1
|
Yang X, Wu Y, Zhao H, Liu P, Liang L, Yin A. Emergence and circulation of enterovirus B species in infants in southern China: A multicenter retrospective analysis. Virulence 2024; 15:2329569. [PMID: 38555521 PMCID: PMC10984118 DOI: 10.1080/21505594.2024.2329569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Enteroviruses (EV) are common and can cause severe diseases, particularly in young children. However, the information of EV infection in infants in China is limited due to the vast population size and extensive geographical area of the country. Here, we conducted a retrospective multicenter analysis of available EV data to assess the current epidemiological situation in the infant population in southern China. METHODS The study enrolled infants with suspected EV infection from 34 hospitals across 12 cities in southern China between 2019 to 2022, and the confirmation of EV was done using RT-PCR and VP1 gene sequencing. RESULTS Out of 1221 infants enrolled, 330 (27.03%) were confirmed as EV-infected. Of these, 260 (78.79%) were newborns aged 0-28 days. The EV belonged to three species: EV-B (80.61%), EV-A (11.82%), and human rhinovirus (7.58%). Newborns were more susceptible to EV-B than older infants (p < 0.001). Within EV-B, we identified 15 types, with coxsackievirus (CV) B3 (20.91%), echovirus (E) 11 (19.70%), and E18 (16.97%) being the most common. The predominant EV types changed across different years. EV infection in infants followed a seasonal pattern, with a higher incidence from May to August. Furthermore, perinatal mother-to-child EV transmission in 12 mother-newborn pairs were observed. CONCLUSION Our study is the first to demonstrate the emergence and widespread circulation of EV-B species, mainly CVB3, E11, and E18, in southern China, primarily affecting young infants. This research provides valuable insights for future epidemic assessment, prediction, as well as the elimination of mother-to-child transmission.
Collapse
Affiliation(s)
- Xiaohan Yang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Yudan Wu
- Department of Clinical Laboratory, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Hongyu Zhao
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Pan Liu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Lihua Liang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou 511400, China
| |
Collapse
|
2
|
Picone S, Mondì V, Di Palma F, Valli MB, Rueca M, Bedetta M, Paolillo P. Enterovirus and Paraechovirus Meningitis in Neonates: Which Is the Difference? Clin Pediatr (Phila) 2024; 63:1678-1683. [PMID: 38439537 DOI: 10.1177/00099228241235448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Enterovirus (EV) and parechovirus (HPeV) are common viruses in the neonatal period, with similar seasonality and symptomatology. They also are the main causes of aseptic meningitis in newborns and children under 1 year of age. We compared the clinical signs, laboratory data, brain, and neurodevelopmental outcome of 10 infants with HPeV and 8 with EV meningitis. In patients with EV meningitis, serum C-reactive protein (CRP) values were significantly higher than those of patients with HPeV infection. Procalcitonin values were low in both groups. White blood cell (WBC) and lymphocyte values were significantly higher in EV patients. None of the infants had a brain lesion on cerebral ultrasound neither negative neurological outcome. Based solely on symptoms, it is not possible to distinguish HPeV from EV infection. C-reactive protein, WBC, and lymphocyte values might allow the physician to assume EV infection. The gold standard test for diagnosis remains real-time polymerase chain reaction on cerebral spinal fluid.
Collapse
Affiliation(s)
- Simonetta Picone
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino, Rome, Italy
| | - Vito Mondì
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino, Rome, Italy
| | - Federico Di Palma
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino, Rome, Italy
| | - Maria Beatrice Valli
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Martina Rueca
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Manuela Bedetta
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino, Rome, Italy
| | | |
Collapse
|
3
|
Takáts K, Balázs B, Boros Á, Sipos D, Péterfi Z, Harmat M, Varga D, Zengő-Bedő Z, Pankovics P, Reuter G. A meningoencephalitis outbreak associated with echovirus type 18 (E18) in south-western Hungary in mid-2023. Arch Virol 2024; 169:237. [PMID: 39495348 PMCID: PMC11534849 DOI: 10.1007/s00705-024-06166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024]
Abstract
Echovirus type 18 (E18) is a member of the genus Enterovirus of the family Picornaviridae. In this study, we investigated the characteristics of E18 infections in hospitalized adults with meningoencephalitis that occurred during an unusual epidemic in south-western Hungary in mid-2023. Five (6.1%) out of 82 cerebrospinal fluid specimens that were tested were positive for an enterovirus, four of which were E18 (OR372160 and PP861087-PP861090). Headache (100%), fever (75%), retrobulbar pain (50%), nausea (50%), joint/limb pain (50%), exanthema, photophobia, and vomiting were the most common symptoms. Sequence analysis showed that these viruses were related to unpublished emerging E18 strains from France (2022/2023) and China (2019/2020). Further study is necessary to monitor the circulation of epidemic/pandemic E18 variants over time.
Collapse
Affiliation(s)
- Károly Takáts
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary
| | - Benigna Balázs
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary
| | - Dávid Sipos
- Department of Internal Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Péterfi
- Department of Internal Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Márk Harmat
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Dávid Varga
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Zita Zengő-Bedő
- Department of Emergency Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary.
| |
Collapse
|
4
|
Liu FC, Chen BC, Huang YC, Huang SH, Chung RJ, Yu PC, Yu CP. Epidemiological Survey of Enterovirus Infections in Taiwan From 2011 to 2020: Retrospective Study. JMIR Public Health Surveill 2024; 10:e59449. [PMID: 39235279 PMCID: PMC11391656 DOI: 10.2196/59449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 09/06/2024] Open
Abstract
Background Young children are susceptible to enterovirus (EV) infections, which cause significant morbidity in this age group. Objective This study investigated the characteristics of virus strains and the epidemiology of EVs circulating among young children in Taiwan from 2011 to 2020. Methods Children diagnosed with EV infections from 2011 to 2020 were identified from the routine national health insurance data monitoring disease system, real-time outbreak and disease surveillance system, national laboratory surveillance system, and Statistics of Communicable Diseases and Surveillance Report, a data set (secondary data) of the Taiwan Centers for Disease and Control. Four primary outcomes were identified: epidemic features, characteristics of sporadic and cluster cases of EV infections, and main cluster institutions. Results From 2011 to 2020, between 10 and 7600 person-times visited the hospitals for EV infections on an outpatient basis daily. Based on 2011 to 2020 emergency department EV infection surveillance data, the permillage of EV visits throughout the year ranged from 0.07‰ and 25.45‰. After typing by immunofluorescence assays, the dominant type was coxsackie A virus (CVA; 8844/12,829, 68.9%), with most constituting types CVA10 (n=2972), CVA2 (n=1404), CVA6 (n=1308), CVA4 (n=1243), CVA16 (n=875), and CVA5 (n=680); coxsackie B virus CVB (n=819); echovirus (n=508); EV-A71 (n=1694); and EV-D68 (n=10). There were statistically significant differences (P<.001) in case numbers of EV infections among EV strains from 2011 to 2020. Cases in 2012 had 15.088 times the odds of being EV-A71, cases in 2014 had 2.103 times the odds of being CVA, cases in 2015 had 1.569 times the odds of being echovirus, and cases in 2018 had 2.274 times the odds of being CVB as cases in other years. From 2011 to 2020, in an epidemic analysis of EV clusters, 57 EV clusters were reported. Clusters that tested positive included 53 (53/57, 93%) CVA cases (the major causes were CVA6, n=32, and CVA10, n=8). Populous institutions had the highest proportion (7 of 10) of EV clusters. Conclusions This study is the first report of sporadic and cluster cases of EV infections from surveillance data (Taiwan Centers for Disease and Control, 2011-2020). This information will be useful for policy makers and clinical experts to direct prevention and control activities to EV infections that cause the most severe illness and greatest burden to the Taiwanese.
Collapse
Affiliation(s)
- Fang-Chen Liu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Bao-Chung Chen
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yao-Ching Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Shi-Hao Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Pi-Ching Yu
- Graduate Institute of Medicine, National Defense Medical Center, Taipei, Taiwan
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chia-Peng Yu
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
5
|
Castillo F, Turón-Viñas E, Armendariz L, Carbonell E, Rabella N, Del Cuerpo M, Moliner E. Characteristics of enterovirus infection associated neurologic disease associated in a pediatric population in Spain. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2024; 42:242-250. [PMID: 37230840 DOI: 10.1016/j.eimce.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/06/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Enteroviruses are a type of RNA-strained virus with more than 100 different genotypes. Infection can be asymptomatic, and, if any, symptoms can range from mild to severe. Some patients can develop neurological involvement, such as aseptic meningitis, encephalitis, or even cardiorespiratory failure. However, in children, the risk factors for developing severe neurological involvement are not well understood. The aim of this retrospective study was to analyze some characteristics associated with severe neurological involvement in children hospitalized for neurological disease after enterovirus infection. METHODS retrospective observational study analyzing clinical, microbiological and radiological data of 174 children hospitalized from 2009 to 2019 in our hospital. Patients were classified according to the World Health Organization case definition for neurological complications in hand, foot and mouth disease. RESULTS Our findings showed that, in children between 6 months old and 2 years of age, the appearance of neurological symptoms within the first 12h from infection onset-especially if associated with skin rash-was a significant risk factor for severe neurological involvement. Detection of enterovirus in cerebrospinal fluid was more likely in patients with aseptic meningitis. By contrast, other biological samples (e.g., feces or nasopharyngeal fluids) were necessary to detect enterovirus in patients with encephalitis. The genotype most commonly associated with the most severe neurological conditions was EV-A71. E-30 was mostly associated with aseptic meningitis. CONCLUSIONS Awareness of the risk factors associated with worse neurological outcomes could help clinicians to better manage these patients to avoid unnecessary admissions and/or ancillary tests.
