1
|
Lawson JS, Glenn WK. The viral origins of breast cancer. Infect Agent Cancer 2024; 19:39. [PMID: 39187871 PMCID: PMC11346025 DOI: 10.1186/s13027-024-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
During the past two decades evidence has been developed that indicates a handful of viruses with known oncogenic capacity, have potential roles in breast cancer. These viruses are mouse mammary tumour virus (MMTV - the cause of breast cancer in mice), high-risk human papilloma viruses (HPV-the cause of cervical cancer), Epstein Barr virus (EBV-the cause of lymphomas and naso-pharyngeal cancer) and bovine leukemia virus (BLV - the cause of cancers in cattle). These viruses may act alone or in combination. Each of these viruses are significantly more prevalent in breast cancers than in normal and benign breast tissue controls. The odds ratios for the prevalence of these viruses in breast cancer compared to normal and benign breast controls, are based on case control studies - MMTV 13·40, HPV 5.56, EBV 4·43 and BLV 2·57. The odds ratios for MMTV are much greater compared to the other three viruses. The evidence for a causal role for mouse mammary tumour virus and high risk for cancer human papilloma viruses in human breast cancer is increasingly comprehensive. The evidence for Epstein Barr virus and bovine leukemia virus is more limited. Overall the evidence is substantial in support of a viral cause of breast cancer.
Collapse
|
2
|
Parisi F, Fonti N, Millanta F, Freer G, Pistello M, Poli A. Exploring the link between viruses and cancer in companion animals: a comprehensive and comparative analysis. Infect Agent Cancer 2023; 18:40. [PMID: 37386451 DOI: 10.1186/s13027-023-00518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Currently, it is estimated that 15% of human neoplasms globally are caused by infectious agents, with new evidence emerging continuously. Multiple agents have been implicated in various forms of neoplasia, with viruses as the most frequent. In recent years, investigation on viral mechanisms underlying tumoral transformation in cancer development and progression are in the spotlight, both in human and veterinary oncology. Oncogenic viruses in veterinary medicine are of primary importance not only as original pathogens of pets, but also in the view of pets as models of human malignancies. Hence, this work will provide an overview of the main oncogenic viruses of companion animals, with brief notes of comparative medicine.
Collapse
Affiliation(s)
- Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy.
| | - Niccolò Fonti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Francesca Millanta
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Giulia Freer
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Risorgimento, 36, 56126, Pisa, Italy
| | - Mauro Pistello
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Risorgimento, 36, 56126, Pisa, Italy
| | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| |
Collapse
|
3
|
Bevilacqua G. The Viral Origin of Human Breast Cancer: From the Mouse Mammary Tumor Virus (MMTV) to the Human Betaretrovirus (HBRV). Viruses 2022; 14:1704. [PMID: 36016325 PMCID: PMC9412291 DOI: 10.3390/v14081704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
A Human Betaretrovirus (HBRV) has been identified in humans, dating as far back as about 4500 years ago, with a high probability of it being acquired by our species around 10,000 years ago, following a species jump from mice to humans. HBRV is the human homolog of the MMTV (mouse mammary tumor virus), which is the etiological agent of murine mammary tumors. The hypothesis of a HMTV (human mammary tumor virus) was proposed about 50 years ago, and has acquired a solid scientific basis during the last 30 years, with the demonstration of a robust link with breast cancer and with PBC, primary biliary cholangitis. This article summarizes most of what is known about MMTV/HMTV/HBRV since the discovery of MMTV at the beginning of last century, to make evident both the quantity and the quality of the research supporting the existence of HBRV and its pathogenic role. Here, it is sufficient to mention that scientific evidence includes that viral sequences have been identified in breast-cancer samples in a worldwide distribution, that the complete proviral genome has been cloned from breast cancer and patients with PBC, and that saliva contains HBRV, as a possible route of inter-human infection. Controversies that have arisen concerning results obtained from human tissues, many of them outdated by new scientific evidence, are critically discussed and confuted.
