1
|
Peiper AM, Helm EW, Nguyen Q, Phillips M, Williams CG, Shah D, Tatum S, Iyer N, Grodzki M, Eurell LB, Nasir A, Baldridge MT, Karst SM. Infection of neonatal mice with the murine norovirus strain WU23 is a robust model to study norovirus pathogenesis. Lab Anim (NY) 2023; 52:119-129. [PMID: 37142696 PMCID: PMC10234811 DOI: 10.1038/s41684-023-01166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
Noroviruses are the leading cause of severe childhood diarrhea and foodborne disease worldwide. While they are a major cause of disease in all age groups, infections in the very young can be quite severe, with annual estimates of 50,000-200,000 fatalities in children under 5 years old. In spite of the remarkable disease burden associated with norovirus infections, very little is known about the pathogenic mechanisms underlying norovirus diarrhea, principally because of the lack of tractable small animal models. The development of the murine norovirus (MNV) model nearly two decades ago has facilitated progress in understanding host-norovirus interactions and norovirus strain variability. However, MNV strains tested thus far either do not cause intestinal disease or were isolated from extraintestinal tissue, raising concerns about translatability of research findings to human norovirus disease. Consequently, the field lacks a strong model of norovirus gastroenteritis. Here we provide a comprehensive characterization of a new small animal model system for the norovirus field that overcomes prior weaknesses. Specifically, we demonstrate that the WU23 MNV strain isolated from a mouse naturally presenting with diarrhea causes a transient reduction in weight gain and acute self-resolving diarrhea in neonatal mice of several inbred mouse lines. Moreover, our findings reveal that norovirus-induced diarrhea is associated with infection of subepithelial cells in the small intestine and systemic spread. Finally, type I interferons (IFNs) are critical to protect hosts from norovirus-induced intestinal disease whereas type III IFNs exacerbate diarrhea. This latter finding is consistent with other emerging data implicating type III IFNs in the exacerbation of some viral diseases. This new model system should enable a detailed investigation of norovirus disease mechanisms.
Collapse
Affiliation(s)
- Amy M Peiper
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Emily W Helm
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Quyen Nguyen
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Matthew Phillips
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Caroline G Williams
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dhairya Shah
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sarah Tatum
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Neha Iyer
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marco Grodzki
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Laura B Eurell
- Office of Research, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Aqsa Nasir
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie M Karst
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Yeo D, Hossain MI, Jung S, Wang Z, Seo Y, Woo S, Park S, Seo DJ, Rhee MS, Choi C. Prevalence and phylogenetic analysis of human enteric emerging viruses in porcine stool samples in the Republic of Korea. Front Vet Sci 2022; 9:913622. [PMID: 36246307 PMCID: PMC9563253 DOI: 10.3389/fvets.2022.913622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases (EID) in humans and animals are proving to be a serious health concern. This study investigated the prevalence of emerging or re-emerging human enteric viruses in porcine stools and swabs. Eleven enteric EID viruses were selected as target viruses for the current study and ranked based on their impact on public health and food safety: enterovirus (EV), hepatitis E virus, norovirus GI and GII, sapovirus (SaV), adenovirus (AdV), astrovirus, rotavirus, hepatitis A virus, aichivirus, and bocavirus. Using real-time RT-PCR or real-time PCR, EID viruses were detected in 129 (86.0%) of 150 samples. The most prevalent virus was EV, which was detected in 68.0% of samples, followed by AdV with a detection rate of 38.0%. In following sequencing and phylogenetic analyses, 33.0% (58/176) of the detected viruses were associated with human enteric EID viruses, including AdV-41, coxsackievirus-A2, echovirus-24, and SaV. Our results show that porcine stools frequently contain human enteric viruses, and that few porcine enteric viruses are genetically related to human enteric viruses. These findings suggest that enteric re-emerging or EID viruses could be zoonoses, and that continuous monitoring and further studies are needed to ensure an integrated "One Health" approach that aims to balance and optimize the health of humans, animals, and ecosystems.
