1
|
Swati B, Jakub S, Aleš M, Petra J, Martin H. DSSBU: A novel mass spectrometry-cleavable analogue of the BS 3 cross-linker. J Proteomics 2024; 310:105330. [PMID: 39427986 DOI: 10.1016/j.jprot.2024.105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Protein cross-linking has assumed an irreplaceable role in structural proteomics. Recently, significant efforts have been made to develop novel mass spectrometry (MS)-cleavable reagents. At present, only water-insoluble MS-cleavable cross-linkers are commercially available. However, to comprehensively analyse the various chemical and structural motifs making up proteins, it is necessary to target different protein sites with varying degrees of hydrophilicity. Here we introduce the new MS-cleavable cross-linker disulfodisuccinimidyl dibutyric urea (DSSBU), which we have developed in-house for this purpose. DSSBU contains an N-hydroxysulfosuccinimide (sulfo-NHS) reactive group, so it can serve as a water-soluble counterpart to the widely used cross-linker disuccinimidyl dibutyric urea (DSBU). To investigate the applicability of DSSBU, we compared the efficacy of four similar cross-linkers: bis[sulfosuccinimidyl] suberate (BS3), disuccinimidyl suberate (DSS), DSBU and DSSBU with bovine serum albumin. In addition, we compared the efficacy of DSBU and DSSBU with human haemoglobin. Our results demonstrate that the sulfo-NHS group ensures the superior water solubility of DSSBU and thus negates the need for organic solvents such as dimethyl sulfoxide while preserving the effectivity of urea-based MS-cleavable crosslinkers such as DSBU. Additionally, it makes it possible to target polar regions in proteins. The data gathered are available via ProteomeXchange under identifier PXD055284. SIGNIFICANCE: We have synthesized the novel protein cross-linker DSSBU, which combines sulfo-NHS ester chemistry with a mass spectrometry-cleavable urea group. This makes DSSBU a water-soluble, MS-cleavable cross-linker that reacts with amino groups. To our knowledge, it is the first cross-linker which combines all three of these characteristics. We have tested the performance of our novel cross-linker on bovine serum albumin, a model widely used by the cross-linking mass spectrometry community, and on human haemoglobin. We have comprehensively assessed the performance of DSSBU and compared its efficacy with that of three other cross-linkers in current use (BS3, DSS and DSBU). We conclude that our novel cross-linker surpasses its MS-non-cleavable analogue BS3 in performance and that its water solubility eliminates the need for organic solvents while its hydrophilicity allows for the targetting of polar regions in proteins. Therefore, it will likely become a significant addition to the portfolio of N-hydroxysuccinimide ester cross-linkers.
Collapse
Affiliation(s)
- Banerjee Swati
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czechia
| | - Sýs Jakub
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czechia; Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha, Czechia
| | - Machara Aleš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czechia
| | - Junková Petra
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czechia
| | - Hubálek Martin
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czechia.
| |
Collapse
|
2
|
Lu H, Zhu Z, Fields L, Zhang H, Li L. Mass Spectrometry Structural Proteomics Enabled by Limited Proteolysis and Cross-Linking. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39300771 DOI: 10.1002/mas.21908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
The exploration of protein structure and function stands at the forefront of life science and represents an ever-expanding focus in the development of proteomics. As mass spectrometry (MS) offers readout of protein conformational changes at both the protein and peptide levels, MS-based structural proteomics is making significant strides in the realms of structural and molecular biology, complementing traditional structural biology techniques. This review focuses on two powerful MS-based techniques for peptide-level readout, namely limited proteolysis-mass spectrometry (LiP-MS) and cross-linking mass spectrometry (XL-MS). First, we discuss the principles, features, and different workflows of these two methods. Subsequently, we delve into the bioinformatics strategies and software tools used for interpreting data associated with these protein conformation readouts and how the data can be integrated with other computational tools. Furthermore, we provide a comprehensive summary of the noteworthy applications of LiP-MS and XL-MS in diverse areas including neurodegenerative diseases, interactome studies, membrane proteins, and artificial intelligence-based structural analysis. Finally, we discuss the factors that modulate protein conformational changes. We also highlight the remaining challenges in understanding the intricacies of protein conformational changes by LiP-MS and XL-MS technologies.
Collapse
Affiliation(s)
- Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zexin Zhu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Cabral G, Moss WJ, Brown KM. Proteomic approaches for protein kinase substrate identification in Apicomplexa. Mol Biochem Parasitol 2024; 259:111633. [PMID: 38821187 PMCID: PMC11194964 DOI: 10.1016/j.molbiopara.2024.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Apicomplexa is a phylum of protist parasites, notable for causing life-threatening diseases including malaria, toxoplasmosis, cryptosporidiosis, and babesiosis. Apicomplexan pathogenesis is generally a function of lytic replication, dissemination, persistence, host cell modification, and immune subversion. Decades of research have revealed essential roles for apicomplexan protein kinases in establishing infections and promoting pathogenesis. Protein kinases modify their substrates by phosphorylating serine, threonine, tyrosine, or other residues, resulting in rapid functional changes in the target protein. Post-translational modification by phosphorylation can activate or inhibit a substrate, alter its localization, or promote interactions with other proteins or ligands. Deciphering direct kinase substrates is crucial to understand mechanisms of kinase signaling, yet can be challenging due to the transient nature of kinase phosphorylation and potential for downstream indirect phosphorylation events. However, with recent advances in proteomic approaches, our understanding of kinase function in Apicomplexa has improved dramatically. Here, we discuss methods that have been used to identify kinase substrates in apicomplexan parasites, classifying them into three main categories: i) kinase interactome, ii) indirect phosphoproteomics and iii) direct labeling. We briefly discuss each approach, including their advantages and limitations, and highlight representative examples from the Apicomplexa literature. Finally, we conclude each main category by introducing prospective approaches from other fields that would benefit kinase substrate identification in Apicomplexa.
Collapse
Affiliation(s)
- Gabriel Cabral
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William J Moss
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin M Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Peng Y, Jain S, Radivojac P. An algorithm for decoy-free false discovery rate estimation in XL-MS/MS proteomics. Bioinformatics 2024; 40:i428-i436. [PMID: 38940171 PMCID: PMC11256928 DOI: 10.1093/bioinformatics/btae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
MOTIVATION Cross-linking tandem mass spectrometry (XL-MS/MS) is an established analytical platform used to determine distance constraints between residues within a protein or from physically interacting proteins, thus improving our understanding of protein structure and function. To aid biological discovery with XL-MS/MS, it is essential that pairs of chemically linked peptides be accurately identified, a process that requires: (i) database search, that creates a ranked list of candidate peptide pairs for each experimental spectrum and (ii) false discovery rate (FDR) estimation, that determines the probability of a false match in a group of top-ranked peptide pairs with scores above a given threshold. Currently, the only available FDR estimation mechanism in XL-MS/MS is the target-decoy approach (TDA). However, despite its simplicity, TDA has both theoretical and practical limitations that impact the estimation accuracy and increase run time over potential decoy-free approaches (DFAs). RESULTS We introduce a novel decoy-free framework for FDR estimation in XL-MS/MS. Our approach relies on multi-sample mixtures of skew normal distributions, where the latent components correspond to the scores of correct peptide pairs (both peptides identified correctly), partially incorrect peptide pairs (one peptide identified correctly, the other incorrectly), and incorrect peptide pairs (both peptides identified incorrectly). To learn these components, we exploit the score distributions of first- and second-ranked peptide-spectrum matches for each experimental spectrum and subsequently estimate FDR using a novel expectation-maximization algorithm with constraints. We evaluate the method on ten datasets and provide evidence that the proposed DFA is theoretically sound and a viable alternative to TDA owing to its good performance in terms of accuracy, variance of estimation, and run time. AVAILABILITY AND IMPLEMENTATION https://github.com/shawn-peng/xlms.
Collapse
Affiliation(s)
- Yisu Peng
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, United States
| | - Shantanu Jain
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, United States
- The Institute for Experiential AI, Northeastern University, Boston, MA 02115, United States
| | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
5
|
Zhu Z, Zhong X, Wang B, Lu H, Li L. Probing Protein Structural Changes in Alzheimer's Disease via Quantitative Cross-linking Mass Spectrometry. Anal Chem 2024; 96:7506-7515. [PMID: 38690851 PMCID: PMC11114074 DOI: 10.1021/acs.analchem.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder featuring abnormal protein aggregation in the brain, including the pathological hallmarks of amyloid plaques and hyperphosphorylated tau. Despite extensive research efforts, understanding the molecular intricacies driving AD development remains a formidable challenge. This study focuses on identifying key protein conformational changes associated with the progression of AD. To achieve this, we employed quantitative cross-linking mass spectrometry (XL-MS) to elucidate conformational changes in the protein networks in cerebrospinal fluid (CSF). By using isotopically labeled cross-linkers BS3d0 and BS3d4, we reveal a dynamic shift in protein interaction networks during AD progression. Our comprehensive analysis highlights distinct alterations in protein-protein interactions within mild cognitive impairment (MCI) states. This study accentuates the potential of cross-linked peptides as indicators of AD-related conformational changes, including previously unreported site-specific binding between α-1-antitrypsin (A1AT) and complement component 3 (CO3). Furthermore, this work enables detailed structural characterization of apolipoprotein E (ApoE) and reveals modifications within its helical domains, suggesting their involvement in MCI pathogenesis. The quantitative approach provides insights into site-specific interactions and changes in the abundance of cross-linked peptides, offering an improved understanding of the intricate protein-protein interactions underlying AD progression. These findings lay a foundation for the development of potential diagnostic or therapeutic strategies aimed at mitigating the negative impact of AD.