Collapse
|
4
|
Lawson JS, Glenn WK. Multiple pathogens and prostate cancer. Infect Agent Cancer 2022; 17:23. [PMID: 35637508 PMCID: PMC9150368 DOI: 10.1186/s13027-022-00427-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/18/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The aim of this review is to consider whether multiple pathogens have roles in prostate cancer. METHODS We have reviewed case control studies in which infectious pathogens in prostate cancer were compared to normal and benign prostate tissues. We also reviewed additional evidence from relevant published articles. RESULTS We confirmed that high risk human papilloma viruses are a probable cause of prostate cancer. We judged Escherichia coli, Cutibacterium acnes, Neisseria gonorrhoea, Herpes simplex, Epstein Barr virus and Mycoplasmas as each having possible but unproven roles in chronic prostatic inflammation and prostate cancer. We judged Cytomegalovirus, Chlamydia trachomatis, Trichomonas vaginalis and the Polyoma viruses as possible but unlikely to have a role in prostate cancer. CONCLUSIONS AND ACTIONS The most influential cause of prostate cancer appears to be infection induced chronic inflammation. Given the high prevalence of prostate cancer it is important for action to can be taken without waiting for additional conclusive evidence. These include: 1. Encouragement of all boys (as well as girls) to have HPV vaccines 2. The vigorous use of antibiotics to treat all bacterial pathogens identified in the urogenital tract 3. The use of antiviral medications to control herpes infections 4. Education about safe sexual practices.
Collapse
Affiliation(s)
- James S. Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 Australia
| | - Wendy K. Glenn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 Australia
| |
Collapse
|
5
|
Parisi F, Freer G, Mazzanti CM, Pistello M, Poli A. Mouse Mammary Tumor Virus (MMTV) and MMTV-like Viruses: An In-depth Look at a Controversial Issue. Viruses 2022; 14:v14050977. [PMID: 35632719 PMCID: PMC9147501 DOI: 10.3390/v14050977] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Since its discovery as a milk factor, mouse mammary tumor virus (MMTV) has been shown to cause mammary carcinoma and lymphoma in mice. MMTV infection depends upon a viral superantigen (sag)-induced immune response and exploits the immune system to establish infection in mammary epithelial cells when they actively divide. Simultaneously, it avoids immune responses, causing tumors through insertional mutagenesis and clonal expansion. Early studies identified antigens and sequences belonging to a virus homologous to MMTV in human samples. Several pieces of evidence fulfill a criterion for a possible causal role for the MMTV-like virus in human breast cancer (BC), though the controversy about whether this virus was linked to BC has raged for over 40 years in the literature. In this review, the most important issues related to MMTV, from its discovery to the present days, are retraced to fully explore such a controversial issue. Furthermore, the hypothesis of an MMTV-like virus raised the question of a potential zoonotic mouse–man transmission. Several studies investigate the role of an MMTV-like virus in companion animals, suggesting their possible role as mediators. Finally, the possibility of an MMTV-like virus as a cause of human BC opens a new era for prevention and therapy.
Collapse
Affiliation(s)
- Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale Delle Piagge, 2, 56124 Pisa, Italy;
| | - Giulia Freer
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Savi 10, 56126 Pisa, Italy; (G.F.); (M.P.)
| | - Chiara Maria Mazzanti
- Fondazione Pisana per la Scienza, Via Ferruccio Giovannini, 13, 56017 San Giuliano Terme, Italy;
| | - Mauro Pistello
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Savi 10, 56126 Pisa, Italy; (G.F.); (M.P.)
| | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale Delle Piagge, 2, 56124 Pisa, Italy;
- Correspondence:
| |
Collapse
|
6
|
Goubran M, Wang W, Indik S, Faschinger A, Wasilenko ST, Bintner J, Carpenter EJ, Zhang G, Nuin P, Macintyre G, Wong GKS, Mason AL. Isolation of a Human Betaretrovirus from Patients with Primary Biliary Cholangitis. Viruses 2022; 14:v14050886. [PMID: 35632628 PMCID: PMC9146342 DOI: 10.3390/v14050886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
A human betaretrovirus (HBRV) has been linked with the autoimmune liver disease, primary biliary cholangitis (PBC), and various cancers, including breast cancer and lymphoma. HBRV is closely related to the mouse mammary tumor virus, and represents the only exogenous betaretrovirus characterized in humans to date. Evidence of infection in patients with PBC has been demonstrated through the identification of proviral integration sites in lymphoid tissue, the major reservoir of infection, as well as biliary epithelium, which is the site of the disease process. Accordingly, we tested the hypothesis that patients with PBC harbor a transmissible betaretrovirus by co-cultivation of PBC patients’ lymph node homogenates with the HS578T breast cancer line. Because of the low level of HBRV replication, betaretrovirus producing cells were subcloned to optimize viral isolation and production. Evidence of infection was provided by electron microscopy, RT-PCR, in situ hybridization, cloning of the HBRV proviral genome and demonstration of more than 3400 integration sites. Further evidence of viral transmissibility was demonstrated by infection of biliary epithelial cells. While HBRV did not show a preference for integration proximal to specific genomic features, analyses of common insertion sites revealed evidence of integration proximal to cancer associated genes. These studies demonstrate the isolation of HBRV with features similar to mouse mammary tumor virus and confirm that patients with PBC display evidence of a transmissible viral infection.