Collapse
Affiliation(s)
- Daseul Yeo
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
| | - Md. Iqbal Hossain
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
| | - Soontag Jung
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
| | - Zhaoqi Wang
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
| | - Yeeun Seo
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
| | - Seoyoung Woo
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
| | - Sunho Park
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
| | - Dong Joo Seo
- Department of Food and Nutrition, Gwangju University, Gwangju, South Korea
| | - Min Suk Rhee
- Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Changsun Choi
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
- Bio and Environmental Technology Research Institute, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
3
|
Noh YH, Kim SC, Jeong CG, Lee SC, Lee DU, Yoon IJ, Kim WI. Pathological Evaluation of Porcine Circovirus 2d (PCV2d) Strain and Comparative Evaluation of PCV2d and PCV2b Inactivated Vaccines against PCV2d Infection in a Specific Pathogen-Free (SPF) Yucatan Miniature Pig Model. Vaccines (Basel) 2022; 10:vaccines10091469. [PMID: 36146547 PMCID: PMC9501194 DOI: 10.3390/vaccines10091469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is an economically important swine pathogen that causes porcine circovirus-associated diseases (PCVADs). The objective of this study was to evaluate the use of specific pathogen-free Yucatan miniature pigs (YMPs) as an experimental model for PCV2d challenge and vaccine assessment because PCV2-negative pigs are extremely rare in conventional swine herds in Korea. In the first experiment, every three pigs were subjected to PCV2d field isolate or mock challenge. During three weeks of experiments, the PCV2d infection group exhibited clinical outcomes of PCVAD with high viral loads, lymphoid depletion, and detection of PCV2d antigens in lymphoid organs by immunohistochemistry. In the second experiment, three groups of pigs were challenged with PCV2d after immunization for three weeks: a nonvaccinated group (three pigs), a PCV2b-Vac group vaccinated with a commercial PCV2b-based inactivated vaccine SuiShot® Circo-ONE (five pigs), and a PCV2d-Vac group vaccinated with an experimental PCV2d-based inactivated vaccine (five pigs). During the three weeks of the challenge period, nonvaccinated pigs showed similar clinical outcomes to those observed in the PCV2d infection group from the first experiment. In contrast, both the PCV2b and PCV2d vaccinations produced good levels of protection against PCV2d challenge, as evidenced by reduced viral loads, improved growth performance, high virus-neutralizing antibody titers, and less development of PCV2-associated pathological lesions. Taken together, these data suggest that YMPs could be an alternative model for PCV2 challenge experiments, and these animals displayed typical clinical and pathological features and characteristics of protective immunity induced by the vaccines that were consistent with those resulting from PCV2 infections in conventional pigs.
Collapse
Affiliation(s)
- Yun-Hee Noh
- Choong Ang Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Seung-Chul Lee
- Choong Ang Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea
| | - Dong-Uk Lee
- Choong Ang Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea
| | - In-Joong Yoon
- Choong Ang Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
- Correspondence: ; Tel.: +82-63-270-3981
| |
Collapse
|
4
|
Mirabelli C, Jones MK, Young VL, Kolawole AO, Owusu I, Shan M, Abuaita B, Turula H, Trevino JG, Grigorova I, Lundy SK, Lyssiotis CA, Ward VK, Karst SM, Wobus CE. Human Norovirus Triggers Primary B Cell Immune Activation In Vitro. mBio 2022; 13:e0017522. [PMID: 35404121 PMCID: PMC9040803 DOI: 10.1128/mbio.00175-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
Human norovirus (HNoV) is a global health and socioeconomic burden, estimated to infect every individual at least five times during their lifetime. The underlying mechanism for the potential lack of long-term immune protection from HNoV infections is not understood and prompted us to investigate HNoV susceptibility of primary human B cells and its functional impact. Primary B cells isolated from whole blood were infected with HNoV-positive stool samples and harvested at 3 days postinfection (dpi) to assess the viral RNA yield by reverse transcriptase quantitative PCR (RT-qPCR). A 3- to 18-fold increase in the HNoV RNA yield was observed in 50 to 60% of donors. Infection was further confirmed in B cells derived from splenic and lymph node biopsy specimens. Next, we characterized infection of whole-blood-derived B cells by flow cytometry in specific functional B cell subsets (naive CD27- IgD+, memory-switched CD27+ IgD-, memory-unswitched CD27+ IgD+, and double-negative CD27- IgD- cells). While the susceptibilities of the subsets were similar, changes in the B cell subset distribution upon infection were observed, which were also noted after treatment with HNoV virus-like particles and the predicted recombinant NS1 protein. Importantly, primary B cell stimulation with the predicted recombinant NS1 protein triggered B cell activation and induced metabolic changes. These data demonstrate that primary B cells are susceptible to HNoV infection and suggest that the NS1 protein can alter B cell activation and metabolism in vitro, which could have implications for viral pathogenesis and immune responses in vivo. IMPORTANCE Human norovirus (HNoV) is the most prevalent causative agent of gastroenteritis worldwide. Infection results in a self-limiting disease that can become chronic and severe in the immunocompromised, the elderly, and infants. There are currently no approved therapeutic and preventative strategies to limit the health and socioeconomic burdens associated with HNoV infections. Moreover, HNoV does not elicit lifelong immunity as repeat infections are common, presenting a challenge for vaccine development. Given the importance of B cells for humoral immunity, we investigated the susceptibility and impact of HNoV infection on human B cells. We found that HNoV replicates in human primary B cells derived from blood, spleen, and lymph node specimens, while the nonstructural protein NS1 can activate B cells. Because of the secreted nature of NS1, we put forward the hypothesis that HNoV infection can modulate bystander B cell function with potential impacts on systemic immune responses.
