1
|
Fabbri D, Mirolo M, Tagliapietra V, Ludlow M, Osterhaus A, Beraldo P. Ecological determinants driving orthohantavirus prevalence in small mammals of Europe: a systematic review. ONE HEALTH OUTLOOK 2025; 7:15. [PMID: 40134030 PMCID: PMC11938672 DOI: 10.1186/s42522-025-00136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/30/2025] [Indexed: 03/27/2025]
Abstract
Orthohantaviruses are emerging zoonotic pathogens that cause severe human disease and are considered an emerging public health threat globally. Mammalian orthohantaviruses are naturally maintained in rodent species and occasionally in other mammals. The abundance and density of natural orthohantavirus reservoir species are affected by multi annual and seasonal population cycles, community composition, ecosystem variables and climate. Horizontal transmission between host species is mostly density-driven and occurs via contact with infected host excreta, thus, fluctuations in populations and environmental variables often determine the prevalence of hantavirus in natural hosts. Given the zoonotic potential of hantaviruses, ecological factors influencing their spread and persistence in their natural reservoir and population dynamics influencing horizontal transmission require critical evaluation for human infection risk assessment. The present review paper discusses the impacts of natural host population cycles and ecosystem diversity, environmental conditions, and abiotic factors on the epidemiology of rodent-borne hantavirus infections in Europe. While significant efforts have been made to understand the drivers of hantavirus prevalence in natural hosts, we highlight key challenges in evaluating viral prevalence and assessing the role of environmental and population variables in determining hantavirus prevalence in host species.
Collapse
Affiliation(s)
- Daniele Fabbri
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via Sondrio 2/A, Udine, Italy.
- National Biodiversity Future Center (NBFC), Piazza Marina 61, Palermo, Italy.
| | - Monica Mirolo
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine, Bünteweg 2, Hannover, Germany
| | - Valentina Tagliapietra
- National Biodiversity Future Center (NBFC), Piazza Marina 61, Palermo, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All' Adige, Via Edmund Mach 1, Trento, Italy
| | - Martin Ludlow
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine, Bünteweg 2, Hannover, Germany
| | - Albert Osterhaus
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine, Bünteweg 2, Hannover, Germany
| | - Paola Beraldo
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via Sondrio 2/A, Udine, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, Palermo, Italy
| |
Collapse
|
2
|
Fatima M, An T, Park PG, Hong KJ. Advancements and Challenges in Addressing Zoonotic Viral Infections with Epidemic and Pandemic Threats. Viruses 2025; 17:352. [PMID: 40143281 PMCID: PMC11946417 DOI: 10.3390/v17030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Zoonotic viruses have significant pandemic potential, as evidenced by the coronavirus pandemic, which underscores that zoonotic infections have historically caused numerous outbreaks and millions of deaths over centuries. Zoonotic viruses induce numerous types of illnesses in their natural hosts. These viruses are transmitted to humans via biological vectors, direct contact with infected animals or their bites, and aerosols. Zoonotic viruses continuously evolve and adapt to human hosts, resulting in devastating consequences. It is very important to understand pathogenesis pathways associated with zoonotic viral infections across various hosts and develop countermeasure strategies accordingly. In this review, we briefly discuss advancements in diagnostics and therapeutics for zoonotic viral infections. It provides insight into recent outbreaks, viral dynamics, licensed vaccines, as well as vaccine candidates progressing to clinical investigations. Despite advancements, challenges persist in combating zoonotic viruses due to immune evasion, unpredicted outbreaks, and the complexity of the immune responses. Most of these viruses lack effective treatments and vaccines, relying entirely on supportive care and preventive measures. Exposure to animal reservoirs, limited vaccine access, and insufficient coverage further pose challenges to preventive efforts. This review highlights the critical need for ongoing interdisciplinary research and collaboration to strengthen preparedness and response strategies against emerging infectious threats.