Collapse
Affiliation(s)
- Mariam Goubran
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Weiwei Wang
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Stanislav Indik
- Department of Virology, University of Veterinary Medicine, A-1210 Vienna, Austria; (S.I.); (A.F.)
| | - Alexander Faschinger
- Department of Virology, University of Veterinary Medicine, A-1210 Vienna, Austria; (S.I.); (A.F.)
| | - Shawn T. Wasilenko
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Jasper Bintner
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Eric J. Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| | - Guangzhi Zhang
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Paulo Nuin
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Georgina Macintyre
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Gane K.-S. Wong
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andrew L. Mason
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-(780)-492-8176
| |
Collapse
|
7
|
Lawson JS, Glenn WK. Mouse Mammary Tumour Virus (MMTV) in Human Breast Cancer-The Value of Bradford Hill Criteria. Viruses 2022; 14:721. [PMID: 35458452 PMCID: PMC9028876 DOI: 10.3390/v14040721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
For many decades, the betaretrovirus, mouse mammary tumour virus (MMTV), has been a causal suspect for human breast cancer. In recent years, substantial new evidence has been developed. Based on this evidence, we hypothesise that MMTV has a causal role. We have used an extended version of the classic A. Bradford Hill causal criteria to assess the evidence. 1. Identification of MMTV in human breast cancers: The MMTV 9.9 kb genome in breast cancer cells has been identified. The MMTV genome in human breast cancer is up to 98% identical to MMTV in mice. 2. EPIDEMIOLOGY The prevalence of MMTV positive human breast cancer is about 35 to 40% of breast cancers in Western countries and 15 to 20% in China and Japan. 3. Strength of the association between MMTV and human breast cancer: Consistency-MMTV env gene sequences are consistently five-fold higher in human breast cancer as compared to benign and normal breast controls. 4. Temporality (timing) of the association: MMTV has been identified in benign and normal breast tissues up to 10 years before the development of MMTV positive breast cancer in the same patient. 5. EXPOSURE Exposure of humans to MMTV leads to development of MMTV positive human breast cancer. 6. Experimental evidence: MMTVs can infect human breast cells in culture; MMTV proteins are capable of malignantly transforming normal human breast epithelial cells; MMTV is a likely cause of biliary cirrhosis, which suggests a link between MMTV and the disease in humans. 7. Coherence-analogy: The life cycle and biology of MMTV in humans is almost the same as in experimental and feral mice. 8. MMTV Transmission: MMTV has been identified in human sputum and human milk. Cereals contaminated with mouse fecal material may transmit MMTV. These are potential means of transmission. 9. Biological plausibility: Retroviruses are the established cause of human cancers. Human T cell leukaemia virus type I (HTLV-1) causes adult T cell leukaemia, and human immunodeficiency virus infection (HIV) is associated with lymphoma and Kaposi sarcoma. 10. Oncogenic mechanisms: MMTV oncogenesis in humans probably differs from mice and may involve the enzyme APOBEC3B. CONCLUSION In our view, the evidence is compelling that MMTV has a probable causal role in a subset of approximately 40% of human breast cancers.