Collapse
Affiliation(s)
- Fátima Castillo
- Department of Pediatrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute - IIB Sant Pau, Barcelona, Spain
| | - Eulàlia Turón-Viñas
- Department of Pediatrics, Child Neurology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute - IIB Sant Pau, Barcelona, Spain.
| | - Laura Armendariz
- Department of Pediatrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute - IIB Sant Pau, Barcelona, Spain
| | - Emma Carbonell
- Department of Pediatrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute - IIB Sant Pau, Barcelona, Spain
| | - Nuria Rabella
- Departent of Microbiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute - IIB Sant Pau, Barcelona, Spain
| | - Margarita Del Cuerpo
- Departent of Microbiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute - IIB Sant Pau, Barcelona, Spain
| | - Elisenda Moliner
- Department of Pediatrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute - IIB Sant Pau, Barcelona, Spain
| |
Collapse
|
6
|
Couderé K, Benschop K, van Steen A, Verweij JJ, Pas S, Cremer J, Edridge AWD, Abd-Elfarag GOE, van Hensbroek MB, Pajkrt D, Murk JL, Wolthers KC. First description and phylogenetic analysis of coxsackie virus A non-polio enteroviruses and parechoviruses A in South Sudanese children. J Med Virol 2023; 95:e29194. [PMID: 37881026 DOI: 10.1002/jmv.29194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/19/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Enteroviruses (EV) and parechoviruses A (PeV-A) are commonly circulating viruses able to cause severe disease. Surveillance studies from sub-Saharan Africa are limited and show high but variable infection rates and a high variation in genotypes. This is the first study to describe EV and PeV-A circulation in children in South Sudan. Of the fecal samples collected, 35% and 10% were positive for EV and PeV-A, respectively. A wide range of genotypes were found, including several rarely described EV and PeV-A types. Coxsackie virus A (CVA) EV-C types, particularly CVA13, were the most dominant EV types. The CVA13 types had a high diversity with the majority belonging to four different previously described clusters. PeV-A1 and -A14 were the most common PeV-A genotypes. A lack of representative data from our and other studies from sub-Saharan Africa demonstrates the need for more systematic surveillance of non-polio EV and PeV-A types in this region.
Collapse
Affiliation(s)
- Karen Couderé
- Microvida, Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Kimberley Benschop
- National Institute for Public Health and the Environment, RIVM, Bilthoven, The Netherlands
| | - Astrid van Steen
- Microvida, Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Jaco J Verweij
- Microvida, Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Suzan Pas
- Microvida, Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Jeroen Cremer
- National Institute for Public Health and the Environment, RIVM, Bilthoven, The Netherlands
| | | | - Gasim O E Abd-Elfarag
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam University Medical Centers, AMC, Amsterdam, The Netherlands
| | - Michaël B van Hensbroek
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam University Medical Centers, AMC, Amsterdam, The Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, OrganoVIR Labs, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - Jean-Luc Murk
- Microvida, Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Katja C Wolthers
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, AMC, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Shi MR, Xu HD, Wang H, Hei MY. [A cross-sectional study of enterovirus nucleic acid test with throat swabs for term late neonates during coronavirus disease 2019]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:339-343. [PMID: 37073836 PMCID: PMC10120342 DOI: 10.7499/j.issn.1008-8830.2212023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
OBJECTIVES To investigate the positive rate of enterovirus (EV) nucleic acid in throat swabs of term late neonates hospitalized during the coronavirus disease 2019 (COVID-19) epidemic and the clinical characteristics of the neonates. METHODS A single-center cross-sectional study was performed on 611 term late infants who were hospitalized in the neonatal center from October 2020 to September 2021. Throat swabs were collected on admission for coxsackie A16 virus/EV71/EV universal nucleic acid testing. According to the results of EV nucleic acid test, the infants were divided into a positive EV nucleic acid group (8 infants) and a negative EV nucleic acid group (603 infants). Clinical features were compared between the two groups. RESULTS Among the 611 neonates, 8 tested positive for EV nucleic acid, with a positive rate of 13.1‰, among whom 7 were admitted from May to October. There was a significant difference in the proportion of infants contacting family members with respiratory infection symptoms before disease onset between the positive and negative EV nucleic acid groups (75.0% vs 10.9%, P<0.001). There were no significant differences between the two groups in demographic data, clinical symptoms, and laboratory test results (P>0.05). CONCLUSIONS There is a certain proportion of term late infants testing positive for EV nucleic acid in throat swabs during the COVID-19 epidemic, but the proportion is low. The clinical manifestations and laboratory test results of these infants are non-specific. Transmission among family members might be an important cause of neonatal EV infection.
Collapse
Affiliation(s)
- Ming-Rui Shi
- National Center for Children's Health/Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Hai-Dong Xu
- National Center for Children's Health/Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Hong Wang
- National Center for Children's Health/Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Ming-Yan Hei
- National Center for Children's Health/Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| |
Collapse
|
8
|
Kim MJ, Lee JE, Kim KG, Park DW, Cho SJ, Kim TS, Kee HY, Kim SH, Park HJ, Seo MH, Chung JK, Seo JJ. Long-term sentinel surveillance of enteroviruses in Gwangju, South Korea, 2011-2020. Sci Rep 2023; 13:2798. [PMID: 36797345 PMCID: PMC9933826 DOI: 10.1038/s41598-023-29461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Human enteroviruses (EVs) are associated with a broad spectrum of diseases. To understand EV epidemiology, we present longitudinal data reflecting changing EV prevalence patterns in South Korea. We collected 7160 specimens from patients with suspected EV infections in ten hospitals in Gwangju, Korea during 2011-2020. RNA extraction and real-time reverse transcription polymerase chain reaction using EV-specific probes and primers were performed. EV genotyping and phylogenetic analysis were performed; EVs were detected in 3076 samples (43.0%), and the annual EV detection rate varied. EV infection rates did not differ with sex, and children aged ≤ 4 years were the most prone to EV infection; this trend did not change over time. Overall, 35 different EV types belonging to four distinctive species and rhinoviruses were identified. Although serotype distribution changed annually, the most frequently observed EVs were EV-A71 (13.1% of the cases), CVA6 (8.3%), CVB5 (7.6%), CVA16 (7.6%), CVA10 (7.5%), E18 (7.5%), E30 (7.0%), and E11 (5.0%) during 2011-2020. The predominant EV genotypes by clinical manifestation were CVB5 for aseptic meningitis; EV-A71 for hand, foot, and mouth disease cases; and CVA10 for herpangina. These results will aid the development of vaccines against EV infection and allow comprehensive disease control.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea, 61954.
| | - Ji-eun Lee
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Kwang gon Kim
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Duck Woong Park
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Sun Ju Cho
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Tae sun Kim
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Hye-young Kee
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Sun-Hee Kim
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Hye jung Park
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Mi Hee Seo
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Jae Keun Chung
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| | - Jin-jong Seo
- Department of Infectious Disease Research, Health & Environment Research Institute of Gwangju, 584 Mujin-Daero, Seogu, Gwangju, Republic of Korea 61954
| |
Collapse
|
9
|
Yang X, Duan L, Zhan W, Tang Y, Liang L, Xie J, Luo M. Enterovirus B types cause severe infection in infants aged 0-3 months. Virol J 2023; 20:5. [PMID: 36624466 PMCID: PMC9830867 DOI: 10.1186/s12985-023-01965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Enterovirus (EV) infections are being increasingly seen in younger infants, often being more severe than in older children. The risk factors of EV infection in infants have been inadequately investigated till date. METHODS We conducted a retrospective study on hospitalized children with laboratory-confirmed EV infection (50 infants aged 0-3 months and 65 older than 3 months) at a tertiary care center in China. Prevalence, clinical characteristics, and genetic features of the virus were analyzed, and independent predictors for severe infection were assessed. RESULTS Clinical findings showed that severe infection was more common in infants aged 0-3 months than in older children (78.0% vs. 35.4%, p < 0.001), with higher morbidity of pneumonia, meningitis, and sepsis (p < 0.01). EV-B types were detected more frequently in infants aged 0-3 months than in older children (88.0% vs. 7.7%, p < 0.001). Echovirus 11 was the most identified EV-B, and it recombined with E6 in P2 and P3 regions. Risk factors for severe EV infection included EV-B types infection, age less than 3 months, elevated alanine aminotransferase level, abnormal platelet count, and abnormal cerebrospinal fluid characteristics. CONCLUSIONS Our data indicated that EV-B types mainly cause severe infection in infants aged 0-3 months. Therefore, knowledge about EV-B types could have implications in designing effective intervention and prevention strategies for young infants with severe EV infection.
Collapse
Affiliation(s)
- Xiaohan Yang
- grid.459579.30000 0004 0625 057XMedical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 511400 China
| | - Lei Duan
- grid.511341.30000 0004 1772 8591Department of Clinical Laboratory, Taian City Central Hospital, Shandong, 271000 China
| | - Wenli Zhan
- grid.459579.30000 0004 0625 057XMedical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 511400 China
| | - Yuan Tang
- grid.459579.30000 0004 0625 057XDepartment of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511400 China ,grid.410737.60000 0000 8653 1072Guangzhou Medical University, Guangzhou, 511436 China
| | - Lihua Liang
- grid.459579.30000 0004 0625 057XMedical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 511400 China
| | - Jia Xie
- grid.459579.30000 0004 0625 057XDepartment of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511400 China ,grid.410737.60000 0000 8653 1072Guangzhou Medical University, Guangzhou, 511436 China
| | - Mingyong Luo
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 511400, China. .,Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511400, China. .,Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
10
|
Enterovirus Replication and Dissemination Are Differentially Controlled by Type I and III Interferons in the Gastrointestinal Tract. mBio 2022; 13:e0044322. [PMID: 35604122 PMCID: PMC9239134 DOI: 10.1128/mbio.00443-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Echovirus infections are associated with a broad spectrum of illness, particularly in neonates, and are primarily transmitted through the fecal-oral route. Little is known regarding how echoviruses infect the gastrointestinal tract and how the intestinal epithelium controls echoviral replication.
Collapse
|
11
|
van Hinsbergh T, Elbers RG, Bouman Z, van Furth M, Obihara C. Neurodevelopmental outcomes of newborns and infants with parechovirus and enterovirus central nervous infection: a 5-year longitudinal study. Eur J Pediatr 2022; 181:2005-2016. [PMID: 35119491 DOI: 10.1007/s00431-022-04402-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
Abstract
UNLABELLED Though parechovirus (PeV) and enterovirus (EV) are common causes of central nervous system (CNS) infection in childhood, little is known about their long-term neurologic/neurodevelopmental complications. We investigated, longitudinally over a 5-year period, motor neurodevelopment in term-born newborns and infants with RT-qPCR-confirmed PeV- or EV-CNS infection. Motor neurodevelopment was assessed with standardized tests: Alberta Infant Motor Scale (AIMS), Bayley Scales of Infant and Toddler Development version-3 (Bayley-3-NL), and Movement Assessment Battery for Children version-2 (M-ABC-2-NL) at 6, 12, 24, and 60 months post-infection. Results of children with PeV-CNS infection were compared with those of peers with EV-CNS infection and with Dutch norm references. In the multivariate analyses adjustments were made for age at onset, gender, maternal education, and time from CNS infection Sixty of 172 eligible children aged ≤ 3 months were included. Children with PeV-CNS infection had consistently lower, non-significant mean gross motor function (GMF) Z-scores, compared with peers with EV-CNS infection and population norm-referenced GMF. Their GMF improved between 6 and 24 months and decreased at 5 years. Their fine motor function (FMF) scores fell within the population norm reference. CONCLUSION These results suggest that the impact of PeV-A3-CNS infection on gross motor neurodevelopment in young children might manifest later in life. They highlight the importance of longitudinal neurodevelopmental assessments of children with PeV-A3-CNS infection up to school age. WHAT IS KNOWN • Human parechovirus (PeV) is a major cause of central nervous system infection (CNS infection) in newborns and infants. • There is interest in the neurological and neurodevelopmental outcome of newborns and infants with PeV-A3-CNS infection. WHAT IS NEW • This prospective study compares the motor neurodevelopment of term-born newborns and infants with PeV-A3-CNS infection with those with EV-CNS infection and with norm references. • The results support the importance of follow-up of newborns and infants with PeV-A3-CNS infection to detect subtle neurodevelopmental delay and start early interventions.