Collapse
Affiliation(s)
- Zexin Zhu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Xiaofang Zhong
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
6
|
Di Ianni A, Di Ianni A, Cowan K, Barbero LM, Sirtori FR. Leveraging Cross-Linking Mass Spectrometry for Modeling Antibody-Antigen Complexes. J Proteome Res 2024; 23:1049-1061. [PMID: 38372774 DOI: 10.1021/acs.jproteome.3c00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Elucidating antibody-antigen complexes at the atomic level is of utmost interest for understanding immune responses and designing better therapies. Cross-linking mass spectrometry (XL-MS) has emerged as a powerful tool for mapping protein-protein interactions, suggesting valuable structural insights. However, the use of XL-MS studies to enable epitope/paratope mapping of antibody-antigen complexes is still limited up to now. XL-MS data can be used to drive integrative modeling of antibody-antigen complexes, where cross-links information serves as distance restraints for the precise determination of binding interfaces. In this approach, XL-MS data are employed to identify connections between binding interfaces of the antibody and the antigen, thus informing molecular modeling. Current literature provides minimal input about the impact of XL-MS data on the integrative modeling of antibody-antigen complexes. Here, we applied XL-MS to retrieve information about binding interfaces of three antibody-antigen complexes. We leveraged XL-MS data to perform integrative modeling using HADDOCK (active-passive residues and distance restraints strategies) and AlphaLink2. We then compared these three approaches with initial predictions of investigated antibody-antigen complexes by AlphaFold Multimer. This work emphasizes the importance of cross-linking data in resolving conformational dynamics of antibody-antigen complexes, ultimately enhancing the design of better protein therapeutics and vaccines.
Collapse
Affiliation(s)
- Andrea Di Ianni
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy
- University of Turin, Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Alessio Di Ianni
- Martin Luther University Halle-Wittenberg, Department of Pharmaceutical Chemistry and Bioanalytics, Center for Structural Mass Spectrometry, Institute of Pharmacy, Kurt-Mothes-Str. 3, Halle/Saale D-06120, Germany
| | - Kyra Cowan
- New Biological Entities, Drug Metabolism and Pharmacokinetics (NBE-DMPK), Research and Development, Merck KGaA, Frankfurterstrasse 250, Darmstadt 64293, Germany
| | - Luca M Barbero
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy
| | - Federico Riccardi Sirtori
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.p.A., an Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy
| |
Collapse
|
7
|
Ortigosa-Pascual L, Leiding T, Linse S, Pálmadóttir T. Photo-Induced Cross-Linking of Unmodified α-Synuclein Oligomers. ACS Chem Neurosci 2023; 14:3192-3205. [PMID: 37621159 PMCID: PMC10485903 DOI: 10.1021/acschemneuro.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Photo-induced cross-linking of unmodified proteins (PICUP) has been used in the past to study size distributions of protein assemblies. PICUP may, for example, overcome the significant experimental challenges related to the transient nature, heterogeneity, and low concentration of amyloid protein oligomers relative to monomeric and fibrillar species. In the current study, a reaction chamber was designed, produced, and used for PICUP reaction optimization in terms of reaction conditions and lighting time from ms to s. These efforts make the method more reproducible and accessible and enable the use of shorter reaction times compared to previous studies. We applied the optimized method to an α-synuclein aggregation time course to monitor the relative concentration and size distribution of oligomers over time. The data are compared to the time evolution of the fibril mass concentration, as monitored by thioflavin T fluorescence. At all time points, the smaller the oligomer, the higher its concentration observed after PICUP. Moreover, the total oligomer concentration is highest at short aggregation times, and the decline over time follows the disappearance of monomers. We can therefore conclude that these oligomers form from monomers.
Collapse
Affiliation(s)
- Lei Ortigosa-Pascual
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Thom Leiding
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Sara Linse
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Tinna Pálmadóttir
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
8
|
Faustino AM, Sharma P, Manriquez-Sandoval E, Yadav D, Fried SD. Progress toward Proteome-Wide Photo-Cross-Linking to Enable Residue-Level Visualization of Protein Structures and Networks In Vivo. Anal Chem 2023; 95:10670-10685. [PMID: 37341467 DOI: 10.1021/acs.analchem.3c01369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Cross-linking mass spectrometry (XL-MS) is emerging as a method at the crossroads of structural and cellular biology, uniquely capable of identifying protein-protein interactions with residue-level resolution and on the proteome-wide scale. With the development of cross-linkers that can form linkages inside cells and easily cleave during fragmentation on the mass spectrometer (MS-cleavable cross-links), it has become increasingly facile to identify contacts between any two proteins in complex samples, including in live cells or tissues. Photo-cross-linkers possess the advantages of high temporal resolution and high reactivity, thereby engaging all residue-types (rather than just lysine); nevertheless, photo-cross-linkers have not enjoyed widespread use and are yet to be employed for proteome-wide studies because their products are challenging to identify. Here, we demonstrate the synthesis and application of two heterobifunctional photo-cross-linkers that feature diazirines and N-hydroxy-succinimidyl carbamate groups, the latter of which unveil doubly fissile MS-cleavable linkages upon acyl transfer to protein targets. Moreover, these cross-linkers demonstrate high water-solubility and cell-permeability. Using these compounds, we demonstrate the feasibility of proteome-wide photo-cross-linking in cellulo. These studies elucidate a small portion of Escherichia coli's interaction network, albeit with residue-level resolution. With further optimization, these methods will enable the detection of protein quinary interaction networks in their native environment at residue-level resolution, and we expect that they will prove useful toward the effort to explore the molecular sociology of the cell.
Collapse
Affiliation(s)
- Anneliese M Faustino
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Piyoosh Sharma
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Edgar Manriquez-Sandoval
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Divya Yadav
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Burris BJ, Walsh LC, Badu-Tawiah AK. Online Cross-Linking of Peptides and Proteins during Contained-Electrospray Ionization Mass Spectrometry. Anal Chem 2023; 95:1085-1094. [PMID: 36534015 DOI: 10.1021/acs.analchem.2c03791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent advancements in mass spectrometry (MS) now enable all levels of protein structures to be characterized, including primary protein sequence, post-translational modifications, and three-dimensional protein conformations. However, protein conformational studies by MS require the use of many separate techniques that are performed independently of each other. Herein, we described a contained-electrospray (ES) experiment that has potential to integrate peptide/protein cross-linking with the general MS workflow. In our experiment, cross-linking of protein/peptide occurs simultaneously with ionization after analytes, and cross-linkers are sprayed from two separate ES emitters. The online cross-linking process occurring in the charged microdroplet environment was optimized using trilysine peptide and bis(sulfosuccinimidyl)suberate cross-linker. We detected the electrostatic complex between analyte and cross-linker, the mono-linked intermediate, and the fully cross-linked product, allowing us to correctly predict the sequence of reaction events in the cross-linking process. Importantly, we observed that the terminal fully cross-linked product is composed of two distinct conformations. In one form, the product involved cross-linking between two ε-NH2 amines in lysine residues, while the other conformer was formed by a reaction between one ε-NH2 amine and the N-terminus. The experimental conditions for selecting one cross-linked species over others during the online ES ionization-MS analysis have been detailed. Appropriate parameters enabled the reaction between α-lactalbumin proteins and cross-linkers using a non-denaturing spray condition. These results establish a framework for a future development in high-throughput structural MS method, where all levels of protein information can be gathered in a single experiment.
Collapse
Affiliation(s)
- Benjamin J Burris
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Leah C Walsh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|
10
|
Takemori A, Takemori N. Sample preparation for structural mass spectrometry via polyacrylamide gel electrophoresis. Methods Enzymol 2023; 682:187-210. [PMID: 36948702 DOI: 10.1016/bs.mie.2022.08.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mass spectrometry is an analytical technique that can detect protein molecules with high sensitivity. Its use is not limited to the mere identification of protein components in biological samples, but is recently being utilized for large-scale analysis of protein structures in vivo as well. Top-down mass spectrometry with an ultra-high resolution mass spectrometer, for example, ionizes proteins in their intact state and allows rapid analysis of their chemical structure, which is used to determine proteoform profiles. Furthermore, cross-linking mass spectrometry, which analyzes enzyme-digested fragments of chemically cross-linked protein complexes, allows acquisition of conformational information on protein complexes in multimolecular crowding environments. In the analysis workflow of structural mass spectrometry, prior fractionation of crude biological samples is an effective way to obtain more detailed structural information. Polyacrylamide gel electrophoresis (PAGE), known as a simple and reproducible means of protein separation in biochemistry, is one example of an excellent high-resolution sample prefractionation tool for structural mass spectrometry. This chapter describes elemental technologies for PAGE-based sample prefractionation including Passively Eluting Proteins from Polyacrylamide gels as Intact species for Mass Spectrometry (PEPPI-MS), a highly efficient method for intact in-gel protein recovery, and Anion-Exchange disk-assisted Sequential sample Preparation (AnExSP), a rapid enzymatic digestion method using a solid-phase extraction microspin column for gel-recovered proteins, in addition to presenting detailed experimental protocols and examples of their use for structural mass spectrometry.
Collapse
Affiliation(s)
- Ayako Takemori
- Advanced Research Support Center, Institute for Promotion of Science and Technology, Ehime University, Toon, Japan
| | - Nobuaki Takemori
- Advanced Research Support Center, Institute for Promotion of Science and Technology, Ehime University, Toon, Japan.
| |
Collapse
|
11
|
Crystal Contact Engineering for Enhanced Cross-Linking Efficiency of HheG Crystals. Catalysts 2022. [DOI: 10.3390/catal12121553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The generation of cross-linked enzyme crystals is a very attractive method for immobilization of enzymes displaying high crystalizability. However, the commonly used cross-linker glutaraldehyde is not always compatible with enzyme activity. Therefore, we previously reported the engineering of halohydrin dehalogenase HheG from Ilumatobacter coccineus to enable thiol-specific cross-linking during CLEC generation by insertion of cysteine residues in the crystal contact. To broaden the applicability of this approach, herein crystal contact engineering of HheG has been performed to incorporate additional lysine residues as defined cross-linking sites for CLEC generation. Using the primary amine-specific cross-linker dithiobis(succinimidyl propionate) (DSP), CLECs of HheG variant V46K were obtained that displayed a high gain in thermal stability compared to wild-type HheG, while using only a low cross-linker concentration. Moreover, respective V46K CLECs exhibited a 10 K higher reaction temperature optimum as well as significantly improved activity and stability at acidic pH and in the presence of organic co-solvents. Overall, our study demonstrates that lysine-specific cross-linkers can also be used as an alternative to glutaraldehyde for stable CLEC generation of halohydrin dehalogenases, and that cross-linking efficiency is significantly improved upon crystal contact engineering.