Collapse
Affiliation(s)
- Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Melissa K. Jones
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Vivienne L. Young
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Abimbola O. Kolawole
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Irene Owusu
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Mengrou Shan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Basel Abuaita
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Holly Turula
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jose G. Trevino
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Irina Grigorova
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven K. Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Vernon K. Ward
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Stephanie M. Karst
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Yoon J, Park T, Kim A, Park J, Park BJ, Ahn HS, Go HJ, Kim DH, Jung S, Seo Y, Lee JB, Park SY, Song CS, Lee SW, Choi IS. First Clinical Case of Equine Parvovirus-Hepatitis-Related Theiler's Disease in Asia. Viruses 2021; 13:v13101917. [PMID: 34696347 PMCID: PMC8541225 DOI: 10.3390/v13101917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022] Open
Abstract
Equine parvovirus-hepatitis (EqPV-H) is a newly identified etiologic agent of Theiler’s disease (TD). We present a case of EqPV-H-related fulminant hepatitis in a 14-year-old thoroughbred mare in Korea. The mare had acute hepatopathy and gastrointestinal symptoms, with abnormal liver-related blood parameters. The horse was born in the USA and imported to Korea in 2017, with no history of administration of equine biological products after entry into Korea. The horse was diagnosed with EqPV-H-associated hepatitis after abdominal ultrasonography, laparotomy, and nested polymerase chain reaction (PCR) and in situ hybridization (ISH) assays. The serum, nasal swab, oral swab, and liver biopsy were positive for EqPV-H according to the PCR assay. Genetic analysis of the partial NS1 gene of EqPV-H showed a unique nucleotide substitution, distinct from that in previously deposited strains. EqPV-H DNA was found not only in hepatocytes but also in bile duct epithelium and Kupffer cells, particularly via ISH. To the best of our knowledge, this is the first case of EqPV-H-associated TD in Asia, providing the first clinical evidence for viral shedding from the mouth and nose, and identification of EqPV-H in the liver. This study contributes to a better understanding of the pathological features of EqPV-H-associated TD.
Collapse
Affiliation(s)
- Jungho Yoon
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (J.Y.); (T.P.); (A.K.); (J.P.)
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Taemook Park
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (J.Y.); (T.P.); (A.K.); (J.P.)
| | - Ahram Kim
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (J.Y.); (T.P.); (A.K.); (J.P.)
| | - Jongyoung Park
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju 63346, Korea; (J.Y.); (T.P.); (A.K.); (J.P.)
| | - Byung-Joo Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Hee-Seop Ahn
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Hyeon-Jeong Go
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Dong-Hwi Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Soontag Jung
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong 17546, Korea; (S.J.); (Y.S.)
| | - Yeeun Seo
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong 17546, Korea; (S.J.); (Y.S.)
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Sang-Won Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
- Correspondence: ; Tel.: +82-2049-6228
| |
Collapse
|
6
|
Käser T. Swine as biomedical animal model for T-cell research-Success and potential for transmittable and non-transmittable human diseases. Mol Immunol 2021; 135:95-115. [PMID: 33873098 DOI: 10.1016/j.molimm.2021.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Swine is biologically one of the most relevant large animal models for biomedical research. With its use as food animal that can be exploited as a free cell and tissue source for research and its high susceptibility to human diseases, swine additionally represent an excellent option for both the 3R principle and One Health research. One of the previously most limiting factors of the pig model was its arguably limited immunological toolbox. Yet, in the last decade, this toolbox has vastly improved including the ability to study porcine T-cells. This review summarizes the swine model for biomedical research with focus on T cells. It first contrasts the swine model to the more commonly used mouse and non-human primate model before describing the current capabilities to characterize and extend our knowledge on porcine T cells. Thereafter, it not only reflects on previous biomedical T-cell research but also extends into areas in which more in-depth T-cell analyses could strongly benefit biomedical research. While the former should inform on the successes of biomedical T-cell research in swine, the latter shall inspire swine T-cell researchers to find collaborations with researchers working in other areas - such as nutrition, allergy, cancer, transplantation, infectious diseases, or vaccine development.
