1
|
He F, Zhu C, Wu X, Yi L, Lin Z, Wen W, Zhu C, Tu J, Qian K, Li Q, Ma G, Li H, Wang F, Zhou X. Genomic surveillance reveals low-level circulation of two subtypes of genogroup C coxsackievirus A10 in Nanchang, Jiangxi Province, China, 2015-2023. Front Microbiol 2024; 15:1459917. [PMID: 39355427 PMCID: PMC11443423 DOI: 10.3389/fmicb.2024.1459917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction In recent years, coxsackievirus (CV) A10 has been associated with increasing sporadic hand, foot, and mouth disease (HFMD) cases and outbreaks globally. In addition to mild symptoms such as pharyngitis and herpangina, CVA10-related complications or even fatality can occur. Currently, systematic phylogenetic studies of CVA10 are limited. Methods In this study, we first explored the epidemiological and genetic characteristics of CVA10 in Nanchang, an inland southeastern city of China, based on the HFMD surveillance network from 2015-2023. Results Among 3429 enterovirus-positive cases, 110 (3.04%) were associated with CVA10, with a male-to-female ratio of 1.62. The median age of the CVA10 patients was 2.3 years (interquartile range, IQR 1.0-4.0), with 94.55% (104/110) of the patients aged less than 5 years. Phylogenetic analyses using the full-length VP1, 5'UTR, P1, P2, P3 sequences and near full-length genomes indicated that CVA10 strains (n = 57) isolated in Nanchang belonged to genogroup C; two strains identified in 2017 belonged to C1 subtypes clustered with strains from Vietnam, Madagascar, France and Spain; and the others belonged to C2 subtypes interdigitating with CVA10 isolates from mainland China, the United States and Australia. Through extensive analysis, we identified a rare F168Y mutation in epitope 4 of VP1 in a Madagascar strain of genogroup F and a Chinese strain of genogroup C. Based on Bayesian evolutionary analyses, the average nucleotide substitution rate for the VP1 gene of CV10 strains was 3.07×10-3 substitutions/site/year. The most recent common ancestor (tMRCA) of genogroup C was dated 1990.84, and the tMRCA of CVA10 strains from Nanchang was dated approximately 2003.16, similar to strains circulating in other regions of China, suggesting that the viruses were likely introduced and cryptically circulated in China before the establishment of the HFMD surveillance network. Recombination analysis indicated intertypic recombination of the Nanchang strain with the genogroup G strain in the 3D region. Discussion Given the shifting dominance of viral genotypes and frequent recombination events, the existing surveillance system needs to be regulated to enhance genomic surveillance efforts on a more diverse spectrum of genotypes in the future.
Collapse
Affiliation(s)
- Fenglan He
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | | | - Xuan Wu
- The Third Hospital of Nanchang, Nanchang, China
| | - Liu Yi
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Ziqi Lin
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Weijie Wen
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chunhui Zhu
- Department of Infectious Diseases, Jiangxi Children’s Hospital, Nanchang, China
| | - Junling Tu
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Ke Qian
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | | | - Guangqiang Ma
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hui Li
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Fang Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xianfeng Zhou
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
- Jiangxi Provincial Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
2
|
Shrestha S, Malla B, Haramoto E. Monitoring hand foot and mouth disease using long-term wastewater surveillance in Japan: Quantitative PCR assay development and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165926. [PMID: 37527711 DOI: 10.1016/j.scitotenv.2023.165926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is a highly contagious disease that primarily affects children under five years of age. It is mainly caused by serotypes of Enterovirus A (EVA): EVA71, Coxsackievirus A types 6 (CVA6), 10 (CVA10), and 16 (CVA16). Despite being highly prevalent in Japan and other countries in the Asia-Pacific region, few studies have investigated HFMD pathogens in wastewater. The present study aimed to develop a highly sensitive and broadly reactive quantitative polymerase chain reaction (qPCR) assay of dominant serotype CVA6, to revise previously developed CVA6, CVA10, and CVA16 assays, and to test these assays in wastewater samples from Yamanashi Prefecture, Japan. The new-CVA6 qPCR assay was developed with maximal nucleotide percent identity among CVA6 isolates from Japan. The new-CVA6 and revised assays were highly sensitive and had the ability to quantify respective positive controls at levels as low as 1 copy/μL. Among the 53 grab influent samples collected between March 2022 and March 2023, EVA71, CVA10, and CVA16 RNA were not detected in any samples, whereas the new-CVA6 assay could detect CVA6 RNA in 38 % (20/53) of samples. CVA6 RNA was detected at a significantly higher concentration in the summer season (3.3 ± 0.8 log10 copies/L; 79 % (11/14)) than in autumn (2.7 ± 0.6 log10 copies/L; 69 % (9/13)). The seasonal trend of CVA6 RNA detection in wastewater aligned with the trend of HFMD case reports in the catchment of the wastewater treatment plant. This is the first study to report the detection and seasonal trends of the EVA serotypes associated with HFMD in wastewater samples in Japan. It provides evidence that wastewater-based epidemiology is applicable even for diseases that are prevalent only in specific population groups.