Collapse
|
12
|
An Y, Zhao Q, Gao H, Zhao L, Li X, Zhang X, Liang Z, Zhang L, Zhang Y. Selective Removal of Unhydrolyzed Monolinked Peptides from Enriched Crosslinked Peptides To Improve the Coverage of Protein Complex Analysis. Anal Chem 2022; 94:3904-3913. [PMID: 35191685 DOI: 10.1021/acs.analchem.1c04927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical crosslinking combined with mass spectrometry (CXMS) has allowed the global characterization of protein complexes with high throughput and accuracy. Although enrichable crosslinkers have been introduced to exclude the interference of regular peptides, the crosslinked peptide identification is still severely inhibited by a large amount of monolinked peptides. In this work, we proposed a strategy called MoTE (unhydrolyzed Monolinked peptide Targeting Elimination) to remove the unhydrolyzed monolinked peptides, while enriching crosslinked peptides for regular peptide removal. In this strategy, followed by the crosslinking reaction, an amine biotin reagent was used to block the unreacted reactive groups on the crosslinker, and subsequently, the crosslinked proteins were tagged by a cleavable biotin-azide ligand based on click chemistry for enrichment. The following crosslinked protein digestion, purification by streptavidin beads, and release by chemical cleavage of the biotin-azide ligand were sequentially performed. In this case, the amine biotin-blocked unhydrolyzed monolinked peptides with the unbreakable arm remained on the streptavidin beads, which realized selective removal without any additional steps. By combining in vivo crosslinking with our proposed MoTE strategy for protein complex analysis of the HeLa cell, the number of high reliability (score <E-04) interlinked peptides increased 43% in a single LC-MS run, and the structural and interaction mapping capacity for low-abundance and flexible proteins were greatly enhanced. These results demonstrated that the MoTE strategy has great potential to improve the coverage of CXMS-based protein complex analysis. Notably, it was also the first report focused on removing the highly abundant monolinked peptides.
Collapse
Affiliation(s)
- Yuxin An
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Xiaodan Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| |
Collapse
|
13
|
Soares BS, Rocha SLG, Bastos VA, Lima DB, Carvalho PC, Gozzo FC, Demeler B, Williams TL, Arnold J, Henrickson A, Jørgensen TJD, Souza TACB, Perales J, Valente RH, Lomonte B, Gomes-Neto F, Neves-Ferreira AGC. Molecular Architecture of the Antiophidic Protein DM64 and its Binding Specificity to Myotoxin II From Bothrops asper Venom. Front Mol Biosci 2022; 8:787368. [PMID: 35155563 PMCID: PMC8830425 DOI: 10.3389/fmolb.2021.787368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 01/11/2023] Open
Abstract
DM64 is a toxin-neutralizing serum glycoprotein isolated from Didelphis aurita, an ophiophagous marsupial naturally resistant to snake envenomation. This 64 kDa antitoxin targets myotoxic phospholipases A2, which account for most local tissue damage of viperid snakebites. We investigated the noncovalent complex formed between native DM64 and myotoxin II, a myotoxic phospholipase-like protein from Bothrops asper venom. Analytical ultracentrifugation (AUC) and size exclusion chromatography indicated that DM64 is monomeric in solution and binds equimolar amounts of the toxin. Attempts to crystallize native DM64 for X-ray diffraction were unsuccessful. Obtaining recombinant protein to pursue structural studies was also challenging. Classical molecular modeling techniques were impaired by the lack of templates with more than 25% sequence identity with DM64. An integrative structural biology approach was then applied to generate a three-dimensional model of the inhibitor bound to myotoxin II. I-TASSER individually modeled the five immunoglobulin-like domains of DM64. Distance constraints generated by cross-linking mass spectrometry of the complex guided the docking of DM64 domains to the crystal structure of myotoxin II, using Rosetta. AUC, small-angle X-ray scattering (SAXS), molecular modeling, and molecular dynamics simulations indicated that the DM64-myotoxin II complex is structured, shows flexibility, and has an anisotropic shape. Inter-protein cross-links and limited hydrolysis analyses shed light on the inhibitor's regions involved with toxin interaction, revealing the critical participation of the first, third, and fifth domains of DM64. Our data showed that the fifth domain of DM64 binds to myotoxin II amino-terminal and beta-wing regions. The third domain of the inhibitor acts in a complementary way to the fifth domain. Their binding to these toxin regions presumably precludes dimerization, thus interfering with toxicity, which is related to the quaternary structure of the toxin. The first domain of DM64 interacts with the functional site of the toxin putatively associated with membrane anchorage. We propose that both mechanisms concur to inhibit myotoxin II toxicity by DM64 binding. The present topological characterization of this toxin-antitoxin complex constitutes an essential step toward the rational design of novel peptide-based antivenom therapies targeting snake venom myotoxins.
Collapse
Affiliation(s)
- Barbara S. Soares
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | | | - Viviane A. Bastos
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Diogo B. Lima
- Department of Chemical Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Paulo C. Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Curitiba, Brazil
| | - Fabio C. Gozzo
- Dalton Mass Spectrometry Laboratory, University of Campinas, Campinas, Brazil
| | - Borries Demeler
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, United States
| | - Tayler L. Williams
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Janelle Arnold
- Department of Environmental Science, Princeton University, Princeton, NJ, United States
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Thomas J. D. Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tatiana A. C. B. Souza
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Curitiba, Brazil
| | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Richard H. Valente
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Bruno Lomonte
- Clodomiro Picado Institute, University of Costa Rica, San José, Costa Rica
| | | | | |
Collapse
|
14
|
Misal SA, Zhao B, Reilly JP. Interpretation of Anomalously Long Crosslinks in Ribosome Crosslinking reveals the ribosome interaction in stationary phase E. coli. RSC Chem Biol 2022; 3:886-894. [PMID: 35866168 PMCID: PMC9257603 DOI: 10.1039/d2cb00101b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022] Open
Abstract
Crosslinking mass spectrometry (XL-MS) of bacterial ribosomes revealed the dynamic intra and intermolecular interactions within the ribosome structure. It has been also extended to capture the interactions of ribosome binding...
Collapse
Affiliation(s)
- Santosh A Misal
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| | - Bingqing Zhao
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| | - James P Reilly
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| |
Collapse
|
15
|
Takemori A, Kawashima Y, Takemori N. Bottom-up/cross-linking mass spectrometry via simplified sample processing on anion-exchange solid-phase extraction spin column. Chem Commun (Camb) 2021; 58:775-778. [PMID: 34897310 DOI: 10.1039/d1cc05529a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We introduce a simple single-column protein digestion method for low-microgram-level samples containing sodium dodecyl sulfate and Coomassie dye that can be completed within a few hours.
Collapse
Affiliation(s)
- Ayako Takemori
- Division of Analytical Bio-Medicine, Advanced Research Support Center, Ehime University, Toon, Ehime, Japan.
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Nobuaki Takemori
- Division of Analytical Bio-Medicine, Advanced Research Support Center, Ehime University, Toon, Ehime, Japan.
| |
Collapse
|
16
|
Pandya P, Giram P, Bhole RP, Chang HI, Raut SY. Nanocarriers based oral lymphatic drug targeting: Strategic bioavailability enhancement approaches. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
de Jong L, Roseboom W, Kramer G. Towards low false discovery rate estimation for protein-protein interactions detected by chemical cross-linking. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140655. [PMID: 33812047 DOI: 10.1016/j.bbapap.2021.140655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 01/16/2023]
Abstract
Chemical cross-linking (CX) of proteins in vivo or in cell free extracts followed by mass spectrometric (MS) identification of linked peptide pairs (CXMS) can reveal protein-protein interactions (PPIs) both at a proteome wide scale and the level of cross-linked amino acid residues. However, error estimation at the level of PPI remains challenging in large scale datasets. Here we discuss recent advances in the recognition of spurious inter-protein peptide pairs and in diminishing the FDR for these PPI-signaling cross-links, such as the use of chromatographic retention time prediction, in order to come to a more reliable reporting of PPIs.
Collapse
Affiliation(s)
- Luitzen de Jong
- Swammerdam Institute for Life Sciences, Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 HX Amsterdam, the Netherlands.
| | - Winfried Roseboom
- Swammerdam Institute for Life Sciences, Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 HX Amsterdam, the Netherlands
| | - Gertjan Kramer
- Swammerdam Institute for Life Sciences, Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 HX Amsterdam, the Netherlands
| |
Collapse
|
18
|
Kukačka Z, Rosůlek M, Jelínek J, Slavata L, Kavan D, Novák P. LinX: A Software Tool for Uncommon Cross-Linking Chemistry. J Proteome Res 2021; 20:2021-2027. [PMID: 33657806 DOI: 10.1021/acs.jproteome.0c00858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical cross-linking mass spectrometry has become a popular tool in structural biology. Although several algorithms exist that efficiently analyze data-dependent mass spectrometric data, the algorithm to identify and quantify intermolecular cross-links located at the interaction interface of homodimer molecules was missing. The algorithm in LinX utilizes high mass accuracy for ion identification. In contrast with standard data-dependent analysis, LinX enables the elucidation of cross-linked peptides originating from the interaction interface of homodimers labeled by 14N/15N, including their ratio or cross-links from protein-nucleic acid complexes. The software is written in Java language, and its source code and a detailed user's guide are freely available at https://github.com/KukackaZ/LinX or https://ms-utils.org/LinX. Data are accessible via the ProteomeXchange server with the data set identifier PXD023522.