Collapse
Affiliation(s)
- Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, 27607 Raleigh, NC, USA.
| |
Collapse
|
7
|
Human Noroviruses Attach to Intestinal Tissues of a Broad Range of Animal Species. J Virol 2021; 95:JVI.01492-20. [PMID: 33115870 DOI: 10.1128/jvi.01492-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses are the most common nonbacterial cause of gastroenteritis outbreaks, with new variants and genotypes frequently emerging. The origin of these new viruses is unknown; however, animals have been proposed as a potential source, as human noroviruses have been detected in animal species. Here, we investigated the potential of animals to serve as a reservoir of human noroviruses by testing norovirus attachment to formalin-fixed intestinal tissues of a range of potential reservoir animals. We set up a novel method to study norovirus binding using fluorescein isothiocyanate (FITC)-labeled virus-like particles (VLPs). In humans, noroviruses interact with histo-blood group antigens (HBGAs), carbohydrates that are expressed, among others, on the epithelial lining of the gastrointestinal tract. In animals, this interaction is not well understood. To test if virus binding depends on HBGAs, we characterized the HBGA phenotype in animal tissues by immunohistochemistry. With the exception of the black-headed gull and the straw-colored fruitbat, we observed the attachment of several human norovirus genotypes to the intestinal epithelium of all tested animal species. However, we did not find an association between the expression of a specific HBGA phenotype and virus-like particle (VLP) attachment. We show that selected human noroviruses can attach to small-intestinal tissues across species, supporting the hypothesis that human noroviruses can reside in an animal reservoir. However, whether this attachment can subsequently lead to infection needs to be further assessed.IMPORTANCE Noroviruses are a major cause of acute gastroenteritis in humans. New norovirus variants and recombinants (re)emerge regularly in the human population. From animal experiments and surveillance studies, it has become clear that at least seven animal models are susceptible to infection with human strains and that domesticated and wild animals shed human noroviruses in their feces. As virus attachment is an important first step for infection, we used a novel method utilizing FITC-labeled VLPs to test for norovirus attachment to intestinal tissues of potential animal hosts. We further characterized these tissues with regard to their HBGA expression, a well-studied norovirus susceptibility factor in humans. We found attachment of several human strains to a variety of animal species independent of their HBGA phenotype. This supports the hypothesis that human strains could reside in an animal reservoir.
Collapse
|
8
|
CD300lf Conditional Knockout Mouse Reveals Strain-Specific Cellular Tropism of Murine Norovirus. J Virol 2021; 95:JVI.01652-20. [PMID: 33177207 DOI: 10.1128/jvi.01652-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Noroviruses are a leading cause of gastrointestinal infection in humans and mice. Understanding human norovirus (HuNoV) cell tropism has important implications for our understanding of viral pathogenesis. Murine norovirus (MNoV) is extensively used as a surrogate model for HuNoV. We previously identified CD300lf as the receptor for MNoV. Here, we generated a Cd300lf conditional knockout (CD300lfF/F ) mouse to elucidate the cell tropism of persistent and nonpersistent strains of murine norovirus. Using this mouse model, we demonstrated that CD300lf expression on intestinal epithelial cells (IECs), and on tuft cells in particular, is essential for transmission of the persistent MNoV strain CR6 (MNoVCR6) in vivo In contrast, the nonpersistent MNoV strain CW3 (MNoVCW3) does not require CD300lf expression on IECs for infection. However, deletion of CD300lf in myelomonocytic cells (LysM Cre+) partially reduces CW3 viral load in lymphoid and intestinal tissues. Disruption of CD300lf expression on B cells (CD19 Cre), neutrophils (Mrp8 Cre), and dendritic cells (CD11c Cre) did not affect MNoVCW3 viral RNA levels. Finally, we show that the transcription factor STAT1, which is critical for the innate immune response, partially restricts the cell tropism of MNoVCW3 to LysM+ cells. Taken together, these data demonstrate that CD300lf expression on tuft cells is essential for MNoVCR6; that myelomonocytic cells are a major, but not exclusive, target cell of MNoVCW3; and that STAT1 signaling