Collapse
Affiliation(s)
- Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
3
|
Yang L, Liu T, Tian D, Zhao H, Xia Y, Wang J, Li T, Li Q, Qi L. Non-linear association between daily mean temperature and children's hand foot and mouth disease in Chongqing, China. Sci Rep 2023; 13:20355. [PMID: 37990138 PMCID: PMC10663521 DOI: 10.1038/s41598-023-47858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023] Open
Abstract
Chongqing was seriously affected by hand, foot, and mouth disease (HFMD), but the relationships between daily mean temperature and the incidence of HFMD remain unclear. This study used distributed lag nonlinear model to evaluate the effect of daily mean temperature on the incidence of HFMD in children aged < 5 years in Chongqing. Daily HFMD data from 2012 to 2019 in Chongqing were retrieved from the notifiable infectious disease surveillance system. A total of 413,476 HFMD cases aged < 5 years were reported in Chongqing from 2012 to 2019. The exposure-response curve of daily mean temperature and daily HFMD cases was wavy-shaped. The relative risks (RRs) increased as daily mean temperature below 5.66 °C or above 9.43 °C, with two peaks at 16.10 °C and 26.68 °C. The RRs reached the highest when the daily mean temperature at 26.68 °C on the current day (RR = 1.20, 95% CI 1.09-1.32), followed by the daily mean temperature at 16.10 °C at lag 5 days (RR = 1.07, 95% CI 1.05-1.08). The RRs for girls and daycare children were much higher than those for boys and scattered children, respectively. Taken together, daily mean temperature has strong effect on HFMD in children aged < 5 years old in Chongqing, particularly for girls and daycare children.
Collapse
Affiliation(s)
- Lin Yang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Tian Liu
- Jingzhou Center for Disease Control and Prevention, Hubei, 434000, China
| | - Dechao Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Han Zhao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Yu Xia
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Ju Wang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Tingting Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Qin Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China.
| | - Li Qi
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China.
| |
Collapse
|
4
|
Foronda JLM, Jiao MMAD, Climacosa FMM, Oshitani H, Apostol LNG. Epidemiological and molecular characterization of Coxsackievirus A6 causing hand, foot, and mouth disease in the Philippines, 2012-2017. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 114:105498. [PMID: 37657679 DOI: 10.1016/j.meegid.2023.105498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Coxsackievirus A6 (CVA6) is emerging as the dominant serotype among enteroviruses (EVs) responsible for hand, foot, and mouth disease (HFMD) outbreaks in multiple countries. However, details regarding this serotype in the Philippines are limited. In this study, we investigated the epidemiological and molecular characteristics of laboratory-confirmed CVA6 HFMD cases in the Philippines between 2012 and 2017. Data collected from case report forms submitted to the National Reference Laboratory for Poliovirus and other Enteroviruses were used to determine the distribution and clinical findings of laboratory-confirmed CVA6 HFMD. Phylogenetic analyses of the complete viral protein 1 (VP1) and partial 3D polymerase (3Dpol) gene sequences were performed to determine the genotype and recombinant (RF) form of the selected samples. An increase in the detection rate of CVA6 among enterovirus-positive HFMD cases was observed from 61.9% (140/226) in 2012 to 88.1% (482/587) in 2017, with most cases coming from the Luzon island group. Among the detected cases, the majority were children, with a median age of 2 years old (interquartile range: 1.17-3.40). Respiratory-related morbidities were the commonly reported complications (7.9%; 72/907). Based on the VP1 and 3Dpol gene sequence analysis, the CVA6 strains in this study were classified as genotype D3b and RF-A group, respectively. This study elucidated that CVA6 was the most prevalent enterovirus serotype causing HFMD in the Philippines in 2012-2017, with genotype D3b/RF-A circulating within this period. This study highlights the importance of viral surveillance and molecular epidemiological analysis to broaden our understanding of HFMD in the Philippines.
Collapse
Affiliation(s)
- Janiza Lianne M Foronda
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa City, Philippines; Department of Medical Microbiology, College of Public Health, University of the Philippines, Manila City, Philippines
| | | | - Fresthel Monica M Climacosa
- Department of Medical Microbiology, College of Public Health, University of the Philippines, Manila City, Philippines
| | - Hitoshi Oshitani
- Department of Virology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Lea Necitas G Apostol
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa City, Philippines.
| |
Collapse
|
5
|
Zhang M, Chen X, Wang W, Li Q, Xie Z. Genetic characteristics of Coxsackievirus A6 from children with hand, foot and mouth disease in Beijing, China, 2017-2019. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 106:105378. [PMID: 36257478 DOI: 10.1016/j.meegid.2022.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022]
Abstract
OBJECT To investigate the evolution and genetic characteristics of Coxsackievirus A6 (CVA6) which acted as the predominant pathogen of hand, foot and mouth disease (HFMD) in children in Beijing, China, 2017-2019. METHODS Throat swab specimens were collected for general Enterovirus (EV), enterovirus A71 (EV-A71) and CVA16 detection by Real-time PCR. These general EV-positive samples were identified by semi-nested RT-PCR method and sequencing. The CVA6 VP1 gene and genome sequences were amplified and sequenced. The phylogenetic, variation and recombination analyses were performed. RESULTS A total of 1721 HFMD patients were enrolled in this study, with the male to female ratio of 1.62:1. The majority of cases were less than five years, which accounted for 73.50%. The overall detection rate of EV was 88.32% (1520/1721). A total of 8 EV types were identified, including CVA6 (55.86%), CVA16 (26.32%), EV-A71 (2.24%), CVA10 (2.04%), CVA4 (1.05%), CVA5 (0.59%), CVA2 (0.33%), and CVA8 (0.07%), while 175 (11.51%) EV were untyped. The main pathogen of HFMD was CVA6 from 2017 to 2018, while CVA6 and CVA16 were the main causative pathogens in 2019. The nucleotide and amino acid sequence identities of the 120 CVA6 complete VP1 gene sequences in this study were 91.2%-100.0% and 97.7%-100.0%, respectively. Compared with the prototype strain (Gdula) of CVA6, the nucleotide and amino acid sequence identities were 81.7%-84% and 94.7%-96.3%, respectively. The phylogenetic tree indicated that all 120 CVA6 sequences belonged to sub-genotype D3, while 119 CVA6 sequences belonged to evolutionary branch D3a, except one from 2017 belonged to D3b. Recombination analysis based on the complete genome sequences showed that potential multiple recombination may have occurred in 2B and 3D protein coding regions with EV-A114. CONCLUSIONS The main pathogens of HFMD were CVA6 and CVA16 in Beijing, China, 2017-2019; while these CVA6, as recombination strains, belonged to the D3a evolutionary branch.
