectin structure analysis. Carbohydr Res 2009; 344:1798-807. [DOI: 10.1016/j.carres.2008.08.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/27/2008] [Accepted: 08/29/2008] [Indexed: 01/01/2023]
|
18
|
Sila D, Van Buggenhout S, Duvetter T, Fraeye I, De Roeck A, Van Loey A, Hendrickx M. Pectins in Processed Fruits and Vegetables: Part II-Structure-Function Relationships. Compr Rev Food Sci Food Saf 2009. [DOI: 10.1111/j.1541-4337.2009.00071.x] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
|
20
|
Bonnin E, Clavurier K, Daniel S, Kauppinen S, Mikkelsen J, Thibault JF. Pectin acetylesterases from Aspergillus are able to deacetylate homogalacturonan as well as rhamnogalacturonan. Carbohydr Polym 2008. [DOI: 10.1016/j.carbpol.2008.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Ralet MC, Crépeau MJ, Bonnin E. Evidence for a blockwise distribution of acetyl groups onto homogalacturonans from a commercial sugar beet (Beta vulgaris) pectin. PHYTOCHEMISTRY 2008; 69:1903-1909. [PMID: 18448141 DOI: 10.1016/j.phytochem.2008.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/17/2008] [Accepted: 03/18/2008] [Indexed: 05/26/2023]
Abstract
Commercial acid-extracted sugar beet pectin was extensively hydrolysed using an endo-polygalacturonase (AnPGI from Aspergillus niger or AnPGII from A. niger or FmPG from Fusarium moniliforme) in combination with Aspergillus aculeatus pectin methyl-esterase (AaPME). The homogalacturonan-derived oligogalacturonates released were quantified by high-performance anion-exchange chromatography and their structure determined by mass spectrometry. The different endo-polygalacturonases exhibited variable tolerance towards acetyl groups. AnPGI was the most active and FmPG the less. A hypothetical homogalacturonan was constructed using the AnPGI-recovered oligogalacturonates as building blocks and the validity of the model was checked taking into account FmPG observed requirements and hydrolysis products. A blockwise repartition of the acetyl groups onto sugar beet pectin homogalacturonan is proposed.
Collapse
Affiliation(s)
- Marie-Christine Ralet
- INRA, UR1268 Biopolymères Interactions Assemblage, Rue de la Géraudière, B.P. 71627, F-44300 Nantes, France.
| | | | | |
Collapse
|
22
|
Macquet A, Ralet MC, Loudet O, Kronenberger J, Mouille G, Marion-Poll A, North HM. A naturally occurring mutation in an Arabidopsis accession affects a beta-D-galactosidase that increases the hydrophilic potential of rhamnogalacturonan I in seed mucilage. THE PLANT CELL 2007; 19:3990-4006. [PMID: 18165330 PMCID: PMC2217647 DOI: 10.1105/tpc.107.050179] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The Arabidopsis thaliana accession Shahdara was identified as a rare naturally occurring mutant that does not liberate seed mucilage on imbibition. The defective locus was found to be allelic to the mum2-1 and mum2-2 mutants. Map-based cloning showed that MUCILAGE-MODIFIED2 (MUM2) encodes the putative beta-D-galactosidase BGAL6. Activity assays demonstrated that one of four major beta-D-galactosidase activities present in developing siliques is absent in mum2 mutants. No difference was observed in seed coat epidermal cell structure between wild-type and mutant seed; however, weakening of the outer tangential cell wall by chemical treatment resulted in the release of mucilage from mum2 seed coat epidermal cells, and the mum2 mucilage only increased slightly in volume, relative to the wild type. Consistent with the absence of beta-D-galactosidase activity in the mutant, the inner layer of mucilage contained more Gal. The allocation of polysaccharides between the inner and outer mucilage layers was also modified in mum2. Mass spectrometry showed that rhamnogalacturonan I in mutant mucilage had more branching between rhamnose and hexose residues relative to the wild type. We conclude that the MUM2/BGAL6 beta-D-galactosidase is required for maturation of rhamnogalacturonan I in seed mucilage by the removal of galactose/galactan branches, resulting in increased swelling and extrusion of the mucilage on seed hydration.