restricts the cellular tropism of MNoVCW3 This study provides the first genetic system for studying the cell type-specific role of CD300lf in norovirus pathogenesis.IMPORTANCE Human noroviruses (HuNoVs) are a leading cause of gastroenteritis resulting in up to 200,000 deaths each year. The receptor and cell tropism of HuNoV in immunocompetent humans are unclear. We use murine norovirus (MNoV) as a model for HuNoV. We recently identified CD300lf as the sole physiologic receptor for MNoV. Here, we leverage this finding to generate a Cd300lf conditional knockout mouse to decipher the contributions of specific cell types to MNoV infection. We demonstrate that persistent MNoVCR6 requires CD300lf expression on tuft cells. In contrast, multiple CD300lf+ cell types, dominated by myelomonocytic cells, are sufficient for nonpersistent MNoVCW3 infection. CD300lf expression on epithelial cells, B cells, neutrophils, and dendritic cells is not critical for MNoVCW3 infection. Mortality associated with the MNoVCW3 strain in Stat1-/- mice does not require CD300lf expression on LysM+ cells, highlighting that both CD300lf receptor expression and innate immunity regulate MNoV cell tropism in vivo.
Collapse
|
9
|
Park BJ, Ahn HS, Han SH, Go HJ, Kim DH, Choi C, Jung S, Myoung J, Lee JB, Park SY, Song CS, Lee SW, Lee HT, Choi IS. Analysis of the Immune Responses in the Ileum of Gnotobiotic Pigs Infected with the Recombinant GII.p12_GII.3 Human Norovirus by mRNA Sequencing. Viruses 2021; 13:v13010092. [PMID: 33440894 PMCID: PMC7826840 DOI: 10.3390/v13010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 11/20/2022] Open
Abstract
Norovirus genogroup II (NoV GII) induces acute gastrointestinal food-borne illness in humans. Because gnotobiotic pigs can be infected with human norovirus (HuNoV) GII, they are frequently used to analyze the associated pathogenic mechanisms and immune responses, which remain poorly understood. Recently, mRNA sequencing analysis (RNA-Seq) has been used to identify cellular responses to viruses. In this study, we investigated the host immune response and possible mechanisms involved in virus evasion in the ileum of gnotobiotic pigs infected with HuNoV by RNA-Seq. HuNoV was detected in the feces, blood, and tissues of the jejunum, ileum, colon, mesenteric lymph node, and spleen of pigs infected with HuNoV. In analysis of mRNA sequencing, expression of anti-viral protein genes such as OAS1, MX1, and MX2 were largely decreased, whereas type I IFN was increased in pigs infected with HuNoV. In addition, expression of TNF and associated anti-inflammatory cytokine genes such as IL10 was increased in HuNoV-infected pigs. Expression of genes related to natural killer (NK) cell cytotoxicity and CD8+ T cell exhaustion was increased, whereas that of MHC class I genes was decreased. Expression profiles of selected genes were further confirmed by qRT-PCR and Western blot. These results suggest that infection with HuNoV induces NK cell-mediated cytotoxicity but suppresses type I IFN- and CD8+ T cell-mediated antiviral responses.
Collapse
Affiliation(s)
- Byung-Joo Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (S.-H.H.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Hee-Seop Ahn
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (S.-H.H.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Sang-Hoon Han
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (S.-H.H.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Hyeon-Jeong Go
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (S.-H.H.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Dong-Hwi Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (S.-H.H.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Changsun Choi
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi 17546, Korea; (C.C.); (S.J.)
| | - Soontag Jung
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi 17546, Korea; (C.C.); (S.J.)
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Chonbuk National University, Jeonju, Jeollabuk-do 54896, Korea;
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (S.-H.H.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (S.-H.H.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (S.-H.H.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Sang-Won Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (S.-H.H.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
| | - Hoon-Taek Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (B.-J.P.); (H.-S.A.); (S.-H.H.); (H.-J.G.); (D.-H.K.); (J.-B.L.); (S.-Y.P.); (C.-S.S.); (S.-W.L.)