Collapse
Affiliation(s)
- Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Timothy An
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Korea mRNA Vaccine Initiative, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
3
|
Hou Y, Li Q, Huang X, Wang J, Hou J, Sun Y, Wu X, Dian Z, Wang B, Xia X. Distribution and genetic characterization of hantaviruses in bats and rodents from Yunnan. PLoS Negl Trop Dis 2024; 18:e0012437. [PMID: 39208380 PMCID: PMC11412632 DOI: 10.1371/journal.pntd.0012437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 09/19/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Hemorrhagic fever with renal syndrome caused by hantaviruses has long been a serious public health issue in Yunnan Province. Hantaviruses exhibit a high extent of biodiversity in their natural hosts, particularly in mammalian hosts. This study was conducted to screen for hantaviruses in bats and rodents in Yunnan Province and elucidate their genetic characteristics and possible zoonotic disease risk. Hantaviruses were detected in 202 bats and 372 rodents with the positive rates 27.49% and 1.25% respectively. A novel lineage (named Lineage 10) of the Seoul virus (SEOV) from rodents and the geographic clustering of hantavirus in bats were identified using phylogenetic analyses of the full-length M- and S-segments. Our study suggest a high cross-species transmissibility of hantaviruses in bats and existence of a new lineage of SEOV in rodents differing significantly from other SEOVs. These results provide data to support the prevention and control of hantavirus-associated diseases in Yunnan Province.
Collapse
Affiliation(s)
- Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
- Dali University, Dali, P.R. China
| | - Xingyu Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Jiale Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Junjie Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Yunze Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Xinrui Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Ziqin Dian
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Yunnan, P.R. China
| | - Binghui Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
- School of Public Health, Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Geeraedts F, Wevers M, Bosma F, de Boer M, Brinkman JN, Delsing C, GeurtsvanKessel C, Rockx B, van der Zanden A, Laverman GD. Use of a diagnostic Puumala virus real-time RT-PCR in an orthohantavirus endemic region in the Netherlands. Microbiol Spectr 2024; 12:e0381323. [PMID: 38856680 PMCID: PMC11218528 DOI: 10.1128/spectrum.03813-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/05/2024] [Indexed: 06/11/2024] Open
Abstract
Laboratory diagnosis of orthohantavirus infection is primarily based on serology. However, for a confirmed serological diagnosis, evaluation of a follow-up serum sample is essential, which is time consuming and causes delay. Real-time reverse transcription polymerase chain reaction (RT-PCR) tests, if positive, provide an immediate and definitive diagnosis, and accurately identify the causative agent, where the discriminative nature of serology is suboptimal. We re-evaluated sera from orthohantavirus-suspected clinical cases in the Dutch regions of Twente and Achterhoek from July 2014 to April 2016 for the presence of Puumala orthohantavirus (PUUV), Tula orthohantavirus (TULV), and Seoul orthohantavirus (SEOV) RNA. PUUV RNA was detected in 11% of the total number (n = 85) of sera tested, in 50% of sera positive for anti-PUUV/TULV IgM (n = 16), and in 1.4% of sera negative or indeterminate for anti-PUUV/TULV IgM (n = 69). No evidence was found for the presence of TULV or SEOV viral RNA. Based on these findings, we propose two algorithms to implement real-time RT-PCR testing in routine orthohantavirus diagnostics, which optimally provide clinicians with early confirmed diagnoses and could prevent possible further invasive testing and treatment. IMPORTANCE The addition of a real-time reverse transcription polymerase chain reaction test to routine orthohantavirus diagnostics may better aid clinical decision making than the use of standard serology tests alone. Awareness by clinicians and clinical microbiologists of this advantage may ultimately lead to a reduction in over-hospitalization and unnecessary invasive diagnostic procedures.
