1
|
Madela-Mönchinger JC, Wolf SA, Wyler E, Bauer A, Mischke M, Möller L, Juranić Lisnić V, Landthaler M, Malyshkina A, Voigt S. Rat cytomegalovirus efficiently replicates in dendritic cells and induces changes in their transcriptional profile. Front Immunol 2023; 14:1192057. [PMID: 38077365 PMCID: PMC10702230 DOI: 10.3389/fimmu.2023.1192057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Dendritic cells (DC) play a crucial role in generating and maintaining antiviral immunity. While DC are implicated in the antiviral defense by inducing T cell responses, they can also become infected by Cytomegalovirus (CMV). CMV is not only highly species-specific but also specialized in evading immune protection, and this specialization is in part due to characteristic genes encoded by a given virus. Here, we investigated whether rat CMV can infect XCR1+ DC and if infection of DC alters expression of cell surface markers and migration behavior. We demonstrate that wild-type RCMV and a mutant virus lacking the γ-chemokine ligand xcl1 (Δvxcl1 RCMV) infect splenic rat DC ex vivo and identify viral assembly compartments. Replication-competent RCMV reduced XCR1 and MHCII surface expression. Further, gene expression of infected DC was analyzed by bulk RNA-sequencing (RNA-Seq). RCMV infection reverted a state of DC activation that was induced by DC cultivation. On the functional level, we observed impaired chemotactic activity of infected XCR1+ DC compared to mock-treated cells. We therefore speculate that as a result of RCMV infection, DC exhibit diminished XCR1 expression and are thereby blocked from the lymphocyte crosstalk.
Collapse
Affiliation(s)
| | - Silver Anthony Wolf
- Genome Competence Center, Department of MFI, Robert Koch Institute, Berlin, Germany
| | - Emanuel Wyler
- Laboratory for RNA Biology, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Agnieszka Bauer
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Marius Mischke
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Möller
- Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Vanda Juranić Lisnić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Markus Landthaler
- Laboratory for RNA Biology, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Voigt
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Zhang W, Du F, Wang L, Bai T, Zhou X, Mei H. Hepatitis Virus-associated Non-hodgkin Lymphoma: Pathogenesis and Treatment Strategies. J Clin Transl Hepatol 2023; 11:1256-1266. [PMID: 37577221 PMCID: PMC10412707 DOI: 10.14218/jcth.2022.00079s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/21/2023] [Accepted: 03/22/2023] [Indexed: 07/03/2023] Open
Abstract
Over the last decade, epidemiological studies have discovered a link between hepatitis C virus (HCV) and hepatitis B virus (HBV) infection and non-Hodgkin lymphoma (NHL). The regression of HCV-associated NHL after HCV eradication is the most compelling proof supporting HCV infection's role in lymphoproliferative diseases. HBV infection was found to significantly enhance the incidence of NHL, according to the epidemiological data. The exact mechanism of HCV leading to NHL has not been fully clarified, and there are mainly the following possible mechanisms: (1) Indirect mechanisms: stimulation of B lymphocytes by extracellular HCV and cytokines; (2) Direct mechanisms: oncogenic effects mediated by intracellular HCV proteins; (3) hit-and-run mechanism: permanent genetic B lymphocytes damage by the transitional entry of HCV. The specific role of HBV in the occurrence of NHL is still unclear, and the research on its mechanism is less extensively explored than HCV, and there are mainly the following possible mechanisms: (1) Indirect mechanisms: stimulation of B lymphocytes by extracellular HBV; (2) Direct mechanisms: oncogenic effects mediated by intracellular HBV DNA. In fact, it is reasonable to consider direct-acting antivirals (DAAs) as first-line therapy for indolent HCV-associated B-NHL patients who do not require immediate chemotherapy. Chemotherapy for NHL is affected by HBV infection and replication. At the same time, chemotherapy can also activate HBV replication. Following recent guidelines, all patients with HBsAg positive/HBV DNA≥2,000 IU/mL should be treated for HBV. The data on epidemiology, interventional studies, and molecular mechanisms of HCV and HBV-associated B-NHL are systematically summarized in this review.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Du
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Wang
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Bai
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Zhou
- Department of Internal Medicine II, Würzburg University Hospital, University of Würzburg, Würzburg, Germany
| | - Heng Mei
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Rossi D, Sciascia S, Fenoglio R, Ferro M, Baldovino S, Kamgaing J, Ventrella F, Kalikatzaros I, Viziello L, Solfietti L, Barreca A, Roccatello D. Cryoglobulinemic glomerulonephritis: clinical presentation and histological features, diagnostic pitfalls and controversies in the management. State of the art and the experience on a large monocentric cohort treated with B cell depletion therapy. Minerva Med 2020; 112:162-174. [PMID: 33198442 DOI: 10.23736/s0026-4806.20.07076-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cryoglobulinemia is defined by the presence of immunoglobulins having the following characteristics: forming a gel when temperature is <37 °C, precipitate in a reversible manner in the serum, and redissolve after rewarming. The presence of both polyclonal IgG and monoclonal IgM (type II), or of polyclonal IgG and polyclonal IgM (type III) identifies the mixed cryoglobulinemia (MC). The identification of the Hepatitis C virus (HCV) infection in most of the cases previously defined as "essential" represented a cornerstone in the understanding the pathogenesis of this condition. The picture of MC comprehends heterogeneous clinical presentations: from arthralgias, mild palpable purpura, fatigue to severe vasculitis features with skin necrotic pattern, peripheral neuropathy and, less commonly, lungs, central nervous system, gastrointestinal tract, and heart involvement. The kidney represents the most common organ presentation, and the presence of glomerulonephritis is a key element when considering prognosis. We discuss the clinical presentation and histological features, diagnostic pitfalls, and controversies in the management of patients with cryoglobulinemic glomerulonephritis, with a special focus on reporting our experience in treating patients with B cell depletion therapy.
Collapse
Affiliation(s)
- Daniela Rossi
- Unit of Nephrology and Dialysis (ERKnet Member), Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Savino Sciascia
- Unit of Nephrology and Dialysis (ERKnet Member), Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Roberta Fenoglio
- Unit of Nephrology and Dialysis (ERKnet Member), Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Michela Ferro
- Unit of Nephrology and Dialysis (ERKnet Member), Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Simone Baldovino
- Unit of Nephrology and Dialysis (ERKnet Member), Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Joelle Kamgaing
- Unit of Nephrology and Dialysis (ERKnet Member), Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Federica Ventrella
- Unit of Nephrology and Dialysis (ERKnet Member), Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Ileana Kalikatzaros
- Unit of Nephrology and Dialysis (ERKnet Member), Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Lucia Viziello
- Unit of Nephrology and Dialysis (ERKnet Member), Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Laura Solfietti
- Unit of Nephrology and Dialysis (ERKnet Member), Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Antonella Barreca
- Unit of Nephrology and Dialysis (ERKnet Member), Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital, University of Turin, Turin, Italy.,Patology Division, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Dario Roccatello
- Unit of Nephrology and Dialysis (ERKnet Member), Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital, University of Turin, Turin, Italy -
| |
Collapse
|
4
|
Navas MC, Stoll-Keller F, Pavlovic J. Lack of expression of hepatitis C virus core protein in human monocyte-erived dendritic cells using recombinant semliki forest virus. ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n3.79368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C Virus belongs to the Flaviviridae family. One proposed mechanism of HCV persistence in the ability to infect hematopoietic cells, including Dendritic cells (DCs). HCV infection of DCs could impair their functions that represent one of the mechanisms, thus hampering viral clearance by the host immune system. Among HCV-encoded proteins, the highly conserved Core protein has been suggested to be responsible for the immunomodulatory properties of this Hepacivirus. Recombinant viral vectors expressing the HCV Core protein and allowing its transduction and therefore the expression of the protein into DCs could be useful tools for the analysis of the properties of the Core protein. Vaccinia Virus and retrovirus have been used to transduce human DCs. Likewise, gene transfer into DCs using Semliki Forest Virus has been reported. This study aimed to express the HCV Core protein in human monocyte-derived DCs using an SFV vector, in which the subgenomic RNA encoding the structural proteins was replaced by the HCV Core sequence and then analyze the effects of its expression on DCs functions.
Collapse
|
5
|
Chigbu DI, Loonawat R, Sehgal M, Patel D, Jain P. Hepatitis C Virus Infection: Host⁻Virus Interaction and Mechanisms of Viral Persistence. Cells 2019; 8:cells8040376. [PMID: 31027278 PMCID: PMC6523734 DOI: 10.3390/cells8040376] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C (HCV) is a major cause of liver disease, in which a third of individuals with chronic HCV infections may develop liver cirrhosis. In a chronic HCV infection, host immune factors along with the actions of HCV proteins that promote viral persistence and dysregulation of the immune system have an impact on immunopathogenesis of HCV-induced hepatitis. The genome of HCV encodes a single polyprotein, which is translated and processed into structural and nonstructural proteins. These HCV proteins are the target of the innate and adaptive immune system of the host. Retinoic acid-inducible gene-I (RIG-I)-like receptors and Toll-like receptors are the main pattern recognition receptors that recognize HCV pathogen-associated molecular patterns. This interaction results in a downstream cascade that generates antiviral cytokines including interferons. The cytolysis of HCV-infected hepatocytes is mediated by perforin and granzyme B secreted by cytotoxic T lymphocyte (CTL) and natural killer (NK) cells, whereas noncytolytic HCV clearance is mediated by interferon gamma (IFN-γ) secreted by CTL and NK cells. A host-HCV interaction determines whether the acute phase of an HCV infection will undergo complete resolution or progress to the development of viral persistence with a consequential progression to chronic HCV infection. Furthermore, these host-HCV interactions could pose a challenge to developing an HCV vaccine. This review will focus on the role of the innate and adaptive immunity in HCV infection, the failure of the immune response to clear an HCV infection, and the factors that promote viral persistence.
