1
|
Roberts NJ. The Enigma of Lymphocyte Apoptosis in the Response to Influenza Virus Infection. Viruses 2023; 15:v15030759. [PMID: 36992468 PMCID: PMC10052818 DOI: 10.3390/v15030759] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
In the pathogenesis of influenza virus infection, lymphocyte apoptosis as a part of the infection and/or the immune response to the virus can be somewhat puzzling. The percentage of human T lymphocytes within the peripheral blood mononuclear cell population that becomes apoptotic greatly exceeds the percentage that are infected after exposure to the virus, consistent with substantial apoptosis of bystander T lymphocytes. Studies reveal an important role of viral neuraminidase expression by co-cultured monocyte/macrophages in induction of apoptosis, including that of uninfected bystander lymphocytes. Despite these observations, it is a reasonable perspective to recognize that the development of lymphocyte apoptosis during the response to infection does not preclude a successful immune response and recovery of the infected host in the great majority of cases. Further investigation is clearly warranted to understand its role in the pathogenesis of influenza virus infection for human subjects.
Collapse
Affiliation(s)
- Norbert J. Roberts
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Gaveston, TX 77555, USA
| |
Collapse
|
2
|
Ochoa EE, Huda R, Scheibel SF, Nichols JE, Mock DJ, El-Daher N, Domurat FM, Roberts NJ. HLA-associated protection of lymphocytes during influenza virus infection. Virol J 2020; 17:128. [PMID: 32831108 PMCID: PMC7444183 DOI: 10.1186/s12985-020-01406-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/18/2020] [Indexed: 01/18/2023] Open
Abstract
Background Heterozygosity at HLA class I loci is generally considered beneficial for host defense. We report here an element of HLA class I homozygosity that may or may not help preserve its existence in populations but which could indicate a new avenue for antiviral research. Methods Lymphocytes from serologically HLA-homozygous or -heterozygous donors were examined for synthesis of influenza virus proteins and RNA after exposure to virus as peripheral blood mononuclear cells. The virus-exposed lymphocytes were also examined for internalization of the virus after exposure, and for susceptibility to virus-specific cytotoxic T lymphocytes in comparison with virus-exposed monocytes/macrophages and unseparated peripheral blood mononuclear cells. Results were compared using two-tailed Fisher’s exact test. Results Serologically-defined HLA-A2-homozygous lymphocytes, in contrast to heterozygous lymphocytes, did not synthesize detectable influenza virus RNA or protein after exposure to the virus. HLA-A2-homozygous lymphocytes, including both homozygous and heterozygous donors by genetic sequence subtyping, did internalize infectious virus but were not susceptible to lysis by autologous virus-specific cytotoxic T lymphocytes (“fratricide”). Similar intrinsic resistance to influenza virus infection was observed with HLA-A1- and HLA-A11-homozygous lymphocytes and with HLA-B-homozygous lymphocytes. Conclusions A significant proportion of individuals within a population that is characterized by common expression of HLA class I alleles may possess lymphocytes that are not susceptible to influenza virus infection and thus to mutual virus-specific lysis. Further study may identify new approaches to limit influenza virus infection.
Collapse
Affiliation(s)
- Eliana E Ochoa
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ruksana Huda
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven F Scheibel
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Joan E Nichols
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - David J Mock
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Nayef El-Daher
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Frank M Domurat
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Norbert J Roberts
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA. .,Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA. .,Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, 462 First Ave, Room A619, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Diverse and Unexpected Roles of Human Monocytes/Macrophages in the Immune Response to Influenza Virus. Viruses 2020; 12:v12040379. [PMID: 32244278 PMCID: PMC7232416 DOI: 10.3390/v12040379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Human monocytes/macrophages play a central role in the immune response and defense of the host from influenza virus infection. They classically act as antigen-presenting cells for lymphocytes in the context of an immune cell cluster. In that setting, however, monocytes/macrophages exhibit additional, unexpected, roles. They are required for influenza virus infection of the lymphocytes in the cluster, and they are responsible for lymphocyte apoptosis via their synthesis and expression of the viral neuraminidase. Surprisingly, human alveolar macrophages, expected to be among the first cells to encounter the virus, are not susceptible to direct infection by a human influenza virus but can be infected when the virus is complexed with an antibody. Such monocyte/macrophage responses to influenza virus challenge should be considered part of a very complex but quite effective defense, since the common outcome is recovery of the host with development of immunity to the challenging strain of virus.