Collapse
Affiliation(s)
- Audrey Macquet
- Laboratoire de Biologie des Semences, Unité Mixte de Recherche 204 Institut National de la Recherche Agronomique, AgroParisTech, Institut Jean-Pierre Bourgin, F-78026 Versailles Cedex, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Vakhrushev SY, Snel MF, Langridge J, Peter-Katalinić J. MALDI-QTOFMS/MS identification of glycoforms from the urine of a CDG patient. Carbohydr Res 2007; 343:2172-83. [PMID: 18155684 DOI: 10.1016/j.carres.2007.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/09/2007] [Accepted: 11/12/2007] [Indexed: 12/17/2022]
Abstract
Identification of single glycoconjugate components in a complex mixture from the urine of a patient suffering from a congenital disorder of glycosylation was probed by MALDIMS analysis on a hybrid quadrupole time-of-flight instrument. In negative ion mode, complex maps containing more than 50 ionic species were obtained and a number of molecular ions directly as-signed using a previously developed computer-assisted algorithm. To confirm the data and determine the carbohydrate sequence, single molecular ions were selected and submitted to fragmentation experiments. Interpretation of fragmentation spectra was also assisted by the soft-ware using alignment with spectra generated in silico. According to fragmentation data, the majority of glycoconjugate ionic species could be assigned to free oligosaccharides along with ten species tentatively assigned to glycopeptides. Following this approach for glycan identification by a combination of MALDI-QTOFMS and MS/MS experiments, computer-assisted assignment and fragment analysis, data for a potential glycan data base are produced. Of high benefit for this approach are two main factors: low sample consumption due to the high sensitivity of ion formation, and generation of only singly charged species in MALDIMS allowing interpretation with-out any deconvolution. In this experimental set-up, sequencing of single components from the MALDI maps by low energy CID followed by computer-assisted assignment and data base search is proposed as a most efficient strategy for the rapid identification of complex carbohydrate structures in clinical glycomics.
Collapse
Affiliation(s)
- Sergey Y Vakhrushev
- Institute for Medical Physics and Biophysics, Biomedical Analysis, University of Muenster, D-48149 Muenster, Germany
| | | | | | | |
Collapse
|
24
|
Minamisawa T, Suzuki K, Hirabayashi J. Multistage mass spectrometric sequencing of keratan sulfate-related oligosaccharides. Anal Chem 2007; 78:891-900. [PMID: 16448065 DOI: 10.1021/ac051359e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To establish a universal protocol for sequencing keratan sulfate (KS) using mass spectrometry (MS), systematic electrospray ionization-MSn fragmentation experiments were carried out for 10 KS-related oligosaccharides of defined structure. Under the experimental conditions employed, fully charged molecular-related ions were observed as dominant peaks in all MS(1) spectra, which clearly reflected the number of sulfates and sialic acids in the oligosaccharide structures. In the subsequent MS2, almost all of the oligosaccharides gave fragment ions corresponding to their dehydrated molecular-related ions as well as (0,2)A(r) scission ions (according to the nomenclature developed by Domon and Costello, where "r" represents the reducing end in this study). Further fragmentation of the (0,2)A(r) ions in MS3 predominantly yielded the corresponding (2,4)A(r) ions. Finally, in MS(4), these (2,4)A(r) ions were subjected to extensive glycosidic cleavage. Hence, the MS4 data of KS oligosaccharides provided sufficient information for their sequence determination. In addition, some important features of MSn fragmentation became evident. These findings should lead to the establishment of consensus rules applied for KS oligosaccharides, including those previously unidentified, and also accelerate functional studies on KS, i.e., KS-related glycosaminoglycomics.
Collapse
Affiliation(s)
- Toshikazu Minamisawa
- Glycostructure Analysis Team, Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | | | | |
Collapse
|
25
|
Monge ME, Negri RM, Kolender AA, Erra-Balsells R. Structural characterization of native high-methoxylated pectin using nuclear magnetic resonance spectroscopy and ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Comparative use of 2,5-dihydroxybenzoic acid and nor-harmane as UV-MALDI matrices. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:2638-46. [PMID: 17654474 DOI: 10.1002/rcm.3121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The successful analysis by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI-TOF MS) of native and hydrolyzed high-methoxylated pectin samples is described. In order to find the optimal conditions for UV-MALDI-TOF MS analysis several experimental variables were studied such as: different UV-MALDI matrices (nor-harmane, 2,5-dihydroxybenzoic acid), sample preparation methods (mixture, sandwich), inorganic salt addition (doping salts, NaCl, KCl, NH(4)Cl), ion mode (positive, negative), linear and reflectron mode, etc. nor-Harmane has never been used as a UV-MALDI matrix for the analysis of pectins but its use avoids pre-treatment of the sample, such as an enzymatic digestion or an acid hydrolysis, and there is no need to add salts, making the analysis easier and faster. This study suggested an alternative way of analyzing native high-methoxylated pectins, with UV-MALDI-TOF MS, by using nor-harmane as the matrix in negative ion mode. The analysis by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy of the native and hydrolyzed pectin is also briefly described.