Collapse
Affiliation(s)
- Ted van Hinsbergh
- Department of Pediatrics, Elisabeth-Tweesteden Hospital, Hilvarenbeekseweg 60, Tilburg, 5022 LC, The Netherlands.
| | - Roy-G Elbers
- Amsterdam UMC, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Medical Faculty (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Zita Bouman
- Department of Medical Psychology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Marceline van Furth
- Department of Paediatric Infectious Diseases and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, AI&II, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Charlie Obihara
- Department of Pediatrics, Elisabeth-Tweesteden Hospital, Hilvarenbeekseweg 60, Tilburg, 5022 LC, The Netherlands
| |
Collapse
|
12
|
Sandoni M, Ciardo L, Tamburini C, Boncompagni A, Rossi C, Guidotti I, Garetti E, Lugli L, Iughetti L, Berardi A. Enteroviral Infections in the First Three Months of Life. Pathogens 2022; 11:60. [PMID: 35056008 PMCID: PMC8782040 DOI: 10.3390/pathogens11010060] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Enteroviruses (EVs) are an important source of infection in the paediatric age, with most cases concerning the neonatal age and early infancy. Molecular epidemiology is crucial to understand the circulation of main serotypes in a specific area and period due to their extreme epidemiological variability. The diagnosis of EVs infection currently relies on the detection of EVs RNA in biological samples (usually cerebrospinal fluid and plasma, but also throat swabs and feces) through a polymerase chain reaction assay. Although EVs infections usually have a benign course, they sometimes become life threatening, especially when symptoms develop in the first few days of life. Mortality is primarily associated with myocarditis, acute hepatitis, and multi-organ failure. Neurodevelopmental sequelae have been reported following severe infections with central nervous system involvement. Unfortunately, at present, the treatment of EVs infections is mainly supportive. The use of specific antiviral agents in severe neonatal infections has been reported in single cases or studies including few neonates. Therefore, further studies are needed to confirm the efficacy of these drugs in clinical practice.
Collapse
Affiliation(s)
- Marcello Sandoni
- Pediatric Post-Graduate School, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.S.); (L.C.); (C.T.); (L.I.)
| | - Lidia Ciardo
- Pediatric Post-Graduate School, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.S.); (L.C.); (C.T.); (L.I.)
| | - Caterina Tamburini
- Pediatric Post-Graduate School, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.S.); (L.C.); (C.T.); (L.I.)
| | - Alessandra Boncompagni
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, Azienda Ospedaliera, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.B.); (C.R.); (I.G.); (E.G.); (A.B.)
| | - Cecilia Rossi
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, Azienda Ospedaliera, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.B.); (C.R.); (I.G.); (E.G.); (A.B.)
| | - Isotta Guidotti
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, Azienda Ospedaliera, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.B.); (C.R.); (I.G.); (E.G.); (A.B.)
| | - Elisabetta Garetti
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, Azienda Ospedaliera, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.B.); (C.R.); (I.G.); (E.G.); (A.B.)
| | - Licia Lugli
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, Azienda Ospedaliera, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.B.); (C.R.); (I.G.); (E.G.); (A.B.)
| | - Lorenzo Iughetti
- Pediatric Post-Graduate School, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.S.); (L.C.); (C.T.); (L.I.)
- Pediatric Unit, Women’s and Children’s Health Department, Azienda Ospedaliera, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alberto Berardi
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, Azienda Ospedaliera, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.B.); (C.R.); (I.G.); (E.G.); (A.B.)
| |
Collapse
|
13
|
Genomic surveillance of enterovirus associated with aseptic meningitis cases in southern Spain, 2015-2018. Sci Rep 2021; 11:21523. [PMID: 34728763 PMCID: PMC8564535 DOI: 10.1038/s41598-021-01053-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
New circulating Enterovirus (EV) strains often emerge through recombination. Upsurges of recombinant non-polio enteroviruses (NPEVs) associated with neurologic manifestations such as EVA71 or Echovirus 30 (E30) are a growing public health concern in Europe. Only a few complete genomes of EVs circulating in Spain are available in public databases, making it difficult to address the emergence of recombinant EVs, understand their evolutionary relatedness and the possible implication in human disease. We have used metagenomic (untargeted) NGS to generate full-length EV genomes from CSF samples of EV-positive aseptic meningitis cases in Southern Spain between 2015 and 2018. Our analyses reveal the co-circulation of multiple Enterovirus B (EV-B) types (E6, E11, E13 and E30), including a novel E13 recombinant form. We observed a genetic turnover where emergent lineages (C1 for E6 and I [tentatively proposed in this study] for E30) replaced previous lineages circulating in Spain, some concomitant with outbreaks in other parts of Europe. Metagenomic sequencing provides an effective approach for the analysis of EV genomes directly from PCR-positive CSF samples. The detection of a novel, disease-associated, recombinant form emphasizes the importance of genomic surveillance to monitor spread and evolution of EVs.
Collapse
|
14
|
Zhang XA, Zhao RQ, Chen JJ, Yuan Y, Tang X, Zhou ZW, Ren L, Lu QB, Wang YN, Zhang HY, Zhang PH, Fang LQ, Zhou HS, Liu EM, Xu HM, Liu W. The Identification and Genetic Characterization of Parechovirus Infection Among Pediatric Patients With Wide Clinical Spectrum in Chongqing, China. Front Microbiol 2021; 12:709849. [PMID: 34594310 PMCID: PMC8477803 DOI: 10.3389/fmicb.2021.709849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
Human parechoviruses (HPeVs) are important causes of infection in children. However, without a comprehensive and persistent surveillance, the epidemiology and clinical features of HPeV infection remain ambiguous. We performed a hospital-based surveillance study among three groups of pediatric patients with acute respiratory infection (Group 1), acute diarrhea (Group 2), and hand, foot and mouth disease (Group 3) in Chongqing, China, from 2009 to 2015. Among 10,212 tested patients, 707 (6.92%) were positive for HPeV, with the positive rates differing significantly among three groups (Group 1, 3.43%; Group 2, 14.94%; Group 3, 3.55%; P < 0.001). The co-infection with other pathogens was detected in 75.2% (531/707) of HPeV-positive patients. Significant negative interaction between HPeV and Parainfluenza virus (PIV) (P = 0.046, OR = 0.59, 95% CI = 0.34–0.98) and positive interactions between HPeV and Enterovirus (EV) (P = 0.015, OR = 2.28, 95% CI = 1.23–4.73) were identified. Among 707 HPeV-positive patients, 592 (83.73%) were successfully sequenced, and 10 genotypes were identified, with HPeV1 (n = 396), HPeV4 (n = 86), and HPeV3 (n = 46) as the most frequently seen. The proportion of genotypes differed among three groups (P < 0.001), with HPeV1 and HPeV4 overrepresented in Group 2 and HPeV6 overrepresented in Group 3. The spatial patterns of HPeV genotypes disclosed more close clustering of the currently sequenced strains than those from other countries/regions, although they were indeed mixed. Three main genotypes (HPeV1, HPeV3, and HPeV4) had shown distinct seasonal peaks, highlighting a bi-annual cycle of all HpeV and two genotypes (HPeV 1 and HPeV 4) with peaks in odd-numbered years and with peaks in even-numbered years HPeV3. Significantly higher HPeV1 viral loads were associated with severe diarrhea in Group 2 (P = 0.044), while associated with HPeV single infection than HPeV-EV coinfection among HFMD patients (P = 0.001). It’s concluded that HPeV infection was correlated with wide clinical spectrum in pediatric patients with a high variety of genotypes determined. Still no clinical significance can be confirmed, which warranted more molecular surveillance in the future.
Collapse
Affiliation(s)
- Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rui-Qiu Zhao
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yang Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiang Tang
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zi-Wei Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Luo Ren
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qin-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Yu-Na Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hai-Yang Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Pan-He Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hai-Sheng Zhou
- Key Laboratory of Dermatology, Anhui Medical University, Hefei, China.,Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
| | - En-Mei Liu
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hong-Mei Xu
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing, China
| |
Collapse
|
15
|
Klatte JM, Harrison CJ, Pate B, Queen MA, Neuhart J, Jackson MA, Selvarangan R. Maternal parechovirus A (PeV-A) shedding, serostatus, and the risk of central nervous system PeV-A infections in infants. J Clin Virol 2021; 142:104939. [PMID: 34390928 DOI: 10.1016/j.jcv.2021.104939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Parechovirus A (PeV-A) has emerged as a leading cause of infant central nervous system (CNS) infections. Risk factors associated with infant acquisition of PeV-A are not well understood. METHODS We conducted prospective PeV-A/enterovirus (EV) CNS infection surveillance, enrolling 461 hospitalized infants <90 days old who underwent sepsis evaluations and lumbar puncture during 2011-2012. Infants were grouped by RT-PCR detection of PeV-A, EV, or neither virus (Neg) in CSF. We collected demographic/clinical data and tested specimens from all infants. For 427 mothers, we collected demographic/clinical data and evaluated PeV-A3 and EV shedding, and PeV-A3 neutralizing antibody for 147 mothers. RESULTS PeV-A was detected in 40 infants (8.7%), 4 in 2011 and 36 in 2012. EV was detected in 35 infants (7.6%), 16 in 2011, and 19 in 2012. PeV-A infected infants presented with irritability, abdominal discomfort, fever, and tachycardia, plus both lymphopenia and absence of CSF pleocytosis which help differentiate PeV-A from EV CNS infection. PeV-A was detected in 9/427 maternal throat swabs; eight of their infants also had PeV-A CNS infection. Infants whose mothers had PeV-A3-positive throat swabs were more likely to be PeV-A3-positive than infants whose mothers had negative throat swabs (relative risk [RR], 13.4 [95% CI, 8.6 - 20.7]). Maternal PeV-A3 seropositivity decreased with increasing maternal age. Mothers of PeV-A-positive infants had lower median PeV-A3 neutralizing titers and were more likely seronegative. CONCLUSIONS Maternal viral shedding, serostatus and neutralization titers appear to be important factors in infant PeV-A3 CNS infections.