Collapse
|
4
|
Roberts NJ. Respiratory syncytial virus suppression of the antiviral immune response: Implications for evaluation of candidate vaccines. Vaccine 2019; 37:7451-7454. [PMID: 31607601 DOI: 10.1016/j.vaccine.2019.09.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 11/25/2022]
Abstract
Respiratory syncytial virus infections recur throughout life despite induction of immunity by the first natural infection. Results of an extensive series of studies indicate that the virus adversely affects the human antiviral recall response to challenge, although subsequent infections are less severe than the initial illness. The observations suggest that candidate vaccines for respiratory syncytial virus should not be expected to prevent clinical illness upon subsequent exposure. Candidate vaccines may be considered effective if they render a subsequent natural infection less severe. This is what would be expected from an initial and commonly more severe natural infection and sensitization.
Collapse
Affiliation(s)
- Norbert J Roberts
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch at Galveston, TX, USA; Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Nichols JE, Niles JA, Fleming EH, Roberts NJ. The role of cell surface expression of influenza virus neuraminidase in induction of human lymphocyte apoptosis. Virology 2019; 534:80-86. [PMID: 31220651 DOI: 10.1016/j.virol.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023]
Abstract
The immunopathological mechanisms as well as the role played by influenza A virus infection of human leukocytes and induction of apoptosis have not been fully elucidated. We confirm here that the percentage of cells that are infected is less than the percent of apoptotic cells. Depletion of monocytes/macrophages and depletion of cells expressing influenza neuraminidase from the cultures after exposure to virus decreased lymphocyte apoptosis. Treatment of virus-exposed leukocyte cultures with anti-neuraminidase antibodies but not with anti-hemagglutinin antibodies, reduced lymphocyte production of active caspase-3 and induction of apoptosis. Different strains of virus induced different levels of apoptosis. Variations in induction of apoptosis correlated with production and expression of viral neuraminidase by infected leukocytes. The data suggest that cell surface expression of neuraminidase plays an important role in the induction of apoptosis in human lymphocytes. The benefit, or cost, to the host of lymphocyte apoptosis warrants continued investigation.
Collapse
Affiliation(s)
- Joan E Nichols
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Texas, USA; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Jean A Niles
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Texas, USA
| | - Elisa H Fleming
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Texas, USA; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Norbert J Roberts
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Texas, USA; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Texas, USA; Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Mock DJ, Frampton MW, Nichols JE, Domurat FM, Signs DJ, Roberts NJ. Influenza Virus Infection of Human Lymphocytes Occurs in the Immune Cell Cluster of the Developing Antiviral Response. Viruses 2018; 10:E420. [PMID: 30103427 PMCID: PMC6115886 DOI: 10.3390/v10080420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/03/2023] Open
Abstract
Monocytes-macrophages and lymphocytes are recruited to the respiratory tract in response to influenza virus challenge and are exposed to the virus during the establishment of immune defenses. The susceptibility of human lymphocytes to infection was assessed. The presence of monocytes-macrophages was required to attain infection of both resting and proliferating lymphocytes. Lymphocyte infection occurred in the context of immune cell clusters and was blocked by the addition of anti-intercellular adhesion molecule-1 (ICAM-1) antibody to prevent cell clustering. Both peripheral blood-derived and bronchoalveolar lymphocytes were susceptible to infection. Both CD4⁺ and CD8⁺ T lymphocytes were susceptible to influenza virus infection, and the infected CD4⁺ and CD8⁺ lymphocytes served as infectious foci for other nonpermissive or even virus-permissive cells. These data show that monocytes-macrophages and both CD4⁺ and CD8⁺ lymphocytes can become infected during the course of an immune response to influenza virus challenge. The described leukocyte interactions during infection may play an important role in the development of effective anti-influenza responses.