Collapse
Affiliation(s)
- DeGaulle I Chigbu
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
- Pennsylvania College of Optometry at Salus University, Elkins Park, PA 19027, USA.
| | - Ronak Loonawat
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Mohit Sehgal
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Dip Patel
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| |
Collapse
|
6
|
Heterogeneity and coexistence of oncogenic mechanisms involved in HCV-associated B-cell lymphomas. Crit Rev Oncol Hematol 2019; 138:156-171. [PMID: 31092372 DOI: 10.1016/j.critrevonc.2019.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
The association of HCV-infection with B-lymphomas is supported by the regression of most indolent/low-grade lymphomas following anti-viral therapy. Studies on direct and indirect oncogenic mechanisms have elucidated the pathogenesis of HCV-associated B-lymphoma subtypes. These include B-lymphocyte proliferation and sustained clonal expansion by HCV-envelope protein stimulation of B-cell receptors, and prolonged HCV-infected B-cell growth by overexpression of an anti-apoptotic BCL-2 oncogene caused by the increased frequency of t(14;18) chromosomal translocations in follicular lymphomas. HCV has been implicated in lymphomagenesis by a "hit-and-run" mechanism, inducing enhanced mutation rate in immunoglobulins and anti-oncogenes favoring immune escape, due to permanent genetic damage by double-strand DNA-breaks. More direct oncogenic mechanisms have been identified in cytokines and chemokines in relation to NS3 and Core expression, particularly in diffuse large B-cell lymphoma. By reviewing genetic alterations and disrupted signaling pathways, we intend to highlight how mutually non-contrasting mechanisms cooperate with environmental factors toward progression of HCV-lymphoma.
Collapse
|
7
|
Navas MC, Glaser S, Dhruv H, Celinski S, Alpini G, Meng F. Hepatitis C Virus Infection and Cholangiocarcinoma: An Insight into Epidemiologic Evidences and Hypothetical Mechanisms of Oncogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1122-1132. [PMID: 30953604 DOI: 10.1016/j.ajpath.2019.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection is a global public health problem because it is a main cause of liver cirrhosis and hepatocellular carcinoma. This human oncogenic virus is also associated with the development of non-Hodgkin lymphoma and cholangiocarcinoma (CCA). The association between HCV infection and CCA has been examined in a number of epidemiologic studies. However, in vivo and in vitro results demonstrating the oncogenic mechanisms of HCV in CCA development and progression are insufficient. Here, we review the epidemiologic association of HCV and CCA and recent publications of studies of HCV infection of cholangiocytes and CCA cell lines as well as studies of viral infection performed with liver samples obtained from patients. In addition, we also discuss the preliminary results of in vitro assays of HCV protein expression in CCA cell lines. Finally, we discuss the hypothetical role of HCV infection in CCA development by induction of epithelial-mesenchymal transition and up-regulation of hedgehog signaling, and consequently biliary tree inflammation and liver fibrosis. Further studies are required to demonstrate these hypotheses and therefore to elucidate the mechanisms of HCV as a risk factor for CCA.
Collapse
Affiliation(s)
- Maria-Cristina Navas
- Grupo Gastrohepatologia, School of Medicine, University of Antioquia, Medellin, Colombia; Department of Medical Physiology, Texas A&M University College of Medicine, Temple, Texas.
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas; Division of Research, Central Texas Veterans Health Care System, Temple, Texas
| | - Harshil Dhruv
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Scott Celinski
- Department of Surgery, Baylor University Medical Center, Dallas, Texas
| | - Gianfranco Alpini
- Department of Medical Physiology, Texas A&M University College of Medicine, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas; Division of Research, Central Texas Veterans Health Care System, Temple, Texas
| | - Fanyin Meng
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas; Division of Research, Central Texas Veterans Health Care System, Temple, Texas.
| |
Collapse
|
8
|
Assih M, Ouattara AK, Diarra B, Yonli AT, Compaore TR, Obiri-Yeboah D, Djigma FW, Karou S, Simpore J. Genetic diversity of hepatitis viruses in West-African countries from 1996 to 2018. World J Hepatol 2018; 10:807-821. [PMID: 30533182 PMCID: PMC6280160 DOI: 10.4254/wjh.v10.i11.807] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/10/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
The severity of hepatic pathology and the response to treatment depend on the hepatitis virus genotype in the infected host. The objective of this review was to determine the distribution of hepatitis virus genotypes in West African countries. A systematic review of the literature in PubMed, Google Scholar and Science Direct was performed to identify 52 relevant articles reporting hepatitis A, B, C, D, E and G viruses genotypes. Hepatitis B virus (HBV) genotype E with a prevalence of 90.6% (95%CI: 0.891-0.920) found in this review, is characterized by low genetic diversity. Hepatitis C virus (HCV) genotypes 1 and 2 represented 96.4% of HCV infections in West African countries, while hepatitis delta virus, hepatitis A virus, hepatitis G virus genotypes 1 and HEV genotype 3 were reported in some studies in Ghana and Nigeria. HBV genotype E is characterized by high prevalence, low genetic diversity and wide geographical distribution. Further studies on the clinical implications of HBV genotype E and HCV genotypes 1 and 2 are needed for the development of an effective treatment against this viral hepatitis in West African countries. Surveillance of the distribution of different genotypes is also needed to reduce recombination rates and prevent the emergence of more virulent viral strains.
Collapse
Affiliation(s)
- Maléki Assih
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Abdoul Karim Ouattara
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Birama Diarra
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Albert Theophane Yonli
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Tegwindé Rebeca Compaore
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Dorcas Obiri-Yeboah
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast 00233, Ghana
| | - Florencia Wendkuuni Djigma
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Simplice Karou
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA-UL), Universite de Lome, Lome 00229, Togo
| | - Jacques Simpore
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| |
Collapse
|
9
|
Abstract
Cryoglobulinaemia refers to the serum presence of cryoglobulins, which are defined as immunoglobulins that precipitate at temperatures <37 °C. Type I cryoglobulinaemia consists of only one isotype or subclass of monoclonal immunoglobulin, whereas type II and type III are classified as mixed cryoglobulinaemia because they include immunoglobulin G (IgG) and IgM. Many lymphoproliferative, infectious and autoimmune disorders have been associated with mixed cryoglobulinaemia; however, hepatitis C virus (HCV) is the aetiologic agent in most patients. The underlying mechanism of the disorder is B cell lymphoproliferation and autoantibody production. Mixed cryoglobulinaemia can cause systemic vasculitis, with manifestations ranging from purpura, arthralgia and weakness to more serious lesions with skin ulcers, neurological and renal involvement. This Primer focuses on mixed cryoglobulinaemia, which has a variable course and a prognosis that is primarily influenced by vasculitis-associated multiorgan damage. In addition, the underlying associated disease in itself may cause considerable mortality and morbidity. Treatment of cryoglobulinaemic vasculitis should be modulated according to the underlying associated disease and the severity of organ involvement and relies on antiviral treatment (for HCV infection), immunosuppression and immunotherapy, particularly anti-CD20 B cell depletion therapies.
Collapse
|
10
|
Monocyte chemoattractant protein 1 released from macrophages induced by hepatitis C virus promotes monocytes migration. Virus Res 2017; 240:190-196. [PMID: 28860098 DOI: 10.1016/j.virusres.2017.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/27/2017] [Accepted: 08/27/2017] [Indexed: 12/12/2022]
Abstract
Hepatitis C Virus (HCV) infection usually progress to chronic liver disease and shows a significant increase in total monocyte/macrophages numbers in the liver. Monocyte chemoattractant protein-1 (MCP-1) plays a role in the recruitment of monocytes to the liver. In this study we found that MCP-1 were up-regulated in macrophages cultured with cell-culture derived infectious HCV particles (HCVcc) and promoted the migration of monocytes. IL1β, IL6 and TNFα were factors that induced MCP-1 expression, which were up-regulated in macrophages induced by HCV. Long-term of HCV incubation induced apoptosis of macrophages. Finally, we observed the effect of HCV infected macrophages on nearby liver cells. Huh7 cells continuously co-cultured with monocyte/macrophages displayed increased expression of pro-inflammatory cytokines and the morphology of Huh7 cells were greatly changed. Taken together, our study provides more information for the role of monocyte/macrophages in HCV related chronic liver disease.
Collapse
|
11
|
Fernández-Ponce C, Dominguez-Villar M, Muñoz-Miranda JP, Arbulo-Echevarria MM, Litrán R, Aguado E, García-Cozar F. Immune modulation by the hepatitis C virus core protein. J Viral Hepat 2017; 24:350-356. [PMID: 28092420 DOI: 10.1111/jvh.12675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) infection is currently the most important cause of chronic viral hepatitis in the world and one of the most frequent indications for liver transplantation. HCV uses different strategies to evade the innate and adaptive immune response, and this evasion plays a key role in determining viral persistence. Several HCV viral proteins have been described as immune modulators. In this review, we will focus on the effect of HCV nucleocapsid core protein in the function of immune cells and its correlation with the findings observed in HCV chronically infected patients. Effects on immune cell function related to both extracellular and intracellular HCV core localization will be considered. This review provides an updated perspective on the mechanisms involved in HCV evasion related to one single HCV protein, which could become a key tool in the development of new antiviral strategies able to control and/or eradicate HCV infection.