Collapse
Affiliation(s)
- J Michael Klatte
- Children's Mercy Hospitals and Clinics, Kansas City, MO, United States; University of Missouri - Kansas City School of Medicine, Kansas City, MO, United States
| | - Christopher J Harrison
- Children's Mercy Hospitals and Clinics, Kansas City, MO, United States; University of Missouri - Kansas City School of Medicine, Kansas City, MO, United States
| | - Brian Pate
- Children's Mercy Hospitals and Clinics, Kansas City, MO, United States; University of Missouri - Kansas City School of Medicine, Kansas City, MO, United States
| | - Mary Ann Queen
- Children's Mercy Hospitals and Clinics, Kansas City, MO, United States; University of Missouri - Kansas City School of Medicine, Kansas City, MO, United States
| | - Jesica Neuhart
- Children's Mercy Hospitals and Clinics, Kansas City, MO, United States; University of Missouri - Kansas City School of Medicine, Kansas City, MO, United States
| | - Mary Anne Jackson
- Children's Mercy Hospitals and Clinics, Kansas City, MO, United States; University of Missouri - Kansas City School of Medicine, Kansas City, MO, United States
| | - R Selvarangan
- Children's Mercy Hospitals and Clinics, Kansas City, MO, United States; University of Missouri - Kansas City School of Medicine, Kansas City, MO, United States.
| |
Collapse
|
16
|
Hedrera-Fernandez A, Cancho-Candela R, Arribas-Arceredillo M, Garrido-Barbero M, Conejo-Moreno D, Sariego-Jamardo A, Perez-Poyato MS, Rodriguez-Fernandez C, Del Villar-Guerra P, Bermejo-Arnedo I, Peña-Valenceja A, Maldonado-Ruiz E, Ortiz-Madinaveitia S, Camina-Gutierrez AB, Blanco-Lago R, Malaga I. Outbreak of Enterovirus Infection with Neurological Presentations in a Pediatric Population in Northern Spain: A Clinical Observational Study. Neuropediatrics 2021; 52:192-200. [PMID: 33657631 DOI: 10.1055/s-0041-1725008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The study aimed to describe the cases of neurological disease related to the outbreak of enterovirus (EV) in three regions in Northern Spain during 2016. MATERIALS AND METHODS Multicenter retrospective observational study. Clinical, radiological, and microbiological data were analyzed from patients younger than 15 years with confirmed EV-associated neurological disease admitted to 10 hospitals of Asturias, Cantabria, and Castile and Leon between January 1 and December 31, 2016. RESULTS Fifty-five patients were included. Median age was 24 months (interquartile range = 18.5 months). Fifteen patients were classified as aseptic meningitis (27.3%). In total, 37 cases presented brainstem encephalitis (67.3%), 25 of them due to EV-A71 with excellent prognosis (84.6% asymptomatic 2 months following the onset). Three cases of acute flaccid myelitis (5.5%) by EV-D68 were reported and presented persistent paresis 2 months following the onset. Microbiological diagnosis by reverse transcriptase polymerase chain reaction was performed in all cases, finding EV in cerebrospinal fluid in meningitis, but not in brainstem encephalitis and acute flaccid myelitis, where EV was found in respiratory or rectal samples. Step therapy was administrated with intravenous immunoglobulin (IVIG; 32.7%), methylprednisolone (10%), and plasmapheresis (3.6%). Four patients received fluoxetine (7.3%). Twenty patients needed to be admitted to pediatric intensive care unit (36.4%). CONCLUSION Clinical, microbiological, and radiological diagnosis is essential in outbreaks of EV neurological disease, taking into account that it can be difficult to identify EV-A71 and EV-D68 in CSF, requiring throat or rectal samples. There is not specific treatment to these conditions and the efficacy and understanding of the mechanism of action of immune-modulatory treatment (IVIG, corticosteroids, and plasmapheresis) is limited.
Collapse
Affiliation(s)
- Antonio Hedrera-Fernandez
- Paediatric Neurology Unit, Hospital Universitario Rio Hortega, Valladolid, Spain.,Paediatric Neurology Unit, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Ramon Cancho-Candela
- Paediatric Neurology Unit, Hospital Universitario Rio Hortega, Valladolid, Spain
| | | | | | | | - Andrea Sariego-Jamardo
- Paediatric Neurology Unit, Hospital Universitario Marques de Valdecilla, Santander, Cantabria, Spain
| | | | | | | | | | | | | | | | | | - Raquel Blanco-Lago
- Paediatric Neurology Unit, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Ignacio Malaga
- Paediatric Neurology Unit, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| |
Collapse
|
17
|
Enteroviruses in Respiratory Samples from Paediatric Patients of a Tertiary Care Hospital in Germany. Viruses 2021; 13:v13050882. [PMID: 34064852 PMCID: PMC8151397 DOI: 10.3390/v13050882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Enteroviruses are associated with various diseases accompanied by rare but severe complications. In recent years, outbreaks of enterovirus D68 and enterovirus A71 associated with severe respiratory infections and neurological complications have been reported worldwide. Since information on molecular epidemiology in respiratory samples is still limited, the genetic diversity of enteroviruses was retrospectively analysed over a 4-year period (2013-2016) in respiratory samples from paediatric patients. Partial viral major capsid protein gene (VP1) sequences were determined for genotyping. Enteroviruses were detected in 255 (6.1%) of 4187 specimens. Phylogenetic analyses of 233 (91.4%) strains revealed 25 different genotypes distributed to Enterovirus A (39.1%), Enterovirus B (34.3%), and Enterovirus D (26.6%). The most frequently detected genotypes were enterovirus D68 (26.6%), coxsackievirus A6 (15.9%), and enterovirus A71 (7.3%). Enterovirus D68 detections were associated with lower respiratory tract infections and increased oxygen demand. Meningitis/encephalitis and other neurological symptoms were related to enterovirus A71, while coxsackievirus A6 was associated with upper respiratory diseases. Prematurity turned out as a potential risk factor for increased oxygen demand during enterovirus infections. The detailed analysis of epidemiological and clinical data contributes to the non-polio enterovirus surveillance in Europe and showed high and rapidly changing genetic diversity of circulating enteroviruses, including different enterovirus D68 variants.
Collapse
|
18
|
Martínez-López N, Muñoz-Almagro C, Launes C, Navascués A, Imaz-Pérez M, Reina J, Romero MP, Calvo C, Ruiz-García M, Megias G, Valencia-Ramos J, Otero A, Cabrerizo M. Surveillance for Enteroviruses Associated with Hand, Foot, and Mouth Disease, and Other Mucocutaneous Symptoms in Spain, 2006-2020. Viruses 2021; 13:v13050781. [PMID: 33924875 PMCID: PMC8146579 DOI: 10.3390/v13050781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a mild illness caused by enteroviruses (EV), although in some Asian countries, large outbreaks have been reported in the last 25 years, with a considerable incidence of neurological complications. This study describes epidemiological and clinical characteristics of EV infections involved in HFMD and other mucocutaneous symptoms from 2006 to 2020 in Spain. EV-positive samples from 368 patients were included. EV species A were identified in 85.1% of those typed EV. Coxsackievirus (CV) A6 was the prevalent serotype (60.9%), followed by EV-A71 (9.9%) and CVA16 (7.7%). Infections affected children (1-6 years old) mainly, and show seasonality with peaks in spring-summer and autumn. Clinical data indicated few cases of atypical HFMD as well as those with neurological complications (associated with the 2016 EV-A71 outbreak). Phylogenetic analysis of CVA6 VP1 sequences showed different sub-clusters circulating from 2010 to present. In conclusion, HFMD or exanthemas case reporting has increased in Spain in recent years, probably associated with an increase in circulation of CVA6, although they did not seem to show greater severity. However, EV surveillance in mucocutaneous manifestations should be improved to identify the emergence of new types or variants causing outbreaks and more severe pathologies.
Collapse
Affiliation(s)
- Nieves Martínez-López
- Enterovirus Unit, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.M.-L.); (A.O.)
| | - Carmen Muñoz-Almagro
- Microbiological and Paediatric Departments, Hospital San Joan de Déu, 08950 Barcelona, Spain; (C.M.-A.); (C.L.)
| | - Cristian Launes
- Microbiological and Paediatric Departments, Hospital San Joan de Déu, 08950 Barcelona, Spain; (C.M.-A.); (C.L.)
| | - Ana Navascués
- Microbiological Department, Complejo Hospitalario de Navarra, 31008 Navarra, Spain;
| | - Manuel Imaz-Pérez
- Microbiological Department, Hospital de Basurto, 48013 Bilbao, Spain;
| | - Jordi Reina
- Microbiological Department, Hospital Son Espases, 07020 Palma de Mallorca, Spain;
| | - María Pilar Romero
- Microbiological and Paediatric Departments, Hospital La Paz, 28220 Madrid, Spain; (M.P.R.); (C.C.)
| | - Cristina Calvo
- Microbiological and Paediatric Departments, Hospital La Paz, 28220 Madrid, Spain; (M.P.R.); (C.C.)
| | | | - Gregoria Megias
- Microbiological and Paediatrics Department, Complejo Hospitalario de Burgos, 09006 Burgos, Spain; (G.M.); (J.V.-R.)
| | - Juan Valencia-Ramos
- Microbiological and Paediatrics Department, Complejo Hospitalario de Burgos, 09006 Burgos, Spain; (G.M.); (J.V.-R.)
| | - Almudena Otero
- Enterovirus Unit, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.M.-L.); (A.O.)
| | - María Cabrerizo
- Enterovirus Unit, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.M.-L.); (A.O.)
- Correspondence: ; Tel.: +34-918-223-663
| |
Collapse
|
19
|
Bujaki E, Farkas Á, Rigó Z, Takács M. Distribution of enterovirus genotypes detected in clinical samples in Hungary, 2010-2018. Acta Microbiol Immunol Hung 2020; 67:201-208. [PMID: 33295885 DOI: 10.1556/030.2020.01200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023]
Abstract
This report provides the findings of a retrospective surveillance study on the emergence and circulation of enteroviruses with their associated clinical symptoms over a nine-year period detected at the National Enterovirus Reference Laboratory in Hungary between 2010-2018.Enterovirus (EV) detection and genotyping were performed directly from clinical samples. From 4,080 clinical specimens 25 EV types were identified with a median age of patients of 5 years and 68% of all cases affected children aged 10 years or younger, although infections occurred in all age-groups. In 130 cases neurological symptoms were recorded, in 123 cases the infection presented in skin related signs including hand, foot, and mouth disease (HFMD), herpangina and rash. In 2010 EV-A71 was found to cause the majority of diagnosed EV infections while in 2011 and from 2014-2018, Coxsackievirus (CV)-A6 was identified most often. Echovirus E6 accounted for the most cases in 2012 and Echovirus 30 dominated in 2013. EV-D68 was identified only in 2010 and 2013.Widespread circulation of several EV-A and EV-B viruses with occasional occurrence of EV-C and EV-D was detected. The ability of EVs to cause severe infections in sporadic cases and regular outbreaks highlight the importance of continued monitoring of circulating EV types.