Collapse
Affiliation(s)
- Meng Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Department of Pediatrics of Beijing, Boai Hospital at China Rehabilitation Research Centre, Rehabilitation School of Capital Medical University, Beijing 100068, China
| | - Xiangpeng Chen
- Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Qi Li
- Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
6
|
Duan X, Chen Z, Li X, Yuan P, Long L. Virus Shedding in Patients With Hand, Foot and Mouth Disease Induced by EV71, CA16 or CA6: Systematic Review and Meta-analysis. Pediatr Infect Dis J 2021; 40:289-294. [PMID: 33181780 DOI: 10.1097/inf.0000000000002985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND As the highly contagious hand, foot and mouth disease (HFMD) spreads rapidly among children, isolation is the most effective way to control its spread. However, studies on the duration of virus shedding of the HFMD-related enterovirus and a reasonable quarantine period for HFMD patients are inconsistent. METHODS We undertook a systematic review and meta-analysis evaluating the viral shedding of patients with HFMD caused by Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) and coxsackievirus A6. RESULTS A total of 17 observational studies evaluating 626 participants were included. In the first 5 weeks after onset, the pooled virus positive rate in specimens of EV71-related patients decreased from 0.79 (P < 0.001 for heterogeneity) to 0.38 (P < 0.001 for heterogeneity). The positive rate of CVA16 was reduced from 0.91 (P < 0.001 for heterogeneity) to 0.29 (P < 0.001 for heterogeneity). The positive rates of CVA16 and coxsackievirus A6 were approximately 50% in the third week after onset, while a 50% positive rate appeared in the fourth week in EV71 related cases. CONCLUSIONS We found the positive rates of virus shedding were still high among the patients released from quarantine, and the duration of viral shedding was inconsistent among HFMD patients caused by different serotypes. Our findings provide comprehensive evidence for a possible flexible quarantine period according to the serotype.
Collapse
Affiliation(s)
- Xiaoxia Duan
- From the Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu
| | - Zhenhua Chen
- Department of Microbiology Laboratory, Chengdu Municipal Center for Disease Control and Prevention, Sichuan, China
| | - Xianzhi Li
- From the Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu
| | - Ping Yuan
- From the Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu
| | - Lu Long
- From the Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu
| |
Collapse
|
7
|
Epidemical and etiological study on hand, foot and mouth disease following EV-A71 vaccination in Xiangyang, China. Sci Rep 2020; 10:20909. [PMID: 33262488 PMCID: PMC7708472 DOI: 10.1038/s41598-020-77768-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022] Open
Abstract
Coxsackievirus A6 (CV-A6) and Coxsackievirus A10 (CV-A10) have been emerging as the prevailing serotypes and overtaking Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16) in most areas as main pathogens of hand, foot and mouth disease (HFMD) in China since 2013. To investigate whole etiological spectrum following EV-A71 vaccination of approximate 40,000 infants and young children in Xiangyang, enteroviruses were serotyped in 4415 HFMD cases from October 2016 to December 2017 using Real Time and conventional PCR and cell cultures. Of the typeable 3201 specimen, CV-A6 was the predominant serotype followed by CV-A16, CV-A10, CV-A5, CV-A2 and EV-A71 with proportions of 59.54%, 15.31%, 11.56%, 4.56%, 3.78% and 3.03%, respectively. Other 12 minor serotypes were also detected. The results demonstrated that six major serotypes of enteroviruses were co-circulating, including newly emerged CV-A2 and CV-A5. A dramatic decrease of EV-A71 cases was observed, whereas the total cases remained high. Multivalent vaccines against major serotypes are urgently needed for control of HFMD.