Collapse
Affiliation(s)
- C Fernández-Ponce
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - M Dominguez-Villar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain.,Department of Neurology, Human Translational Immunology Program, Yale School of Medicine, 300 George St. 353D, New Haven, 06520, CT
| | - J P Muñoz-Miranda
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - M M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - R Litrán
- Department of Condensed Matter Physics, University of Cádiz, Puerto Real, Cádiz, Spain
| | - E Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - F García-Cozar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| |
Collapse
|
12
|
Cardoso N, Franco-Mahecha OL, Czepluch W, Quintana ME, Malacari DA, Trotta MV, Mansilla FC, Capozzo AV. Bovine Viral Diarrhea Virus Infects Monocyte-Derived Bovine Dendritic Cells by an E2-Glycoprotein-Mediated Mechanism and Transiently Impairs Antigen Presentation. Viral Immunol 2016; 29:417-29. [PMID: 27529119 DOI: 10.1089/vim.2016.0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infection of professional antigen presenting cells by viruses can have a marked effect on these cells and important consequences for the generation of subsequent immune responses. In this study, we demonstrate that different strains of bovine viral diarrhea virus (BVDV) infect bovine dendritic cells differentiated from nonadherent peripheral monocytes (moDCs). BVDV did not cause apoptosis in these cells. Infection of moDC was prevented by incubating the virus with anti-E2 antibodies or by pretreating the cells with recombinant E2 protein before BVDV contact, suggesting that BVDV infects moDC through an E2-mediated mechanism. Virus entry was not reduced by incubating moDC with Mannan or ethylenediaminetetraacetic acid (EDTA) before infection, suggesting that Ca(2+) and mannose receptor-dependent pathways are not mediating BVDV entry to moDC. Infected moDC did not completely upregulate maturation surface markers. Infection, but not treatment with inactivated virus, prevented moDC to present a third-party antigen to primed CD4(+) T cells within the first 24 hours postinfection (hpi). Antigen-presenting capacity was recovered when viral replication diminished at 48 hpi, suggesting that active infection may interfere with moDC maturation. Altogether, our results suggest an important role of infected DCs in BVDV-induced immunopathogenesis.
Collapse
Affiliation(s)
- Nancy Cardoso
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Buenos Aires, Argentina
| | - Olga Lucía Franco-Mahecha
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Buenos Aires, Argentina
| | - Wenzel Czepluch
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina
| | - María Eugenia Quintana
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Buenos Aires, Argentina
| | - Darío Amílcar Malacari
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina
| | - Myrian Vanesa Trotta
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina
| | - Florencia Celeste Mansilla
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Buenos Aires, Argentina
| | - Alejandra Victoria Capozzo
- 1 INTA, Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas , Hurlingham, Buenos Aires, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Buenos Aires, Argentina
| |
Collapse
|
13
|
Sachdeva M, Chawla YK, Arora SK. Dendritic cells: The warriors upfront-turned defunct in chronic hepatitis C infection. World J Hepatol 2015; 7:2202-2208. [PMID: 26380045 PMCID: PMC4561774 DOI: 10.4254/wjh.v7.i19.2202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection causes tremendous morbidity and mortality with over 170 million people infected worldwide. HCV gives rise to a sustained, chronic disease in the majority of infected individuals owing to a failure of the host immune system to clear the virus. In general, an adequate immune response is elicited by an efficient antigen presentation by dendritic cells (DCs), the cells that connect innate and adaptive immune system to generate a specific immune response against a pathogen. However, HCV seems to dysregulate the activity of DCs, making them less proficient antigen presenting cells for the optimal stimulation of virus-specific T cells, hence interfering with an optimal anti-viral immune response. There are discordant reports on the functional status of DCs in chronic HCV infection (CHC), from no phenotypic or functional defects to abnormal functions of DCs. Furthermore, the molecular mechanisms behind the impairment of DC function are even so not completely elucidated during CHC. Understanding the mechanisms of immune dysfunction would help in devising strategies for better management of the disease at the immunological level and help to predict the prognosis of the disease in the patients receiving antiviral therapy. In this review, we have discussed the outcomes of the interaction of DCs with HCV and the mechanisms of DC impairment during HCV infection with its adverse effects on the immune response in the infected host.
Collapse
|
14
|
Granato M, Lacconi V, Peddis M, Di Renzo L, Valia S, Rivanera D, Antonelli G, Frati L, Faggioni A, Cirone M. Hepatitis C virus present in the sera of infected patients interferes with the autophagic process of monocytes impairing their in-vitro differentiation into dendritic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1348-55. [DOI: 10.1016/j.bbamcr.2014.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 12/31/2022]
|
15
|
Revie D, Salahuddin SZ. Role of macrophages and monocytes in hepatitis C virus infections. World J Gastroenterol 2014; 20:2777-2784. [PMID: 24659871 PMCID: PMC3961986 DOI: 10.3748/wjg.v20.i11.2777] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/27/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
A number of studies conducted over many years have shown that hepatitis C virus (HCV) can infect a variety of cell types. In vivo infection of monocytes, macrophages, and dendritic cells by HCV has been frequently shown by a number of researchers. These studies have demonstrated replication of HCV by detecting the presence of both negative genomic strands and a variety of non-structural HCV proteins in infected cells. In addition, analyses of genome sequences have also shown that different cell types can harbor different HCV variants. Investigators have also done preliminary studies of which cellular genes are affected by HCV infection, but there have not yet been a sufficient number of these studies to understand the effects of infection on these cells. Analyses of in vitro HCV replication have shown that monocytes, macrophages and dendritic cells can be infected by HCV from patient sera or plasma. These studies suggest that entry and cellular locations may vary between different cell types. Some studies suggest that macrophages may preferentially allow HCV genotype 1 to replicate, but macrophages do not appear to select particular hypervariable regions. Overall, these studies agree with a model where monocytes and macrophages act as an amplification system, in which these cells are infected and show few cytopathic effects, but continuously produce HCV. This allows them to produce virus over an extended time and allows its spread to other cell types.
Collapse
|
16
|
Kondo Y, Shimosegawa T. Direct effects of hepatitis C virus on the lymphoid cells. World J Gastroenterol 2013; 19:7889-7895. [PMID: 24307783 PMCID: PMC3848137 DOI: 10.3748/wjg.v19.i44.7889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 02/06/2023] Open
Abstract
It has been reported that the direct binding of hepatitis C virus (HCV) and/or the replication of HCV in the extrahepatic organs and, especially, lymphoid cells, might affect the pathogenesis of extrahepatic diseases with HCV infection. More than one decade ago, several reports described the existence of HCV-RNA in peripheral blood mononuclear cells. Moreover, many reports describing the existence of HCV in B lymphocytes and B cell lymphoma have been published. In addition to B lymphocytes, it was reported that HCV replication could be detected in T lymphocytes and T cell lines. Among the extrahepatic diseases with HCV infection, mixed cryoglobulinemia-related diseases and autoimmune-related diseases are important for understanding the immunopathogensis of HCV persistent infection. Moreover, HCV persistent infection can cause malignant lymphoma. The biological significance of lymphotropic HCV has not yet become clear. However, several candidates have been considered for a long time. One is that lymphotropic HCV is an HCV reservoir that might contribute to the recurrence of HCV infection and difficult-to-treat disease status. The other important issue is the carcinogenesis of the lymphoid cells and disturbances of the immune responses. Therefore, the extrahepatic diseases might be induced by direct interaction between HCV and lymphoid cells. In this article, we summarize various studies showing the direct effect of HCV on lymphoid cells and discuss the biological significance of lymphotropic HCV.
Collapse
|
17
|
Sehgal M, Khan ZK, Talal AH, Jain P. Dendritic Cells in HIV-1 and HCV Infection: Can They Help Win the Battle? Virology (Auckl) 2013; 4:1-25. [PMID: 25512691 PMCID: PMC4222345 DOI: 10.4137/vrt.s11046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Persistent infections with human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) are a major cause of morbidity and mortality worldwide. As sentinels of our immune system, dendritic cells (DCs) play a central role in initiating and regulating a potent antiviral immune response. Recent advances in our understanding of the role of DCs during HIV-1 and HCV infection have provided crucial insights into the mechanisms employed by these viruses to impair DC functions in order to evade an effective immune response against them. Modulation of the immunological synapse between DC and T-cell, as well as dysregulation of the crosstalk between DCs and natural killer (NK) cells, are emerging as two crucial mechanisms. This review focuses on understanding the interaction of HIV-1 and HCV with DCs not only to understand the immunopathogenesis of chronic HIV-1 and HCV infection, but also to explore the possibilities of DC-based immunotherapeutic approaches against them. Host genetic makeup is known to play major roles in infection outcome and rate of disease progression, as well as response to anti-viral therapy in both HIV-1 and HCV-infected individuals. Therefore, we highlight the genetic variations that can potentially affect DC functions, especially in the setting of chronic viral infection. Altogether, we address if DCs’ potential as critical effectors of antiviral immune response could indeed be utilized to combat chronic infection with HIV-1 and HCV.