Collapse
Affiliation(s)
- María Eugenia Monge
- Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
26
|
Hilz H, de Jong LE, Kabel MA, Schols HA, Voragen AGJ. A comparison of liquid chromatography, capillary electrophoresis, and mass spectrometry methods to determine xyloglucan structures in black currants. J Chromatogr A 2006; 1133:275-86. [PMID: 16962126 DOI: 10.1016/j.chroma.2006.08.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/08/2006] [Accepted: 08/10/2006] [Indexed: 11/24/2022]
Abstract
Different separation (HPAEC, RP-HPLC, CE) and identification (MALDI-TOF-MS, ESI-MS(n)) techniques were compared to analyse oligosaccharides obtained after incubation of xyloglucan with endo-glucanase. It was possible to analyse xyloglucan oligosaccharides with each technique. Several techniques, including off line (HPAEC-MALDI-TOF-MS) or online (CE-ESI-MS(n), RP-HPLC-ESI-MS(n)) connection provided complementary information on xyloglucan structure. Online CE-MS and RP-HPLC-MS are described for the first time in xyloglucan analysis. Advantages and disadvantages of the techniques for different purposes such as structural characterisation of oligosaccharides or oligosaccharide profiling are discussed. Black currant xyloglucans had a rather simple XXXG-type structure with galactose and fucose containing side chains.
Collapse
Affiliation(s)
- Hauke Hilz
- Wageningen University, Department of Agrotechnology and Food Sciences, Laboratory of Food Chemistry, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Quéméner B, Ordaz-Ortiz JJ, Saulnier L. Structural characterization of underivatized arabino-xylo-oligosaccharides by negative-ion electrospray mass spectrometry. Carbohydr Res 2006; 341:1834-47. [PMID: 16730680 DOI: 10.1016/j.carres.2006.04.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 04/20/2006] [Accepted: 04/22/2006] [Indexed: 11/17/2022]
Abstract
Various arabino-xylo-oligosaccharides with known substitution patterns were assessed by negative ESI-Q-TOFMS and ESI-ITMS. The CID spectra of linear xylo-oligosaccharides and of nine isomeric mono- and disubstituted arabino-xylo-oligosaccharides established that structures differing in their substitution pattern can be differentiated by this approach. The negative-ion fragmentation spectra of the deprotonated quasi-molecular ions are mainly characterized by glycosidic cleavage ions from the C-series, which provide sequence informations, and by cross-ring cleavage (0,2)A(i) ions, which provide partial linkage information. When the collision energy increased, the cross-ring cleavage (0,2)A(i) ions underwent consecutive loss of water to produce (0,2)A(i)-18 fragment ions and glycosidic cleavage ions of the B-series are also produced besides the C(i) ions. Contrary to linear xylo-oligosaccharides, C(i) ions, which originate from C-3 monosubstituted xylosyl residues never produce the related cross-ring cleavage (0,2)A(i) ions. Disubstitution at O-2 and O-3 of xylosyl residues appears to enhance the production of the (0,2)A(i) ions compared to monosubstitution. For the differentiation of the mono- and disubstitution patterns of the penultimate xylosyl residue, the relative abundance of the glycosidic cleavage ions at m/z 263 and 299 found on Q-TOF CID spectra plays a relevant role and appears to be more informative than MS(n) spectra obtained on a ion trap instrument.