Collapse
Affiliation(s)
- David J Mock
- Department of Medicine, School of Medicine, University of Rochester, Rochester, NY 14642, USA.
| | - Mark W Frampton
- Department of Medicine, School of Medicine, University of Rochester, Rochester, NY 14642, USA.
| | - Joan E Nichols
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Frank M Domurat
- Department of Medicine, School of Medicine, University of Rochester, Rochester, NY 14642, USA.
| | - Denise J Signs
- Department of Medicine, School of Medicine, University of Rochester, Rochester, NY 14642, USA.
| | - Norbert J Roberts
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
7
|
Gao H, Xu G, Sun Y, Qi L, Wang J, Kong W, Sun H, Pu J, Chang KC, Liu J. PA-X is a virulence factor in avian H9N2 influenza virus. J Gen Virol 2015; 96:2587-2594. [PMID: 26296365 DOI: 10.1099/jgv.0.000232] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
H9N2 influenza viruses have been circulating worldwide in multiple avian species, and regularly infect pigs and humans. Recently, a novel protein, PA-X, produced from the PA gene by ribosomal frameshifting, was demonstrated to be an antivirulence factor in pandemic 2009 H1N1, highly pathogenic avian H5N1 and 1918 H1N1 viruses. However, a similar role of PA-X in the prevalent H9N2 avian influenza viruses has not been established. In this study, we compared the virulence and cytopathogenicity of H9N2 WT virus and H9N2 PA-X-deficient virus. Loss of PA-X in H9N2 virus reduced apoptosis and had a marginal effect on progeny virus output in human pulmonary adenocarcinoma (A549) cells. Without PA-X, PA was less able to suppress co-expressed GFP in human embryonic kidney 293T cells. Furthermore, absence of PA-X in H9N2 virus attenuated viral pathogenicity in mice, which showed no mortality, reduced progeny virus production, mild-to-normal lung histopathology, and dampened proinflammatory cytokine and chemokine response. Therefore, unlike previously reported H1N1 and H5N1 viruses, we show that PA-X protein in H9N2 virus is a pro-virulence factor in facilitating viral pathogenicity and that the pro- or antivirulence role of PA-X in influenza viruses is virus strain-dependent.
Collapse
Affiliation(s)
- Huijie Gao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Guanlong Xu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Lu Qi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Jinliang Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Weili Kong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, UK
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| |
Collapse
|
8
|
Gao H, Sun Y, Hu J, Qi L, Wang J, Xiong X, Wang Y, He Q, Lin Y, Kong W, Seng LG, Sun H, Pu J, Chang KC, Liu X, Liu J. The contribution of PA-X to the virulence of pandemic 2009 H1N1 and highly pathogenic H5N1 avian influenza viruses. Sci Rep 2015; 5:8262. [PMID: 25652161 PMCID: PMC4317690 DOI: 10.1038/srep08262] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/14/2015] [Indexed: 12/17/2022] Open
Abstract
PA-X is a novel protein encoded by PA mRNA and is found to decrease the pathogenicity of pandemic 1918 H1N1 virus in mice. However, the importance of PA-X proteins in current epidemiologically important influenza A virus strains is not known. In this study, we report on the pathogenicity and pathological effects of PA-X deficient 2009 pandemic H1N1 (pH1N1) and highly pathogenic avian influenza H5N1 viruses. We found that loss of PA-X expression in pH1N1 and H5N1 viruses increased viral replication and apoptosis in A549 cells and increased virulence and host inflammatory response in mice. In addition, PA-X deficient pH1N1 and H5N1 viruses up-regulated PA mRNA and protein synthesis and increased viral polymerase activity. Loss of PA-X was also accompanied by accelerated nuclear accumulation of PA protein and reduced suppression of PA on non-viral protein expression. Our study highlights the effects of PA-X on the moderation of viral pathogenesis and pathogenicity.
Collapse
Affiliation(s)
- Huijie Gao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Lu Qi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Jinliang Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xin Xiong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yu Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Qiming He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yang Lin
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Weili Kong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Lai-Giea Seng
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, United Kingdom
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, United Kingdom
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
PD-L1 expression induced by the 2009 pandemic influenza A(H1N1) virus impairs the human T cell response. Clin Dev Immunol 2013; 2013:989673. [PMID: 24187568 PMCID: PMC3803123 DOI: 10.1155/2013/989673] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/22/2013] [Indexed: 12/31/2022]
Abstract
PD-L1 expression plays a critical role in the impairment of T cell responses during chronic infections; however, the expression of PD-L1 on T cells during acute viral infections, particularly during the pandemic influenza virus (A(H1N1)pdm09), and its effects on the T cell response have not been widely explored. We found that A(H1N1)pdm09 virus induced PD-L1 expression on human dendritic cells (DCs) and T cells, as well as PD-1 expression on T cells. PD-L1 expression impaired the T cell response against A(H1N1)pdm09 by promoting CD8+ T cell death and reducing cytokine production. Furthermore, we found increased PD-L1 expression on DCs and T cells from influenza-infected patients from the first and second 2009 pandemic waves in Mexico City. PD-L1 expression on CD8+ T cells correlated inversely with T cell proportions in patients infected with A(H1N1)pdm09. Therefore, PD-L1 expression on DCs and T cells could be associated with an impaired T cell response during acute infection with A(H1N1)pdm09 virus.