Collapse
Affiliation(s)
- Felix Geeraedts
- Laboratory for Medical Microbiology and Public Health, Hengelo, Overijssel, the Netherlands
| | - Mariska Wevers
- Laboratory for Medical Microbiology and Public Health, Hengelo, Overijssel, the Netherlands
| | - Froukje Bosma
- Laboratory for Medical Microbiology and Public Health, Hengelo, Overijssel, the Netherlands
| | - Maria de Boer
- Laboratory for Medical Microbiology and Public Health, Hengelo, Overijssel, the Netherlands
| | - J. N. Brinkman
- Department of Internal Medicine, Medisch Spectrum Twente, Enschede, Overijssel, the Netherlands
| | - Corine Delsing
- Department of Internal Medicine, Medisch Spectrum Twente, Enschede, Overijssel, the Netherlands
| | - Corine GeurtsvanKessel
- Viroscience, Erasmus University Medical Center, Rotterdam, Zuid-Holland, the Netherlands
| | - Barry Rockx
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Utrecht, the Netherlands
| | - Adri van der Zanden
- Laboratory for Medical Microbiology and Public Health, Hengelo, Overijssel, the Netherlands
| | - Gozewijn D. Laverman
- Department of Internal Medicine, Ziekenhuis Groep Twente, Almelo/Hengelo, Overijssel, the Netherlands
| |
Collapse
|
5
|
Alburkat H, Smura T, Bouilloud M, Pradel J, Anfray G, Berthier K, Dutra L, Loiseau A, Niamsap T, Olander V, Sepulveda D, Venkat V, Charbonnel N, Castel G, Sironen T. Evolution and genetic characterization of Seoul virus in wild rats Rattus norvegicus from an urban park in Lyon, France 2020-2022. PLoS Negl Trop Dis 2024; 18:e0012142. [PMID: 38739651 PMCID: PMC11149884 DOI: 10.1371/journal.pntd.0012142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/04/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Seoul virus (SEOV) is an orthohantavirus primarily carried by rats. In humans, it may cause hemorrhagic fever with renal syndrome (HFRS). Its incidence is likely underestimated and given the expansion of urban areas, a better knowledge of SEOV circulation in rat populations is called for. Beyond the need to improve human case detection, we need to deepen our comprehension of the ecological, epidemiological, and evolutionary processes involved in the transmission of SEOV. METHODOLOGY / PRINCIPAL FINDINGS We performed a comprehensive serological and molecular characterization of SEOV in Rattus norvegicus in a popular urban park within a large city (Lyon, France) to provide essential information to design surveillance strategies regarding SEOV. We sampled rats within the urban park of 'La Tête d'Or' in Lyon city from 2020 to 2022. We combined rat population genetics, immunofluorescence assays, SEOV high-throughput sequencing (S, M, and L segments), and phylogenetic analyses. We found low structuring of wild rat populations within Lyon city. Only one sampling site within the park (building created in 2021) showed high genetic differentiation and deserves further attention. We confirmed the circulation of SEOV in rats from the park with high seroprevalence (17.2%) and high genetic similarity with the strain previously described in 2011 in Lyon city. CONCLUSION/SIGNIFICANCE This study confirms the continuous circulation of SEOV in a popular urban park where the risk for SEOV transmission to humans is present. Implementing a surveillance of this virus could provide an efficient early warning system and help prepare risk-based interventions. As we reveal high gene flow between rat populations from the park and the rest of the city, we advocate for SEOV surveillance to be conducted at the scale of the entire city.
Collapse
Affiliation(s)
- Hussein Alburkat
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Teemu Smura
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Marie Bouilloud
- CBGP, IRD, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Julien Pradel
- CBGP, INRAE, CIRAD, Institut Agro, IRD, Univ Montpellier, Montpellier, France
| | | | - Karine Berthier
- CBGP, INRAE, CIRAD, Institut Agro, IRD, Univ Montpellier, Montpellier, France
| | - Lara Dutra
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Anne Loiseau
- CBGP, INRAE, CIRAD, Institut Agro, IRD, Univ Montpellier, Montpellier, France
| | - Thanakorn Niamsap
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Viktor Olander
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Vinaya Venkat
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Nathalie Charbonnel
- CBGP, INRAE, CIRAD, Institut Agro, IRD, Univ Montpellier, Montpellier, France
| | - Guillaume Castel
- CBGP, INRAE, CIRAD, Institut Agro, IRD, Univ Montpellier, Montpellier, France
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Demirev AV, Lee S, Park S, Kim H, Cho S, Lee K, Kim K, Song JW, Park MS, Kim JI. Exploring the Genetic Diversity and Molecular Evolution of Seoul and Hantaan Orthohantaviruses. Viruses 2024; 16:105. [PMID: 38257805 PMCID: PMC10818986 DOI: 10.3390/v16010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Seoul (SEOV) and Hantaan (HTNV) orthohantaviruses are significant zoonotic pathogens responsible for hemorrhagic fever with renal syndrome. Here, we investigated the molecular evolution of SEOV and HTNV through phylogenetic and bioinformatic analyses using complete genome sequences of their large (L), medium (M), and small (S) gene segments. Despite similar epizootic cycles and clinical symptoms, SEOV and HTNV exhibited distinct genetic and evolutionary dynamics. The phylogenetic trees of each segment consistently showed major genetic clades associated with the geographical distribution of both viruses. Remarkably, SEOV M and S segments exhibit higher evolutionary rates, rapidly increasing genetic diversity, and a more recent origin in contrast to HTNV. Reassortment events were infrequent, but both viruses appear to utilize the M gene segment in genetic exchanges. SEOV favors the L or M segment reassortment, while HTNV prefers the M or S segment exchange. Purifying selection dominates in all three gene segments of both viruses, yet SEOV experiences an elevated positive selection in its glycoprotein Gc ectodomain. Key amino acid differences, including a positive 'lysine fence' (through residues K77, K82, K231, K307, and K310) located at the tip of the Gn, alongside the physical stability around an RGD-like motif through M108-F334 interaction, may contribute to the unique antigenic properties of SEOV. With the increasing global dispersion and potential implications of SEOV for the global public health landscape, this study highlights the unique evolutionary dynamics and antigenic properties of SEOV and HTNV in informing vaccine design and public health preparedness.