Collapse
|
8
|
Chen L, Xu SJ, Yao XJ, Yang H, Zhang HL, Meng J, Zeng HR, Huang XH, Zhang RL, He YQ. Molecular epidemiology of enteroviruses associated with severe hand, foot and mouth disease in Shenzhen, China, 2014-2018. Arch Virol 2020; 165:2213-2227. [PMID: 32666145 PMCID: PMC7360124 DOI: 10.1007/s00705-020-04734-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the epidemiology and molecular characteristics of enteroviruses associated with severe hand, foot and mouth disease (HFMD) in Shenzhen, China, during 2014-2018. A total of 137 fecal specimens from patients with severe HFMD were collected. Enterovirus (EV) types were determined using real-time reverse transcription polymerase chain reaction (RT-PCR), RT nested PCR, and sequencing. Sequences were analyzed using bioinformatics programs. Of 137 specimens tested, 97 (70.8%), 12 (8.8%), and 10 (7.3%) were positive for EV-A71, coxsackievirus A6 (CVA6), and CVA16, respectively. Other pathogens detected included CVA2 (2.9%, 4/137), CVA10 (2.9%, 4/137), CVA5 (0.7%, 1/137), echovirus 6 (E6) (0.7%, 1/137) and E18 (0.7%, 1/137). The most frequent complication in patients with proven EV infections was myoclonic jerk, followed by aseptic encephalitis, tachypnea, and vomiting. The frequencies of vomiting and abnormal eye movements were higher in EV-A71-infected patients than that in CVA6-infected or CVA16-infected patients. Molecular phylogeny based on the complete VP1 gene revealed no association between the subgenotype of the virus and disease severity. Nevertheless, 12 significant mutations that were likely to be associated with virulence or the clinical phenotype were observed in the 5’UTR, 2Apro, 2C, 3A, 3Dpol and 3’UTR of CVA6. Eight significant mutations were observed in the 5’UTR, 2B, 3A, 3Dpol and 3’UTR of CVA16, and 10 significant mutations were observed in the 5’UTR, VP1, 3A and 3Cpro of CVA10. In conclusion, EV-A71 is still the main pathogen causing severe HFMD, although other EV types can also cause severe complications. Potential virulence or phenotype-associated sites were identified in the genomes of CVA6, CVA16, and CVA10.
Collapse
Affiliation(s)
- Long Chen
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Shao-Jian Xu
- District Key Laboratory for Infectious Disease Prevention and Control, Longhua District Center for Disease Control and Prevention, Shenzhen, 518109, China
| | - Xiang-Jie Yao
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Hong Yang
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Hai-Long Zhang
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jun Meng
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Han-Ri Zeng
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Xu-He Huang
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Ren-Li Zhang
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Ya-Qing He
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Sub-genotype change and recombination of coxsackievirus A6s may be the cause of it being the predominant pathogen for HFMD in children in Beijing, as revealed by analysis of complete genome sequences. Int J Infect Dis 2020; 99:156-162. [PMID: 32663604 DOI: 10.1016/j.ijid.2020.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To investigate why coxsackievirus A6 (CVA6) has replaced enterovirus A71 (EV71) and coxsackievirus A16 (CVA16), which used to be the most predominant etiological agents, for hand, foot and mouth disease (HFMD) in children in Beijing, China. METHODS Sixty-four CVA6-positive samples were identified from 2010 to 2016 and selected for whole genome sequence amplification and analysis. RESULTS It was demonstrated that the whole genome sequences of CVA6s in this study were 7432-7435 nucleotides in length, and the different lengths were only in the 5'UTR region. The phylogenetic tree analysis of the full-length VP1 region of CVA6s indicated that the prevalent CVA6s in Beijing changed from the previous D2 sub-genotype to the D3 sub-genotype in 2013. In this study, two recombinant forms (RFs)- RF-C and RF-D - of CVA6 mainly appeared in 2010 and 2011. Since 2013, three recombinant CVA6 variants - RF-A, J and L - have been prevalent in children with HFMD in Beijing. The recombination region of RF-J was located at the 2C region, while RF-L had a new recombination point in the 3D region. The recombination of prevalent CVA6s in Beijing from 2013 to 2016 occurred within non-capsid regions of the genome, especially the P2 and P3 regions. CONCLUSIONS The sub-genotype change and recombination of CVA6s indicated from this study may explain why CVA6 has become the predominant pathogen causing HFMD since 2013.
Collapse
|
10
|
Pearson D, Basu R, Wu XM, Ebisu K. Temperature and hand, foot and mouth disease in California: An exploratory analysis of emergency department visits by season, 2005-2013. ENVIRONMENTAL RESEARCH 2020; 185:109461. [PMID: 32278924 DOI: 10.1016/j.envres.2020.109461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND For the past decade, hand, foot and mouth disease (HFMD), caused by entero and coxsackie viruses, has been spreading in Asia, particularly among children, overloading healthcare settings and creating economic hardships for parents. Recent studies have found meteorological factors, such as temperature, are associated with HFMD in Asia. However, few studies have explored the relationship in the United States, although HFMD cases have steadily increased recently. As concerns of climate change grow, we explored the association between temperature and HFMD admissions to the Emergency Department (ED) in California. METHODS Weekly counts of HFMD for 16 California climate zones were collected from 2005 to 2013. We calculated weekly temperature for each climate zone using an inverse distance-weighting method. For each climate zone stratified by season, we conducted a time-series using Poisson regression models. We adjusted models for weekly averaged relative humidity, average number of HFMD cases in previous weeks and long-term temporal trends. Climate zone estimates were combined to obtain an overall seasonal estimate. We attempted stratified analyses by region, race/ethnicity, and sex to identify sensitive subpopulations. RESULTS Risk of ED visits for HFMD per 1 °F increase in mean temperature during the same week increased 2.00% (95% confidence intervals 1.15, 2.86%) and 2.35% (1.38, 3.33%) during the warm and cold seasons, respectively. The coastal region showed a higher, though not statistically different, association during the cold season [3.18% (1.99, 4.39)] than the warm season [1.64% (0.47, 2.82)]. CONCLUSIONS Our findings indicated an association between temperature and ED visits for HFMD, with variation by season and region. Thus, the causative pathogen's ability to persist in the atmosphere may vary by season. Furthermore, the mild and wet winter in the coastal region of California may contribute to different results than studies in Asia. With the onset of climate change, HFMD cases will likely grow in California, warranting further investigation on this relationship, including new populations at-risk.