Collapse
Affiliation(s)
- Erika Bujaki
- 1Department of Virology, National Public Health Center, Budapest, Hungary
| | - Ágnes Farkas
- 1Department of Virology, National Public Health Center, Budapest, Hungary
| | - Zita Rigó
- 1Department of Virology, National Public Health Center, Budapest, Hungary
| | - Mária Takács
- 1Department of Virology, National Public Health Center, Budapest, Hungary
- 2Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
20
|
van Hinsbergh TMT, Elbers RG, Hans Ket JCF, van Furth AM, Obihara CC. Neurological and neurodevelopmental outcomes after human parechovirus CNS infection in neonates and young children: a systematic review and meta-analysis. THE LANCET CHILD & ADOLESCENT HEALTH 2020; 4:592-605. [PMID: 32710840 DOI: 10.1016/s2352-4642(20)30181-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Human parechoviruses are a major cause of CNS infection in neonates and young children. They have been implicated in neurological sequelae and neurodevelopmental delay. However, the magnitude of this effect has not been systematically reviewed or assessed with meta-analyses. We investigated short-term, medium-term, and long-term neurological sequelae and neurodevelopmental delay in neonates and young children after parechovirus-CNS-infection. METHODS In this systematic review and meta-analyses of studies, we searched PubMed, Embase, and PsycInfo, from the inception of the database until March 18, 2019, for reviews, systematic reviews, cohort studies, case series, and case control studies reporting on neurological or neurodevelopmental outcomes of children 3 months or younger with parechovirus infection of the CNS. Studies that were published after Dec 31, 2007, assessed children younger than 16 years, detailed parechoviruses infection of the CNS (confirmed by PCR), and followed up on neurological and neurodevelopmental outcomes were included. Studies published before Dec 31, 2007, were excluded. The predefined primary outcomes were the proportions of children with neurological sequelae, impairment in auditory or visual functions, or gross motor function delay. The proportion of children in whom neurological or neurodevelopmental outcomes were reported was pooled in meta-analyses. For each outcome variable we calculated the pooled proportion with 95% CI. The proportion of children in whom neurological or neurodevelopmental outcomes were reported was extracted by one author and checked by another. Two authors independently assessed the methodological quality of the studies. FINDINGS 20 studies were eligible for quantitative synthesis. The meta-analyses showed an increasing proportion of children with neurological sequelae over time: 5% during short-term follow-up (pooled proportion 0·05 [95% CI 0·03-0·08], I2=0·00%; p=0·83) increasing to 27% during long-term follow-up (0·27 [0·17-0·40], I2=52·74%; p=0·026). The proportion of children with suspected neurodevelopmental delay was 9% or more during long-term follow-up. High heterogeneity and methodological issues in the included studies mean that the results should be interpreted with caution. INTERPRETATION This systematic review suggests the importance of long follow-up, preferably up to preschool or school age (5-6 years), of children with parechovirus infection of the CNS. Although not clinically severe, we found an increasing proportion of neonates and young children with CNS infection had associated neurological sequelae and neurodevelopmental delay over time. We recommend the use of standardised methods to assess neurological and neurodevelopmental functions of these children and to compare results with age-matched reference groups. FUNDING No funding was received for this study.
Collapse
Affiliation(s)
| | - Roy G Elbers
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Medical Faculty, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - J C F Hans Ket
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - A Marceline van Furth
- Department of Paediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Charlie C Obihara
- Department of Paediatrics, Elisabeth-Tweesteden Hospital, Tilburg, Netherlands
| |
Collapse
|
21
|
González-Sanz R, Casas-Alba D, Launes C, Muñoz-Almagro C, Ruiz-García MM, Alonso M, González-Abad MJ, Megías G, Rabella N, Del Cuerpo M, Gozalo-Margüello M, González-Praetorius A, Martínez-Sapiña A, Goyanes-Galán MJ, Romero MP, Calvo C, Antón A, Imaz M, Aranzamendi M, Hernández-Rodríguez Á, Moreno-Docón A, Rey-Cao S, Navascués A, Otero A, Cabrerizo M. Molecular epidemiology of an enterovirus A71 outbreak associated with severe neurological disease, Spain, 2016. ACTA ACUST UNITED AC 2020; 24. [PMID: 30782267 PMCID: PMC6381658 DOI: 10.2807/1560-7917.es.2019.24.7.1800089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Introduction Enterovirus A71 (EV-A71) is an emerging pathogen that causes a wide range of disorders including severe neurological manifestations. In the past 20 years, this virus has been associated with large outbreaks of hand, foot and mouth disease with neurological complications in the Asia-Pacific region, while in Europe mainly sporadic cases have been reported. In spring 2016, however, an EV-A71 outbreak associated with severe neurological cases was reported in Catalonia and spread further to other Spanish regions. Aim Our objective was to investigate the epidemiology and clinical characteristics of the outbreak. Methods We carried out a retrospective study which included 233 EV-A71-positive samples collected during 2016 from hospitalised patients. We analysed the clinical manifestations associated with EV-A71 infections and performed phylogenetic analyses of the 3’-VP1 and 3Dpol regions from all Spanish strains and a set of EV-A71 from other countries. Results Most EV-A71 infections were reported in children (mean age: 2.6 years) and the highest incidence was between May and July 2016 (83%). Most isolates (218/233) were classified as subgenogroup C1 and 217 of them were grouped in one cluster phylogenetically related to a new recombinant variant strain associated with severe neurological diseases in Germany and France in 2015 and 2016. Moreover, we found a clear association of EV-A71-C1 infection with severe neurological disorders, brainstem encephalitis being the most commonly reported. Conclusion An emerging recombinant variant of EV-A71-C1 was responsible for the large outbreak in 2016 in Spain that was associated with many severe neurological cases.
Collapse
Affiliation(s)
- Rubén González-Sanz
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Cristian Launes
- CIBER de epidemiología y Salud Pública, CIBERESP, Madrid, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Carmen Muñoz-Almagro
- CIBER de epidemiología y Salud Pública, CIBERESP, Madrid, Spain.,Universitat Internacional de Catalunya, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | - María Pilar Romero
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,Hospital Universitario La Paz, Fundación IdiPaz, Madrid, Spain
| | - Cristina Calvo
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,Hospital Universitario La Paz, Fundación IdiPaz, Madrid, Spain
| | - Andrés Antón
- Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | | | | | - Águeda Hernández-Rodríguez
- Microbiology Service, University Hospital "Germans Trias i Pujol", Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
| | | | | | | | - Almudena Otero
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María Cabrerizo
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,CIBER de epidemiología y Salud Pública, CIBERESP, Madrid, Spain.,Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
22
|
Contribution of Enteroviruses to Acute Central Nervous System or Systemic Infections in Northern Italy (2015-2017): Is It Time to Establish a National Laboratory-Based Surveillance System? BIOMED RESEARCH INTERNATIONAL 2020; 2020:9393264. [PMID: 32685546 PMCID: PMC7352123 DOI: 10.1155/2020/9393264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/18/2020] [Indexed: 11/17/2022]
Abstract
Background Enteroviruses (EVs) can cause infections and outbreaks of mild to severe diseases, such as central nervous system (CNS) and systemic infections. The contribution of EVs to acute CNS/systemic infections requiring hospitalization was assessed by analysing data extracted from virology laboratory database. Methods Real-life data obtained from two molecular virology laboratories located in Northern Italy were retrieved from databases and analysed retrospectively. The queries used to extract the data were (i) requests for EV-RNA detection in clear cerebrospinal fluid (CSF) specimens collected from hospitalized patients with suspected acute CNS (including aseptic meningitis, encephalitis, and acute flaccid myelitis/paralysis) or systemic infections (sepsis-like illness or fever (≥ 38°C) of unknown origin), (ii) CSF samples collected from January 1st, 2015, to December 31st, 2017. Results 582 requests of EV-RNA detection in CSF samples collected from as many patients of any age were recorded. EV-RNA was detected in 4.5% of the CSF samples; 92.3% of EV-positive cases were patients < 15 years, 58.3% of whom were < 3 months. EVs circulated all-year-round, and the highest EV-positive rates were observed from May to August. The risk of EV infection and the relative illness ratio value among children < 1 − year − old were significantly higher than those observed for older patients. Conclusions EV surveillance should be carried out for all pediatric patients < 15 years and especially children less than 1 year of age with clinically suspected CNS infection/systemic infections. The implementation of a laboratory-based surveillance established for analysing the virological data provided by laboratories that routinely perform EV molecular testing may enable us to determine the impact of EVs that can cause infections requiring hospitalization.
Collapse
|
23
|
Zhirakovskaia E, Tikunov A, Babkin I, Tikunova N. Complete genome sequences of the first parechoviruses A associated with sporadic pediatric acute gastroenteritis in Russia. INFECTION GENETICS AND EVOLUTION 2020; 80:104214. [DOI: 10.1016/j.meegid.2020.104214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/24/2019] [Accepted: 01/28/2020] [Indexed: 01/12/2023]
|
24
|
Molecular characterization of enteroviruses among hospitalized patients in Greece, 2013-2015. J Clin Virol 2020; 127:104349. [PMID: 32339946 DOI: 10.1016/j.jcv.2020.104349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND There are only sporadic data for the circulation of Enteroviruses (EVs) in Greece with previous studies reporting mainly the presence of Echoviruses (E) and Coxsackie viruses (CV) B. OBJECTIVES We carried out a surveillance study for the molecular characterization of EVs detected in hospitalized patients throughout Greece as well as a phylogenetic analysis of the most frequently encountered serotypes. STUDY DESIGN Stools, cerebrospinal fluids, throat swabs and blood samples were collected from hospitalized patients with suspicion of EV infection. All samples were tested for EVs by rRT-PCR targeting the 5' untranslated region of EV genome. For positive samples, PCR amplification and sequencing targeting a part of VP1 region was performed. RESULTS We examined 831 samples and 209 were positive for EVs with Enterovirus B species being the most frequently amplified. E30, CVB5 and E9 were the most frequent serotypes of Enterovirus B species, whereas CVA6 and EV-A71 the most frequent serotypes of Enterovirus A species. Evs were significantly detected more frequently in stool samples compared to other types of specimens. Phylogenetic analysis revealed that most EV-A71 strains clustered in the subgenogroups C2 whereas all the CVA6 strains belonged to sub-genotype D3. Additionally, two different lineages of E30 and three different clusters of E9 viruses circulated simultaneously in Greece. Our data indicated that most EV strains from Greece were similar to strains circulating throughout Europe during the same period. CONCLUSIONS We provide a comprehensive picture of EVs circulating in Greece which can be helpful to interpret trends in EV diseases by associating them with circulating serotypes.