Collapse
Affiliation(s)
- Zdeněk Kukačka
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Michal Rosůlek
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Jan Jelínek
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12000 Prague 2, Czech Republic
| | - Lukáš Slavata
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Daniel Kavan
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Petr Novák
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| |
Collapse
|
19
|
Hevler JF, Lukassen MV, Cabrera-Orefice A, Arnold S, Pronker MF, Franc V, Heck AJR. Selective cross-linking of coinciding protein assemblies by in-gel cross-linking mass spectrometry. EMBO J 2021; 40:e106174. [PMID: 33459420 PMCID: PMC7883291 DOI: 10.15252/embj.2020106174] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Cross-linking mass spectrometry has developed into an important method to study protein structures and interactions. The in-solution cross-linking workflows involve time and sample consuming steps and do not provide sensible solutions for differentiating cross-links obtained from co-occurring protein oligomers, complexes, or conformers. Here we developed a cross-linking workflow combining blue native PAGE with in-gel cross-linking mass spectrometry (IGX-MS). This workflow circumvents steps, such as buffer exchange and cross-linker concentration optimization. Additionally, IGX-MS enables the parallel analysis of co-occurring protein complexes using only small amounts of sample. Another benefit of IGX-MS, demonstrated by experiments on GroEL and purified bovine heart mitochondria, is the substantial reduction of undesired over-length cross-links compared to in-solution cross-linking. We next used IGX-MS to investigate the complement components C5, C6, and their hetero-dimeric C5b6 complex. The obtained cross-links were used to generate a refined structural model of the complement component C6, resembling C6 in its inactivated state. This finding shows that IGX-MS can provide new insights into the initial stages of the terminal complement pathway.
Collapse
Affiliation(s)
- Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marie V Lukassen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matti F Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| |
Collapse
|
20
|
Beyer T, Klose F, Kuret A, Hoffmann F, Lukowski R, Ueffing M, Boldt K. Tissue- and isoform-specific protein complex analysis with natively processed bait proteins. J Proteomics 2020; 231:103947. [PMID: 32853754 DOI: 10.1016/j.jprot.2020.103947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Protein-protein interaction analysis is an important tool to elucidate the function of proteins and protein complexes as well as their dynamic behavior. To date, the analysis of tissue- or even cell- or compartment-specific protein interactions is still relying on the availability of specific antibodies suited for immunoprecipitation. Here, we aimed at establishing a method that allows identification of protein interactions and complexes from intact tissues independent of specific, high affinity antibodies used for protein pull-down and isolation. Tagged bait proteins were expressed in human HEK293T cells and residual interactors removed by SDS. The resulting tag-fusion protein was then used as bait to pull proteins from tissue samples. Tissue-specific interactions were reproducibly identified from porcine retina as well as from retinal pigment epithelium using the ciliary protein lebercilin as bait. Further, murine heart-specific interactors of two gene products of the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type 1 (cGK1) were investigated. Here, specific interactions were associated with the cGK1α and β gene products, that differ only in their unique amino-terminal region comprising about 100 aa. As such, the new protocol provides a fast and reliable method for tissue-specific protein complex analysis which is independent of the availability or suitability of antibodies for immunoprecipitation. SIGNIFICANCE: Protein-protein interaction in the functional relevant tissue is still difficult due to the dependence on specific antibodies or bait production in bacteria or insect cells. Here, the tagged protein of interest is produced in a human cell line and bound proteins are gently removed using SDS. Because applying the suitable SDS concentration is a critical step, different SDS solutions were tested to demonstrate their influence on interactions and the clean-up process. The established protocol enabled a tissue-specific analysis of the ciliary proteins lebercilin and TMEM107 using pig eyes. In addition, two gene products of the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type 1 showed distinct protein interactions in mouse heart tissue. With the easy, fast and cheap protocol presented here, deep insights in tissue-specific and functional relevant protein complex formation is possible.
Collapse
Affiliation(s)
- Tina Beyer
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tuebingen, Germany
| | - Franziska Klose
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tuebingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany
| | - Felix Hoffmann
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tuebingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tuebingen, Germany.
| | - Karsten Boldt
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Strasse 7, D-72076 Tuebingen, Germany.
| |
Collapse
|
21
|
Tüting C, Iacobucci C, Ihling CH, Kastritis PL, Sinz A. Structural analysis of 70S ribosomes by cross-linking/mass spectrometry reveals conformational plasticity. Sci Rep 2020; 10:12618. [PMID: 32724211 PMCID: PMC7387497 DOI: 10.1038/s41598-020-69313-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
The ribosome is not only a highly complex molecular machine that translates the genetic information into proteins, but also an exceptional specimen for testing and optimizing cross-linking/mass spectrometry (XL-MS) workflows. Due to its high abundance, ribosomal proteins are frequently identified in proteome-wide XL-MS studies of cells or cell extracts. Here, we performed in-depth cross-linking of the E. coli ribosome using the amine-reactive cross-linker disuccinimidyl diacetic urea (DSAU). We analyzed 143 E. coli ribosomal structures, mapping a total of 10,771 intramolecular distances for 126 cross-link-pairs and 3,405 intermolecular distances for 97 protein pairs. Remarkably, 44% of intermolecular cross-links covered regions that have not been resolved in any high-resolution E. coli ribosome structure and point to a plasticity of cross-linked regions. We systematically characterized all cross-links and discovered flexible regions, conformational changes, and stoichiometric variations in bound ribosomal proteins, and ultimately remodeled 2,057 residues (15,794 atoms) in total. Our working model explains more than 95% of all cross-links, resulting in an optimized E. coli ribosome structure based on the cross-linking data obtained. Our study might serve as benchmark for conducting biochemical experiments on newly modeled protein regions, guided by XL-MS. Data are available via ProteomeXchange with identifier PXD018935.
Collapse
Affiliation(s)
- Christian Tüting
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
- Corporate Preclinical R&D, Analytics and Early Formulations Department, CHIESI FARMACEUTICI S.P.A., Via Palermo 26/A, 43122, Parma, Italy
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
- Center for Structural Mass Spectrometry, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany.
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany.
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany.
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany.
- Center for Structural Mass Spectrometry, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany.
| |
Collapse
|
22
|
Kyrilis FL, Meister A, Kastritis PL. Integrative biology of native cell extracts: a new era for structural characterization of life processes. Biol Chem 2020; 400:831-846. [PMID: 31091193 DOI: 10.1515/hsz-2018-0445] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/29/2019] [Indexed: 01/04/2023]
Abstract
Advances in electron microscopy have provided unprecedented access to the structural characterization of large, flexible and heterogeneous complexes. Until recently, cryo-electron microscopy (cryo-EM) has been applied to understand molecular organization in either highly purified, isolated biomolecules or in situ. An emerging field is developing, bridging the gap between the two approaches, and focuses on studying molecular organization in native cell extracts. This field has demonstrated its potential by resolving the structure of fungal fatty acid synthase (FAS) at 4.7 Å [Fourier shell correlation (FSC) = 0.143]; FAS was not only less than 50% enriched, but also retained higher-order binders, previously unknown. Although controversial in the sense that the lysis step might introduce artifacts, cell extracts preserve aspects of cellular function. In addition, cell extracts are accessible, besides cryo-EM, to modern proteomic methods, chemical cross-linking, network biology and biophysical modeling. We expect that automation in imaging cell extracts, along with the integration of molecular/cell biology approaches, will provide remarkable achievements in the study of closer-to-life biomolecular states of pronounced biotechnological and medical importance. Such steps will, eventually, bring us a step closer to the biophysical description of cellular processes in an integrative, holistic approach.
Collapse
Affiliation(s)
- Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, D-06120 Halle/Saale, Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, D-06120 Halle/Saale, Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle/Saale, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, D-06120 Halle/Saale, Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle/Saale, Germany.,Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle/Saale, Germany
| |
Collapse
|
23
|
Reese HR, Shanahan CC, Proulx C, Menegatti S. Peptide science: A "rule model" for new generations of peptidomimetics. Acta Biomater 2020; 102:35-74. [PMID: 31698048 DOI: 10.1016/j.actbio.2019.10.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Peptides have been heavily investigated for their biocompatible and bioactive properties. Though a wide array of functionalities can be introduced by varying the amino acid sequence or by structural constraints, properties such as proteolytic stability, catalytic activity, and phase behavior in solution are difficult or impossible to impart upon naturally occurring α-L-peptides. To this end, sequence-controlled peptidomimetics exhibit new folds, morphologies, and chemical modifications that create new structures and functions. The study of these new classes of polymers, especially α-peptoids, has been highly influenced by the analysis, computational, and design techniques developed for peptides. This review examines techniques to determine primary, secondary, and tertiary structure of peptides, and how they have been adapted to investigate peptoid structure. Computational models developed for peptides have been modified to predict the morphologies of peptoids and have increased in accuracy in recent years. The combination of in vitro and in silico techniques have led to secondary and tertiary structure design principles that mirror those for peptides. We then examine several important developments in peptoid applications inspired by peptides such as pharmaceuticals, catalysis, and protein-binding. A brief survey of alternative backbone structures and research investigating these peptidomimetics shows how the advancement of peptide and peptoid science has influenced the growth of numerous fields of study. As peptide, peptoid, and other peptidomimetic studies continue to advance, we will expect to see higher throughput structural analyses, greater computational accuracy and functionality, and wider application space that can improve human health, solve environmental challenges, and meet industrial needs. STATEMENT OF SIGNIFICANCE: Many historical, chemical, and functional relations draw a thread connecting peptides to their recent cognates, the "peptidomimetics". This review presents a comprehensive survey of this field by highlighting the width and relevance of these familial connections. In the first section, we examine the experimental and computational techniques originally developed for peptides and their morphing into a broader analytical and predictive toolbox. The second section presents an excursus of the structures and properties of prominent peptidomimetics, and how the expansion of the chemical and structural diversity has returned new exciting properties. The third section presents an overview of technological applications and new families of peptidomimetics. As the field grows, new compounds emerge with clear potential in medicine and advanced manufacturing.