Collapse
Affiliation(s)
- Bernard Quéméner
- INRA-Biopolymères, Interactions, Assemblages-Rue de la Géraudière BP 71627, Nantes, France.
| | | | | |
Collapse
|
28
|
Guillemin F, Guillon F, Bonnin E, Devaux MF, Chevalier T, Knox JP, Liners F, Thibault JF. Distribution of pectic epitopes in cell walls of the sugar beet root. PLANTA 2005; 222:355-71. [PMID: 15887026 DOI: 10.1007/s00425-005-1535-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 02/28/2005] [Indexed: 05/02/2023]
Abstract
Immunolabelling techniques with antibodies specific to partially methyl-esterified homogalacturonan (JIM5: unesterified residues flanked by methylesterified residues. JIM7: methyl-esterified residues flanked by unesterified residues), a blockwise de-esterified homogalacturonan (2F4), 1,4-galactan (LM5) and 1,5-arabinan (LM6) were used to map the distribution of pectin motifs in cell walls of sugar beet root (Beta vulgaris). PME and alkali treatments of sections were used in conjunction with JIM5-7 and 2F4. The JIM7 epitope was abundant and equally distributed in all cells. In storage parenchyma, the JIM5 epitope was restricted to some cell junctions and the lining of intercellular spaces while in vascular tissues it occurred at cell junctions in some phloem walls and in xylem derivatives. After secondary wall formation, the JIM5 epitope was restricted to inner cell wall regions between secondary thickenings. The 2F4 epitope was not detected without de-esterification treatment. PME treatments prior to the use of 2F4 indicated that HG at cell corners was not acetylated. The LM5 epitope was mainly present in the cambial zone and when present in storage parenchyma, it was restricted to the wall region closest to the plasma membrane. The LM6 epitope was widely distributed throughout primary walls but was more abundant in bundles than in medullar ray tissue and storage parenchyma. These data show that the occurrence of oligosaccharide motifs of pectic polysaccharides are spatially regulated in sugar beet root cell walls and that the spatial patterns vary between cell types suggesting that structural variants of pectic polymers are involved in the modulation of cell wall properties.
Collapse
Affiliation(s)
- Florence Guillemin
- Institut National de la Recherche Agronomique, Unité de Recherche sur les Polysaccharides, leurs Organisations et Interactions, rue de la Géraudière, BP 71627, 44316, Nantes cedex 03, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ralet MC, Cabrera JC, Bonnin E, Quéméner B, Hellìn P, Thibault JF. Mapping sugar beet pectin acetylation pattern. PHYTOCHEMISTRY 2005; 66:1832-43. [PMID: 16024056 DOI: 10.1016/j.phytochem.2005.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 06/02/2005] [Accepted: 06/03/2005] [Indexed: 05/03/2023]
Abstract
Homogalacturonan-derived partly methylated and/or acetylated oligogalacturonates were recovered after enzymatic hydrolysis (endo-polygalacturonase+pectin methyl esterase+side-chain degrading enzymes) of sugar beet pectin followed by anion-exchange and size exclusion chromatography. Around 90% of the GalA and 75% of the acetyl groups present in the initial sugar beet pectin were recovered as homogalacturonan-derived oligogalacturonates, the remaining GalA and acetyl belonging to rhamnogalacturonic regions. Around 50% of the acetyl groups present in sugar beet homogalacturonans were recovered as partly methylated and/or acetylated oligogalacturonates of degree of polymerisation 5 whose structures were determined by electrospray ionization ion trap mass spectrometry (ESI-IT-MSn). 2-O-acetyl- and 3-O-acetyl-GalA were detected in roughly similar amounts but 2,3-di-O-acetylation was absent. Methyl-esterified GalA residues occurred mainly upstream 2-O-acetyl GalA. Oligogalacturonates containing GalA residues that are at once methyl- and acetyl-esterified were recovered in very limited amounts. A tentative mapping of the distribution of acetyl and methyl esters within sugar beet homogalacturonans is proposed. Unsubstituted GalA residues are likely to be present in limited amounts (approximately 10% of total GalA residues), due to the fact that methyl and acetyl groups are assumed to be most often not carried by the same residues.
Collapse
Affiliation(s)
- Marie-Christine Ralet
- Unité Biopolymères, Interactions, Assemblages, INRA, Rue de la Géraudière, B.P. 71627, F-44316 Nantes Cedex 3, France.