Collapse
|
25
|
Ho SY, Chiu CH, Huang YC, Chen CJ, Lien R, Chu SM, Huang CG, Tsao KC, Shih SR, Hsu JF. Investigation and successful control of an echovirus 11 outbreak in neonatal intensive care units. Pediatr Neonatol 2020; 61:180-187. [PMID: 31669107 DOI: 10.1016/j.pedneo.2019.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Echovirus 11 emerged as a predominant enterovirus strain and was associated with neonatal mortalities in Taiwan in 2018. We investigated an echovirus 11 outbreak in the neonatal intensive care units (NICUs) in a tertiary hospital in northern Taiwan and analyzed infection control efforts. METHODS Between May and June 2018, an outbreak of 10 infants with echovirus 11 infections occurred in the NICUs. Comprehensive surveillance, including virus isolation, real-time reverse transcription-polymerase chain reaction (RT-PCR), and consequential degenerate hybrid oligonucleotide primer (CODEHOP) methods, were arranged for specimens (rectal or throat swabs), which were obtained from all contacts, newly admitted cases, and suspected cases during the outbreak since June 2. RESULTS Ten cases were identified with echovirus 11 infection in this outbreak. Eight of these 10 confirmed cases were identified by viral isolation, and the remaining two cases were identified by RT-PCR surveillance. In addition to confirmed cases, the surveillance of 19 contacts, 47 newly admitted cases, and nine suspected cases showed negative results. All confirmed cases eventually recovered. CONCLUSION RT-PCR and CODEHOP methods significantly shorten the time of laboratory diagnosis of enterovirus infection compared with conventional methods. The outbreak of echovirus 11 in the NICUs was caused by three imported cases and was successfully controlled by the implementation of isolation, rapid surveillance, reinforced disinfection, and infection control measures.
Collapse
Affiliation(s)
- Sheng-Yuan Ho
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yhu-Chering Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Jung Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Reyin Lien
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Ming Chu
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Guei Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chien Tsao
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Jen-Fu Hsu
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
26
|
Chen FH, Liu X, Fang HL, Nan N, Li Z, Ning NZ, Luo DY, Li T, Wang H. VP1 of Enterovirus 71 Protects Mice Against Enterovirus 71 and Coxsackievirus B3 in Lethal Challenge Experiment. Front Immunol 2019; 10:2564. [PMID: 31787970 PMCID: PMC6856078 DOI: 10.3389/fimmu.2019.02564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
Enterovirus and Coxsackievirus are the major viruses that cause hand, foot, and mouth disease (HFMD) outbreaks worldwide. Several studies have shown the potential of viral envelope protein 1 (VP1) on providing protective effects from viral strains of different genotypes. However, whether VP1 has the cross-protection in Enteroviruses or Coxsackievirus has not been studied in-depth. In this study, the vp1 gene of Enterovirus 71 (EV71) and Coxsackievirus B3 (CB3) was inserted into the vector pET22b (+) to form the respective expression plasmids pEVP1 or pCVP1, and then transformed into Escherichia coli strain BL21 (DE3). The recombinant EVP1 or CVP1 protein was overexpressed successfully and effectively purified to homogeneity. Then, we identified that EVP1 and CVP1 protein could generate effectively specific humoral immunity and cellular immunity in mice, what's more, we determined the cross-protection of VP1 between EV71 and CB3 in a murine model. The results showed that immunization with EVP1 could effectively induce specific IgG and secretory IgA against CVP1 and the sera from EVP1-immunized mice could neutralize CB3 with mean titers 1:440. In contrast, no measurable neutralizing antibodies to EV71 were detected in CVP1-immunized mice. Then, newborn BALB/C mice, whose mother was immunized with EVP1 or CVP1, were administered with different lethal doses of EV71 or CB3. The EVP1 immunized group showed a 90% protective efficacy for a CB3 dosage of 120 LD50, but the CVP1 immunized group showed no significantly different protective efficacy against 15 LD50 of EV71 compared with the BSA immunized group. Hence, EVP1 is a promising subunit vaccine candidate against Enterovirus 71 and Coxsackievirus B3 caused HFMD.
Collapse
Affiliation(s)
- Fang-Hong Chen
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Department of Microbiology, Anhui Medical University, Anhui, China
| | - Xiong Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,PLA Center for Disease Control and Prevention, Beijing, China
| | - Hua-Li Fang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Department of Microbiology, Anhui Medical University, Anhui, China
| | - Nan Nan
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhan Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nian-Zhi Ning
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - De-Yan Luo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Department of Microbiology, Anhui Medical University, Anhui, China
| |
Collapse
|
27
|
Epidemiologic and Molecular Study of EVs in Hospitalized Children With Severe Acute Respiratory Infection. Pediatr Infect Dis J 2019; 38:1141-1146. [PMID: 31469780 DOI: 10.1097/inf.0000000000002444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND To evaluate the enterovirus (EV)-positivity rate in respiratory samples collected from children ≤15 years hospitalized with severe acute respiratory infections (SARIs) and to describe the epidemiologic and molecular characteristics of EVs. METHODS Respiratory samples were collected from 2468 children hospitalized with SARI at a university and research hospital in Milan (September 1, 2014 to August 31, 2017). EV and EV-D68 RNA were detected using a commercial multiplex and a specific real-time RT-PCR assay, respectively. The EV-D68-negative samples were then characterized by partial sequencing of the VP1 gene. RESULTS EV-RNA was detected in 9% (222/2468) of SARI cases, 77% were children ≤3 years, almost 13% of whom required intensive care. EVs circulated all-year-round in 2 distinct epidemic waves (May-August and November-December). An EV-D68 outbreak, responsible for 14.8% of EV-positive-SARIs, occurred in 2016 and 5 newly emerging EV types were identified. Twenty-two EV types were detected and remarkable heterogeneity was observed in species distribution and between different pediatric age groups. CONCLUSIONS This study showed that EV-positivity rate for our SARI series was 9%. The molecular detection and characterization of EVs allowed for the rapid detection of an EV-D68 outbreak and revealed the presence of emerging EV types that may pose a public health threat. The lack of routine screening and EV characterization in respiratory tract infections hampers the assessment of their epidemiologic and molecular features.
Collapse
|
28
|
Berardi A, Sandoni M, Toffoli C, Boncompagni A, Gennari W, Bergamini MB, Lucaccioni L, Iughetti L. Clinical characterization of neonatal and pediatric enteroviral infections: an Italian single center study. Ital J Pediatr 2019; 45:94. [PMID: 31375127 PMCID: PMC6679433 DOI: 10.1186/s13052-019-0689-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/24/2019] [Indexed: 11/10/2022] Open
Abstract
Background Enteroviruses (EVs) are an important cause of illness, especially in neonates and young infants. Clinical and laboratory findings at different ages, brain imaging, and outcomes have been inadequately investigated. Methods We retrospectively investigated EV infections occurring at an Italian tertiary care center during 2006–2017. Cases were confirmed with a positive polymerase chain reaction on blood or cerebrospinal fluid. Clinical and laboratory findings according to age at presentation were analyzed. Results Among 61 cases of EV infection, 56 had meningitis, 4 had encephalitis, and 1 had unspecific febrile illness. Forty-seven cases (77.0%) presented at less than 1 year of age, and most were less than 90 days of age (n = 44). Presentation with fever (p < 0.01), higher median temperature (p < 0.01), and irritability (p < 0.01) were significantly more common among infants aged less than 90 days, who also had significantly higher peak temperatures during the course of the disease (p < 0.01). In contrast, gastrointestinal symptoms were more common in infants and children aged over 90 days (p = 0.02). Only 4 of 61 infections (6.5%) were severe and all affected younger infants (p < 0.01). Conclusions We detail epidemiological, clinical, and laboratory findings in a cohort of 61 children. Infants aged less than 90 days have more severe disease; they are more likely to present with fever, higher median temperature, and irritability and less likely to develop gastrointestinal symptoms.
Collapse
Affiliation(s)
- Alberto Berardi
- Struttura Complessa di Neonatologia, Azienda Ospedaliero-Universitaria Policlinico, Via del Pozzo, 71, 41124, Modena, MO, Italy.
| | - Marcello Sandoni
- Scuola di Specializzazione in Pediatria, Università di Modena e Reggio Emilia, Modena, Italy
| | - Carlotta Toffoli
- Scuola di Specializzazione in Pediatria, Università di Modena e Reggio Emilia, Modena, Italy
| | - Alessandra Boncompagni
- Scuola di Specializzazione in Pediatria, Università di Modena e Reggio Emilia, Modena, Italy
| | - William Gennari
- Struttura Complessa di Microbiologia e Virologia-Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Maria Barbara Bergamini
- Struttura Complessa di Pediatria, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Laura Lucaccioni
- Struttura Complessa di Neonatologia, Azienda Ospedaliero-Universitaria Policlinico, Via del Pozzo, 71, 41124, Modena, MO, Italy
| | - Lorenzo Iughetti
- Scuola di Specializzazione in Pediatria, Università di Modena e Reggio Emilia, Modena, Italy.,Struttura Complessa di Pediatria, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| |
Collapse
|
29
|
Ioulia K, Vasiliki P, Stavroula L, Emmanouil A, Andreas M. A 5-year study of human parechoviruses in children living in bad sanitation conditions and non-polio acute flaccid paralysis children from Greece. Eur J Clin Microbiol Infect Dis 2019; 38:1907-1913. [DOI: 10.1007/s10096-019-03627-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
|
30
|
Malasao R, Khamrin P, Kumthip K, Ushijima H, Maneekarn N. Molecular epidemiology and genetic diversity of human parechoviruses in children hospitalized with acute diarrhea in Thailand during 2011-2016. Arch Virol 2019; 164:1743-1752. [PMID: 30972593 DOI: 10.1007/s00705-019-04249-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
Abstract
Little is known about human parechovirus (HPeV) infection in Thailand. The genotype distribution of HPeV strains in children admitted to hospitals with acute gastroenteritis was investigated using polymerase chain reaction (PCR) and nucleotide sequencing of the VP1 region as the detection and genotype identification methods, respectively. Of a total of 2,002 stool samples, 49 (2.4%) were positive for HPeV. Of these, HPeV-1 was the most predominant genotype (40.8%), followed by HPeV-3 (16.3%) and HPeV-14 (16.3%), while HPeV-5, -6, -2, -4, and -8 strains were less frequently detected, at 10.2%, 8.2%, 2%, 2%, and 2%, respectively. HPeV infections were detected throughout the year with the biannual peaks of infection in the rainy (Jun-Jul-Aug) and winter (Nov-Dec-Jan) months in Thailand. Based on VP1 amino acid sequence alignment, the arginyl-glycyl-aspartic acid (RGD) motif was found in HPeV-1, -2, -4, and -6 strains. Additionally, an amino acid insertion at the N-terminus of VP1 was observed in HPeV-4 and HPeV-5 strains. Phylogenetic analysis revealed that small clades of HPeV-1 and HPeV-3 strains emerged in 2016 and 2015, respectively, and dominated in the year of their emergence. The HPeV strains detected in Thailand in this study were most closely related to reference strains from Asia and Europe. The evolutionary rate of HPeV strains was 2.87 × 10-4 (95% highest posterior density (HPD) 0.10-6.14 × 10-4) substitutions/site/year. These findings provide information about the genetic diversity and evolutionary dynamics of HPeV genotypes circulating in pediatric patients with acute gastroenteritis in Thailand.