Collapse
|
10
|
Avian influenza virus A/HK/483/97(H5N1) NS1 protein induces apoptosis in human airway epithelial cells. J Virol 2008; 82:2741-51. [PMID: 18199656 DOI: 10.1128/jvi.01712-07] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian H5N1 influenza virus causes a remarkably severe disease in humans, with an overall case fatality rate of greater than 50%. Human influenza A viruses induce apoptosis in infected cells, which can lead to organ dysfunction. To verify the role of H5N1-encoded NS1 in inducing apoptosis, the NS1 gene was cloned and expressed in human airway epithelial cells (NCI-H292 cells). The apoptotic events posttransfection were examined by a terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick-end-labeling assay, flow cytometric measurement of propidium iodide, annexin V staining, and Western blot analyses with antibodies specific for proapoptotic and antiapoptotic proteins. We demonstrated that the expression of H5N1 NS1 protein in NCI-H292 cells was sufficient to induce apoptotic cell death. Western blot analyses also showed that there was prominent cleavage of poly(ADP-ribose) polymerase and activation of caspase-3, caspase-7, and caspase-8 during the NS1-induced apoptosis. The results of caspase inhibitor assays further confirmed the involvement of caspase-dependent pathways in the NS1-induced apoptosis. Interestingly, the ability of H5N1 NS1 protein to induce apoptosis was much enhanced in cells pretreated with Fas ligand (the time posttransfection required to reach >30% apoptosis was reduced from 24 to 6 h). Furthermore, 24 h posttransfection, an increase in Fas ligand mRNA expression of about 5.6-fold was detected in cells transfected with H5N1 NS1. In conclusion, we demonstrated that the NS1 protein encoded by avian influenza A virus H5N1 induced apoptosis in human lung epithelial cells, mainly via the caspase-dependent pathway, which encourages further investigation into the potential for the NS1 protein to be a novel therapeutic target.
Collapse
|
11
|
Sweat JM, Johnson CM, Marikar Y, Gibbs EP. Characterization of surface interleukin-2 receptor expression on gated populations of peripheral blood mononuclear cells from manatees, Trichechus manatus latirostris. Vet Immunol Immunopathol 2005; 108:269-83. [PMID: 16112745 DOI: 10.1016/j.vetimm.2005.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 04/19/2005] [Accepted: 06/01/2005] [Indexed: 11/23/2022]
Abstract
An in vitro system to determine surface interleukin-2 receptor (IL-2R) expression on mitogen-stimulated peripheral blood mononuclear cells (PBMC) from free-ranging manatees, Trichechus manatus latirostris was developed. Human recombinant IL-2, conjugated with a fluorescein dye was used in conjunction with flow cytometric analysis to determine changes in surface expression of IL-2R at sequential times over a 48-h period of in vitro stimulation. Surface expression of IL-2R was detected on manatee PBMC, which also cross-reacted with an anti-feline pan T-cell marker. An expression index (EI) was calculated by comparing mitogen-activated and non-activated PBMC. Based on side- and forward-scatter properties, flow cytometric analysis showed an increase in the number of larger, more granular "lymphoblasts" following concanavalin A (Con A) stimulation. The appearance of lymphoblasts was correlated with an increase in their surface expression of IL-2 receptors. Surface IL-2R expression, in Con A-stimulated PBMC, was detected at 16 h, peaked at 24-36 h, and began to decrease by 48 h. Characterization of the IL-2R expression should provide additional information on the health status of manatees, and the effect of their sub lethal exposure to brevetoxin.