Collapse
Affiliation(s)
- Dharshani Pearson
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, United States.
| | - Rupa Basu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, United States
| | - Xiangmei May Wu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, United States
| | - Keita Ebisu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, United States
| |
Collapse
|
11
|
Zhao TS, Du J, Sun DP, Zhu QR, Chen LY, Ye C, Wang S, Liu YQ, Cui F, Lu QB. A review and meta-analysis of the epidemiology and clinical presentation of coxsackievirus A6 causing hand-foot-mouth disease in China and global implications. Rev Med Virol 2019; 30:e2087. [PMID: 31811676 DOI: 10.1002/rmv.2087] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 12/22/2022]
Abstract
Coxsackievirus A6 (CV-A6) has been associated with increasingly occurred sporadic hand-foot-mouth disease (HFMD) cases and outbreak events in many countries. In order to understand epidemiological characteristics of CV-A6, we collected the information describing HFMD caused by CV-A6 to describe the detection rate, severe rate and onychomadesis rate, which is defined as one or more nails defluvium, caused by CV-A6 from 2007 to 2017. The results showed that there was an outbreak of CV-A6 every other year, and overall trend of the epidemic of CA6-associated HFMD was increasing in China. The detection rate of CV-A6 in other countries was 32.0% (95% CI: 25.0%~40.0%) before 2013 and 28.0% (95% CI: 20.0%~36.0%) after 2013, respectively. Although the severe rate of HFMD caused by CV-A6 was low (0.10%, 95% CI: 0.01%~0.20%), CV-A6 can cause a high incidence of onychomadesis (28.0%, 95%CI: 21.9%-34.3%). Thus, it would be worthwhile to research and develop an effective multivalent vaccine for CV-A6 to achieve a more powerful prevention of HMFD.
Collapse
Affiliation(s)
- Tian-Shuo Zhao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Juan Du
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Da-Peng Sun
- Institute for Viral Disease Control and Prevention, Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
| | - Quan-Rong Zhu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Lin-Yi Chen
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Chen Ye
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Shuai Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Ya-Qiong Liu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Fuqiang Cui
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| |
Collapse
|
12
|
Yang TO, Arthur Huang KY, Chen MH, Chen PC, Huang WT. Comparison of Nonpolio Enteroviruses in Children With Herpangina and Hand, Foot and Mouth Disease in Taiwan. Pediatr Infect Dis J 2019; 38:887-893. [PMID: 31033911 DOI: 10.1097/inf.0000000000002351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nonpolio enterovirus (NPEV) infections are often present with herpangina (HA) and hand, foot and mouth disease (HFMD). Most countries sample NPEVs in HFMD cases, targeting enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) that are associated with outbreaks and severe complications. HA is also monitored in Taiwan and several other countries, but its viral characteristics are underreported. METHODS Through Taiwan's National Virologic Surveillance, information regarding ~100,000 child respiratory samples (2002-2015) was linked to concurrent (0-6 days before the sampling date) outpatient records from the National Health Insurance databases, including ~15,000 HA-related and ~7000 HFMD-related samples. We assessed sample representation and NPEV positive rates, and estimated total numbers of EV-A71 and CV-A16. RESULTS There were more HA events (4.0 millions) than HFMD events (1.2 millions) in Taiwan. In every 1000 events with HFMD and HA, 6.0 and 4.1, respectively, respiratory samples were collected. The NPEV positive rate in HFMD-related samples was 48%, consistent across most sampling seasons, and predominantly EV-A71 or CV-A16 (74%). By comparison, the HA-related samples had a lower positive rate overall (43%), occasionally EV-A71 or CV-A16 (13%), and the positive rate depended strongly on HA incidence (P < 10). Compared with sampling HFMD alone, inclusion of HA-related information predicted an earlier onset of EV-A71 outbreak in 2011, and predicted 30% more EV-A71 cases. CONCLUSIONS This is the first representative report on viral characteristics of HA. Our findings confirm that HFMD monitoring is a reliable strategy, but there is a measurable additional benefit when HA is also monitored.