Collapse
Affiliation(s)
- Rungnapa Malasao
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Suthep Rd, Si Phum, Amphoe Muang, Chiang Mai, 50200, Thailand
| | - Kattareeya Kumthip
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Suthep Rd, Si Phum, Amphoe Muang, Chiang Mai, 50200, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand.
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Suthep Rd, Si Phum, Amphoe Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
31
|
van Hinsbergh TMT, de Crom SCM, Lindeboom R, van Furth MAM, Obihara CC. Human parechovirus meningitis and gross-motor neurodevelopment in young children. Eur J Pediatr 2019; 178:473-481. [PMID: 30637468 DOI: 10.1007/s00431-019-03319-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
This multicenter prospective cohort study describes the impact of human parechovirus meningitis on gross-motor neurodevelopment of young children. Gross-motor function was measured using Alberta Infant Motor Scale. Of a total of 38 eligible children < 10 months of age at onset, nine cases had clinical evidence of meningitis and polymerase chain reaction positive for human parechovirus in cerebrospinal fluid; 11 had no meningitis and polymerase chain reaction positive for human parechovirus in nasopharyngeal aspirate, blood, urine, or feces; and in 18, no pathogen was identified (reference group).The children with human parechovirus meningitis showed more frequent albeit not statistically significant suspect gross-motor function delay (mean Z-score (standard deviation) - 1.69 (1.05)) than children with human parechovirus infection-elsewhere (- 1.38 (1.51)). The reference group did not fall in the range of suspect gross-motor function delay (- 0.96 (1.07)). Adjustment for age at onset and maternal education did not alter the results.Conclusion: Six months after infection, children with human parechovirus meningitis showed more frequent albeit not statistically significant suspect gross-motor function delay compared to the population norm and other two groups. Longitudinal studies in larger samples and longer follow-up periods are needed to confirm the impact and persistence of human parechovirus meningitis on neurodevelopment in young children. What is Known: • Human parechovirus is progressively becoming a major viral cause of meningitis in children. • There is keen interest in the development of affected infants with human parechovirus meningitis. What is New: • This study describes prospectively gross-motor functional delay in children with both clinical evidence of meningitis and polymerase chain reaction positive for human parechovirus in cerebrospinal fluid. • It shows the importance of screening young children for developmental delay in order to refer those with delay for early intervention to maximize their developmental potential.
Collapse
Affiliation(s)
- Ted M T van Hinsbergh
- Department of Pediatrics, Elisabeth-Tweesteden Hospital, Hilvarenbeekseweg 60, 5022 LC, Tilburg, the Netherlands.
| | - Stephanie C M de Crom
- Department of Pediatric, Bravis Hospital, Boerhaaveplein 1, 4624 VT, Bergen op Zoom, the Netherlands
| | - Robert Lindeboom
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Marceline A M van Furth
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, AI&II, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Charlie C Obihara
- Department of Pediatrics, Elisabeth-Tweesteden Hospital, Hilvarenbeekseweg 60, 5022 LC, Tilburg, the Netherlands
| |
Collapse
|
32
|
Longitudinal Association Between Human Parechovirus Central Nervous System Infection and Gross-Motor Neurodevelopment in Young Children. Pediatr Infect Dis J 2019; 38:110-114. [PMID: 29601457 DOI: 10.1097/inf.0000000000002052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A paucity of studies investigated the association between human parechovirus (HPeV) central nervous system (CNS) infection and motor and neurocognitive development of children. This study describes the gross-motor function (GMF) in young children during 24 months after HPeV-CNS infection compared with children in whom no pathogen was detected. METHODS GMF of children was assessed with Alberta Infant Motor Scale, Bayley Scales of Infant and Toddler Development or Movement Assessment Battery for Children. We conducted multivariate analyses and adjusted for age at onset, maternal education and time from infection. RESULTS Of 91 included children, at onset <24 months of age, 11 had HPeV-CNS infection and in 47 no pathogen was detected. Nineteen children were excluded because of the presence of other infection, preterm birth or genetic disorder, and in 14 children, parents refused to consent for participation. We found no longitudinal association between HPeV-CNS infection and GMF (β = -0.53; 95% confidence interval: -1.18 to 0.07; P = 0.11). At 6 months, children with HPeV-CNS infection had suspect GMF delay compared with the nonpathogen group (mean difference = 1.12; 95% confidence interval: -1.96 to -0.30; P = 0.03). This difference disappeared during 24-month follow-up and, after adjustment for age at onset, both groups scored within the normal range for age. Maternal education and time from infection did not have any meaningful influence. CONCLUSIONS We found no longitudinal association between HPeV-CNS infection and GMF during the first 24-month follow-up. Children with HPeV-CNS infection showed a suspect GMF delay at 6-month follow-up. This normalized during 24-month follow-up.
Collapse
|
33
|
High frequency and diversity of parechovirus A in a cohort of Malawian children. Arch Virol 2019; 164:799-806. [PMID: 30666460 PMCID: PMC6394728 DOI: 10.1007/s00705-018-04131-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/28/2018] [Indexed: 12/19/2022]
Abstract
Parechoviruses (PeVs) are highly prevalent viruses worldwide. Over the last decades, several studies have been published on PeV epidemiology in Europe, Asia and North America, while information on other continents is lacking. The aim of this study was to describe PeV circulation in a cohort of children in Malawi, Africa. A total of 749 stool samples obtained from Malawian children aged 6 to 60 months were tested for the presence of PeV by real-time PCR. We performed typing by phylogenetic and Basic Local Alignment Search Tool (BLAST) analysis. PeV was found in 57% of stool samples. Age was significantly associated with PeV positivity (p = 0.01). Typing by phylogenetic analysis resulted in 15 different types, while BLAST typing resulted in 14 different types and several indeterminate strains. In total, six strains showed inconsistencies in typing between the two methods. One strain, P02-4058, remained untypable by all methods, but appeared to belong to the recently reclassified PeV-A19 genotype. PeV-A1, -A2 and -A3 were the most prevalent types (26.8%, 13.8% and 9.8%, respectively). Both the prevalence and genetic diversity found in our study were remarkably high. Our data provide an important contribution to the scarce data available on PeV epidemiology in Africa.
Collapse
|
34
|
Schultheiss HP, Fairweather D, Caforio ALP, Escher F, Hershberger RE, Lipshultz SE, Liu PP, Matsumori A, Mazzanti A, McMurray J, Priori SG. Dilated cardiomyopathy. Nat Rev Dis Primers 2019; 5:32. [PMID: 31073128 PMCID: PMC7096917 DOI: 10.1038/s41572-019-0084-1] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dilated cardiomyopathy (DCM) is a clinical diagnosis characterized by left ventricular or biventricular dilation and impaired contraction that is not explained by abnormal loading conditions (for example, hypertension and valvular heart disease) or coronary artery disease. Mutations in several genes can cause DCM, including genes encoding structural components of the sarcomere and desmosome. Nongenetic forms of DCM can result from different aetiologies, including inflammation of the myocardium due to an infection (mostly viral); exposure to drugs, toxins or allergens; and systemic endocrine or autoimmune diseases. The heterogeneous aetiology and clinical presentation of DCM make a correct and timely diagnosis challenging. Echocardiography and other imaging techniques are required to assess ventricular dysfunction and adverse myocardial remodelling, and immunological and histological analyses of an endomyocardial biopsy sample are indicated when inflammation or infection is suspected. As DCM eventually leads to impaired contractility, standard approaches to prevent or treat heart failure are the first-line treatment for patients with DCM. Cardiac resynchronization therapy and implantable cardioverter-defibrillators may be required to prevent life-threatening arrhythmias. In addition, identifying the probable cause of DCM helps tailor specific therapies to improve prognosis. An improved aetiology-driven personalized approach to clinical care will benefit patients with DCM, as will new diagnostic tools, such as serum biomarkers, that enable early diagnosis and treatment.
Collapse
Affiliation(s)
- Heinz-Peter Schultheiss
- Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany. .,Department of Cardiology, Charité-Universitaetsmedizin Berlin, Berlin, Germany.
| | - DeLisa Fairweather
- Mayo Clinic, Department of Cardiovascular Medicine, Jacksonville, FL, USA.
| | - Alida L. P. Caforio
- 0000 0004 1757 3470grid.5608.bDivision of Cardiology, Department of Cardiological Thoracic and Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Felicitas Escher
- grid.486773.9Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany ,0000 0001 2218 4662grid.6363.0Department of Cardiology, Charité–Universitaetsmedizin Berlin, Berlin, Germany ,0000 0004 5937 5237grid.452396.fDZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Ray E. Hershberger
- 0000 0001 2285 7943grid.261331.4Divisions of Human Genetics and Cardiovascular Medicine in the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH USA
| | - Steven E. Lipshultz
- 0000 0004 1936 9887grid.273335.3Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY USA ,0000 0000 9958 7286grid.413993.5Oishei Children’s Hospital, Buffalo, NY USA ,Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Peter P. Liu
- 0000 0001 2182 2255grid.28046.38University of Ottawa Heart Institute, Ottawa, Ontario Canada
| | - Akira Matsumori
- grid.410835.bClinical Research Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Andrea Mazzanti
- 0000 0004 1762 5736grid.8982.bDepartment of Molecular Medicine, University of Pavia, Pavia, Italy ,Department of Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy
| | - John McMurray
- 0000 0001 2193 314Xgrid.8756.cBritish Heart Foundation (BHF) Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Silvia G. Priori
- 0000 0004 1762 5736grid.8982.bDepartment of Molecular Medicine, University of Pavia, Pavia, Italy ,Department of Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy
| |
Collapse
|
35
|
Andrés C, Vila J, Gimferrer L, Piñana M, Esperalba J, Codina MG, Barnés M, Martín MC, Fuentes F, Rubio S, Alcubilla P, Rodrigo C, Pumarola T, Antón A. Surveillance of enteroviruses from paediatric patients attended at a tertiary hospital in Catalonia from 2014 to 2017. J Clin Virol 2018; 110:29-35. [PMID: 30530096 PMCID: PMC7172671 DOI: 10.1016/j.jcv.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/26/2018] [Accepted: 11/16/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Enterovirus (EV) infections are usually asymptomatic or mild, but symptomatic infections can evolve to severe complications. Outbreaks of EV-A71 and EV-D68 have been recently reported worldwide, sometimes related to severe clinical outcomes. OBJECTIVE To describe EV genetic diversity and the clinical outcomes from paediatric patients attended at a tertiary university hospital in Barcelona (Catalonia, Spain) from 2014 to 2017. STUDY DESIGN Specimens were collected from paediatric (<17 years old) cases with suspicion of respiratory tract infection or EV infection. EV laboratory-confirmation was performed by specific real-time multiplex RT-PCR assay. Partial viral VP1 protein was sequenced for genetic characterisation by phylogenetic analyses. RESULTS A total of 376 (7%) from 5703 cases were EV laboratory-confirmed. Phylogenetic analyses of VP1 (210; 81%) sequences distinguished up to 27 different EV types distributed within EV-A (82; 40%), EV-B (90; 42%), EV-C (5; 2%), and EV-D (33; 15%), in addition to 50 (19%) rhinoviruses. The most predominant were EV-A71 (37; 45%) and EV-D68 (32; 99%). EV-A71 was highly related to neurological complications (25/39, 63%), of which 20/39 were rhombencephalitis, and most EV-D68 (28/32, 88%) were associated with lower respiratory tract infections (LRTI), and exceptionally one (3%) with acute flaccid paralysis. CONCLUSIONS EV-A71 and EV-D68 were the most detected EV in respiratory specimens. EV-A71 was highly related to neurological disease and EV-D68 was often associated with LRTI. However, both potential relatedness to neurological diseases makes the monitoring of EV circulation obligatory.