Collapse
Affiliation(s)
- J M Sweat
- University of Florida, College of Veterinary Medicine, Department of Pathobiology, P.O. Box 110880, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|
12
|
Sun J, Bergeron M, Barbeau B, Boivin G, Tremblay MJ. Influenza virus activates human immunodeficiency virus type-1 gene expression in human CD4-expressing T cells through an NF-κB-dependent pathway. Clin Immunol 2005; 114:190-8. [PMID: 15639653 DOI: 10.1016/j.clim.2004.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 10/18/2004] [Indexed: 11/24/2022]
Abstract
Influenza virus infection can cause severe complications in human immunodeficiency virus type-1 (HIV-1)-infected individuals leading to an increased risk of complications and death compared to that seen in uninfected individuals. We assessed the capacity of influenza virus (Flu) to modulate transcription of the HIV-1 long terminal repeat (LTR) in human CD4+ T cells. We found that Flu is able to promote expression of both the transiently transfected and stably integrated HIV-1 LTR-driven reporter gene. Experiments performed with Arthrobacter-derived neuraminidase and ammonium chloride revealed that Flu-dependent activation of HIV-1 transcription required an intimate contact between Flu and the target cell and efficient entry of Flu inside human CD4+ T cells. Amplification of a Flu-specific mRNA by RT-PCR indicated that human T cells were indeed productively infected with Flu. Virus preparations rendered noninfectious after UV irradiation could no longer upregulate HIV-1 LTR activity. Furthermore, experiments conducted with wild type and NF-kappaB-mutated HIV-1 LTR-directed reporter vectors suggested that the positive action of Flu on HIV-1 LTR activity was mediated through the induction of NF-kappaB. Our data show that fully competent Flu can lead to NF-kappaB-dependent activation of HIV-1 transcription in CD4+ T cells.
Collapse
Affiliation(s)
- Jiangfeng Sun
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
13
|
Abstract
Infection of humans with influenza A virus (IAV) results in a severe transient leukopenia. The goal of these studies was to analyze possible mechanisms behind this IAV-induced leukopenia with emphasis on the potential induction of apoptosis of lymphocytes by the virus. Analysis of lymphocyte subpopulations after exposure to IAV showed that a portion of CD3(+), CD4(+), CD8(+), and CD19(+) lymphocytes became apoptotic (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling positive). The percentage of cells that are infected was shown to be less than the percentage of apoptotic cells, suggesting that direct effects of cell infection by the virus cannot account fully for the high level of cell death. Removal of monocytes-macrophages after IAV exposure reduced the percent of lymphocytes that were apoptotic. Treatment of virus-exposed cultures with anti-tumor necrosis factor alpha did not reduce the percentage of lymphocytes that were apoptotic. In virus-exposed cultures treated with anti-FasL antibody, recombinant soluble human Fas, Ac-DEVD-CHO (caspase-3 inhibitor), or Z-VAD-FMK (general caspase inhibitor), apoptosis and production of the active form of caspase-3 was reduced. The apoptotic cells were Fas-high-density cells while the nonapoptotic cells expressed a low density of Fas. The present studies showed that Fas-FasL signaling plays a major role in the induction of apoptosis in lymphocytes after exposure to IAV. Since the host response to influenza virus commonly results in recovery from the infection, with residual disease uncommon, lymphocyte apoptosis likely represents a part of an overall beneficial immune response but could be a possible mechanism of disease pathogenesis.
Collapse
Affiliation(s)
- J E Nichols
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, 301 University Ave., Galveston, TX 77555-0435, USA.
| | | | | |
Collapse
|
14
|
Herbein G, O'Brien WA. Tumor necrosis factor (TNF)-alpha and TNF receptors in viral pathogenesis. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000. [PMID: 10719836 DOI: 10.1046/j.1525-1373.2000.22335.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) and TNF receptors (TNFR) are members of the growing TNF ligand and receptor families that are involved in immune regulation. The present report will focus on the role of the prototypic ligand TNF and its two receptors, TNFR1 and TNFR2, in viral pathogenesis. Although TNF was reported years ago to modulate viral infections, recent findings on the molecular pathways involved in TNFR signaling have allowed a better understanding of the molecular interactions between cellular and viral factors within the infected cell. The interactions of viral proteins with intracellular components downstream of the TNFR have highlighted at the molecular level how viruses can manipulate the cellular machinery to escape the immune response and to favor the spread of the infection. We will review here the role of TNF and TNFR in immune response and the role of TNF and TNFR signaling in viral pathogenesis.