Collapse
Affiliation(s)
- Mohit Sehgal
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Zafar K Khan
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew H Talal
- Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, NY
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Abstract
The role of hepatitis C virus (HCV) infection in the induction of type II mixed cryoglobulinemia (MCII) and the possible establishment of related lymphoproliferative disorders, such as B-cell non-Hodgkin lymphoma (B-NHL), is well ascertained. However, the molecular pathways involved and the factors predisposing to the development of these HCV-related extrahepatic complications deserve further consideration and clarification. To date, several host- and virus-related factors have been implicated in the progression to MCII, such as the virus-induced expansion of selected subsets of B-cell clones expressing discrete immunoglobulin variable (IgV) gene subfamilies, the involvement of complement factors and the specific role of some HCV proteins. In this review, we will analyze the host and viral factors taking part in the development of MCII in order to give a general outlook of the molecular mechanisms implicated.
Collapse
|
19
|
Zhou Y, Zhang Y, Yao Z, Moorman JP, Jia Z. Dendritic cell-based immunity and vaccination against hepatitis C virus infection. Immunology 2012; 136:385-96. [PMID: 22486354 DOI: 10.1111/j.1365-2567.2012.03590.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) has chronically infected an estimated 170 million people worldwide. There are many impediments to the development of an effective vaccine for HCV infection. Dendritic cells (DC) remain the most important antigen-presenting cells for host immune responses, and are capable of either inducing productive immunity or maintaining the state of tolerance to self and non-self antigens. Researchers have recently explored the mechanisms by which DC function is regulated during HCV infection, leading to impaired antiviral T-cell responses and so to persistent viral infection. Recently, DC-based vaccines against HCV have been developed. This review summarizes the current understanding of DC function during HCV infection and explores the prospects of DC-based HCV vaccine. In particular, it describes the biology of DC, the phenotype of DC in HCV-infected patients, the effect of HCV on DC development and function, the studies on new DC-based vaccines against HCV infection, and strategies to improve the efficacy of DC-based vaccines.
Collapse
Affiliation(s)
- Yun Zhou
- Centre of Diagnosis and Treatment for Infectious Diseases of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | | | | | | | | |
Collapse
|
20
|
Kim H, Mazumdar B, Bose SK, Meyer K, Di Bisceglie AM, Hoft DF, Ray R. Hepatitis C virus-mediated inhibition of cathepsin S increases invariant-chain expression on hepatocyte surface. J Virol 2012; 86:9919-28. [PMID: 22761382 PMCID: PMC3446550 DOI: 10.1128/jvi.00388-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/28/2012] [Indexed: 01/05/2023] Open
Abstract
Hepatocytes are the main source of hepatitis C virus (HCV) replication and contain the maximum viral load in an infected person. Chronic HCV infection is characterized by weak cellular immune responses to viral proteins. Cathepsin S is a lysosomal cysteine protease and controls HLA-DR-antigen complex presentation through the degradation of the invariant chain. In this study, we examined the effect of HCV proteins on cathepsin S expression and found it to be markedly decreased in dendritic cells (DCs) exposed to HCV or in hepatocytes expressing HCV proteins. The downregulation of cathepsin S was mediated by HCV core and NS5A proteins involving inhibition of the transcription factors interferon regulatory factor 1 (IRF-1) and upstream stimulatory factor 1 (USF-1) in gamma interferon (IFN-γ)-treated hepatocytes. Inhibition of cathepsin S by HCV proteins increased cell surface expression of the invariant chain. In addition, hepatocytes stably transfected with HCV core or NS5A inhibited HLA-DR expression. Together, these results suggested that HCV has an inhibitory role on cathepsin S-mediated major histocompatibility complex (MHC) class II maturation, which may contribute to weak immunogenicity of viral antigens in chronically infected humans.
Collapse
Affiliation(s)
| | | | - Sandip K. Bose
- Departments of Internal Medicine
- Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, Missouri, USA
| | | | - Adrian M. Di Bisceglie
- Departments of Internal Medicine
- Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, Missouri, USA
| | - Daniel F. Hoft
- Departments of Internal Medicine
- Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, Missouri, USA
| | - Ranjit Ray
- Departments of Internal Medicine
- Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, Missouri, USA
| |
Collapse
|
21
|
Forghieri F, Luppi M, Barozzi P, Maffei R, Potenza L, Narni F, Marasca R. Pathogenetic mechanisms of hepatitis C virus-induced B-cell lymphomagenesis. Clin Dev Immunol 2012; 2012:807351. [PMID: 22844326 PMCID: PMC3403122 DOI: 10.1155/2012/807351] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/01/2012] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) infection is probably the most common chronic viral infection and affects an estimated 180 million people worldwide, accounting for 3% of the global population. Although the liver is considered to be the primary target, extrahepatic manifestations are well recognized among patients with chronic HCV infection. Epidemiological studies have clearly demonstrated a correlation between chronic HCV infection and occurrence of B-cell non-Hodgkin's lymphomas (B-NHL). The clinical evidence that antiviral therapy has a significant role in the treatment at least of some HCV-associated lymphoproliferative disorders, especially indolent B-NHL, further supports the existence of an etiopathogenetic link. However, the mechanisms exploited by HCV to induce B-cell lymphoproliferation have so far not completely clarified. It is conceivable that different biological mechanisms, namely, chronic antigen stimulation, high-affinity interaction between HCV-E2 protein and its cellular receptors, direct HCV infection of B-cells, and "hit and run" transforming events, may be combined themselves and cooperate in a multifactorial model of HCV-associated lymphomagenesis.
Collapse
Affiliation(s)
- Fabio Forghieri
- Department of Oncology, Hematology, and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Biological significance of HCV in various kinds of lymphoid cells. Int J Microbiol 2012; 2012:647581. [PMID: 22518147 PMCID: PMC3299277 DOI: 10.1155/2012/647581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/12/2011] [Indexed: 12/21/2022] Open
Abstract
It has been reported that HCV can infect not only hepatocytes but also various kinds of lymphoid cells. Although many reports have described the biological significance of lymphotropic HCV, the issue remains controversial since the target lymphoid cells might have various kinds of functions in the immune system. One of the important roles of lymphoid cells in HCV replication is being a reservoir of HCV. Several groups described the detection of HCV-RNA in lymphoid cells after HCV eradication in plasma. Another important role of lymphotropic HCV is that it acts as a carcinogenic agent and induces immune dysfunction. In this paper, we summarize the reports regarding the biological significance of lymphotropic HCV in representative lymphoid cells.
Collapse
|
23
|
HCV infection and B-cell lymphomagenesis. Adv Hematol 2011; 2011:835314. [PMID: 21789042 PMCID: PMC3140784 DOI: 10.1155/2011/835314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/14/2011] [Accepted: 06/17/2011] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C virus (HCV) has been recognized as a major cause of chronic liver diseases worldwide. It has been suggested that HCV infects not only hepatocytes but also mononuclear lymphocytes including B cells that express the CD81 molecule, a putative HCV receptor. HCV infection of B cells is the likely cause of B-cell dysregulation disorders such as mixed cryoglobulinemia, rheumatoid factor production, and B-cell lymphoproliferative disorders that may evolve into non-Hodgkin's lymphoma (NHL). Epidemiological data indicate an association between HCV chronic infection and the occurrence of B-cell NHL, suggesting that chronic HCV infection is associated at least in part with B-cell lymphomagenesis. In this paper, we aim to provide an overview of recent literature, including our own, to elucidate a possible role of HCV chronic infection in B-cell lymphomagenesis.
Collapse
|
24
|
Human cell types important for hepatitis C virus replication in vivo and in vitro: old assertions and current evidence. Virol J 2011; 8:346. [PMID: 21745397 PMCID: PMC3142522 DOI: 10.1186/1743-422x-8-346] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/11/2011] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C Virus (HCV) is a single stranded RNA virus which produces negative strand RNA as a replicative intermediate. We analyzed 75 RT-PCR studies that tested for negative strand HCV RNA in liver and other human tissues. 85% of the studies that investigated extrahepatic replication of HCV found one or more samples positive for replicative RNA. Studies using in situ hybridization, immunofluorescence, immunohistochemistry, and quasispecies analysis also demonstrated the presence of replicating HCV in various extrahepatic human tissues, and provide evidence that HCV replicates in macrophages, B cells, T cells, and other extrahepatic tissues. We also analyzed both short term and long term in vitro systems used to culture HCV. These systems vary in their purposes and methods, but long term culturing of HCV in B cells, T cells, and other cell types has been used to analyze replication. It is therefore now possible to study HIV-HCV co-infections and HCV replication in vitro.
Collapse
|
25
|
Nellore A, Fishman JA. NK cells, innate immunity and hepatitis C infection after liver transplantation. Clin Infect Dis 2011; 52:369-77. [PMID: 21217184 DOI: 10.1093/cid/ciq156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver transplantation in patients with active hepatitis C virus (HCV) infection is followed by almost universal recurrence of viral infection. The control of HCV infection has been characterized largely in terms of the HCV-specific function of T-lymphocytes and the adaptive immune response. Emerging data suggest that components of the innate immune system, including natural killer cells, have a central role in determining the nature of posttransplant HCV infection and the likelihood of response to antiviral therapy. This review examines the emerging evidence implicating innate immunity in the pathogenesis of posttransplant HCV infections and the potential therapeutic implications of these observations.