- Correspondence: ; Tel.: +82-2049-6228
| |
Collapse
|
10
|
Rathnayake AD, Kim Y, Dampalla CS, Nguyen HN, Jesri ARM, Kashipathy MM, Lushington GH, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-Guided Optimization of Dipeptidyl Inhibitors of Norovirus 3CL Protease. J Med Chem 2020; 63:11945-11963. [PMID: 32945669 DOI: 10.1021/acs.jmedchem.0c01252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute gastroenteritis caused by noroviruses has a major impact on public health worldwide in terms of morbidity, mortality, and economic burden. The disease impacts most severely immunocompromised patients, the elderly, and children. The current lack of approved vaccines and small-molecule therapeutics for the treatment and prophylaxis of norovirus infections underscores the need for the development of norovirus-specific drugs. The studies described herein entail the use of the gem-dimethyl moiety as a means of improving the pharmacological activity and physicochemical properties of a dipeptidyl series of transition state inhibitors of norovirus 3CL protease, an enzyme essential for viral replication. Several compounds were found to be potent inhibitors of the enzyme in biochemical and cell-based assays. The pharmacological activity and cellular permeability of the inhibitors were found to be sensitive to the location of the gem-dimethyl group.
Collapse
Affiliation(s)
- Athri D Rathnayake
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Chamandi S Dampalla
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Abdul-Rahman M Jesri
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Maithri M Kashipathy
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | | | - Kevin P Battaile
- NYX, New York Structural Biology Center, Upton, New York 11973, United States
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - William C Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|
11
|
Roth AN, Helm EW, Mirabelli C, Kirsche E, Smith JC, Eurell LB, Ghosh S, Altan-Bonnet N, Wobus CE, Karst SM. Norovirus infection causes acute self-resolving diarrhea in wild-type neonatal mice. Nat Commun 2020; 11:2968. [PMID: 32528015 PMCID: PMC7289885 DOI: 10.1038/s41467-020-16798-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/25/2020] [Indexed: 01/08/2023] Open
Abstract
Human noroviruses are the leading cause of severe childhood diarrhea worldwide, yet we know little about their pathogenic mechanisms. Murine noroviruses cause diarrhea in interferon-deficient adult mice but these hosts also develop systemic pathology and lethality, reducing confidence in the translatability of findings to human norovirus disease. Herein we report that a murine norovirus causes self-resolving diarrhea in the absence of systemic disease in wild-type neonatal mice, thus mirroring the key features of human norovirus disease and representing a norovirus small animal disease model in wild-type mice. Intriguingly, lymphocytes are critical for controlling acute norovirus replication while simultaneously contributing to disease severity, likely reflecting their dual role as targets of viral infection and key components of the host response.
Collapse
Affiliation(s)
- Alexa N Roth
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Emily W Helm
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Erin Kirsche
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jonathan C Smith
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Laura B Eurell
- Office of Research, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sourish Ghosh
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie M Karst
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Human norovirus targets enteroendocrine epithelial cells in the small intestine. Nat Commun 2020; 11:2759. [PMID: 32488028 PMCID: PMC7265440 DOI: 10.1038/s41467-020-16491-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 05/02/2020] [Indexed: 12/21/2022] Open
Abstract
Human noroviruses are a major cause of diarrheal illness, but pathogenesis is poorly understood. Here, we investigate the cellular tropism of norovirus in specimens from four immunocompromised patients. Abundant norovirus antigen and RNA are detected throughout the small intestinal tract in jejunal and ileal tissue from one pediatric intestinal transplant recipient with severe gastroenteritis. Negative-sense viral RNA, a marker of active viral replication, is found predominantly in intestinal epithelial cells, with chromogranin A-positive enteroendocrine cells (EECs) identified as a permissive cell type in this patient. These findings are consistent with the detection of norovirus-positive EECs in the other three immunocompromised patients. Investigation of the signaling pathways induced in EECs that mediate communication between the gut and brain may clarify mechanisms of pathogenesis and lead to the development of in vitro model systems in which to evaluate norovirus vaccines and treatment. Human norovirus pathogenesis is incompletely understood due to a lack of appropriate animal disease models. Here, Green et al. show norovirus replication in chromogranin A-positive enteroendocrine cells and other epithelial cells in tissue from a pediatric intestinal transplant recipient with severe gastroenteritis.