Collapse
Affiliation(s)
- G Herbein
- Department of Internal Medicine, University of Texas Medical Branch, Galveston 77555-0835, USA.
| | | |
Collapse
|
15
|
Nichols JE, Mock DJ, Roberts NJ. Use of FITC-labeled influenza virus and flow cytometry to assess binding and internalization of virus by monocytes-macrophages and lymphocytes. Arch Virol 1993; 130:441-55. [PMID: 8517795 DOI: 10.1007/bf01309672] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The binding of influenza virus to the surface of cells and the internalization of virus particles by all or a subset of cells are key points in the pathogenesis of viral infection. The current studies established a method for discrimination of surface-bound from internalized influenza virus. Fluorescein isothiocyanate (FITC) was attached to the viral hemagglutinin and neuroaminidase proteins; the fluorescent virus retained infectivity. A flow cytometric technique was then adapted for study of virus-cell interactions, with addition of ethidium bromide to quench green fluorescence associated with FITC-labeled virus that was cell-bound but remained external. Ethidium bromide was excluded by intact cell membranes, and internalized virions retained green fluorescence. Cells could be examined by fluorescence microscopy or flow cytometry, with flow cytometry allowing rapid, kinetic assessment of large numbers of cells and subsets of virus-exposed cells. The data showed that, whereas a majority of both monocytes-macrophages and lymphocytes bound influenza virus, a large percentage of monocytes-macrophages but only a very small percentage of lymphocytes internalized the virus. This procedure provides a simple and effective method to distinguish surface-bound from internalized influenza virus, and allows precise kinetic analyses on large numbers of cells.
Collapse
Affiliation(s)
- J E Nichols
- Department of Medicine, University of Rochester School of Medicine and Dentistry, New York
| | | | | |
Collapse
|
16
|
Nichols JE, Fitzgerald TF, Roberts NJ. Human macrophage responses to vaccine strains of influenza virus: synthesis of viral proteins, interleukin-1 beta, interleukin-6, tumour necrosis factor-alpha and interleukin-1 inhibitor. Vaccine 1993; 11:36-42. [PMID: 8427035 DOI: 10.1016/0264-410x(93)90337-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Interactions between influenza viruses and human macrophages were examined to detect potential mechanisms for enhanced febrile reactions previously associated with administration of an avian-human H1N1 reassortant vaccine. Cells exposed to that strain were compared with cells exposed to wild-type and cold-adapted H1H1 and H3H2 strains and an avian-human H3N2 strain. Cells exposed to the avian-human H1N1 virus showed increased synthesis of viral neuraminidase, previously reported to induce fever-producing cytokines, but no detectable increase in production of interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha measured by immunoassay, or decrease in interleukin-1 inhibitor activity by bioassay.
Collapse
Affiliation(s)
- J E Nichols
- Department of Medicine, University of Rochester School of Medicine, NY 14642
| | | | | |
Collapse
|
17
|
Salkind AR, Nichols JE, Roberts NJ. Suppressed expression of ICAM-1 and LFA-1 and abrogation of leukocyte collaboration after exposure of human mononuclear leukocytes to respiratory syncytial virus in vitro. Comparison with exposure to influenza virus. J Clin Invest 1991; 88:505-11. [PMID: 1677945 PMCID: PMC295373 DOI: 10.1172/jci115332] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human mononuclear leukocytes (MNL) exposed to respiratory syncytial virus (RSV) produce net IL-1 inhibitor bioactivity with the anticipated consequences of cell cycle arrest, suppressed virus-specific proliferation, and reduced expression of activation markers. These studies were undertaken to investigate effects of exposure and resultant net IL-1 inhibitor activity on the expression of the intercellular adhesion molecule-1 (ICAM-1), and its ligand the lymphocyte function-associated antigen (LFA-1). MNL collected at 1, 4, and 24 h after exposure to influenza virus (which induces net IL-1 bioactivity) showed enhanced expression of ICAM-1 and LFA-1 relative to sham-exposed MNL and exhibited cell clustering. In contrast, exposure to RSV was associated with suppressed expression of both ICAM-1 and LFA-1 and with minimal detectable cell clustering throughout the culture period. Influenza virus-exposed MNL produced significantly more IL-1 and IFN-gamma (which require cell-cell collaboration for optimal production) than did RSV-exposed MNL. These data raise the possibility that exposure of MNL to RSV fails to elicit or blocks the early events necessary for cellular collaboration, contributing to early suppression of the clonal expansion of RSV-specific lymphocytes.
Collapse
Affiliation(s)
- A R Salkind
- Department of Medicine, University of Rochester School of Medicine, New York 14642
| | | | | |
Collapse
|