Collapse
|
24
|
Zhao L, Zhao Q, Shan Y, Fang F, Zhang W, Zhao B, Li X, Liang Z, Zhang L, Zhang Y. Smart Cutter: An Efficient Strategy for Increasing the Coverage of Chemical Cross-Linking Analysis. Anal Chem 2019; 92:1097-1105. [DOI: 10.1021/acs.analchem.9b04161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yichu Shan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Fei Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Weijie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Xiao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| |
Collapse
|
25
|
Müller A, Langó T, Turiák L, Ács A, Várady G, Kucsma N, Drahos L, Tusnády GE. Covalently modified carboxyl side chains on cell surface leads to a novel method toward topology analysis of transmembrane proteins. Sci Rep 2019; 9:15729. [PMID: 31673029 PMCID: PMC6823493 DOI: 10.1038/s41598-019-52188-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022] Open
Abstract
The research on transmembrane proteins (TMPs) is quite widespread due to their biological importance. Unfortunately, only a little amount of structural data is available of TMPs. Since technical difficulties arise during their high-resolution structure determination, bioinformatics and other experimental approaches are widely used to characterize their low-resolution structure, namely topology. Experimental and computational methods alone are still limited to determine TMP topology, but their combination becomes significant for the production of reliable structural data. By applying amino acid specific membrane-impermeable labelling agents, it is possible to identify the accessible surface of TMPs. Depending on the residue-specific modifications, new extracellular topology data is gathered, allowing the identification of more extracellular segments for TMPs. A new method has been developed for the experimental analysis of TMPs: covalent modification of the carboxyl groups on the accessible cell surface, followed by the isolation and digestion of these proteins. The labelled peptide fragments and their exact modification sites are identified by nanoLC-MS/MS. The determined peptides are mapped to the primary sequences of TMPs and the labelled sites are utilised as extracellular constraints in topology predictions that contribute to the refined low-resolution structure data of these proteins.
Collapse
Affiliation(s)
- Anna Müller
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok krt 2, Budapest, H-1117, Hungary
| | - Tamás Langó
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok krt 2, Budapest, H-1117, Hungary
| | - Lilla Turiák
- Institute of Organic Chemistry, RCNS, Hungarian Academy of Sciences, Magyar Tudósok krt 2, Budapest, H-1117, Hungary
| | - András Ács
- Institute of Organic Chemistry, RCNS, Hungarian Academy of Sciences, Magyar Tudósok krt 2, Budapest, H-1117, Hungary
| | - György Várady
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok krt 2, Budapest, H-1117, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok krt 2, Budapest, H-1117, Hungary
| | - László Drahos
- Institute of Organic Chemistry, RCNS, Hungarian Academy of Sciences, Magyar Tudósok krt 2, Budapest, H-1117, Hungary
| | - Gábor E Tusnády
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok krt 2, Budapest, H-1117, Hungary.
| |
Collapse
|
26
|
Jones AX, Cao Y, Tang YL, Wang JH, Ding YH, Tan H, Chen ZL, Fang RQ, Yin J, Chen RC, Zhu X, She Y, Huang N, Shao F, Ye K, Sun RX, He SM, Lei X, Dong MQ. Improving mass spectrometry analysis of protein structures with arginine-selective chemical cross-linkers. Nat Commun 2019; 10:3911. [PMID: 31477730 PMCID: PMC6718413 DOI: 10.1038/s41467-019-11917-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) is widely used to study protein-protein interactions (PPI), protein structures, and even protein dynamics. However, structural information provided by CXMS is still limited, partly because most CXMS experiments use lysine-lysine (K-K) cross-linkers. Although superb in selectivity and reactivity, they are ineffective for lysine deficient regions. Herein, we develop aromatic glyoxal cross-linkers (ArGOs) for arginine-arginine (R-R) cross-linking and the lysine-arginine (K-R) cross-linker KArGO. The R-R or K-R cross-links generated by ArGO or KArGO fit well with protein crystal structures and provide information not attainable by K-K cross-links. KArGO, in particular, is highly valuable for CXMS, with robust performance on a variety of samples including a kinase and two multi-protein complexes. In the case of the CNGP complex, KArGO cross-links covered as much of the PPI interface as R-R and K-K cross-links combined and improved the accuracy of Rosetta docking substantially. Cross-linking mass spectrometry can provide insights into protein structures and interactions but its scope depends on the reactivity of the cross-linker. Here, the authors develop Arg-Arg and Lys-Arg cross-linkers, which provide structural information elusive to the widely used Lys-Lys cross-linkers.
Collapse
Affiliation(s)
- Alexander X Jones
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Yong Cao
- School of Life Sciences, Peking University, 100871, Beijing, China.,National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Yu-Liang Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Jian-Hua Wang
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Yue-He Ding
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Hui Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Zhen-Lin Chen
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Run-Qian Fang
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jili Yin
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rong-Chang Chen
- University of Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xing Zhu
- University of Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yang She
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Niu Huang
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Keqiong Ye
- University of Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Rui-Xiang Sun
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Si-Min He
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
| | - Meng-Qiu Dong
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| |
Collapse
|
27
|
Chen ZL, Meng JM, Cao Y, Yin JL, Fang RQ, Fan SB, Liu C, Zeng WF, Ding YH, Tan D, Wu L, Zhou WJ, Chi H, Sun RX, Dong MQ, He SM. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat Commun 2019; 10:3404. [PMID: 31363125 PMCID: PMC6667459 DOI: 10.1038/s41467-019-11337-z] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/20/2019] [Indexed: 01/05/2023] Open
Abstract
We describe pLink 2, a search engine with higher speed and reliability for proteome-scale identification of cross-linked peptides. With a two-stage open search strategy facilitated by fragment indexing, pLink 2 is ~40 times faster than pLink 1 and 3~10 times faster than Kojak. Furthermore, using simulated datasets, synthetic datasets, 15N metabolically labeled datasets, and entrapment databases, four analysis methods were designed to evaluate the credibility of ten state-of-the-art search engines. This systematic evaluation shows that pLink 2 outperforms these methods in precision and sensitivity, especially at proteome scales. Lastly, re-analysis of four published proteome-scale cross-linking datasets with pLink 2 required only a fraction of the time used by pLink 1, with up to 27% more cross-linked residue pairs identified. pLink 2 is therefore an efficient and reliable tool for cross-linking mass spectrometry analysis, and the systematic evaluation methods described here will be useful for future software development. The identification of cross-linked peptides at a proteome scale for interactome analyses represents a complex challenge. Here the authors report an efficient and reliable search engine pLink 2 for proteome-scale cross-linking mass spectrometry analyses, and demonstrate how to systematically evaluate the credibility of search engines.
Collapse
Affiliation(s)
- Zhen-Lin Chen
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Ming Meng
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Cao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Ji-Li Yin
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run-Qian Fang
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-Bo Fan
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Liu
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Feng Zeng
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue-He Ding
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Dan Tan
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Long Wu
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Jing Zhou
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Chi
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui-Xiang Sun
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Si-Min He
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Fang Z, Baghdady YZ, Schug KA, Chowdhury SM. Evaluation of Different Stationary Phases in the Separation of Inter-Cross-Linked Peptides. J Proteome Res 2019; 18:1916-1925. [PMID: 30786713 DOI: 10.1021/acs.jproteome.9b00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chemical cross-linking coupled with mass spectrometry (MS) is becoming a routinely and widely used technique for depicting and constructing protein structures and protein interaction networks. One major challenge for cross-linking/MS is the determination of informative low-abundant inter-cross-linked products, generated within a sample of high complexity. A C18 stationary phase is the conventional means for reversed-phase (RP) separation of inter-cross-linked peptides. Various RP stationary phases, which provide different selectivities and retentions, have been developed as alternatives to C18 stationary phases. In this study, two phenyl-based columns, biphenyl and fluorophenyl, were investigated and compared with a C18 phase for separating BS3 (bis(sulfosuccinimidyl)suberate) cross-linked bovine serum albumin (BSA) and myoglobin by bottom-up proteomics. Fractions from the three columns were collected and analyzed in a linear ion trap (LIT) mass spectrometer for improving detection of low abundant inter-cross-linked peptides. Among these three columns, the fluorophenyl column provides additional ion-exchange interaction and exhibits unique retention in separating the cross-linked peptides. The fractioned data was analyzed in pLink, showing the fluorophenyl column consistently obtained more inter-cross-linked peptide identifications than both C18 and biphenyl columns. For the BSA cross-linked sample, the identified inter-cross-linked peptide numbers of the fluorophenyl to C18 column are 136 to 102 in "low confident" results and 11 to 6 in "high confident" results. The fluorophenyl column could potentially be a better alternative for targeting the low stoichiometric inter-cross-linked peptides.
Collapse
Affiliation(s)
- Zixiang Fang
- Department of Chemistry & Biochemistry , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Yehia Z Baghdady
- Department of Chemistry & Biochemistry , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Kevin A Schug
- Department of Chemistry & Biochemistry , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Saiful M Chowdhury
- Department of Chemistry & Biochemistry , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| |
Collapse
|
29
|
James JMB, Cryar A, Thalassinos K. Optimization Workflow for the Analysis of Cross-Linked Peptides Using a Quadrupole Time-of-Flight Mass Spectrometer. Anal Chem 2019; 91:1808-1814. [PMID: 30620560 PMCID: PMC6383985 DOI: 10.1021/acs.analchem.8b02319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Cross-linking
mass spectrometry is an emerging structural biology
technique. Almost exclusively, the analyzer of choice for such an
experiment has been the Orbitrap. We present an optimized protocol
for the use of a Synapt G2-Si for the analysis of cross-linked peptides.
We first tested six different energy ramps and analyzed the fragmentation
behavior of cross-linked peptides identified by xQuest. By combining
the most successful energy ramps, cross-link yield can be increased
by up to 40%. When compared to previously published Orbitrap data,
the Synapt G2-Si also offers improved fragmentation of the β
peptide. In order to improve cross-link quality control we have also
developed ValidateXL, a programmatic solution that works with existing
cross-linking software to improve cross-link quality control.