Collapse
Affiliation(s)
- TienYu Owen Yang
- From the Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Kuan-Ying Arthur Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli
| | - Pau-Chung Chen
- Department of Public Health and Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health
- Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and Hospital
| | | |
Collapse
|
13
|
Owino CO, Chu JJH. Recent advances on the role of host factors during non-poliovirus enteroviral infections. J Biomed Sci 2019; 26:47. [PMID: 31215493 PMCID: PMC6582496 DOI: 10.1186/s12929-019-0540-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Non-polio enteroviruses are emerging viruses known to cause outbreaks of polio-like infections in different parts of the world with several cases already reported in Asia Pacific, Europe and in United States of America. These outbreaks normally result in overstretching of health facilities as well as death in children under the age of five. Most of these infections are usually self-limiting except for the neurological complications associated with human enterovirus A 71 (EV-A71). The infection dynamics of these viruses have not been fully understood, with most inferences made from previous studies conducted with poliovirus.Non-poliovirus enteroviral infections are responsible for major outbreaks of hand, foot and mouth disease (HFMD) often associated with neurological complications and severe respiratory diseases. The myriad of disease presentations observed so far in children calls for an urgent need to fully elucidate the replication processes of these viruses. There are concerted efforts from different research groups to fully map out the role of human host factors in the replication cycle of these viral infections. Understanding the interaction between viral proteins and human host factors will unravel important insights on the lifecycle of this groups of viruses.This review provides the latest update on the interplay between human host factors/processes and non-polio enteroviruses (NPEV). We focus on the interactions involved in viral attachment, entry, internalization, uncoating, replication, virion assembly and eventual egress of the NPEV from the infected cells. We emphasize on the virus- human host interplay and highlight existing knowledge gaps that needs further studies. Understanding the NPEV-human host factors interactions will be key in the design and development of vaccines as well as antivirals against enteroviral infections. Dissecting the role of human host factors during NPEV infection cycle will provide a clear picture of how NPEVs usurp the human cellular processes to establish an efficient infection. This will be a boost to the drug and vaccine development against enteroviruses which will be key in control and eventual elimination of the viral infections.
Collapse
Affiliation(s)
- Collins Oduor Owino
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| |
Collapse
|
14
|
Anh NT, Nhu LNT, Van HMT, Hong NTT, Thanh TT, Hang VTT, Ny NTH, Nguyet LA, Phuong TTL, Nhan LNT, Hung NT, Khanh TH, Tuan HM, Viet HL, Nam NT, Viet DC, Qui PT, Wills B, Sabanathan S, Chau NVV, Thwaites L, Rogier van Doorn H, Thwaites G, Rabaa MA, Van Tan L. Emerging Coxsackievirus A6 Causing Hand, Foot and Mouth Disease, Vietnam. Emerg Infect Dis 2019; 24:654-662. [PMID: 29553326 PMCID: PMC5875260 DOI: 10.3201/eid2404.171298] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hand, foot and mouth disease (HFMD) is a major public health issue in Asia and has global pandemic potential. Coxsackievirus A6 (CV-A6) was detected in 514/2,230 (23%) of HFMD patients admitted to 3 major hospitals in southern Vietnam during 2011–2015. Of these patients, 93 (18%) had severe HFMD. Phylogenetic analysis of 98 genome sequences revealed they belonged to cluster A and had been circulating in Vietnam for 2 years before emergence. CV-A6 movement among localities within Vietnam occurred frequently, whereas viral movement across international borders appeared rare. Skyline plots identified fluctuations in the relative genetic diversity of CV-A6 corresponding to large CV-A6–associated HFMD outbreaks worldwide. These data show that CV-A6 is an emerging pathogen and emphasize the necessity of active surveillance and understanding the mechanisms that shape the pathogen evolution and emergence, which is essential for development and implementation of intervention strategies.
Collapse
|
15
|
Mizuta K, Tanaka S, Komabayashi K, Aoki Y, Itagaki T, Katsushima F, Katsushima Y, Yoshida H, Ito S, Matsuzaki Y, Ikeda T. Phylogenetic and antigenic analyses of coxsackievirus A6 isolates in Yamagata, Japan between 2001 and 2017. Vaccine 2019; 37:1109-1117. [PMID: 30683510 DOI: 10.1016/j.vaccine.2018.12.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 11/27/2022]
Abstract
Although coxsackievirus A6 (CV-A6) is generally recognized as a causative agent of herpangina in children, CV-A6 infections globally emerged as a new and major cause of epidemic hand-foot-and-mouth-diseases (HFMDs) around 2008. To clarify the longitudinal epidemiology of CV-A6, we carried out sequence and phylogenetic analyses for the VP1 and partially for the VP4-3D regions as well as antigenic analysis using 115 CV-A6 isolates and 105 human sera in Yamagata, Japan between 2001 and 2017. Phylogenetic analysis revealed that CV-A6 isolates were clearly divided into two clusters; strains in circulation between 2001 and 2008 and those between 2010 and 2017. Neutralizing antibody titers of two rabbit antisera, which were immunized with Yamagata isolates in 2001 and 2015, respectively, against 28 Yamagata representative strains as well as the prototype Gdula strain were 1:2560-1:5120 and 1:160-1:640, respectively. The neutralizing antibody titers among residents in Yamagata against the above two strains were similar. Our analyses revealed that there were cross-antigenicities among all analyzed CV-A6 strains, although the newly emerged strains were introduced into Yamagata around 2010 and replaced the previous ones. With regard to control measures, these findings suggest that we can prevent CV-A6 infections through the development of a vaccine that effectively induces neutralizing antibodies against CV-A6, irrespective of genetic cluster.