Collapse
Affiliation(s)
- Anoma Nellore
- Infectious Disease Division and Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
26
|
Dolganiuc A, Szabo G. Dendritic cells in hepatitis C infection: can they (help) win the battle? J Gastroenterol 2011; 46:432-47. [PMID: 21327958 DOI: 10.1007/s00535-011-0377-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/13/2010] [Indexed: 02/04/2023]
Abstract
Infection with hepatitis C virus (HCV) is a public health problem; it establishes a chronic course in ~85% of infected patients and increases their risk for developing liver cirrhosis, hepatocellular carcinoma, and significant extrahepatic manifestations. The mechanisms of HCV persistence remain elusive and are largely related to inefficient clearance of the virus by the host immune system. Dendritic cells (DCs) are the most efficient inducers of immune responses; they are capable of triggering productive immunity and maintaining the state of tolerance to self- and non-self antigens. During the past decade, multiple research groups have focused on DCs, in hopes of unraveling an HCV-specific DC signature or DC-dependent mechanisms of antiviral immunity which would lead to a successful HCV elimination strategy. This review incorporates the latest update in the current status of knowledge on the role of DCs in anti-HCV immunity as it relates to several challenging questions: (a) the phenotype and function of diverse DC subsets in HCV-infected patients; (b) the characteristics of non-human HCV infection models from the DCs' point of view; (c) how can in vitro systems, ranging from HCV protein- or peptide-exposed DC to HCV protein-expressing DCs, and in vivo systems, ranging from HCV protein-expressing transgenic mice to HCV-infected non-human primates, be employed to dissect the role of DCs in triggering/maintaining a robust antiviral response; and (d) the prospect of DC-based strategy for managing and finding a cure for HCV infection.
Collapse
Affiliation(s)
- Angela Dolganiuc
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, LRB-270-H, Worcester, MA 01605, USA.
| | | |
Collapse
|
27
|
Cao S, Li Y, Ye J, Yang X, Chen L, Liu X, Chen H. Japanese encephalitis Virus wild strain infection suppresses dendritic cells maturation and function, and causes the expansion of regulatory T cells. Virol J 2011; 8:39. [PMID: 21269456 PMCID: PMC3038949 DOI: 10.1186/1743-422x-8-39] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/26/2011] [Indexed: 11/25/2022] Open
Abstract
Background Japanese encephalitis (JE) caused by Japanese encephalitis virus (JEV) accounts for acute illness and death. However, few studies have been conducted to unveil the potential pathogenesis mechanism of JEV. Dendritic cells (DCs) are the most prominent antigen-presenting cells (APCs) which induce dual humoral and cellular responses. Thus, the investigation of the interaction between JEV and DCs may be helpful for resolving the mechanism of viral escape from immune surveillance and JE pathogenesis. Results We examined the alterations of phenotype and function of DCs including bone marrow-derived DCs (bmDCs) in vitro and spleen-derived DCs (spDCs) in vivo due to JEV P3 wild strain infection. Our results showed that JEV P3 infected DCs in vitro and in vivo. The viral infection inhibited the expression of cell maturation surface markers (CD40, CD80 and CD83) and MHCⅠ, and impaired the ability of P3-infected DCs for activating allogeneic naïve T cells. In addition, P3 infection suppressed the expression of interferon (IFN)-α and tumor necrosis factor (TNF)-α but enhanced the production of chemokine (C-C motif) ligand 2 (CCL2) and interleukin (IL)-10 of DCs. The infected DCs expanded the population of CD4+ Foxp3+ regulatory T cell (Treg). Conclusion JEV P3 infection of DCs impaired cell maturation and T cell activation, modulated cytokine productions and expanded regulatory T cells, suggesting a possible mechanism of JE development.
Collapse
Affiliation(s)
- Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Shen T, Chen X, Chen Y, Xu Q, Lu F, Liu S. Increased PD-L1 expression and PD-L1/CD86 ratio on dendritic cells were associated with impaired dendritic cells function in HCV infection. J Med Virol 2010; 82:1152-9. [PMID: 20513078 DOI: 10.1002/jmv.21809] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Impaired hepatitis C virus (HCV)-specific T cell immunity was associated with the persistence of HCV infection. Dysfunction of dentritic cells (DCs) was believed to be involved in T cell exhaustion, but the mechanisms were rarely understood. In this study, surface costimulatory marker (CD83, CD86, and CD40), coinhibitory marker (PD-L1) expression and allostimulatory capacity of plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) were evaluated in HCV-infected patients. Results showed that the expression of both costimulatory and coinhibitory markers was increased in HCV-infected patients compared with healthy controls. PD-L1/CD86 ratio was increased and positively correlated with PD-L1 expression on DCs in HCV-infected patients. Allostimulatory capacity of DCs was impaired and inversely correlated with PD-L1 expression and PD-L1/CD86 ratio. These findings suggested that the effect of inhibitory marker PD-L1 overwhelmed the effect of costimulatory markers and down regulated DC-T activation in HCV-infected patients. The results will be helpful to understand the mechanism of dysfunction of DCs in HCV infection and shed light on the DC-based immunotherapeutic strategy.
Collapse
Affiliation(s)
- Tao Shen
- Department of Microbiology, Peking University Health Science Center, Beijing, China.
| | | | | | | | | | | |
Collapse
|
29
|
A look behind closed doors: interaction of persistent viruses with dendritic cells. Nat Rev Microbiol 2010; 8:350-60. [PMID: 20372157 DOI: 10.1038/nrmicro2332] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Persistent infections with HIV, hepatitis B virus and hepatitis C virus are major causes of morbidity and mortality worldwide. As sentinels of the immune system, dendritic cells (DCs) are crucial for the generation of protective antiviral immunity. Recent advances in our understanding of the role of DCs during infection with these viruses provide insights into the mechanisms used by these viruses to exploit DC function and evade innate and adaptive immunity. In this Review we highlight the current knowledge about the interaction between DCs and these viruses and the underlying mechanisms that might influence the outcome of viral infections.
Collapse
|
30
|
Ito M, Murakami K, Suzuki T, Mochida K, Suzuki M, Ikebuchi K, Yamaguchi K, Mizuochi T. Enhanced expression of lymphomagenesis-related genes in peripheral blood B cells of chronic hepatitis C patients. Clin Immunol 2010; 135:459-65. [PMID: 20189883 DOI: 10.1016/j.clim.2010.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/27/2009] [Accepted: 02/05/2010] [Indexed: 01/04/2023]
Abstract
Epidemiological data indicate a close relationship between chronic hepatitis C virus (HCV) infection and B-cell non-Hodgkin's lymphoma (B-NHL), suggesting that chronic HCV infection is, at least in part, associated with B-lymphomagenesis. However, experimental data concerning these conditions remains elusive. In this study, we confirmed that peripheral blood B cells of chronic hepatitis C (CHC) patients were infected with HCV. Expression levels of activation-induced cytidine deaminase (AID) which are thought to be associated with occurrence of B-NHL were analyzed in these CHC B cells. It was demonstrated that AID mRNA/protein levels in CHC B cells were dramatically increased compared with those of healthy subjects. Furthermore, expression levels of several previously reported prognostic B-NHL marker genes in the B cell subset of CHC patients were increased. These results suggest a possible relationship between chronic HCV infection and B-lymphomagenesis.
Collapse
Affiliation(s)
- Masahiko Ito
- Department of Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama-shi, Tokyo 208-0011, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Reynolds JL, Mahajan SD, Aalinkeel R, Nair B, Sykes DE, Schwartz SA. Proteomic analyses of the effects of drugs of abuse on monocyte-derived mature dendritic cells. Immunol Invest 2010; 38:526-50. [PMID: 19811410 DOI: 10.1080/08820130902874110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Drug abuse has become a global health concern. Understanding how drug abuse modulates the immune system and how the immune system responds to pathogens associated with drug abuse, such hepatitis C virus (HCV) and human immunodeficiency virus (HIV-1), can be assessed by an integrated approach comparing proteomic analyses and quantitation of gene expression. Two-dimensional (2D) difference gel electrophoresis was used to determine the molecular mechanisms underlying the proteomic changes that alter normal biological processes when monocyte-derived mature dendritic cells were treated with cocaine or methamphetamine. Both drugs differentially regulated the expression of several functional classes of proteins including those that modulate apoptosis, protein folding, protein kinase activity, and metabolism and proteins that function as intracellular signal transduction molecules. Proteomic data were validated using a combination of quantitative, real-time PCR and Western blot analyses. These studies will help to identify the molecular mechanisms, including the expression of several functionally important classes of proteins that have emerged as potential mediators of pathogenesis. These proteins may predispose immunocompetent cells, including dendritic cells, to infection with viruses such as HCV and HIV-1, which are associated with drug abuse.
Collapse
Affiliation(s)
- Jessica L Reynolds
- Departments of Medicine, Division of Allergy, Immunology and Rheumatology, State University of New York at Buffalo, Buffalo General Hospital, Buffalo, New York, USA.
| | | | | | | | | | | |
Collapse
|
32
|
[Tropism of hepatitis C virus for leukocytes-- importance of the analysis of viral E1 and E2 envelope glycoprotein genes by sequencing]. ACTA ACUST UNITED AC 2009; 58:170-4. [PMID: 19892492 DOI: 10.1016/j.patbio.2009.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 06/26/2009] [Indexed: 11/23/2022]
Abstract
The ability of hepatitis C virus (HCV) to infect leukocytes could favour HCV pathogenesis. Although viral infection of these immunocompetent cells is poorly (or not) productive, the impact on their immunomodulatory functions could be important. Viral envelope glycoproteins E1 and E2, because of their crucial role in the recognition of viral receptors on permissive cells, could contribute to viral leukocytic tropism and, as a consequence, to the pathophysiology of HCV chronic infection.