| | | | | | | | | | | |
Collapse
|
30
|
Ojima N, Masuda K, Tanaka K, Nishimura O. Analysis of neutral oligosaccharides for structural characterization by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:380-388. [PMID: 15712371 DOI: 10.1002/jms.798] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have acquired multi-stage mass spectra (MSn) of four branched N-glycans derived from human serum IgG by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF-MS) in order to demonstrate high sensitivity structural analysis. [M+H]+ and [M+Na]+ ions were detected in the positive mode. The detection limit of [M+Na]+ in MS/MS and MS3 measurements for structural analysis was found to be 100 fmol, better than that for [M+H]+. The [M+H]+ ions subsequently fragmented to produce predominantly a Y series of fragments, whereas [M+Na]+ ions fragmented to give a complex mixture of B and Y ions together with some cross-ring fragments. Three features of MALDI-QIT-CID fragmentation of [M+Na]+ were cleared by the analysis of MS/MS, MS3 and MS4 spectra: (1) the fragment ions resulting from the breaking of a bond are more easily generated than that from multi-bond dissociation; (2) the trimannosyl-chitobiose core is either hardly dissociated, easily ionized or it is easy to break a bond between N-acetylglucosamine and mannose; (3) the fragmentation by loss of only galactose from the non-reducing terminus is not observed. We could determine the existence ratios of candidates for each fragment ion in the MS/MS spectrum of [M+Na]+ by considering these features. These results indicate that MSn analysis of [M+Na]+ ions is more useful for the analysis of complicated oligosaccharide structures than MS/MS analysis of [M+H]+, owing to the higher sensitivity and enhanced structural information. Furthermore, two kinds of glycans, with differing branch structures, could be distinguished by comparing the relative fragment ion abundances in the MS3 spectrum of [M+Na]+. These analyses demonstrate that the MSn technology incorporated in MALDI-QIT-TOF-MS can facilitate the elucidation of structure of complex branched oligosaccharides.
Collapse
Affiliation(s)
- Noriyuki Ojima
- Life Science Laboratory, Analytical and Measuring Instruments Division, Shimadzu Corporation, 1, Nishinokyo Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | | | | | | |
Collapse
|
31
|
Cell wall polysaccharides in black currants and bilberries—characterisation in berries, juice, and press cake. Carbohydr Polym 2005. [DOI: 10.1016/j.carbpol.2004.11.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Vakhrushev SY, Zamfir A, Peter-Katalinić J. 0,2An cross-ring cleavage as a general diagnostic tool for glycan assignment in glycoconjugate mixtures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:1863-1868. [PMID: 15589762 DOI: 10.1016/j.jasms.2004.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 09/10/2004] [Accepted: 09/10/2004] [Indexed: 05/24/2023]
Abstract
In contrast to proteomics significantly less efficient analytical tools are presently available for high throughput glycomics using mass spectrometry. In this article, a strategy to use the (0,2)A(n) ring cleavage ion at the reducing end of free glycans as a diagnostic ion for assignment of free glycans, in presence of glycopeptides containing similar glycosylation patterns, is presented for rapid distinction in complex mixtures by mass spectrometry. The MS to MS/MS automatic switching, already previously introduced for the on-line LC-MS and CE-MS analysis, is shown in this contribution to be highly functional to obtain diagnostic fragmentation patterns of free glycan precursors in rapid screening of highly complex glycoconjugate mixtures obtained from clinical samples, namely from the urine of patients suffering from congenital disorders of glycosylation. Congenital disorders of glycosylation (CDG) are inherited metabolic diseases based on defects in the glycosylation pathways of glycoconjugates. The urine of CDG patients was reported to contain O-glycans and glycosylated amino acids at concentrations two to three orders of magnitude higher in comparison with the healthy control, characterized by a high degree of heterogeneity concerning the type, number, and values of molecular ions. Using the (0,2)A(n) ring cleavage ion approach by tandem MS, it was possible to sort out free glycans and get them assigned.