Collapse
Affiliation(s)
- James S. Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia;
| | | |
Collapse
|
8
|
Mustafa F, Ahmad W, Khader T, Panicker N, Akhlaq S, Baby J, Gull B. MMTV-like Env sequences from human breast cancer patients cannot yet be considered as a separate species. HAMDAN MEDICAL JOURNAL 2022. [DOI: 10.4103/hmj.hmj_35_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Gupta I, Ulamec M, Peric-Balja M, Ramic S, Al Moustafa AE, Vranic S, Al-Farsi HF. Presence of high-risk HPVs, EBV, and MMTV in human triple-negative breast cancer. Hum Vaccin Immunother 2021; 17:4457-4466. [PMID: 34623225 PMCID: PMC8828071 DOI: 10.1080/21645515.2021.1975452] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Breast cancer, the most frequent disease amongst women worldwide, accounts for the highest cancer-related mortality rate. Triple-negative breast cancer (TNBC) subtype encompasses ~15% of all breast cancers and lack estrogen, progesterone, and HER2 receptors. Although risk factors for breast cancer are well-known, factors underpinning breast cancer onset and progression remain unknown. Recent studies suggest the plausible role of oncoviruses including human papillomaviruses (HPVs), Epstein-Barr virus (EBV), and mouse mammary tumor virus (MMTV) in breast cancer pathogenesis. However, the role of these oncoviruses in TNBC is still unclear. In the current study, we explored the status of high-risk HPVs, EBV, and MMTV in a well-defined TNBC cohort from Croatia in comparison to 16 normal/non TNBC samples (controls) using polymerase chain reaction assay. We found high-risk HPVs and EBV present in 37/70 (53%) and 25/70 (36%) of the cases, respectively. The most common HPV types are 52, 45, 31, 58 and 68. We found 16% of the samples positive for co-presence of high-risk HPVs and EBV. Moreover, our data revealed that 5/70 (7%) samples are positive for MMTV. In addition, only 2/70 (3%) samples had co-presence of HPVs, EBV, and MMTV without any significant association with the clinicopathological variables. While, 6/16 (37.5%) controls were positive for HPV (p = .4), EBV was absent in all controls (0/16, 0%) (p = .01). In addition, we did not find the co-presence of the oncoviruses in the controls (p > .05). Nevertheless, further investigations are essential to understand the underlying mechanisms of multiple-oncogenic viruses' interaction in breast carcinogenesis, especially TNBC.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, Qu Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qu Health, Qatar University, Doha, Qatar
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
| | - Monika Ulamec
- College of Medicine, Qu Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qu Health, Qatar University, Doha, Qatar
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- Department of Pathology and Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Peric-Balja
- College of Medicine, Qu Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qu Health, Qatar University, Doha, Qatar
- Oncological Pathology Department, Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Snjezana Ramic
- College of Medicine, Qu Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qu Health, Qatar University, Doha, Qatar
- Oncological Pathology Department, Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qu Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qu Health, Qatar University, Doha, Qatar
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- CONTACT Ala-Eddin Al Moustafa College of Medicine, Qu Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Semir Vranic
- College of Medicine, Qu Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qu Health, Qatar University, Doha, Qatar
| | - Halema F. Al-Farsi
- College of Medicine, Qu Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qu Health, Qatar University, Doha, Qatar
- Halema F. Al-Farsi College of Medicine, Qu Health, Qatar University, PO Box2713, Doha, Qatar
| |
Collapse
|
10
|
Abstract
Abstract We have considered viruses and their contribution to breast cancer. Mouse mammary tumour virus The prevalence of mouse mammary tumour virus (MMTV) is 15-fold higher in human breast cancer than in normal and benign human breast tissue controls. Saliva is the most plausible means of transmission. MMTV has been identified in dogs, cats, monkeys, mice and rats. The causal mechanisms include insertional oncogenesis and mutations in the protective enzyme ABOBEC3B. Human papilloma virus The prevalence of high risk human papilloma viruses (HPV) is frequently six fold higher in breast cancer than in normal and benign breast tissue controls. Women who develop HPV associated cervical cancer are at higher than normal risk of developing HPV associated breast cancer. Koilocytes have been identified in breast cancers which is an indication of HPV oncogenicity. The causal mechanisms of HPVs in breast cancer appear to differ from cervical cancer. Sexual activity is the most common form of HPV transmission. HPVs are probably transmitted from the cervix to the breast by circulating extra cellular vesicles. Epstein Barr virus The prevalence of Epstein Barr virus (EBV) is five fold higher in breast cancer than in normal and benign breast tissue controls. EBV is mostly transmitted from person to person via saliva. EBV infection predisposes breast epithelial cells to malignant transformation through activation of HER2/HER3 signalling cascades. EBV EBNA genes contribute to tumour growth and metastasis and have the ability to affect the mesenchymal transition of cells. Bovine leukemia virus Bovine leukemia virus (BLV) infects beef and dairy cattle and leads to various cancers. The prevalence of BLV is double in human breast cancers compared to controls. Breast cancer is more prevalent in red meat eating and cow’s milk consuming populations. BLV may be transmitted to humans from cattle by the consumption of red meat and cow’s milk. Conclusion The evidence that MMTV, high risk HPVs and EBVs have causal roles in human breast cancer is compelling. The evidence with respect to BLV is more limited but it is likely to also have a causal role in human breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-021-00366-3.