Collapse
Affiliation(s)
- Juliette M B James
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology , University College London , Gower Street , London , WC1E 6BT , United Kingdom
| | - Adam Cryar
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology , University College London , Gower Street , London , WC1E 6BT , United Kingdom.,LGC Group , Queen's Road , Teddington , TW11 0LY , United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology , University College London , Gower Street , London , WC1E 6BT , United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences , Birkbeck, University of London , London , WC1E 7HX , United Kingdom
| |
Collapse
|
30
|
Li B, Fooksa M, Heinze S, Meiler J. Finding the needle in the haystack: towards solving the protein-folding problem computationally. Crit Rev Biochem Mol Biol 2018; 53:1-28. [PMID: 28976219 PMCID: PMC6790072 DOI: 10.1080/10409238.2017.1380596] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
Abstract
Prediction of protein tertiary structures from amino acid sequence and understanding the mechanisms of how proteins fold, collectively known as "the protein folding problem," has been a grand challenge in molecular biology for over half a century. Theories have been developed that provide us with an unprecedented understanding of protein folding mechanisms. However, computational simulation of protein folding is still difficult, and prediction of protein tertiary structure from amino acid sequence is an unsolved problem. Progress toward a satisfying solution has been slow due to challenges in sampling the vast conformational space and deriving sufficiently accurate energy functions. Nevertheless, several techniques and algorithms have been adopted to overcome these challenges, and the last two decades have seen exciting advances in enhanced sampling algorithms, computational power and tertiary structure prediction methodologies. This review aims at summarizing these computational techniques, specifically conformational sampling algorithms and energy approximations that have been frequently used to study protein-folding mechanisms or to de novo predict protein tertiary structures. We hope that this review can serve as an overview on how the protein-folding problem can be studied computationally and, in cases where experimental approaches are prohibitive, help the researcher choose the most relevant computational approach for the problem at hand. We conclude with a summary of current challenges faced and an outlook on potential future directions.
Collapse
Affiliation(s)
- Bian Li
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Michaela Fooksa
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, TN, USA
| | - Sten Heinze
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
31
|
Varricchio L, Falchi M, Dall'Ora M, De Benedittis C, Ruggeri A, Uversky VN, Migliaccio AR. Calreticulin: Challenges Posed by the Intrinsically Disordered Nature of Calreticulin to the Study of Its Function. Front Cell Dev Biol 2017; 5:96. [PMID: 29218307 PMCID: PMC5703715 DOI: 10.3389/fcell.2017.00096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Calreticulin is a Ca2+-binding chaperone protein, which resides mainly in the endoplasmic reticulum but also found in other cellular compartments including the plasma membrane. In addition to Ca2+, calreticulin binds and regulates almost all proteins and most of the mRNAs deciding their intracellular fate. The potential functions of calreticulin are so numerous that identification of all of them is becoming a nightmare. Still the recent discovery that patients affected by the Philadelphia-negative myeloproliferative disorders essential thrombocytemia or primary myelofibrosis not harboring JAK2 mutations carry instead calreticulin mutations disrupting its C-terminal domain has highlighted the clinical need to gain a deeper understanding of the biological activity of this protein. However, by contrast with other proteins, such as enzymes or transcription factors, the biological functions of which are strictly defined by a stable spatial structure imprinted by their amino acid sequence, calreticulin contains intrinsically disordered regions, the structure of which represents a highly dynamic conformational ensemble characterized by constant changes between several metastable conformations in response to a variety of environmental cues. This article will illustrate the Theory of calreticulin as an intrinsically disordered protein and discuss the Hypothesis that the dynamic conformational changes to which calreticulin may be subjected by environmental cues, by promoting or restricting the exposure of its active sites, may affect its function under normal and pathological conditions.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mario Falchi
- National HIV/AIDS Center, Istituto Superiore Sanità, Rome, Italy
| | - Massimiliano Dall'Ora
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Caterina De Benedittis
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Alessandra Ruggeri
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| |
Collapse
|
32
|
Liu Q, Remmelzwaal S, Heck AJR, Akhmanova A, Liu F. Facilitating identification of minimal protein binding domains by cross-linking mass spectrometry. Sci Rep 2017; 7:13453. [PMID: 29044157 PMCID: PMC5647383 DOI: 10.1038/s41598-017-13663-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/25/2017] [Indexed: 10/27/2022] Open
Abstract
Characterization of protein interaction domains is crucial for understanding protein functions. Here we combine cross-linking mass spectrometry (XL-MS) with deletion analysis to accurately locate minimal protein interaction domains. As a proof of concept, we investigated in detail the binding interfaces of two protein assemblies: the complex formed by MICAL3, ELKS and Rab8A, which is involved in exocytosis, and the complex of SLAIN2, CLASP2 and ch-TOG, which controls microtubule dynamics. We found that XL-MS provides valuable information to efficiently guide the design of protein fragments that are essential for protein interaction. However, we also observed a number of cross-links between polypeptide regions that were dispensable for complex formation, especially among intrinsically disordered sequences. Collectively, our results indicate that XL-MS, which renders distance restrains of linked residue pairs, accelerates the characterization of protein binding regions in combination with other biochemical approaches.
Collapse
Affiliation(s)
- Qingyang Liu
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Sanne Remmelzwaal
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Fan Liu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands.
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
33
|
Schmidt C, Urlaub H. Combining cryo-electron microscopy (cryo-EM) and cross-linking mass spectrometry (CX-MS) for structural elucidation of large protein assemblies. Curr Opin Struct Biol 2017; 46:157-168. [DOI: 10.1016/j.sbi.2017.10.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/21/2017] [Accepted: 10/05/2017] [Indexed: 01/11/2023]
|
34
|
Vannecke W, Ampe C, Van Troys M, Beltramo M, Madder A. Cross-Linking Furan-Modified Kisspeptin-10 to the KISS Receptor. ACS Chem Biol 2017; 12:2191-2200. [PMID: 28714670 DOI: 10.1021/acschembio.7b00396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemical cross-linking is well-established for investigating protein-protein interactions. Traditionally, photo cross-linking is used but is associated with problems of selectivity and UV toxicity in a biological context. We here describe, with live cells and under normal growth conditions, selective cross-linking of a furan-modified peptide ligand to its membrane-presented receptor with zero toxicity, high efficiency, and spatio-specificity. Furan-modified kisspeptin-10 is covalently coupled to its glycosylated membrane receptor, GPR54(KISS1R). This newly expands the applicability of furan-mediated cross-linking not only to protein-protein cross-linking but also to cross-linking in situ. Moreover, in our earlier reports on nucleic acid interstrand cross-linking, furan activation required external triggers of oxidation (via addition of N-bromo succinimide or singlet oxygen). In contrast, we here show, for multiple cell lines, the spontaneous endogenous oxidation of the furan moiety with concurrent selective cross-link formation. We propose that reactive oxygen species produced by NADPH oxidase (NOX) enzymes form the cellular source establishing furan oxidation.
Collapse
Affiliation(s)
- Willem Vannecke
- Organic
and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan
281 S4, B-9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Christophe Ampe
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Marleen Van Troys
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Massimiliano Beltramo
- Equipe
Neuroendocrinologie Moleculaire de la Reproduction, Physiologie de
la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Annemieke Madder
- Organic
and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan
281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
35
|
Laskin J, Hu Q. Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1304-1312. [PMID: 28290125 DOI: 10.1007/s13361-017-1614-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS + 2H]2+, and two charge states of ubiquitin, [U + 5H]5+ and [U + 13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletion of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Julia Laskin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Qichi Hu
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
36
|
Spectrophotometric method for the quantitative assay of N-hydroxysulfosuccinimide esters including extinction coefficients and reaction kinetics. Anal Biochem 2017; 525:85-88. [DOI: 10.1016/j.ab.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/21/2017] [Accepted: 03/02/2017] [Indexed: 11/18/2022]
|
37
|
Lössl P, van de Waterbeemd M, Heck AJ. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J 2016; 35:2634-2657. [PMID: 27797822 PMCID: PMC5167345 DOI: 10.15252/embj.201694818] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022] Open
Abstract
The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes.
Collapse
Affiliation(s)
- Philip Lössl
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Albert Jr Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| |
Collapse
|
38
|
Vandermarliere E, Stes E, Gevaert K, Martens L. Resolution of protein structure by mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:653-665. [PMID: 25536908 DOI: 10.1002/mas.21450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Typically, mass spectrometry is used to identify the peptides present in a complex peptide mixture and subsequently the precursor proteins. As such, mass spectrometry focuses mainly on the primary structure, the (modified) amino acid sequence of peptides and proteins. In contrast, the three-dimensional structure of a protein is typically determined with protein X-ray crystallography or NMR. Despite the close relationship between these two aspects of protein studies (sequence and structure), mass spectrometry and structure determination are not frequently combined. Nevertheless, this combination of approaches, dubbed conformational proteomics, can offer insight into the function, working mechanism, and conformational status of a protein. In this review, we will discuss the developments at the intersection of mass spectrometry-based proteomics and protein structure determination and start from a brief overview of the classic approaches to identify protein structure along with their advantages and disadvantages. We will subsequently discuss the ability of mass spectrometry to overcome some of the hurdles of these classic methods. Finally, we will provide an outlook on the interplay of mass spectrometry and protein structure determination, and highlight several recent experiments in which mass spectrometry was successfully used to either aid or complement structure elucidation. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:653-665, 2016.
Collapse
Affiliation(s)
- Elien Vandermarliere
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium
| | - Elisabeth Stes
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium
| | - Lennart Martens
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium.