Collapse
Affiliation(s)
- Sergey Y Vakhrushev
- Biomedical Analysis Group, Institute for Medical Physics and Biophysics, University of Münster, D-48149 Münster, Germany
| | | | | |
Collapse
|
33
|
Quéméner B, Ralet MC. Evidence for linkage position determination in known feruloylated mono- and disaccharides using electrospray ion trap mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2004; 39:1153-1160. [PMID: 15468113 DOI: 10.1002/jms.698] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Various feruloylated arabinose- and galactose-containing mono- and disaccharides with known linkage configurations (2-O-(trans-feruloyl)-L-arabinopyranose, 5-O-(trans-feruloyl)-L-arabinofuranose, O-[2-O-(trans-feruloyl)-alpha-L-arabinofuranosyl]-(1-->5)-L-arabinofuranose, and O-[6-O-(trans-feruloyl)-beta-D-galactopyranosyl]-(1-->4)-D-galactopyranose) were analyzed by electrospray ionization mass spectrometry using an ion trap or a quadrupole time-of-flight (Q-TOF) mass analyzer. Collision-induced dissociation (CID) experiments using the two mass analyzers generated similar tandem mass spectrometric (MS/MS) fragmentation patterns. However, the ester-bond cleavage ions were more abundant using the Q-TOF mass analyzer. Compared with the positive ion mode, the negative ion mode produces simpler and more useful CID product-ion patterns. For arabinose-containing feruloylated compounds, results obtained with both analyzers show that it is possible to assign the location of the feruloyl group to the O-2 or O-5 of arabinosyl residues. In the characterization of the 2-O-feruloyl and 5-O-feruloyl linkages, the relative abundance of the cross-ring fragment ions at m/z 265 (-60 u or -62 u after 18O-labelling) and at m/z 217 (-108 u or -110 u after 18O-labelling) play a relevant role. For galactose-containing feruloylated compounds, losses of 60, 90 and 120 Da observed in MS3 experiment correspond to the production of 0,2A1, 0,3A1 and (0,2A1-60 Da) cross-ring cleavage ions, respectively, fixing the location of feruloyl group at the O-6 of the galactose residue.
Collapse
Affiliation(s)
- Bernard Quéméner
- Institut National de la Recherche Agronomique, Unité de Recherche sur les Polysaccharides, leurs Organisations et Interactions, rue de la Géraudière, BP 71627, 44316 Nantes Cedex 03, France.
| | | |
Collapse
|
34
|
Levigne S, Ralet MC, Quéméner B, Thibault JF. Isolation of diferulic bridges ester-linked to arabinan in sugar beet cell walls. Carbohydr Res 2004; 339:2315-9. [PMID: 15337461 DOI: 10.1016/j.carres.2004.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 06/21/2004] [Accepted: 07/11/2004] [Indexed: 10/26/2022]
Abstract
After degradation of sugar beet cell walls with Driselase and fractionation of the solubilised products by hydrophobic interaction chromatography, a dehydrodiferuloylated oligoarabinan was isolated. Its structure was assigned to two dimers of (1-->5)-linked arabinose units esterified by a central 8-O-4' ferulic dimer. These results provide the first direct evidence that pectic arabinans in sugar beet cell walls may be covalently cross-linked through dehydrodiferulates.
Collapse
Affiliation(s)
- Sébastien Levigne
- Unité de Recherche sur les Polysaccharides, leurs Organisations et Interactions, INRA, rue de la Géraudière, B.P. 71627, F-44316 Nantes Cedex 3, France
| | | | | | | |
Collapse
|
35
|
Levigne SV, Ralet MCJ, Quéméner BC, Pollet BNL, Lapierre C, Thibault JFJ. Isolation from sugar beet cell walls of arabinan oligosaccharides esterified by two ferulic acid monomers. PLANT PHYSIOLOGY 2004; 134:1173-80. [PMID: 14988480 PMCID: PMC389941 DOI: 10.1104/pp.103.035311] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 11/16/2003] [Accepted: 11/23/2003] [Indexed: 05/18/2023]
Abstract
Side chains of sugar beet (Beta vulgaris) pectins, which are mainly composed of arabinose (Ara) and galactose (Gal) residues, are esterified by ferulic acid units. Enzymatic hydrolysis of beet cell walls yielded several feruloylated oligosaccharides, which were separated by hydrophobic interaction chromatography. Two new oligomers were isolated in the fraction eluted by 25:75 (v/v) ethanol:water. An arabinotriose and an arabinotetraose esterified by two ferulic acid residues were obtained, and their structure was elucidated by mass spectrometry. It is shown that feruloyl groups are linked to O-5 of Ara residues, in addition to the known O-2 position. This work establishes for the first time, to our knowledge, that two neighboring Ara units may be esterified by two ferulic acid units. This close proximity may have important biochemical implications.
Collapse
Affiliation(s)
- Sébastien V Levigne
- Unité de Recherche sur les Polysaccharides, leurs Organisations et Interactions, Institut National de la Recherche Agronomique, boîte postale 71627, 44316, Nantes cedex 03, France
| | | | | | | | | | | |
Collapse
|
36
|
Current awareness in phytochemical analysis. PHYTOCHEMICAL ANALYSIS : PCA 2003; 14:328-335. [PMID: 14627054 DOI: 10.1002/pca.680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
37
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:905-916. [PMID: 12938112 DOI: 10.1002/jms.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|