Collapse
Affiliation(s)
- James S Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Wendy K Glenn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Pietrus M, Seweryn M, Kapusta P, Wołkow P, Pityński K, Wątor G. Low Expression of miR-375 and miR-190b Differentiates Grade 3 Patients with Endometrial Cancer. Biomolecules 2021; 11:biom11020274. [PMID: 33668431 PMCID: PMC7918779 DOI: 10.3390/biom11020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/03/2022] Open
Abstract
Endometrial cancer (EC) is treated according to the stage and prognostic risk factors. Most EC patients are in the early stages and they are treated surgically. However some of them, including those with high grade (grade 3) are in the intermediate and high intermediate prognostic risk groups and may require adjuvant therapy. The goal of the study was to find differences between grades based on an miRNA gene expression profile. Tumor samples from 24 patients with grade 1 (n = 10), 2 (n = 7), and 3 (n = 7) EC were subjected to miRNA profiling using next generation sequencing. The results obtained were validated using the miRNA profile of 407 EC tumors from the external Cancer Genome Atlas (TCGA) cohort. We obtained sets of differentially expressed (DE) miRNAs with the largest amount between G2 to G1 (50 transcripts) and G3 to G1 (40 transcripts) patients. Validation of our results with external data (TCGA) gave us a reasonable gene overlap of which we selected two miRNAs (miR-375 and miR190b) that distinguish the high grade best from the low grade EC. Unsupervised clustering showed a high degree of heterogeneity within grade 2 samples. MiR-375 as well as 190b might be useful to create grading verification test for high grade EC. One of the possible mechanisms that is responsible for the high grade is modulation by virus of host morphology or physiology.
Collapse
Affiliation(s)
- Miłosz Pietrus
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Michał Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland; (M.S.); (P.K.); (P.W.)
| | - Przemysław Kapusta
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland; (M.S.); (P.K.); (P.W.)
| | - Paweł Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland; (M.S.); (P.K.); (P.W.)
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland
| | - Kazimierz Pityński
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 31-501 Krakow, Poland;
- Correspondence: (K.P.); (G.W.)
| | - Gracjan Wątor
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland; (M.S.); (P.K.); (P.W.)
- Correspondence: (K.P.); (G.W.)
| |
Collapse
|
12
|
Feng X, Han L, Ma S, Zhao L, Wang L, Zhang K, Yin P, Guo L, Jing W, Li Q. Microbes in Tumoral In Situ Tissues and in Tumorigenesis. Front Cell Infect Microbiol 2020; 10:572570. [PMID: 33330121 PMCID: PMC7732458 DOI: 10.3389/fcimb.2020.572570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Cancerous tumors are severe diseases affecting human health that have a complicated etiology and pathogenesis. Microbes have been considered to be related to the development and progression of numerous tumors through various pathogenic mechanisms in recent studies. Bacteria, which have so far remained the most studied microbes worldwide, have four major possible special pathogenic mechanisms (modulation of inflammation, immunity, DNA damage, and metabolism) that are related to carcinogenesis. This review aims to macroscopically summarize and verify the relationships between microbes and tumoral in situ tissues from cancers of four major different systems (urinary, respiratory, digestive, and reproductive); the abovementioned four microbial pathogenic mechanisms, as well as some synergistic pathogenic mechanisms, are also discussed. Once the etiologic role of microbes and their precise pathogenic mechanisms in carcinogenesis are known, the early prevention, diagnosis, and treatment of cancers would progress significantly.