Collapse
|
33
|
O'Beirne J, Mitchell J, Farzaneh F, Harrison PM. Inhibition of major histocompatibility complex Class I antigen presentation by hepatitis C virus core protein in myeloid dendritic cells. Virology 2009; 389:1-7. [PMID: 19409594 DOI: 10.1016/j.virol.2009.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/02/2009] [Accepted: 03/26/2009] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus core (HCVcore) protein was expressed in myeloid dendritic cells (DC) from C57/B6 mice (H-2K(b)) by electroporation of HCVcore mRNA to investigate its effect on the ability of DC to prime CD8+ T cells displaying a T cell receptor specific for OVA(257-264) peptide (SIINFEKL)/H-2K(b) complex. Expression of full length HCVcore(191), which is directed to the endoplasmic reticulum (ER) membrane by a C-terminal signal sequence, but not a truncated variant HCVcore(152), which has a wider subcellular localization including the nucleus, significantly reduced surface levels of the H-2K(b)/SIINFEKL complex and impaired the ability of DC to prime naïve CD8+ T cells when they had to process endogenous antigen but not when MHC class I molecules were loaded directly with SIINFEKL peptide. Exploitation of the MHC class I antigen-processing pathway by HCVcore(191) impairs the ability of DC to stimulate CD8+ T cells and may contribute to the persistence of HCV infection.
Collapse
Affiliation(s)
- James O'Beirne
- Department of Liver Studies and Transplantation, Kings College London, Denmark Hill Campus, London SE59PJ, UK
| | | | | | | |
Collapse
|
34
|
Differential effects of hepatitis C virus JFH1 on human myeloid and plasmacytoid dendritic cells. J Virol 2009; 83:5693-707. [PMID: 19297478 DOI: 10.1128/jvi.02671-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) are reported to be functionally deficient during chronic hepatitis C virus (HCV) infection. Differing results have been reported on direct effects of intact replicative-form HCV on DC function. To better understand the effect of HCV on DC function, we treated freshly purified human myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) with HCV JFH1. We found that HCV upregulated mDC maturation marker (CD83, CD86, and CD40) expression and did not inhibit Toll-like receptor 3 (TLR3) ligand [poly(I:C)]-induced mDC maturation, a finding consistent with the phenotype of DCs from HCV-infected subjects. At the same time, HCV JFH1 inhibited the ability of poly(I:C)-treated mDCs to activate naive CD4 T cells. In contrast, although there was no direct effect of virus on pDC maturation, HCV JFH1 inhibited TLR7 ligand (R848)-induced pDC CD40 expression, and this was associated with impaired ability to activate naive CD4 T cells. Parallel experiments with recombinant HCV proteins indicated HCV core protein may be responsible for a portion of the activity. Furthermore, HCV-mediated mDC maturation was dependent upon CD81-E2 interaction and, in part, TLR2. Using UV-treated HCV, we show that HCV-mediated mDC and pDC maturation is virus replication independent and, using strand specific PCR, we found no evidence for HCV replication within DCs. Because these effects of HCV on DC subset maturation and function in part recapitulate direct ex vivo analysis of DCs in chronic HCV infection, the mechanisms described here likely account for a portion of the DC subset defects observed in vivo.
Collapse
|
35
|
HCV and innate immunity. Uirusu 2009; 58:19-26. [PMID: 19122385 DOI: 10.2222/jsv.58.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hepatitis C virus (HCV) is a single-strand, positive sense RNA virus belonging to the flaviviridae family. HCV develops persistent infection in >70% of infected patients, and eventually causes chronic hepatitis, cirrhosis, and hepatocellular carcinoma in some patients. Once chronic infection is established in patients with HCV, spontaneous viral clearance fails, although how HCV remains persistently infecting the liver is largely unknown. Insufficient immune response, involving antiviral innate immune response including dendritic cells (DCs), has been focused. A number of controversial studies have been reported as to HCV genome replication and HCV-mediated immune responses in human DCs. A tantalizing point of these earlier studies is the lack of the system for viral propagation in HCV. Recently, an in vitro system was exploited to propagate HCV particles using the JFH1 strain. In this review, we review the previous reports about the subversion of innate immunity by HCV and show the innate response of monocyte-derived dendritic cells (MoDCs) against the JFH1 strain. We could not observe HCV direct interaction with MoDC maturation. MoDCs maturated by phagocytosing HCV-infected apoptotic cells containing virus-derived dsRNA, which interacted with TLR3 in the phagosomes. All of these data suggests the importance of TLR3 signal for the induction of anti-HCV innate immunity.
Collapse
|
36
|
Marukian S, Jones CT, Andrus L, Evans MJ, Ritola KD, Charles ED, Rice CM, Dustin LB. Cell culture-produced hepatitis C virus does not infect peripheral blood mononuclear cells. Hepatology 2008; 48:1843-50. [PMID: 19003912 PMCID: PMC2592497 DOI: 10.1002/hep.22550] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
UNLABELLED Hepatitis C virus (HCV) replicates primarily in the liver, but HCV RNA has been observed in association with other tissues and cells including B and T lymphocytes, monocytes, and dendritic cells. We have taken advantage of a recently described, robust system that fully recapitulates HCV entry, replication and virus production in vitro to re-examine the issue of HCV infection of blood cell subsets. The HCV replicase inhibitor 2'C-methyl adenosine was used to distinguish HCV RNA replication from RNA persistence. Whereas cell culture-grown HCV replicated in Huh-7.5 hepatoma cells, no HCV replication was detected in B or T lymphocytes, monocytes, macrophages, or dendritic cells from healthy donors. No blood cell subset tested expressed significant levels of Claudin-1, a tight junction protein needed for HCV infection of Huh-7.5 cells. A B cell line expressing high levels of Claudin-1, CD81, and scavenger receptor BI remained resistant to HCV pseudoparticle infection. We bypassed the block in HCV entry by transfecting HCV RNA into blood cell subsets. Transfected RNA was not detectably translated and induced high levels of interferon-alpha. Supernatants from HCV RNA-transfected macrophages inhibited HCV replication in Huh-7.5 cells. CONCLUSION We conclude that multiple blocks prevent blood cells from supporting HCV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lynn B. Dustin
- Corresponding author: Lynn B. Dustin, Ph.D., Center for the Study of Hepatitis C, The Rockefeller University, 1230 York Ave., New York, NY 10065, Phone: 212-327-7067, Fax: 212-327-7048,
| |
Collapse
|
37
|
Gottwein JM, Bukh J. Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems. Adv Virus Res 2008; 71:51-133. [PMID: 18585527 DOI: 10.1016/s0065-3527(08)00002-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Worldwide approximately 180 million people are chronically infected with hepatitis C virus (HCV). HCV isolates exhibit extensive genetic heterogeneity and have been grouped in six genotypes and various subtypes. Additionally, several naturally occurring intergenotypic recombinants have been described. Research on the viral life cycle, efficient therapeutics, and a vaccine has been hampered by the absence of suitable cell culture systems. The first system permitting studies of the full viral life cycle was intrahepatic transfection of RNA transcripts of HCV consensus complementary DNA (cDNA) clones into chimpanzees. However, such full-length clones were not infectious in vitro. The development of the replicon system and HCV pseudo-particles allowed in vitro studies of certain aspects of the viral life cycle, RNA replication, and viral entry, respectively. Identification of the genotype 2 isolate JFH1, which for unknown reasons showed an exceptional replication capability and resulted in formation of infectious viral particles in the human hepatoma cell line Huh7, led in 2005 to the development of the first full viral life cycle in vitro systems. JFH1-based systems now enable in vitro studies of the function of viral proteins, their interaction with each other and host proteins, new antivirals, and neutralizing antibodies in the context of the full viral life cycle. However, several challenges remain, including development of cell culture systems for all major HCV genotypes and identification of other susceptible cell lines.
Collapse
Affiliation(s)
- Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
38
|
Scavenger receptor class B is required for hepatitis C virus uptake and cross-presentation by human dendritic cells. J Virol 2008; 82:3466-79. [PMID: 18216094 DOI: 10.1128/jvi.02478-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Class B scavenger receptors (SR-Bs) bind lipoproteins and play an important role in lipid metabolism. Most recently, SR-B type I (SR-BI) and its splicing variant SR-BII have been found to mediate bacterial adhesion and cytosolic bacterial invasion in mammalian cells. In this study, we demonstrate that SR-BI is a key host factor required for hepatitis C virus (HCV) uptake and cross-presentation by human dendritic cells (DCs). Whereas monocytes and T and B cells were characterized by very low or undetectable SR-BI expression levels, human DCs demonstrated a high level of cell surface expression of SR-BI similar to that of primary human hepatocytes. Antibodies targeting the extracellular loop of SR-BI efficiently inhibited HCV-like particle binding, uptake, and cross-presentation by human DCs. Moreover, human high-density lipoprotein specifically modulated HCV-like particle binding to DCs, indicating an interplay of HCV with the lipid transfer function of SR-BI in DCs. Finally, we demonstrate that anti-SR-BI antibodies inhibit the uptake of cell culture-derived HCV (HCVcc) in DCs. In conclusion, these findings identify a novel function of SR-BI for viral antigen uptake and recognition and may have an important impact on the design of HCV vaccines and immunotherapeutic approaches aiming at the induction of efficient antiviral immune responses.