Collapse
|
13
|
Animals as Reservoir for Human Norovirus. Viruses 2019; 11:v11050478. [PMID: 31130647 PMCID: PMC6563253 DOI: 10.3390/v11050478] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/12/2023] Open
Abstract
Norovirus is the most common cause of non-bacterial gastroenteritis and is a burden worldwide. The increasing norovirus diversity is currently categorized into at least 10 genogroups which are further classified into more than 40 genotypes. In addition to humans, norovirus can infect a broad range of hosts including livestock, pets, and wild animals, e.g., marine mammals and bats. Little is known about norovirus infections in most non-human hosts, but the close genetic relatedness between some animal and human noroviruses coupled with lack of understanding where newly appearing human norovirus genotypes and variants are emerging from has led to the hypothesis that norovirus may not be host restricted and might be able to jump the species barrier. We have systematically reviewed the literature to describe the diversity, prevalence, and geographic distribution of noroviruses found in animals, and the pathology associated with infection. We further discuss the evidence that exists for or against interspecies transmission including surveillance data and data from in vitro and in vivo experiments.
Collapse
|
14
|
Netzler NE, Enosi Tuipulotu D, White PA. Norovirus antivirals: Where are we now? Med Res Rev 2019; 39:860-886. [PMID: 30584800 PMCID: PMC7168425 DOI: 10.1002/med.21545] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022]
Abstract
Human noroviruses inflict a significant health burden on society and are responsible for approximately 699 million infections and over 200 000 estimated deaths worldwide each year. Yet despite significant research efforts, approved vaccines or antivirals to combat this pathogen are still lacking. Safe and effective antivirals are not available, particularly for chronically infected immunocompromised individuals, and for prophylactic applications to protect high-risk and vulnerable populations in outbreak settings. Since the discovery of human norovirus in 1972, the lack of a cell culture system has hindered biological research and antiviral studies for many years. Recent breakthroughs in culturing human norovirus have been encouraging, however, further development and optimization of these novel methodologies are required to facilitate more robust replication levels, that will enable reliable serological and replication studies, as well as advances in antiviral development. In the last few years, considerable progress has been made toward the development of norovirus antivirals, inviting an updated review. This review focuses on potential therapeutics that have been reported since 2010, which were examined across at least two model systems used for studying human norovirus or its enzymes. In addition, we have placed emphasis on antiviral compounds with a defined chemical structure. We include a comprehensive outline of direct-acting antivirals and offer a discussion of host-modulating compounds, a rapidly expanding and promising area of antiviral research.
Collapse
Affiliation(s)
- Natalie E. Netzler
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| | - Peter A. White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| |
Collapse
|
15
|
Park H, Jung S, Shin H, Ha SD, Park TJ, Park JP, Seo DJ, Choi C. Localization and persistence of hepatitis A virus in artificially contaminated oysters. Int J Food Microbiol 2019; 299:58-63. [PMID: 30954876 DOI: 10.1016/j.ijfoodmicro.2019.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/16/2019] [Accepted: 03/27/2019] [Indexed: 11/26/2022]
Abstract
Bivalve molluscan shellfish, such as oysters, clams, and cockles, are well-recognized as vectors that concentrate foodborne pathogens by filter feeding. The objective of this study was to investigate the distribution and persistence of hepatitis A virus (HAV) in experimentally contaminated oysters that were either fed or not fed with algae. Oysters were experimentally contaminated with HAV and maintained in depuration conditions. qRT-PCR, immunohistochemistry (IHC), and in situ hybridization (ISH) were performed on oyster samples collected at 0, 1, 3, 5, and 7 days post-inoculation. When HAV-contaminated oysters were depurated for 7 days, HAV was detected in 91.1-97.8% of the digestive glands and gills. While the high viral load in the digestive glands in oysters did not change significantly regardless of algae-feeding, the viral load of the gills gradually decreased in both groups during the depuration. HAV antigen and RNA were detected in the digestive diverticula and connective tissues by both IHC and ISH. HAV was detected in the stomach, intestine, and gills by only ISH. The distribution of HAV in various oyster tissues may explain the persistence of contamination in oysters during the depuration process.