Collapse
Affiliation(s)
- Xue Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sijia Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lanbo Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kailu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Panyue Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lin Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Jing
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiling Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Moosavi L, Kim P, Uche A, Cobos E. A Synchronous Diagnosis of Metastatic Male Breast Cancer and Prostate Cancer. J Investig Med High Impact Case Rep 2020; 7:2324709619847230. [PMID: 31053047 PMCID: PMC6505228 DOI: 10.1177/2324709619847230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this article, we present a patient diagnosed synchronously with metastatic
male breast cancer and prostate cancer. This is a 63-year-old male and recent
immigrant from Nigeria, who sought medical attention for progressively worsening
of shortness of breath and acute progression of a chronic right breast mass. An
invasive breast carcinoma was diagnosed by the core biopsy of the right breast
mass. Within 2 months of his breast cancer diagnosis, the patient also was
diagnosed with prostate adenocarcinoma after being worked up for urinary
retention. By presenting this patient with a synchronous diagnosis with
metastatic male breast cancer and prostate cancer, history of chronic right
breast mass, and gynecomastia, we speculate on possible cancer etiologies and
risk factors.
Collapse
Affiliation(s)
| | - Phyllis Kim
- 2 Kaiser Permanente Medical Center, Los Angeles, CA, USA
| | - An Uche
- 3 Los Angeles County Harbor-UCLA Medical Center, Torrance, CA, USA
| | | |
Collapse
|
14
|
Banerjee S, Alwine JC, Wei Z, Tian T, Shih N, Sperling C, Guzzo T, Feldman MD, Robertson ES. Microbiome signatures in prostate cancer. Carcinogenesis 2020; 40:749-764. [PMID: 30794288 DOI: 10.1093/carcin/bgz008] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 11/21/2018] [Accepted: 02/01/2019] [Indexed: 12/20/2022] Open
Abstract
We have established a microbiome signature for prostate cancer using an array-based metagenomic and capture-sequencing approach. A diverse microbiome signature (viral, bacterial, fungal and parasitic) was observed in the prostate cancer samples compared with benign prostate hyperplasia controls. Hierarchical clustering analysis identified three distinct prostate cancer-specific microbiome signatures. The three signatures correlated with different grades, stages and scores of the cancer. Thus, microbiome signature analysis potentially provides clinical diagnosis and outcome predictions. The array data were validated by PCR and targeted next-generation sequencing (NGS). Specific NGS data suggested that certain viral genomic sequences were inserted into the host somatic chromosomes of the prostate cancer samples. A randomly selected group of these was validated by direct PCR and sequencing. In addition, PCR validation of Helicobacter showed that Helicobacter cagA sequences integrated within specific chromosomes of prostate tumor cells. The viral and Helicobacter integrations are predicted to affect the expression of several cellular genes associated with oncogenic processes.
Collapse
Affiliation(s)
- Sagarika Banerjee
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - James C Alwine
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Tian Tian
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Natalie Shih
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin Sperling
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Guzzo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Lawson JS, Glenn WK. Evidence for a causal role by mouse mammary tumour-like virus in human breast cancer. NPJ Breast Cancer 2019; 5:40. [PMID: 31728407 PMCID: PMC6838066 DOI: 10.1038/s41523-019-0136-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
We have reviewed the evidence relevant to mouse mammary tumour viruses (MMTV) and human breast cancer. The prevalence of MMTV- like gene sequences is 15-fold higher in human breast cancer than in normal human breast tissue controls and is present in up to 40% of human breast cancers. MMTV-like gene sequences can be identified in benign breast tissues 1-11 years before the development of positive MMTV-like breast cancer in the same women. The prevalence of MMTV antibodies in sera from women with breast cancer is 5-fold higher than in normal women. MMTV can infect human breast epithelial cells and integrate at random into the human genome located in those cells. MMTV-like gene sequences are present in human milk from normal lactating women and with increased prevalence in milk from women at risk of breast cancer. MMTV-like virus associated human breast cancer has strikingly similar features to MMTV-associated mouse mammary tumours. These features include almost identical nucleotide sequences and structure of the MMTV genome, histology, superantigen expression, MMTV infection of B and T lymphocytes and hormone dependence. MMTV-like gene sequences have also been identified in dogs, cats, monkeys, mice and rats. Saliva has been identified as the most plausible means of transmission from human to human and possibly from dogs to humans. The evidence meets the classic causal criteria. A causal role for MMTV-like viruses in human breast cancer is highly likely.