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium.
| |
Collapse
|
39
|
Yılmaz Ş, Drepper F, Hulstaert N, Černič M, Gevaert K, Economou A, Warscheid B, Martens L, Vandermarliere E. Xilmass: A New Approach toward the Identification of Cross-Linked Peptides. Anal Chem 2016; 88:9949-9957. [PMID: 27642655 DOI: 10.1021/acs.analchem.6b01585] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemical cross-linking coupled with mass spectrometry plays an important role in unravelling protein interactions, especially weak and transient ones. Moreover, cross-linking complements several structural determination approaches such as cryo-EM. Although several computational approaches are available for the annotation of spectra obtained from cross-linked peptides, there remains room for improvement. Here, we present Xilmass, a novel algorithm to identify cross-linked peptides that introduces two new concepts: (i) the cross-linked peptides are represented in the search database such that the cross-linking sites are explicitly encoded, and (ii) the scoring function derived from the Andromeda algorithm was adapted to score against a theoretical tandem mass spectrometry (MS/MS) spectrum that contains the peaks from all possible fragment ions of a cross-linked peptide pair. The performance of Xilmass was evaluated against the recently published Kojak and the popular pLink algorithms on a calmodulin-plectin complex data set, as well as three additional, published data sets. The results show that Xilmass typically had the highest number of identified distinct cross-linked sites and also the highest number of predicted cross-linked sites.
Collapse
Affiliation(s)
- Şule Yılmaz
- Medical Biotechnology Center, VIB , 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , 9000 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University , 9000 Ghent, Belgium
| | - Friedel Drepper
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg , 79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg , 79104 Freiburg, Germany
| | - Niels Hulstaert
- Medical Biotechnology Center, VIB , 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , 9000 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University , 9000 Ghent, Belgium
| | - Maša Černič
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins , Jamova Cesta 39, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana , 1000 Ljubljana, Slovenia
| | - Kris Gevaert
- Medical Biotechnology Center, VIB , 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , 9000 Ghent, Belgium
| | - Anastassios Economou
- KU Leuven-University of Leuven , Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.,Institute of Molecular Biology and Biotechnology-FoRTH and Department of Biology, University of Crete , Iraklio, 71100 Crete, Greece
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg , 79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg , 79104 Freiburg, Germany
| | - Lennart Martens
- Medical Biotechnology Center, VIB , 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , 9000 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University , 9000 Ghent, Belgium
| | - Elien Vandermarliere
- Medical Biotechnology Center, VIB , 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , 9000 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University , 9000 Ghent, Belgium
| |
Collapse
|
40
|
Xie B, Sharp JS. Relative Quantification of Sites of Peptide and Protein Modification Using Size Exclusion Chromatography Coupled with Electron Transfer Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1322-1327. [PMID: 27075875 PMCID: PMC4945384 DOI: 10.1007/s13361-016-1403-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
One difficult problem in the analysis of peptide modifications is quantifying isomeric modifications that differ by the position of the amino acid modified. HPLC separation using C18 reverse phase chromatography coupled with electron transfer dissociation (ETD) in tandem mass spectrometry has recently been shown to be able to relatively quantify how much of a given modification occurs at each amino acid position for isomeric mixtures; however, the resolution of reverse phase chromatography greatly complicates quantification of isomeric modifications by ETD because of the chromatographic separation of peptides with identical modifications at different sequence positions. Using peptide oxidation as a model system, we investigated the use of size exclusion chromatography coupled with ETD fragmentation to separate peptide sequences. This approach allows for the benefits of chromatographic separation of peptide sequences while ensuring co-elution of modification isomers for accurate relative quantification of modifications using standard data-dependent acquisitions. Using this method, the relative amount of modification at each amino acid can be accurately measured from single ETD MS/MS spectra in a standard data-dependent acquisition experiment. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Boer Xie
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Joshua S Sharp
- Department of Biomolecular Sciences, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
41
|
Peng J, Zhang Z. Unraveling low-resolution structural data of large biomolecules by constructing atomic models with experiment-targeted parallel cascade selection simulations. Sci Rep 2016; 6:29360. [PMID: 27377017 PMCID: PMC4932515 DOI: 10.1038/srep29360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/17/2016] [Indexed: 11/09/2022] Open
Abstract
Various low-resolution experimental techniques have gained more and more popularity in obtaining structural information of large biomolecules. In order to interpret the low-resolution structural data properly, one may need to construct an atomic model of the biomolecule by fitting the data using computer simulations. Here we develop, to our knowledge, a new computational tool for such integrative modeling by taking the advantage of an efficient sampling technique called parallel cascade selection (PaCS) simulation. For given low-resolution structural data, this PaCS-Fit method converts it into a scoring function. After an initial simulation starting from a known structure of the biomolecule, the scoring function is used to pick conformations for next cycle of multiple independent simulations. By this iterative screening-after-sampling strategy, the biomolecule may be driven towards a conformation that fits well with the low-resolution data. Our method has been validated using three proteins with small-angle X-ray scattering data and two proteins with electron microscopy data. In all benchmark tests, high-quality atomic models, with generally 1-3 Å from the target structures, are obtained. Since our tool does not need to add any biasing potential in the simulations to deform the structure, any type of low-resolution data can be implemented conveniently.
Collapse
Affiliation(s)
- Junhui Peng
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
42
|
Ji C, Li S, Reilly JP, Radivojac P, Tang H. XLSearch: a Probabilistic Database Search Algorithm for Identifying Cross-Linked Peptides. J Proteome Res 2016; 15:1830-41. [PMID: 27068484 PMCID: PMC5770149 DOI: 10.1021/acs.jproteome.6b00004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical cross-linking combined with mass spectrometric analysis has become an important technique for probing protein three-dimensional structure and protein-protein interactions. A key step in this process is the accurate identification and validation of cross-linked peptides from tandem mass spectra. The identification of cross-linked peptides, however, presents challenges related to the expanded nature of the search space (all pairs of peptides in a sequence database) and the fact that some peptide-spectrum matches (PSMs) contain one correct and one incorrect peptide but often receive scores that are comparable to those in which both peptides are correctly identified. To address these problems and improve detection of cross-linked peptides, we propose a new database search algorithm, XLSearch, for identifying cross-linked peptides. Our approach is based on a data-driven scoring scheme that independently estimates the probability of correctly identifying each individual peptide in the cross-link given knowledge of the correct or incorrect identification of the other peptide. These conditional probabilities are subsequently used to estimate the joint posterior probability that both peptides are correctly identified. Using the data from two previous cross-link studies, we show the effectiveness of this scoring scheme, particularly in distinguishing between true identifications and those containing one incorrect peptide. We also provide evidence that XLSearch achieves more identifications than two alternative methods at the same false discovery rate (availability: https://github.com/COL-IU/XLSearch ).
Collapse
Affiliation(s)
- Chao Ji
- Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana 47405, United States
| | - Sujun Li
- Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana 47405, United States
| | - James P. Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Predrag Radivojac
- Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana 47405, United States
| | - Haixu Tang
- Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
43
|
Boelt SG, Norn C, Rasmussen MI, André I, Čiplys E, Slibinskas R, Houen G, Højrup P. Mapping the Ca(2+) induced structural change in calreticulin. J Proteomics 2016; 142:138-48. [PMID: 27195812 DOI: 10.1016/j.jprot.2016.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/09/2016] [Accepted: 05/14/2016] [Indexed: 01/04/2023]
Abstract
UNLABELLED Calreticulin is a highly conserved multifunctional protein implicated in many different biological systems and has therefore been the subject of intensive research. It is primarily present in the endoplasmatic reticulum where its main functions are to regulate Ca(2+) homeostasis, act as a chaperone and stabilize the MHC class I peptide-loading complex. Although several high-resolution structures of calreticulin exist, these only cover three-quarters of the entire protein leaving the extended structures unsolved. Additionally, the structure of calreticulin is influenced by the presence of Ca(2+). The conformational changes induced by Ca(2+) have not been determined yet as they are hard to study with traditional approaches. Here, we investigated the Ca(2+)-induced conformational changes with a combination of chemical cross-linking, mass spectrometry, bioinformatics analysis and modelling in Rosetta. Using a bifunctional linker, we found a large Ca(2+)-induced change to the cross-linking pattern in calreticulin. Our results are consistent with a high flexibility in the P-loop, a stabilization of the acidic C-terminal and a relatively close interaction of the P-loop and the acidic C-terminal. BIOLOGICAL SIGNIFICANCE The function of calreticulin, an endoplasmatic reticulin chaperone, is affected by fluctuations in Ca(2+)concentration, but the structural mechanism is unknown. The present work suggests that Ca(2+)-dependent regulation is caused by different conformations of a long proline-rich loop that changes the accessibility to the peptide/lectin-binding site. Our results indicate that the binding of Ca(2+) to calreticulin may thus not only just be a question of Ca(2+) storage but is likely to have an impact on the chaperone activity.