Collapse
Affiliation(s)
- Atanas V. Demirev
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Sangyi Lee
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Sejik Park
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Hyunbeen Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Seunghye Cho
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Kyuyoung Lee
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Kisoon Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
7
|
Sehgal A, Mehta S, Sahay K, Martynova E, Rizvanov A, Baranwal M, Chandy S, Khaiboullina S, Kabwe E, Davidyuk Y. Hemorrhagic Fever with Renal Syndrome in Asia: History, Pathogenesis, Diagnosis, Treatment, and Prevention. Viruses 2023; 15:v15020561. [PMID: 36851775 PMCID: PMC9966805 DOI: 10.3390/v15020561] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Hemorrhagic Fever with Renal Syndrome (HFRS) is the most frequently diagnosed zoonosis in Asia. This zoonotic infection is the result of exposure to the virus-contaminated aerosols. Orthohantavirus infection may cause Hemorrhagic Fever with Renal Syndrome (HRFS), a disease that is characterized by acute kidney injury and increased vascular permeability. Several species of orthohantaviruses were identified as causing infection, where Hantaan, Puumala, and Seoul viruses are most common. Orthohantaviruses are endemic to several Asian countries, such as China, South Korea, and Japan. Along with those countries, HFRS tops the list of zoonotic infections in the Far Eastern Federal District of Russia. Recently, orthohantavirus circulation was demonstrated in small mammals in Thailand and India, where orthohantavirus was not believed to be endemic. In this review, we summarized the current data on orthohantaviruses in Asia. We gave the synopsis of the history and diversity of orthohantaviruses in Asia. We also described the clinical presentation and current understanding of the pathogenesis of orthohantavirus infection. Additionally, conventional and novel approaches for preventing and treating orthohantavirus infection are discussed.
Collapse
Affiliation(s)
- Ayushi Sehgal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Sanya Mehta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Ekaterina Martynova
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Albert Rizvanov
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Sara Chandy
- Childs Trust Medical Research Foundation, Kanchi Kamakoti Childs Trust Hospital, Chennai 600034, India
| | - Svetlana Khaiboullina
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Emmanuel Kabwe
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Kazan Research Institute of Epidemiology and Microbiology, Kazan 420012, Russia
| | - Yuriy Davidyuk
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Correspondence:
| |
Collapse
|
8
|
Pet Rats as the Likely Reservoir for Human Seoul Orthohantavirus Infection. Viruses 2023; 15:v15020467. [PMID: 36851681 PMCID: PMC9962845 DOI: 10.3390/v15020467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Seoul orthohantavirus (SEOV) is a rat-associated zoonotic pathogen with an almost worldwide distribution. In 2019, the first autochthonous human case of SEOV-induced hemorrhagic fever with renal syndrome was reported in Germany, and a pet rat was identified as the source of the zoonotic infection. To further investigate the SEOV reservoir, additional rats from the patient and another owner, all of which were purchased from the same vendor, were tested. SEOV RNA and anti-SEOV antibodies were found in both of the patient's rats and in two of the three rats belonging to the other owner. The complete coding sequences of the small (S), medium (M), and large (L) segments obtained from one rat per owner exhibited a high sequence similarity to SEOV strains of breeder rat or human origin from the Netherlands, France, the USA, and Great Britain. Serological screening of 490 rats from breeding facilities and 563 wild rats from Germany (2007-2020) as well as 594 wild rats from the Netherlands (2013-2021) revealed 1 and 6 seropositive individuals, respectively. However, SEOV RNA was not detected in any of these animals. Increased surveillance of pet, breeder, and wild rats is needed to identify the origin of the SEOV strain in Europe and to develop measures to prevent transmission to the human population.