Collapse
Affiliation(s)
- James S. Lawson
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW Australia
| | - Wendy K. Glenn
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW Australia
| |
Collapse
|
16
|
Abstract
The human betaretrovirus and the closely related mouse mammary tumor virus have been linked with the development of cholangitis and mitochondrial antibody production in patients with primary biliary cholangitis (PBC) and mouse models of autoimmune biliary disease, respectively. In vitro, betaretroviruses have been found to stimulate the expression of mitochondrial autoantigens on the cell surface of biliary epithelial cells. In vivo, both mitochondrial autoantigens and viral proteins have been shown to be co-expressed in biliary epithelium and lymphoid tissue. Notably, both mice and humans make poor antibody responses to betaretrovirus infection, whereas proinflammatory responses to viral proteins have been observed in T lymphocyte studies. Furthermore, proviral integration studies have confirmed the presence of human betaretrovirus in biliary epithelium of patients with PBC. Preliminary proof of principal studies using combination antiretroviral therapy have shown that suppression of viral expression is associated with sustained biochemical response. As the previous regimen used was poorly tolerated, further randomized controlled trials are planned to determine whether betaretrovirus infection plays an important role in the development of PBC.
Collapse
Affiliation(s)
- Andrew L Mason
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
17
|
Abstract
Humans and other mammals are colonized by microbial agents across the kingdom which can represent a unique microbiome pattern. Dysbiosis of the microbiome has been associated with pathology including cancer. We have identified a microbiome signature unique to ovarian cancers, one of the most lethal malignancies of the female reproductive system, primarily because of its asymptomatic nature during the early stages in development. We screened ovarian cancer samples along with matched, and non-matched control samples using our pan-pathogen array (PathoChip), combined with capture-next generation sequencing. The results show a distinct group of viral, bacterial, fungal and parasitic signatures of high significance in ovarian cases. Further analysis shows specific viral integration sites within the host genome of tumor samples, which may contribute to the carcinogenic process. The ovarian cancer microbiome signature provides insights for the development of targeted therapeutics against ovarian cancers.
Collapse
|
18
|
Lawson JS, Salmons B, Glenn WK. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein-Barr Virus (EBV). Front Oncol 2018; 8:1. [PMID: 29404275 PMCID: PMC5786831 DOI: 10.3389/fonc.2018.00001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Background Although the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV), bovine leukemia virus (BLV), human papilloma viruses (HPVs), and Epstein–Barr virus (EBV-also known as human herpes virus type 4). Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence. The evidence MMTV and human breast cancer—the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer—the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer—the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer—the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal. Conclusion The influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.
Collapse
Affiliation(s)
- James S Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Wendy K Glenn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
19
|
Abstract
OBJECTIVE Human mammary tumor virus (HMTV) is 90% to 98% homologous to mouse mammary tumor virus, the etiological agent of mammary tumors in mice. Human mammary tumor virus sequences were found in 40% of the breast cancers studied in both American and Australian women. In addition, 10% of endometrial carcinomas studied in Australian women also contained HMTV sequences. We have explored the possibility that endometrial cancer of American women may also contain HMTV. METHODS/MATERIALS Nested polymerase chain reactions, radioactive internal probing, and sequencing were used to establish the presence of unique nucleotide sequences of HMTV in human genomic DNA. The genomic DNAs were tested to guarantee that they were free of murine DNA. Immunohistochemistry with a monoclonal antibody specific for HMTV envelope protein demonstrated that HMTV sequences were translated. RESULTS Thirteen (23.2%) of 56 of the endometrial cancers studied contained HMTV sequences and proteins. Human mammary tumor virus sequences and protein were not detected in the 33 normal endometria studied. CONCLUSION Human mammary tumor virus, an agent with high homology to mouse mammary tumor virus, was found in 23.2% of the endometrial cancers studied, thus opening the possibility of a pathogenic role.