Collapse
Affiliation(s)
- Cristina Andrés
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jorgina Vila
- Paediatric Hospitalisation Unit, Department of Paediatrics, Hospital Universitari Maternoinfantil Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Gimferrer
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Piñana
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juliana Esperalba
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Gema Codina
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Barnés
- Paediatric Hospitalisation Unit, Department of Paediatrics, Hospital Universitari Maternoinfantil Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Carmen Martín
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Fuentes
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Rubio
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pilar Alcubilla
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Rodrigo
- Paediatric Hospitalisation Unit, Department of Paediatrics, Hospital Universitari Maternoinfantil Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tomàs Pumarola
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Andrés Antón
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Abstract
Nonpolio enteroviruses and parechoviruses are frequent causes of neonatal infection. Clinical manifestations of infection range from asymptomatic infection to mild infection without sequelae to septic shock with muiltiorgan failure. Neonates with clinically apparent infection typically have mothers and/or other contacts with recent symptoms consistent with a viral illness. Severe neonatal infection with nonpolio enterovirus or parechovirus cannot be differentiated clinically from serious bacterial infection. The preferred method for diagnosing neonatal nonpolio enterovirus or parechovirus infection is PCR as it is rapid, sensitive, specific, and commercially available for the detection of virus from various clinical specimens. Investigational agents such as the capsid inhibitors pleconaril and pocapavir show promise for treatment of neonatal enterovirus infections, and other investigational agents are being developed. This review focuses on the epidemiology, diagnosis, and treatment of neonatal nonpolio enterovirus and parechovirus infections.
Collapse
Affiliation(s)
- Nada Harik
- Division of Pediatric Infectious Diseases, Children's National Health System, Washington, DC; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC.
| | - Roberta L DeBiasi
- Division of Pediatric Infectious Diseases, Children's National Health System, Washington, DC; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC; Department of Microbiology/Immunology/Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
37
|
Chiang GPK, Chen Z, Chan MCW, Lee SHM, Kwok AK, Yeung ACM, Nelson EAS, Hon KL, Leung TF, Chan PKS. Clinical features and seasonality of parechovirus infection in an Asian subtropical city, Hong Kong. PLoS One 2017; 12:e0184533. [PMID: 28886185 PMCID: PMC5590978 DOI: 10.1371/journal.pone.0184533] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/25/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The epidemiology of human parechovirus (HPeV) in Asia remains obscure. We elucidated the prevalence, seasonality, type distribution and clinical presentation of HPeV among children in Hong Kong. METHODS A 24-month prospective study to detect HPeV in children ≤36 months hospitalized for acute viral illnesses. RESULTS 2.3% of the 3911 children examined had HPeV infection, with most (87.5%) concentrated in September-January (autumn-winter). 81.3% were HPeV1 and 12.5% were HPeV4, while HPeV3 was rare (2.5%). HPeV was a probable cause of the disease in 47.7% (42/88), mostly self-limiting including acute gastroenteritis, upper respiratory tract infection and maculopapular rash. A neonate developed severe sepsis-like illness with HPeV3 as the only pathogen detected. A high proportion (60.0%) of children coinfected with HPeV and other respiratory virus(es) had acute bronchiolitis or pneumonia. Six children with HPeV coinfections developed convulsion / pallid attack. Most rash illnesses exhibited a generalized maculopapular pattern involving the trunk and limbs, and were more likely associated with HPeV4 compared to other syndrome groups (36.4% vs. 3.1%, p = 0.011). CONCLUSIONS In Hong Kong, HPeV exhibits a clear seasonality (autumn-winter) and was found in a small proportion (2.3%) of young children (≤36 months) admitted with features of acute viral illnesses. The clinical presentation ranged from mild gastroenteritis, upper respiratory tract infection and febrile rash to convulsion and severe sepsis-like illness. HPeV3, which is reported to associate with more severe disease in neonates, is rare in Hong Kong. HPeV coinfection might associate with convulsion and aggravate other respiratory tract infections.
Collapse
Affiliation(s)
- Grace P. K. Chiang
- Departments of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Zigui Chen
- Departments of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Martin C. W. Chan
- Departments of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Simon H. M. Lee
- Departments of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Angela K. Kwok
- Departments of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Apple C. M. Yeung
- Departments of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - E. Anthony S. Nelson
- Departments of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Kam Lun Hon
- Departments of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Ting Fan Leung
- Departments of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Paul K. S. Chan
- Departments of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
38
|
Casas-Alba D, de Sevilla MF, Valero-Rello A, Fortuny C, García-García JJ, Ortez C, Muchart J, Armangué T, Jordan I, Luaces C, Barrabeig I, González-Sanz R, Cabrerizo M, Muñoz-Almagro C, Launes C. Outbreak of brainstem encephalitis associated with enterovirus-A71 in Catalonia, Spain (2016): a clinical observational study in a children's reference centre in Catalonia. Clin Microbiol Infect 2017; 23:874-881. [PMID: 28344164 DOI: 10.1016/j.cmi.2017.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To describe the characteristics of an outbreak of brainstem encephalitis and encephalomyelitis related to enterovirus (EV) infection in Catalonia (Spain), a setting in which these manifestations were uncommon. METHODS Clinical and microbiological data were analysed from patients with neurological symptoms associated with EV detection admitted to a reference paediatric hospital between April and June 2016. RESULTS Fifty-seven patients were included. Median age was 27.7 months (p25-p75 17.1-37.6). Forty-one (72%) were diagnosed with brainstem encephalitis, seven (12%) with aseptic meningitis, six (11%) with encephalitis, and three (5%) with encephalomyelitis (two out of three with cardiopulmonary failure). Fever, lethargy, and myoclonic jerks were the most common symptoms. Age younger than 12 months, higher white-blood-cell count, and higher procalcitonin levels were associated with cardiopulmonary failure. Using a PAN-EV real-time PCR, EV was detected in faeces and/or nasopharyngeal aspirate in all the patients, but it was found in cerebrospinal fluid only in patients with aseptic meningitis. EV was genotyped in 47 out of 57 and EV-A71 was identified in 40 out of 47, being the only EV type found in patients with brainstem symptoms. Most of the detected EV-A71 strains were subgenogroup C1. Intravenous immunoglobulins were used in 34 patients. Eight cases (14%) were admitted to the intensive care unit. All the patients but three, those with encephalomyelitis, showed a good clinical course and had no significant sequelae. No deaths occurred. CONCLUSIONS The 2016 outbreak of brainstem encephalitis in Catalonia was associated with EV-A71 subgenogroup C1. Despite the clinical manifestations of serious disease, a favourable outcome was observed in the majority of patients.
Collapse
Affiliation(s)
- D Casas-Alba
- Department of Paediatrics, Hospital Sant Joan de Deu (University of Barcelona), Spain
| | - M F de Sevilla
- Department of Paediatrics, Hospital Sant Joan de Deu (University of Barcelona), Spain; Paediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; CIBER en Epidemiología y Salud Pública, CIBERESP, Spain
| | - A Valero-Rello
- Paediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Department of Molecular Microbiology, Hospital Sant Joan de Deu, Spain
| | - C Fortuny
- Department of Paediatrics, Hospital Sant Joan de Deu (University of Barcelona), Spain; Paediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; CIBER en Epidemiología y Salud Pública, CIBERESP, Spain
| | - J-J García-García
- Department of Paediatrics, Hospital Sant Joan de Deu (University of Barcelona), Spain; Paediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; CIBER en Epidemiología y Salud Pública, CIBERESP, Spain
| | - C Ortez
- Department of Paediatric Neurology, Hospital Sant Joan de Deu (University of Barcelona), Spain
| | - J Muchart
- Department of Diagnostic Imaging, Hospital Sant Joan de Deu (University of Barcelona), Spain
| | - T Armangué
- Department of Paediatric Neurology, Hospital Sant Joan de Deu (University of Barcelona), Spain
| | - I Jordan
- Paediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; CIBER en Epidemiología y Salud Pública, CIBERESP, Spain; Paediatric Intensive Care Unit, Hospital Sant Joan de Deu (University of Barcelona), Spain
| | - C Luaces
- Emergency Department, Hospital Sant Joan de Deu (University of Barcelona), Spain
| | - I Barrabeig
- Epidemiological Surveillance Unit of Health Region, Barcelona-South, Public Health Agency of Catalonia, Hospitalet de Llobregat, Spain
| | - R González-Sanz
- Enterovirus Unit, National Centre for Microbiology, Institute of Public Health "Carlos III", Madrid, Spain
| | - M Cabrerizo
- Enterovirus Unit, National Centre for Microbiology, Institute of Public Health "Carlos III", Madrid, Spain
| | - C Muñoz-Almagro
- Paediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; CIBER en Epidemiología y Salud Pública, CIBERESP, Spain; Emergency Department, Hospital Sant Joan de Deu (University of Barcelona), Spain; School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - C Launes
- Department of Paediatrics, Hospital Sant Joan de Deu (University of Barcelona), Spain; Paediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; CIBER en Epidemiología y Salud Pública, CIBERESP, Spain.
| |
Collapse
|