Collapse
|
9
|
Castel G, Kant R, Badou S, Etougbétché J, Dossou HJ, Gauthier P, Houéménou G, Smura T, Sironen T, Dobigny G. Genetic Characterization of Seoul Virus in the Seaport of Cotonou, Benin. Emerg Infect Dis 2021; 27:2704-2706. [PMID: 34545795 PMCID: PMC8462318 DOI: 10.3201/eid2710.210268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Seoul virus is a zoonotic pathogen carried by the brown rat Rattus norvegicus. Information on its circulation in Africa is limited. In this study, the virus was detected in 37.5% of brown rats captured in the Autonomous Port of Cotonou, Benin. Phylogenetic analyses place this virus in Seoul virus lineage 7.
Collapse
|
10
|
Epidemiology of hemorrhagic fever with renal syndrome in Tai'an area. Sci Rep 2021; 11:11596. [PMID: 34226582 PMCID: PMC8257732 DOI: 10.1038/s41598-021-91029-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/07/2021] [Indexed: 11/08/2022] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS), a serious threat to human health, is mainly transmitted by rodents in Eurasia. The risk of disease differs according to sex, age, and occupation. Further, temperature and rainfall have some lagging effects on the occurrence of the disease. The quantitative data for these factors in the Tai'an region of China are still unknown. We used a forest map to calculate the risk of HFRS in different populations and used four different mathematical models to explain the relationship between time factors, meteorological factors, and the disease. The results showed that compared with the whole population, the relative risk in rural medical staff and farmers was 5.05 and 2.00, respectively (p < 0.05). Joinpoint models showed that the number of cases decreased by 33.32% per year from 2005 to 2008 (p < 0.05). The generalized additive model showed that air temperature was positively correlated with disease risk from January to June, and that relative humidity was negatively correlated with risk from July to December. From January to June, with an increase in temperature, after 15 lags, the cumulative risk of disease increased at low temperatures. From July to December, the cumulative risk decreased with an increase in the relative humidity. Rural medical staff, farmers, men, and middle-aged individuals were at a high risk of HFRS. Moreover, air temperature and relative humidity are important factors that affect disease occurrence. These associations show lagged and differing effects according to the season.
Collapse
|
11
|
Cuperus T, de Vries A, Hoornweg TE, Fonville M, Jaarsma RI, Opsteegh M, Maas M. Seoul Virus in Pet and Feeder Rats in The Netherlands. Viruses 2021; 13:443. [PMID: 33801789 PMCID: PMC8002128 DOI: 10.3390/v13030443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022] Open
Abstract
Seoul virus (SEOV) is a zoonotic orthohantavirus carried by rats. In humans, SEOV can cause hemorrhagic fever with renal syndrome. Recent human SEOV cases described in the USA, United Kingdom, France and the Netherlands were associated with contact with pet or feeder rats. The prevalence of SEOV in these types of rats is unknown. We collected 175 pet and feeder rats (Rattus norvegicus) from private owners, ratteries and commercial breeders/traders in the Netherlands. Lung tissue of the rats was tested using a SEOV real-time RT-qPCR and heart fluid was tested for the presence of antibodies against SEOV. In all three investigated groups, RT-qPCR-positive rats were found: in 1/29 rats from private owners (3.6%), 2/56 rats from ratteries (3.4%) and 11/90 rats from commercial breeders (12.2%). The seroprevalence was largely similar to the prevalence calculated from RT-qPCR-positive rats. The SEOV sequences found were highly similar to sequences previously found in domesticated rats in Europe. In conclusion, SEOV is spread throughout different populations of domesticated rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miriam Maas
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Postbus 1, 3720 BA Bilthoven, The Netherlands; (T.C.); (A.d.V.); (T.E.H.); (M.F.); (R.I.J.); (M.O.)