Collapse
|
39
|
Thumann C, Schvoerer E, Abraham JD, Bohbot A, Stoll-Keller F, Aubertin AM, Kieny MP. Hepatitis C virus structural proteins do not prevent human dendritic cell maturation. ACTA ACUST UNITED AC 2008; 32:59-68. [DOI: 10.1016/j.gcb.2007.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Gelderblom HC, Nijhuis LEJ, de Jong EC, te Velde AA, Pajkrt D, Reesink HW, Beld MGHM, van Deventer SJH, Jansen PLM. Monocyte-derived dendritic cells from chronic HCV patients are not infected but show an immature phenotype and aberrant cytokine profile. Liver Int 2007; 27:944-53. [PMID: 17696933 DOI: 10.1111/j.1478-3231.2007.01507.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic hepatitis C virus (HCV) infection is characterized by an insufficient immune response, possibly owing to impaired function of antigen-presenting cells such as myeloid dendritic cells (DCs). Therapeutic vaccination with in vitro generated DCs may enhance the immune response. Subsets of DCs can originate from monocytes, but the presence of HCV in monocytes that develop into DCs in vitro may impair DC function. Therefore, we studied the presence of HCV RNA in monocytes and monocyte-derived DCs from chronic HCV patients. METHODS Monocytes were cultured with granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin 4 (IL-4) for 6 days, and then with GM-CSF, IL-4, tumour necrosis factor-alpha (TNF-alpha), prostaglandin E2, IL-1beta and IL-6 for 2 days to generate mature DCs. HCV RNA was assessed by polymerase chain reaction. Surface molecules were assessed by flow cytometry. Cytokine production was assessed by cytokine bead array. RESULTS HCV RNA was present in monocytes in 11 of 13 patients, but undetectable in mature DCs in 13 of 13 patients. The morphology of patient DCs was comparable with DCs from healthy controls, but the percentage of cells expressing surface molecules CD83 (P=0.001), CD86 (P=0.023) and human leucocyte antigen-DR (P=0.028) was lower in HCV patients. Compared with control DCs, patient DCs produced enhanced levels of IL-10 (P=0.0079) and IL-8 (P=0.0079), and lower levels of TNF-alpha (P=0.032), IL-6 (P=NS) and IL-1beta (P=0.0079). Patient and control DCs did not produce IL-12. CONCLUSIONS Monocyte-derived DCs from chronic HCV patients are not infected but show an immature phenotype and aberrant cytokine profile.
Collapse
Affiliation(s)
- Huub C Gelderblom
- Department of Gastroenterology and Hepatology, AMC Liver Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Itose I, Kanto T, Inoue M, Miyazaki M, Miyatake H, Sakakibara M, Yakushijin T, Oze T, Hiramatsu N, Takehara T, Kasahara A, Katayama K, Kato M, Hayashi N. Involvement of dendritic cell frequency and function in virological relapse in pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C patients. J Med Virol 2007; 79:511-21. [PMID: 17385691 DOI: 10.1002/jmv.20809] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A combination of pegylated interferon alpha (PEG-IFNalpha) and ribavirin has been used widely. Enhancement of immune response against hepatitis C virus (HCV) is known to be involved in the efficacy of the combination therapy. The aim of the study was to elucidate whether the frequency or function of immunocompetent blood cells is related to the outcome of the therapy. Twenty-five chronic hepatitis C patients with high viral load of HCV genotype 1 who underwent 48 weeks of PEG-IFNalpha2b and ribavirin therapy were examined. During the treatment, frequencies of dendritic cell subsets, helper T cell subsets, and NK cells were phenotypically determined. In some patients, the ability of dendritic cells to stimulate allogeneic CD4(+)T cells was examined at the end and after the therapy. Among the 25 patients, 11 showed a sustained virological response, 11 a transient response, and 3 no response. In comparison with sustained virological responders, non-sustained virological responders showed impaired dendritic cell function at the end and after the treatment. The transient responders showed a decline of plasmacytoid dendritic cell frequency from Weeks 1-12 and impaired dendritic cell function as well. Even in patients who attained negative serum HCV RNA at Week 12, the transient responders showed a significant decrease of plasmacytoid dendritic cell frequency and impaired dendritic cell function. In conclusion, in PEG-IFNalpha and ribavirin combination therapy for chronic hepatitis C patients, the early-phase plasmacytoid dendritic cell frequency and/or end-of-treatment dendritic cell function are related to the virological outcome of the therapy.
Collapse
Affiliation(s)
- Ichiyo Itose
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Presentation of HCV antigens to naive CD8+T cells: why the where, when, what and how are important for virus control and infection outcome. Clin Immunol 2007; 124:5-12. [PMID: 17540619 DOI: 10.1016/j.clim.2007.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/13/2007] [Accepted: 04/13/2007] [Indexed: 01/16/2023]
Abstract
T cell-mediated protection against HCV depends on constantly activated effector CD8(+)T cells that control emergence, spread and expansion of the virus. Why these cells fail to contain HCV replication in 70-80% of the individuals who develop persistent viremia is not clear. Although many reviews have focused on HCV's ability to interfere with the process of antigen presentation by dendritic cells (DC), only few have discussed the mechanisms whereby HCV-derived antigens become available for presentation to naive CD8(+)T cells. The importance of these mechanisms has been recently brought to light by new insight into DC biology, antigen processing, HCV replication and the immune system's functional anatomy. This review explores the different immunological scenarios in which CD8(+)T cell responses against HCV may be initiated. It describes the critical factors limiting antigen sensing and capture by APC and antigen recognition by T cells, and discusses how these factors may favor chronicity of HCV infection. Despite the lack of critical detail and hard experimental proof, this review proposes a model whereby liver seclusion, unproductive infection of professional antigen presenting cells and lack of direct tissue damage hamper the launch of a virus-specific CD8(+)T cell response. The implications for vaccine development are also discussed.
Collapse
|
43
|
Wang X, Eaton M, Mayer M, Li H, He D, Nelson E, Christopher-Hennings J. Porcine reproductive and respiratory syndrome virus productively infects monocyte-derived dendritic cells and compromises their antigen-presenting ability. Arch Virol 2006; 152:289-303. [PMID: 17031757 DOI: 10.1007/s00705-006-0857-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
Dendritic cells (DC) are potent antigen-presenting cells that play an important role in inducing primary antigen-specific immune responses. However, some viruses have evolved to specifically target DC to circumvent the host's immune responses for their persistence in the host. Porcine reproductive and respiratory syndrome virus (PRRSV) causes a persistent infection in susceptible animals. Although it is generally believed that the existence of PRRSV quasispecies is partly responsible for the virus persistence, other mechanisms of immune evasion or immune suppression may also exist. Here, we studied the role of DC in PRRSV persistence and immune suppression. Our results showed that PRRSV underwent a productive replication in pig monocyte-derived DC (Mo-DC) as measured by both immunofluorescence staining of viral nucleocapsid protein and virus titration assays, leading to cell death via both apoptosis and necrosis mechanisms. Additionally, PRRSV infection of Mo-DC resulted in reduced expression of MHC class I, MHC class II, CD14 and CD11b/c. This was in agreement with the impaired mixed lymphocyte reaction of PRRSV-infected Mo-DC compared to that of mock-infected Mo-DC. We also examined the cytokine profiles of PRRSV-infected Mo-DC using a quantitative ELISA method. Results indicated that no apparent change in the levels of IL-10, IL-12 and IFN-gamma was detected. Taken together, our data demonstrate that PRRSV productively infects Mo-DC and impairs the normal antigen presentation ability of Mo-DC by inducing cell death, down-regulating the expression of MHC class I, MHC class II, CD11b/c and CD14 and by inducing minimal Th1 cytokines.
Collapse
Affiliation(s)
- X Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
With an estimated 170 million infected individuals, hepatitis C virus (HCV) has a major impact on public health. A vaccine protecting against HCV infection is not available, and current antiviral therapies are characterized by limited efficacy, high costs, and substantial side effects. Binding of the virus to the cell surface followed by viral entry is the first step in a cascade of interactions between virus and the target cell that is required for the initiation of infection. Because this step represents a critical determinant of tissue tropism and pathogenesis, it is a major target for host cell responses such as antibody-mediated virus-neutralization-and a promising target for new antiviral therapy. The recent development of novel tissue culture model systems for the study of the first steps of HCV infection has allowed rapid progress in the understanding of the molecular mechanisms of HCV binding and entry. This review summarizes the impact of recently identified viral and host cell factors for HCV attachment and entry. Clinical implications of this important process for the pathogenesis of HCV infection and novel therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Heidi Barth
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
45
|
Nattermann J, Ahlenstiel G, Berg T, Feldmann G, Nischalke HD, Müller T, Rockstroh J, Woitas R, Sauerbruch T, Spengler U. The tandem-repeat polymorphism of the DC-SIGNR gene in HCV infection. J Viral Hepat 2006; 13:42-6. [PMID: 16364081 DOI: 10.1111/j.1365-2893.2005.00652.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The C-type lectin DC-SIGNR has been shown to bind hepatitis C virus (HCV). Here, we analysed the tandem-repeat polymorphism of the DC-SIGNR gene with respect to intraindividual HCV replication. In a cross-sectional comparison HCV-infected patients (n = 430) and healthy subjects (n = 100) were genotyped for the DC-SIGNR polymorphism using PCR. The distribution of DC-SIGNR alleles did not differ significantly between the two groups. However, HCV-infected patients with 5-, 6-, and 7-repeat alleles had higher HCV-RNA levels when compared with carriers of 4- and 9-repeat alleles (P < 0.05). Thus, the DC-SIGNR polymorphism might affect HCV loads supporting the concept that DC-SIGNR contributes to HCV replication efficacy.