Collapse
Affiliation(s)
- Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 1-6-6, Yamagata 990-0031, Japan.
| | - Shizuka Tanaka
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 1-6-6, Yamagata 990-0031, Japan
| | - Kenichi Komabayashi
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 1-6-6, Yamagata 990-0031, Japan
| | - Yoko Aoki
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 1-6-6, Yamagata 990-0031, Japan
| | | | | | | | - Hiroshi Yoshida
- Department of Pediatrics, Tsuruoka Municipal Shonai Hospital, Yamagata 990-9585, Japan
| | - Sueshi Ito
- Department of Pediatrics, Tsuruoka Municipal Shonai Hospital, Yamagata 990-9585, Japan; Ito Clinic, Department of Pediatrics, Hinode 1-17-8, Tsuruoka, Yamagata 997-0025, Japan
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University, Faculty of Medicine, Yamagata 990-9585, Japan
| | - Tatsuya Ikeda
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 1-6-6, Yamagata 990-0031, Japan
| |
Collapse
|
16
|
Severe atypical hand-foot-and-mouth disease in adults due to coxsackievirus A6: Clinical presentation and phylogenesis of CV-A6 strains. J Clin Virol 2018; 110:1-6. [PMID: 30472520 DOI: 10.1016/j.jcv.2018.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/10/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Typically, hand-foot-and-mouth disease (HFMD) is a mild childhood illness associated with coxsackievirus (CV)-A16, CV-A6, enterovirus (EV)-A71. OBJECTIVES To identify the viral agents associated with severe cases of atypical HFMD in Italy. STUDY DESIGN Epidemiologically unrelated cases of severe atypical HFMD admitted to the Emergency Room (ER) of IRCCS San Martino IST (Genoa, Italy) in 2014-2016 were investigated. Serologic screening for viral positivity was performed against exanthem-inducing agents. Ten cases with serology indicative of recent EV infection were selected. Molecular assays were used to detect viral genomes in blood [EVs, Parvovirus B19 (PVB19), herpesviruses (CMV; EBV, HHV-6, -7, -8)]. RESULTS CV-A6 was detected in 10 cases of severe atypical HFMD. Two cases were also infected with PVB19. Herpesviruses were not detected. Phylogenetic analysis mapped the CV-A6 strains into a single cluster related to two recent isolates from a German and an Asian child. Fever, systemic symptoms, severe vasculitis-like rash, and enanthem were predominant at presentation. Spontaneous recovery occurred in 1-3 weeks. CONCLUSIONS CV-A6 is emerging as a frequent cause of severe atypical HFMD in Italian adults. This viral agent is disseminating worldwide. Dermatologists must identify the manifold alterations caused by EVs and understand the diagnostic power of current virology methods.
Collapse
|
17
|
Molecular epidemiology of coxsackievirus A6 circulating in Hong Kong reveals common neurological manifestations and emergence of novel recombinant groups. J Clin Virol 2018; 108:43-49. [PMID: 30237097 DOI: 10.1016/j.jcv.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/21/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Coxsackievirus A6 (CV-A6) represents the predominant enterovirus serotype in Hong Kong, but its epidemiology in our population was unknown. OBJECTIVES To examine the clinical and molecular epidemiology of CV-A6 and detect emerging recombinant strains in Hong Kong. STUDY DESIGN Nasopharyngeal aspirates (NPAs) from patients with febrile or respiratory illness were subject to RT-PCR for CV-A6 and sequencing of 5'-NCR and VP1. CV-A6-positive samples were further subject to 2C and 3D gene sequencing. Complete genome sequencing was performed on potential recombinant strains. RESULTS Thirty-six (0.35%) NPAs were positive for CV-A6 by 5'-NCR RT-PCR and sequencing, 28 of which confirmed by partial VP1 gene sequencing. Among the 28 patients (mainly young children) with CV-A6 infection, hand-foot-and-mouth disease (HFMD) (43%), herpangina (18%) and tonsillitis (11%) were the most common diagnoses. Seven (25%) patients had neurological manifestations, including febrile seizures, encephalitis and meningitis. VP1 gene analysis showed that 24 CV-A6 strains circulating in Hong Kong belonged to genotype D5, while 4 strains belonged to D4. Further 2C and 3D gene analysis revealed eight potential recombinant strains. Genome sequencing of five selected strains confirmed four recombinant strains: HK459455/2013 belonging to recombination group RJ arisen from CV-A6/CV-A4, HK458288/2015 and HK446377/2015 representing novel group RL arisen from CV-A6/CV-A4, and HK462069/2015 representing novel group RM arisen from CV-A6/EV-A71. Recombination breakpoints located at 3D were identified in the latter three recombinant strains, with HK462069/2015 (from a child with encephalitis) having acquired 3D region from EV-A71. CONCLUSIONS We identified novel recombinant CV-A6 strains in Hong Kong, with 3D being a common recombination site.
Collapse
|
18
|
Coates SJ, Davis MDP, Andersen LK. Temperature and humidity affect the incidence of hand, foot, and mouth disease: a systematic review of the literature - a report from the International Society of Dermatology Climate Change Committee. Int J Dermatol 2018; 58:388-399. [PMID: 30187452 DOI: 10.1111/ijd.14188] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is an enterovirus-mediated condition that predominantly affects children under 5 years of age. The tendency for outbreaks to peak in warmer summer months suggests a relationship between HFMD and weather patterns. We reviewed the English-language literature for articles describing a relationship between meteorological variables and HFMD. Seventy-two studies meeting criteria were identified. A positive, statistically significant relationship was identified between HFMD cases and both temperature (61 of 67 studies, or 91.0%, reported a positive relationship) [CI 81.8-95.8%, P = 0.0001] and relative humidity (41 of 54 studies, or 75.9%) [CI 63.1-85.4%, P = 0.0001]. No significant relationship was identified between HFMD and precipitation, wind speed, and/or sunshine. Most countries reported a single peak of disease each year (most commonly early Summer), but subtropical and tropical climate zones were significantly more likely to experience a bimodal distribution of cases throughout the year (two peaks a year; most commonly late spring/early summer, with a smaller peak in autumn). The rising global incidence of HFMD, particularly in Pacific Asia, may be related to climate change. Weather forecasting might be used effectively in the future to indicate the risk of HFMD outbreaks and the need for targeted public health interventions.