Collapse
Affiliation(s)
- Hyunkyung Park
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Soontag Jung
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hansaem Shin
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jong Pil Park
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Dong Joo Seo
- Department of Food and Nutrition, Gwangju University, Gwangju 61743, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
16
|
Todd KV, Tripp RA. Human Norovirus: Experimental Models of Infection. Viruses 2019; 11:v11020151. [PMID: 30759780 PMCID: PMC6410082 DOI: 10.3390/v11020151] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis worldwide. HuNoV infections lead to substantial societal and economic burdens. There are currently no licensed vaccines or therapeutics for the prevention or treatment of HuNoVs. A lack of well-characterized in vitro and in vivo infection models has limited the development of HuNoV countermeasures. Experimental infection of human volunteers and the use of related viruses such as murine NoV have provided helpful insights into HuNoV biology and vaccine and therapeutic development. There remains a need for robust animal models and reverse genetic systems to further HuNoV research. This review summarizes available HuNoV animal models and reverse genetic systems, while providing insight into their usefulness for vaccine and therapeutic development.
Collapse
Affiliation(s)
- Kyle V Todd
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
17
|
Abstract
Noroviruses are highly prevalent enteric RNA viruses. Human noroviruses (HuNoVs) cause significant morbidity, mortality, and economic losses worldwide. Infections also occur in other mammalian species, including mice. Despite the discovery of the first norovirus in 1972, the viral tropism has long remained an enigma. A long-held assumption was that these viruses infect intestinal epithelial cells. Recent data support a more complex cell tropism of epithelial and nonepithelial cell types.
Collapse
|
18
|
Thorne L, Lu J, Chaudhry Y, Bailey D, Goodfellow I. Targeting macrophage- and intestinal epithelial cell-specific microRNAs against norovirus restricts replication in vivo. J Gen Virol 2018; 99:1621-1632. [PMID: 29683421 DOI: 10.1099/jgv.0.001065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Until recently, our understanding of the cellular tropism of human norovirus (HuNoV), a major cause of viral gastroenteritis, has been limited. Immune cells and intestinal epithelial cells (IECs) have been proposed as targets of HuNoV replication in vivo, although the contribution of each to pathogenesis and transmission is unknown. Murine norovirus (MNV) is widely used as a surrogate model for HuNoV, as it replicates in cultured immune cells. The importance of the complete MNV immune cell tropism in vivo has not been determined. Recent work has linked replication in IECs to viral persistence in vivo. MNV provides a model to assess the relative contribution of each cell tropism to viral replication in immunocompetent native hosts. Here we exploited cell-specific microRNAs to control MNV replication, through insertion of microRNA target sequences into the MNV genome. We demonstrated the utility of this approach for MNV in vitro by selectively reducing replication in microglial cells, using microglial-specific miR-467c. We then showed that inserting a target sequence for the haematopoietic-specific miR-142-3p abrogated replication in a macrophage cell line. The presence of a target sequence for either miR-142-3p or IEC miR-215 significantly reduced viral secretion during the early stages of a persistent infection in immunocompetent mice, confirming that both cell types support viral replication in vivo. This study provides additional evidence that MNV shares the IEC tropism of HuNoVs in vivo, and now provides a model to dissect the contribution of replication in each cell type to viral pathogenesis and transmission in a native host.
Collapse
Affiliation(s)
- Lucy Thorne
- 2Division of Infection and Immunity, University College London, Medical Research Council, London, UK.,1Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Jia Lu
- 1Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Yasmin Chaudhry
- 1Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Dalan Bailey
- 3The Pirbright Institute, Pirbright, Woking, UK
| | - Ian Goodfellow
- 1Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Interactions between Enteric Bacteria and Eukaryotic Viruses Impact the Outcome of Infection. Viruses 2018; 10:v10010019. [PMID: 29301335 PMCID: PMC5795432 DOI: 10.3390/v10010019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/23/2017] [Accepted: 12/30/2017] [Indexed: 12/12/2022] Open
Abstract
Enteric viruses encounter a multitude of environments as they traverse the gastrointestinal tract. The interaction of enteric eukaryotic viruses with members of the host microbiota impacts the outcome of infection. Infection with several enteric viruses is impaired in the absence of the gut microbiota, specifically bacteria. The effects of bacteria on virus biology are diverse. Poliovirus capsid stability and receptor engagement are positively impacted by bacteria and bacterial lipopolysaccharides. Norovirus utilizes histo-blood group antigens produced by enteric bacteria to attach and productively infect B cells. Lipopolysaccharides on the envelope of mouse mammary tumor virus promote a tolerogenic environment that allows for the establishment of viral persistence. Reovirus binds Gram negative and Gram-positive bacteria through bacterial envelope components to enhance virion thermostability. Through the direct engagement of bacteria and bacterial components, viruses evolved diverse ways to impact the outcome of infection.
Collapse
|