Collapse
Affiliation(s)
- Sanne Grundvad Boelt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark; Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, DK 2300 Copenhagen, Denmark
| | - Christoffer Norn
- Department of Biochemistry and Structural Biology, Lund University, Paradisgatan 2, SE 221 00 Lund, Sweden
| | - Morten Ib Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark
| | - Ingemar André
- Department of Biochemistry and Structural Biology, Lund University, Paradisgatan 2, SE 221 00 Lund, Sweden
| | - Evaldas Čiplys
- Department of Eukayote Gene Engineering, Institute of Biotechnology, Vilnius University, V. Graičiūno St, LT 02241 Vilnius, Lithuania
| | - Rimantas Slibinskas
- Department of Eukayote Gene Engineering, Institute of Biotechnology, Vilnius University, V. Graičiūno St, LT 02241 Vilnius, Lithuania
| | - Gunnar Houen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark; Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, DK 2300 Copenhagen, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark.
| |
Collapse
|
44
|
Zheng Q, Zhang H, Wu S, Chen H. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:864-875. [PMID: 26902947 PMCID: PMC4841728 DOI: 10.1007/s13361-016-1356-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca(2+) on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Qiuling Zheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Shiyong Wu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
45
|
Schweppe DK, Chavez JD, Navare AT, Wu X, Ruiz B, Eng JK, Lam H, Bruce JE. Spectral Library Searching To Identify Cross-Linked Peptides. J Proteome Res 2016; 15:1725-31. [PMID: 27089058 DOI: 10.1021/acs.jproteome.6b00014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Methods harnessing protein cross-linking and mass spectrometry (XL-MS) offer high-throughput means to identify protein-protein interactions (PPIs) and structural interfaces of protein complexes. Yet, specialized data dependent methods and search algorithms are often required to confidently assign peptide identifications to spectra. To improve the efficiency of matching high confidence spectra, we developed a spectral library based approach to search cross-linked peptide data derived from Protein Interaction Reporter (PIR) methods using the spectral library search algorithm, SpectraST. Spectral library matching of cross-linked peptide data from query spectra increased the absolute number of confident peptide relationships matched to spectra and thereby the number of PPIs identified. By matching library spectra from bona fide, previously established PIR-cross-linked peptide relationships, spectral library searching reduces the need for continued, complex mass spectrometric methods to identify peptide relationships, increases coverage of relationship identifications, and improves the accessibility of XL-MS technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Henry Lam
- Department of Chemical and Biomolcular Engineering, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | | |
Collapse
|
46
|
Liu Y, Zhong R, Zhang P, Ma Y, Yun X, Gong P, Wei J, Zhao X, Zhang F. Understanding the Robust Physisorption between Bovine Serum Albumin and Amphiphilic Polymer Coated Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2478-85. [PMID: 26718324 DOI: 10.1021/acsami.5b08386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The robust physisorption between nanoparticles (NPs) and proteins has attracted increasing attention due to the significance for both conjugation techniques and protein's corona formation at the bionano interface. In the present study, we first explored the possible binding sites of the bovine serum albumin (BSA) on amphiphilic polymer coated gold nanoparticles (AP-AuNPs). By using mass spectrometry, a 105-amino-acid peptide (12.2 kDa) is discovered as the possible "epitope" responsible for the robust physisorption between BSA and AP-AuNPs. Second, with the help of nanometal surface energy transfer (NSET) theory, we further found that the epitope peptide could insert at least 2.9 nm into the organic molecular layers of AP-AuNPs when the robust conjugates formed, which indicates how such a long epitope peptide can be accommodated by AP-AuNPs and resist protease's digestion. These findings might shed light on a new strategy for studying interactions between proteins and NPs, and further guide the rational design of NPs for safe and effective biomedical applications.
Collapse
Affiliation(s)
- Yushuang Liu
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University , 306 Zhaowuda Road, Hohhot 010018, China
| | - Ruibo Zhong
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University , 306 Zhaowuda Road, Hohhot 010018, China
| | - Ping Zhang
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University , 306 Zhaowuda Road, Hohhot 010018, China
| | - Yuxing Ma
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University , 306 Zhaowuda Road, Hohhot 010018, China
| | - Xiaoling Yun
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University , 306 Zhaowuda Road, Hohhot 010018, China
| | - Pei Gong
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University , 306 Zhaowuda Road, Hohhot 010018, China
| | - Jianmin Wei
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University , 306 Zhaowuda Road, Hohhot 010018, China
| | - Xinmin Zhao
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University , 306 Zhaowuda Road, Hohhot 010018, China
| | - Feng Zhang
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University , 306 Zhaowuda Road, Hohhot 010018, China
| |
Collapse
|
47
|
Chen F, Gülbakan B, Weidmann S, Fagerer SR, Ibáñez AJ, Zenobi R. Applying mass spectrometry to study non-covalent biomolecule complexes. MASS SPECTROMETRY REVIEWS 2016; 35:48-70. [PMID: 25945814 DOI: 10.1002/mas.21462] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/09/2014] [Indexed: 05/10/2023]
Abstract
Non-covalent interactions are essential for the structural organization of biomacromolecules and play an important role in molecular recognition processes, such as the interactions between proteins, glycans, lipids, DNA, and RNA. Mass spectrometry (MS) is a powerful tool for studying of non-covalent interactions, due to the low sample consumption, high sensitivity, and label-free nature. Nowadays, native-ESI MS is heavily used in studies of non-covalent interactions and to understand the architecture of biomolecular complexes. However, MALDI-MS is also becoming increasingly useful. It is challenging to detect the intact complex without fragmentation when analyzing non-covalent interactions with MALDI-MS. There are two methodological approaches to do so. In the first approach, different experimental and instrumental parameters are fine-tuned in order to find conditions under which the complex is stable, such as applying non-acidic matrices and collecting first-shot spectra. In the second approach, the interacting species are "artificially" stabilized by chemical crosslinking. Both approaches are capable of studying non-covalently bound biomolecules even in quite challenging systems, such as membrane protein complexes. Herein, we review and compare native-ESI and MALDI MS for the study of non-covalent interactions.
Collapse
Affiliation(s)
- Fan Chen
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Basri Gülbakan
- Institute of Child Health, Division of Pediatric Basic Sciences, Hacettepe University, 06100 Ankara, Turkey
| | - Simon Weidmann
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Stephan R Fagerer
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Alfredo J Ibáñez
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| |
Collapse
|
48
|
Zhao W, Ji W, Zhang Y, Du L, Wang S. A competitive fluorescence quenching-based immunoassay for bisphenol A employing functionalized silica nanoparticles and nanogold. RSC Adv 2016. [DOI: 10.1039/c5ra26366b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A competitive fluorescence quenching-based immunoassay was constructed for bisphenol A, employing functionalized silica nanoparticles and nanogold.
Collapse
Affiliation(s)
- Wei Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Wei Ji
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Yuanfu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Lingyun Du
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Shuhao Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| |
Collapse
|
49
|
Williams TL, Serpell LC, Urbanc B. Stabilization of native amyloid β-protein oligomers by Copper and Hydrogen peroxide Induced Cross-linking of Unmodified Proteins (CHICUP). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:249-259. [PMID: 26699836 DOI: 10.1016/j.bbapap.2015.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 11/09/2015] [Accepted: 12/01/2015] [Indexed: 12/17/2022]
Abstract
Oligomeric assemblies are postulated to be proximate neurotoxic species in human diseases associated with aberrant protein aggregation. Their heterogeneous and transient nature makes their structural characterization difficult. Size distributions of oligomers of several amyloidogenic proteins, including amyloid β-protein (Aβ) relevant to Alzheimer's disease (AD), have been previously characterized in vitro by photo-induced cross-linking of unmodified proteins (PICUP) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Due to non-physiological conditions associated with the PICUP chemistry, Aβ oligomers cross-linked by PICUP may not be representative of in vivo conditions. Here, we examine an alternative Copper and Hydrogen peroxide Induced Cross-linking of Unmodified Proteins (CHICUP), which utilizes naturally occurring divalent copper ions and hydrogen peroxide and does not require photo activation. Our results demonstrate that CHICUP and PICUP applied to the two predominant Aβ alloforms, Aβ40 and Aβ42, result in similar oligomer size distributions. Thioflavin T fluorescence data and atomic force microscopy images demonstrate that both CHICUP and PICUP stabilize Aβ oligomers and attenuate fibril formation. Relative to noncross-linked peptides, CHICUP-treated Aβ40 and Aβ42 cause prolonged disruption to biomimetic lipid vesicles. CHICUP-stabilized Aβ oligomers link the amyloid cascade, metal, and oxidative stress hypotheses of AD into a more comprehensive understanding of the molecular basis of AD pathology. Because copper and hydrogen peroxide are elevated in the AD brain, CHICUP-stabilized Aβ oligomers are biologically relevant and should be further explored as a new therapeutic target.
Collapse
Affiliation(s)
- Thomas L Williams
- Department of Physics, Drexel University, Philadelphia, PA 19104, USA
| | - Louise C Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex, UK
| | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, PA 19104, USA; Faculty of Mathematics and Physics, University of Ljubljana, Slovenia.
| |
Collapse
|
50
|
Lu J, Trnka MJ, Roh SH, Robinson PJJ, Shiau C, Fujimori DG, Chiu W, Burlingame AL, Guan S. Improved Peak Detection and Deconvolution of Native Electrospray Mass Spectra from Large Protein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:2141-51. [PMID: 26323614 PMCID: PMC5067139 DOI: 10.1007/s13361-015-1235-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 05/11/2023]
Abstract
Native electrospray-ionization mass spectrometry (native MS) measures biomolecules under conditions that preserve most aspects of protein tertiary and quaternary structure, enabling direct characterization of large intact protein assemblies. However, native spectra derived from these assemblies are often partially obscured by low signal-to-noise as well as broad peak shapes because of residual solvation and adduction after the electrospray process. The wide peak widths together with the fact that sequential charge state series from highly charged ions are closely spaced means that native spectra containing multiple species often suffer from high degrees of peak overlap or else contain highly interleaved charge envelopes. This situation presents a challenge for peak detection, correct charge state and charge envelope assignment, and ultimately extraction of the relevant underlying mass values of the noncovalent assemblages being investigated. In this report, we describe a comprehensive algorithm developed for addressing peak detection, peak overlap, and charge state assignment in native mass spectra, called PeakSeeker. Overlapped peaks are detected by examination of the second derivative of the raw mass spectrum. Charge state distributions of the molecular species are determined by fitting linear combinations of charge envelopes to the overall experimental mass spectrum. This software is capable of deconvoluting heterogeneous, complex, and noisy native mass spectra of large protein assemblies as demonstrated by analysis of (1) synthetic mononucleosomes containing severely overlapping peaks, (2) an RNA polymerase II/α-amanitin complex with many closely interleaved ion signals, and (3) human TriC complex containing high levels of background noise. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jonathan Lu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, USA
- Princeton University, Princeton, NJ, 08544, USA
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, USA
| | - Soung-Hun Roh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Philip J J Robinson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Carrie Shiau
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, USA
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, CA, 94158, USA
| | - Danica Galonic Fujimori
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
| | - Wah Chiu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, USA
| | - Shenheng Guan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, USA.
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|