| |
Collapse
|
12
|
Epidemiologic Characteristics of Domestic Patients with Hemorrhagic Fever with Renal Syndrome in Taiwan: A 19-Year Retrospective Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155291. [PMID: 32708017 PMCID: PMC7432905 DOI: 10.3390/ijerph17155291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Background: Hemorrhagic fever with renal syndrome (HFRS) is an illness caused by hantaviruses. Numerous factors modify the risk of hantavirus transmission. This study explored the epidemiological characteristics, differences, and trends in terms of gender, age, season, and living areas of those diagnosed with domestically acquired HFRS in Taiwan from 2001 to 2019. Methods: We examined publicly available annual summary data on the domestic cases with HFRS from 2001 to 2019; these data were obtained from the web database of Taiwan’s Centers for Disease Control (CDC). Results: This study analyzed 21 domestic cases with HFRS from Taiwan’s CDC databases. In this study of the cases of HFRS in Taiwan, a gradual increase in the cases of those aged ≥40 years acquiring the disease was noted, and a distinct pattern of seasonal variation (spring) was observed. Furthermore, more men had domestically acquired HFRS, and living in Taipei metropolitan area (6 cases [28.6%]) and the rural areas (Gao-Ping region, 9 cases [42.9%]) was identified as a potential risk factor. This study represents the first report of confirmed cases of domestically acquired HFRS from surveillance data from Taiwan’s CDC, 2001–2019. Conclusion: This study highlights the importance of longitudinal studies covering a wide geographical area, particularly for highly fluctuating pathogens, to understanding the implications of the transmission of zoonotic diseases in human populations. Important data were identified to inform future surveillance and research efforts in Taiwan.
Collapse
|
13
|
Gravinatti ML, Barbosa CM, Soares RM, Gregori F. Synanthropic rodents as virus reservoirs and transmitters. Rev Soc Bras Med Trop 2020; 53:e20190486. [PMID: 32049206 PMCID: PMC7083353 DOI: 10.1590/0037-8682-0486-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022] Open
Abstract
This review focuses on reports of hepatitis E virus, hantavirus, rotavirus,
coronavirus, and arenavirus in synanthropic rodents (Rattus
rattus, Rattus norvegicus, and Mus
musculus) within urban environments. Despite their potential impact
on human health, relatively few studies have addressed the monitoring of these
viruses in rodents. Comprehensive control and preventive activities should
include actions such as the elimination or reduction of rat and mouse
populations, sanitary education, reduction of shelters for the animals, and
restriction of the access of rodents to residences, water, and food
supplies.
Collapse
Affiliation(s)
- Mara Lucia Gravinatti
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Rodrigo Martins Soares
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fábio Gregori
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Bojko J, Subramaniam K, Waltzek TB, Stentiford GD, Behringer DC. Genomic and developmental characterisation of a novel bunyavirus infecting the crustacean Carcinus maenas. Sci Rep 2019; 9:12957. [PMID: 31506463 PMCID: PMC6736955 DOI: 10.1038/s41598-019-49260-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
Carcinus maenas is in the top 100 globally invasive species and harbours a wide diversity of pathogens, including viruses. We provide a detailed description for a novel bunyavirus (Carcinus maenas Portunibunyavirus 1) infecting C. maenas from its native range in the Faroe Islands. The virus genome is tripartite, including large (L) (6766 bp), medium (M) (3244 bp) and small (S) (1608 bp) negative sense, single-stranded RNA segments. Individual genomic segments are flanked by 4 bp regions of similarity (CCUG). The segments encode an RNA-dependent RNA-polymerase, glycoprotein, non-structural protein with a Zinc-Finger domain and a nucleoprotein. Most show highest identity to the 'Wenling Crustacean Virus 9' from an unidentified crustacean host. Phylogenomics of crustacean-infecting bunyaviruses place them across multiple bunyavirus families. We discuss the diversity of crustacean bunyaviruses and provide an overview of how these viruses may affect the health and survival of crustacean hosts, including those inhabiting niches outside of their native range.
Collapse
Affiliation(s)
- Jamie Bojko
- Fisheries and Aquatic Science, University of Florida, Gainesville, Florida, 32653, USA. .,Emerging Pathogens Institute, University of Florida, Gainesville, Florida, 32611, USA.
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Grant D Stentiford
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, DT4 8UB, UK.,Centre for Sustainable Aquaculture Futures, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Donald C Behringer
- Fisheries and Aquatic Science, University of Florida, Gainesville, Florida, 32653, USA. .,Emerging Pathogens Institute, University of Florida, Gainesville, Florida, 32611, USA.
| |
Collapse
|