Collapse
Affiliation(s)
- J Nattermann
- Department of Internal Medicine I, Rheinische Friedrich Wilhelms Universität Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kanto T, Inoue M, Miyazaki M, Itose I, Miyatake H, Sakakibara M, Yakushijin T, Kaimori A, Oki C, Hiramatsu N, Kasahara A, Hayashi N. Impaired function of dendritic cells circulating in patients infected with hepatitis C virus who have persistently normal alanine aminotransferase levels. Intervirology 2005; 49:58-63. [PMID: 16166790 DOI: 10.1159/000087264] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) induces chronic liver disease in hosts which can eventually progresses to liver cirrhosis and hepatocellular carcinoma. However, progression of liver disease is slower in patients with persistently normal levels of alanine aminotransferase (ALT) than in those with active hepatitis. Although distinct immune responses against HCV have been proposed in asymptomatic infection, the role of circulating dendritic cells (DC) in the pathogenesis of these patients remains obscure. To address this issue, we compared the number and function of myeloid DC (MDC) and plasmacytoid DC (PDC) between uninfected individuals and HCV-infected patients with or without elevated ALT levels. Numbers of DC and DC progenitors were significantly lower in patients with chronic active hepatitis than in control subjects. However, no differences were found in the number of DC between normal controls and HCV-infected patients with persistently normal ALT levels. MDC from patients with active hepatitis were less able to polarize naive CD4 T cells into the Th1 phenotype, while their MDC and PDC primed more CD4 T cells producing IL-10 than those from normal controls. Such dysfunction of DC was also observed in patients with persistently normal ALT levels. In conclusion, circulating DC decrease in number predominantly in HCV-infected patients with active hepatitis, and the function of DC is impaired even in those with normal ALT levels.
Collapse
Affiliation(s)
- Tatsuya Kanto
- Department of Molecular Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Guitart A, Riezu-Boj JI, Elizalde E, Larrea E, Berasain C, Aldabe R, Civeira MP, Prieto J. Hepatitis C virus infection of primary tupaia hepatocytes leads to selection of quasispecies variants, induction of interferon-stimulated genes and NF-κB nuclear translocation. J Gen Virol 2005; 86:3065-3074. [PMID: 16227229 DOI: 10.1099/vir.0.81273-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Systems for in vitro culture of Hepatitis C virus (HCV) are essential tools to analyse virus–cell interactions and to investigate relevant pathophysiological aspects of HCV infection. Although the HCV replicon methodology has increased our understanding of HCV biology, this system does not reproduce the natural infection. Recently, tupaia (Tupaia belangeri chinensis) hepatocytes have been utilized for in vitro culture of HCV. In the present work, primary tupaia hepatocytes infected in vitro with HCV were used to analyse the evolution of HCV quasispecies in infected cells and the ability of the virus to influence antiviral and proinflammatory responses in cells sustaining virus replication. The results confirmed the potential of tupaia hepatocytes as a model for HCV infection, although this system is limited by rapid loss of differentiated cell phenotype in culture. These findings revealed an extraordinary plasticity of HCV quasispecies, which underwent rapid evolution to tupaia-tropic variants as early as 24 h after infection. It was also shown that HCV could activate interferon-sensitive genes, albeit modestly in comparison with other viruses such as Semliki Forest virus. Importantly, HCV activated NF-κB in primary hepatocytes and upregulated NF-κB-responsive genes including the chemokines MCP-1 and CXCL2 (MIP-2). This effect may play a role in induction of the hepatic inflammatory reaction in vivo. In summary, HCV quasispecies adapt rapidly to the specific biology of the host and HCV stimulates a blunted interferon response while inducing a proinflammatory phenotype in the infected cell.
Collapse
Affiliation(s)
- Anunciata Guitart
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - José-Ignacio Riezu-Boj
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Edurne Elizalde
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Esther Larrea
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Berasain
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Rafael Aldabe
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Maria Pilar Civeira
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Jesús Prieto
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| |
Collapse
|
48
|
Neau-Cransac M, Foucher J, Ledinghen VD, Bernard PH, Legrand E, Lafon ME. Modifications of T-lymphocyte subsets before and during interferon and ribavirin treatment for chronic hepatitis C infection. Viral Immunol 2005; 18:197-204. [PMID: 15802964 DOI: 10.1089/vim.2005.18.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Our purpose was to determine in HCV-infected patients whether T-lymphocyte sub-populations were modified before and during interferon-alpha and ribavirin treatment, and whether this correlated with virological response. Twenty-two naive patients were given IFN-alpha 3 Million Units three times per week for 24 or 48 weeks and ribavirin. Sustained virological response corresponded to undetectable serum HCV RNA at treatment completion and 6 months later. Total blood lymphocyte counts and CD3(+)CD4(+), CD3(+)CD8(+), CD3(+)CD4(+)HLA-DR(+), and CD3(+)CD8(+)HLA-DR(+) lymphocyte subsets evaluated before, during, and after treatment were compared to values from 37 healthy subjects. At inclusion, patients and controls had similar total lymphocyte counts. CD3(+)CD4(+) counts and percentages were significantly higher in HCV patients. HLA-DR expression was also increased in CD4(+) (p < 0.0001) and CD8(+) T-cells (p = 0.0008) as compared with controls. During treatment, all lymphocyte subset counts and percentage decreased except the CD3(+)CD4(+) T-cell percentage which increased. Moreover, after 1 month of treatment, virological responders exhibited higher CD4(+) counts than nonresponders (p = 0.025), whereas they did not differ at inclusion or during the 2nd to 6th months of treatment. After treatment completion, all populations returned to baseline values. These results suggest that CD3(+)CD4(+) T-lymphocyte percentage increase under treatment could be related to IFN immunomodulation and associated with virological response.
Collapse
Affiliation(s)
- Martine Neau-Cransac
- Immunology Laboratory, Pellegrin Hospital, Place Amélie Raba Léon, 33076 Bordeaux, France.
| | | | | | | | | | | |
Collapse
|
49
|
Siavoshian S, Abraham JD, Thumann C, Kieny MP, Schuster C. Hepatitis C virus core, NS3, NS5A, NS5B proteins induce apoptosis in mature dendritic cells. J Med Virol 2005; 75:402-11. [PMID: 15648076 DOI: 10.1002/jmv.20283] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although reasons for hepatitis C virus (HCV) persistence are still unknown, specific cellular immune responses appear to influence the pathogenesis and outcome of the infection. Apoptosis of cells infected by viruses may appear suicidal to the viruses that induce programmed cell death of its host. However, apoptosis has been suggested to be a response to virus infection as a mean of facilitating virus dissemination. Annexin V-propidium iodide staining and DNA fragmentation, were used to show that expression of the core, NS3, NS5A, or NS5B protein induces apoptosis in mature dendritic cells. In addition, immunoblotting was used to demonstrate that expression level of p21waf1/cip1 protein decreased in cells expressing one of these HCV proteins. No expression of p53 could be detected and expression of Akt was independent of HCV proteins expression. These results suggest that the effect of these HCV proteins on HCV associated pathogenesis may be linked (at least partially) to its ability to modulate apoptosis pathways in mature dendritic cells.
Collapse
|
50
|
Pachiadakis I, Pollara G, Chain BM, Naoumov NV. Is hepatitis C virus infection of dendritic cells a mechanism facilitating viral persistence? THE LANCET. INFECTIOUS DISEASES 2005; 5:296-304. [PMID: 15854885 DOI: 10.1016/s1473-3099(05)70114-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
More than 170 million people worldwide are chronically infected with hepatitis C virus (HCV), which is a major cause of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Impaired T-cell reactivity to HCV, a hallmark of inefficient adaptive immunity, is believed to be responsible for the high propensity of HCV to cause chronic infection. Dendritic cells are the most potent antigen-presenting cells and many viruses affect various dendritic cell functions. Data suggest that such changes induced by HCV may have an important role in viral persistence. HCV has been shown to bind to dendritic cells, although viral replication within these cells occurs at a very low level. Dendritic cells from people with chronic HCV infection are impaired in their capacity to stimulate T cells. This impairment may be a consequence of changes in the expression of major histocompatibility complex and costimulatory molecules on its surface, as well as in the production of cytokines such as interleukin 12. In addition, hepatic dendritic cells may be affected by the tolerogenic microenvironment of the liver, possibly generating dendritic cells that promote regulatory T cells, which suppress the cellular immune response mounted against HCV.
Collapse
Affiliation(s)
- Ioannis Pachiadakis
- Institute of Hepatology, Department of Medicine, Windeyer Institute of Medical Sciences, University College London, London, UK
| | | | | | | |
Collapse
|