Collapse
Affiliation(s)
- Sarah J Coates
- Department of Dermatology, The University of California San Francisco, San Francisco, CA, USA
| | - Mark D P Davis
- Division of Clinical Dermatology, Mayo Clinic, Rochester, MN, USA
| | - Louise K Andersen
- Department of Dermato-Venereology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
19
|
Yoshitomi H, Ashizuka Y, Ichihara S, Nakamura T, Nakamura A, Kobayashi T, Kajiwara J. Molecular epidemiology of coxsackievirus A6 derived from hand, foot, and mouth disease in Fukuoka between 2013 and 2017. J Med Virol 2018; 90:1712-1719. [PMID: 29981169 DOI: 10.1002/jmv.25250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/29/2018] [Indexed: 01/23/2023]
Abstract
Coxsackievirus (CV)-A6 has been the primary causative agent of hand, foot, and mouth disease (HFMD) in Japan since 2011. In Fukuoka, CV-A6-associated HFMD caused epidemics in 2013, 2015, and 2017. This paper reports the genetic characteristics of the CV-A6 entire viral protein 1 (VP1) derived from patients with HFMD in Fukuoka between 2013 and 2017. CV-A6 was detected in 105 of 280 clinical specimens, and the entire VP1 sequences could be analyzed for 90 of the 105 specimens. Phylogenetic analysis revealed that the CV-A6 strains were classified into clade A and subgrouped into subclade A3 or subclade A4. Each subclade strain carried amino acid substitutions in the presumed DE and GH loops of the VP1, and no amino acid substitutions were identified as deleterious to the protein function. No significant difference was found in the clinical symptoms between the genetic subclades using statistical analyses. In conclusion, this study clarified the genetic diversity of CV-A6 in Fukuoka from 2013 to 2017. The emergence of the CV-A6 strains was classified into derived new subclades based on phylogenetic analysis of the VP1 gene that may cause CV-A6-associated HFMD epidemics approximately every 2 years.
Collapse
Affiliation(s)
- Hideaki Yoshitomi
- Division of Virus, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Yuki Ashizuka
- Division of Virus, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Sachiko Ichihara
- Division of Research Planning and Information Science, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Tomofumi Nakamura
- Research Department, The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Kagawa, Japan
| | - Asako Nakamura
- Division of Virus, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Takayuki Kobayashi
- Division of Virus, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Junboku Kajiwara
- Division of Virus, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| |
Collapse
|
20
|
Kanbayashi D, Kaida A, Yamamoto SP, Hirai Y, Kubo H, Fujimori R, Hakui N, Hirokawa H, Iritani N. Impact of Coxsackievirus A6 emergence on hand, foot, and mouth disease epidemic in Osaka City, Japan. J Med Virol 2017; 89:2116-2121. [PMID: 28771766 DOI: 10.1002/jmv.24905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/27/2017] [Indexed: 11/11/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is an acute febrile illness characterized by fever; sore throat; and vesicular eruptions on the hands, feet, and oral mucosa. Until 2010, HFMD was predominantly associated with enterovirus (EV) A71 and coxsackievirus (CV) A16 in Japan. In 2011, CV-A6 emerged as a primary causative agent, causing the largest HFMD epidemic in Japan since 1981. Since then, CV-A6 has caused large HFMD epidemics every 2 years. The phylogenetic analysis of complete Viral Protein 1 (VP1) sequences revealed that most CV-A6 strains detected from 2011 to 2015 in Osaka City were classified into a different clade compared with CV-A6 strains detected from 1999 until 2009. The majority of CV-A6 strains detected in 2011 and most CV-A6 strains detected from 2013 to 2015 were mainly divided into two distinct genetic groups. Each epidemic strain carried unique amino acid substitutions in the presumed DE, EF, and GH loops of the VP1 protein that is exposed on the surface of the virion. There is a possibility that the appearance of substitutions on the surface of the virion and an accumulation of a susceptible population are significant factors in recent HFMD epidemics.
Collapse
Affiliation(s)
- Daiki Kanbayashi
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Tennoji-ku, Osaka, Japan.,Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Atsushi Kaida
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Tennoji-ku, Osaka, Japan
| | - Seiji P Yamamoto
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Tennoji-ku, Osaka, Japan.,Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Yuki Hirai
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Tennoji-ku, Osaka, Japan
| | - Hideyuki Kubo
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Tennoji-ku, Osaka, Japan
| | - Ryoko Fujimori
- Osaka City Public Health, Bureau Osaka City Health Center, Abeno-ku, Osaka, Japan
| | - Noritaka Hakui
- Osaka City Public Health, Bureau Osaka City Health Center, Abeno-ku, Osaka, Japan
| | - Hidetetsu Hirokawa
- Osaka City Public Health, Bureau Osaka City Health Center, Abeno-ku, Osaka, Japan
| | - Nobuhiro Iritani
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Tennoji-ku, Osaka, Japan
| |
Collapse
|