Collapse
|
20
|
Glenn WK, Heng B, Delprado W, Iacopetta B, Whitaker NJ, Lawson JS. Epstein-Barr virus, human papillomavirus and mouse mammary tumour virus as multiple viruses in breast cancer. PLoS One 2012; 7:e48788. [PMID: 23183846 PMCID: PMC3501510 DOI: 10.1371/journal.pone.0048788] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The purpose of this investigation is to determine if Epstein Barr virus (EBV), high risk human papillomavirus (HPV), and mouse mammary tumour viruses (MMTV) co-exist in some breast cancers. MATERIALS AND METHODS All the specimens were from women residing in Australia. For investigations based on standard PCR, we used fresh frozen DNA extracts from 50 unselected invasive breast cancers. For normal breast specimens, we used DNA extracts from epithelial cells from milk donated by 40 lactating women. For investigations based on in situ PCR we used 27 unselected archival formalin fixed breast cancer specimens and 18 unselected archival formalin fixed normal breast specimens from women who had breast reduction surgery. Thirteen of these fixed breast cancer specimens were ductal carcinoma in situ (dcis) and 14 were predominantly invasive ductal carcinomas (idc). RESULTS EBV sequences were identified in 68%, high risk HPV sequences in 50%, and MMTV sequences in 78% of DNA extracted from 50 invasive breast cancer specimens. These same viruses were identified in selected normal and breast cancer specimens by in situ PCR. Sequences from more than one viral type were identified in 72% of the same breast cancer specimens. Normal controls showed these viruses were also present in epithelial cells in human milk - EBV (35%), HPV, 20%) and MMTV (32%) of 40 milk samples from normal lactating women, with multiple viruses being identified in 13% of the same milk samples. CONCLUSIONS We conclude that (i) EBV, HPV and MMTV gene sequences are present and co-exist in many human breast cancers, (ii) the presence of these viruses in breast cancer is associated with young age of diagnosis and possibly an increased grade of breast cancer.
Collapse
MESH Headings
- Aged
- Animals
- Base Sequence
- Breast Neoplasms/pathology
- Breast Neoplasms/virology
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/virology
- Case-Control Studies
- Cell Nucleus/virology
- DNA, Neoplasm/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Female
- Genome, Viral/genetics
- Herpesvirus 4, Human/genetics
- Humans
- Lipopolysaccharide Receptors/metabolism
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Middle Aged
- Molecular Sequence Data
- Neoplasm Grading
- Neoplasm Invasiveness
- Papillomaviridae/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Tumor Suppressor Protein p53/metabolism
- Viral Matrix Proteins/metabolism
Collapse
Affiliation(s)
- Wendy K. Glenn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Benjamin Heng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | | - Barry Iacopetta
- University Department of Surgery, University of Western Australia, Perth, Australia
| | - Noel J. Whitaker
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - James S. Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
21
|
Mouse mammary tumor virus-like gene sequences are present in lung patient specimens. Virol J 2011; 8:451. [PMID: 21943279 PMCID: PMC3198956 DOI: 10.1186/1743-422x-8-451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/24/2011] [Indexed: 11/11/2022] Open
Abstract
Background Previous studies have reported on the presence of Murine Mammary Tumor Virus (MMTV)-like gene sequences in human cancer tissue specimens. Here, we search for MMTV-like gene sequences in lung diseases including carcinomas specimens from a Mexican population. This study was based on our previous study reporting that the INER51 lung cancer cell line, from a pleural effusion of a Mexican patient, contains MMTV-like env gene sequences. Results The MMTV-like env gene sequences have been detected in three out of 18 specimens studied, by PCR using a specific set of MMTV-like primers. The three identified MMTV-like gene sequences, which were assigned as INER6, HZ101, and HZ14, were 99%, 98%, and 97% homologous, respectively, as compared to GenBank sequence accession number AY161347. The INER6 and HZ-101 samples were isolated from lung cancer specimens, and the HZ-14 was isolated from an acute inflammatory lung infiltrate sample. Two of the env sequences exhibited disruption of the reading frame due to mutations. Conclusion In summary, we identified the presence of MMTV-like gene sequences in 2 out of 11 (18%) of the lung carcinomas and 1 out of 7 (14%) of acute inflamatory lung infiltrate specimens studied of a Mexican Population.
Collapse
|