1
|
Triantafilou K, Szomolay B, Shepherd MW, Ramanjulu J, Triantafilou M. STING Orchestrates EV-D68 Replication and Immunometabolism within Viral-Induced Replication Organelles. Viruses 2024; 16:1541. [PMID: 39459875 PMCID: PMC11512225 DOI: 10.3390/v16101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Some respiratory viruses, such as Human Rhinovirus, SARS-CoV-2, and Enterovirus D-68 (EV-D68), share the feature of hijacking host lipids in order to generate specialised replication organelles (ROs) with unique lipid compositions to enable viral replication. We have recently uncovered a novel non-canonical function of the stimulator of interferon genes (STING) pathway, as a critical factor in the formation of ROs in response to HRV infection. The STING pathway is the main DNA virus sensing system of the innate immune system controlling the type I IFN machinery. Although it is well-characterised as part of the DNA sensor machinery, the STING function in RNA viral infections is largely unexplored. In the current study, we investigated whether other RO-forming RNA viruses, such as EV-D68 and SARS-CoV-2, can also utilise STING for their replication. Using genetic and pharmacological inhibition, we demonstrate that STING is hijacked by these viruses and is utilised as part of the viral replication machinery. STING also co-localises with glycolytic enzymes needed to fuel the energy for replication. The inhibition of STING leads to the modulation of glucose metabolism in EV-D68-infected cells, suggesting that it might also manipulate immunometabolism. Therefore, for RO-generating RNA viruses, STING seems to have non-canonical functions in membrane lipid re-modelling, and the formation of replication vesicles, as well as immunometabolism.
Collapse
Affiliation(s)
- Kathy Triantafilou
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| | - Barbara Szomolay
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| | - Mark William Shepherd
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| | - Joshi Ramanjulu
- Immunology Research Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Martha Triantafilou
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| |
Collapse
|
2
|
Ljubin-Sternak S, Meštrović T. Rhinovirus—A True Respiratory Threat or a Common Inconvenience of Childhood? Viruses 2023; 15:v15040825. [PMID: 37112805 PMCID: PMC10144685 DOI: 10.3390/v15040825] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
A decade-long neglect of rhinovirus as an important agent of disease in humans was primarily due to the fact that they were seen as less virulent and capable of causing only mild respiratory infections such as common cold. However, with an advent of molecular diagnostic methods, an increasing number of reports placed them among the pathogens found in the lower respiratory tract and recognized them as important risk factors for asthma-related pathology in childhood. As the spread of rhinovirus was not severely affected by the implementation of social distancing and other measures during the coronavirus disease 2019 (COVID-19) pandemic, its putative pathogenic role has become even more evident in recent years. By concentrating on children as the most vulnerable group, in this narrative review we first present classification and main traits of rhinovirus, followed by epidemiology and clinical presentation, risk factors for severe forms of the disease, long-term complications and the pathogenesis of asthma, as well as a snapshot of treatment trials and studies. Recent evidence suggests that the rhinovirus is a significant contributor to respiratory illness in both high-risk and low-risk populations of children.
Collapse
|
3
|
Usefulness of Combining Sputum and Nasopharyngeal Samples for Viral Detection by Reverse Transcriptase PCR in Adults Hospitalized with Acute Respiratory Illness. Microbiol Spectr 2022; 10:e0277522. [PMID: 36374089 PMCID: PMC9769557 DOI: 10.1128/spectrum.02775-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nasopharyngeal swabs (NPS) or washings have traditionally been used to diagnose respiratory tract infections. Reverse transcriptase PCR (RT-PCR) is widely used for rapid viral detection using samples from the upper respiratory tract. However, RT-PCR is rarely applied to sputum samples, mainly due to the viscosity of sputum. Thus, we assessed the detection rates of respiratory viruses from NPS, sputum samples, and combined NPS and sputum samples using multiplex RT-PCR (Allplex respiratory panels I, II, and III; Seegene, Seoul, South Korea). Paired NPS and sputum samples were collected from 219 patients admitted to the hospital with acute respiratory illnesses from October to December 2019. RT-PCR was performed on each sample for virus detection. Combined samples for virus detection were produced using remnant NPS and sputum samples with a positive virus signal. Respiratory viral nucleic acid was identified in 92 (42%) of 219 patients. Among the 92 viral detections, 61 (28%) were detected by both NPS and sputum samples. Twenty-four (11%) were sputum positive/NPS negative, and seven (3%) were sputum negative/NPS positive. For the combined NPS-sputum samples (n = 92), all paired samples positive in both specimens (n = 61) were also positive in the combined NPS-sputum sample. Twenty-seven (87%) of the 31 discordant paired samples were positive in the combined samples. Out of the total of 103 viruses identified before combining the samples, the detection rate of the combined samples was 94% (97/103), which was higher than the detection rates of sputum (88%; 91/103) and NPS (71%; 73/103). Because additional tests incur additional costs, our findings suggest that combining samples instead of testing separate samples using RT-PCR is likely the most cost-effective method of viral testing for patients with acute respiratory illnesses. IMPORTANCE This study reveals that RT-PCR utilizing sputum significantly increased the detection rate for respiratory viral nucleic acids among adult patients admitted to the hospital, compared to nasopharyngeal swabs (NPS). Notably, combined samples of sputum and NPS maintained the majority of the improved sputum detection rate with only a few positive signal losses from NPS samples. In order to detect respiratory viruses in adult patients with acute respiratory illness, it is important to choose the optimal respiratory samples. This study helped to improve our understanding of this process.
Collapse
|
4
|
Linhares FMP, Abreu WJCD, Melo PDOC, Mendes RCMG, Silva TAD, Gusmão TLAD, Guedes TG. Effectiveness of educational interventions in knowledge, attitude, and practice for preventing respiratory infections: a systematic review and meta-analysis. Rev Bras Enferm 2022; 75:e20210522. [PMID: 35352787 DOI: 10.1590/0034-7167-2021-0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/25/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES to demonstrate the effectiveness of educational interventions in knowledge, attitude and practice for preventing respiratory infections in adults and older adults. METHODS this is a systematic review carried out in 11 databases. Primary studies, without language and time restrictions, of the randomized, non-randomized and before-and-after clinical trial type, were selected. The risk of bias was assessed by two independent researchers, and the methodological quality was generated by the Grading of Recommendations, Assessment, Development and Evaluation. RESULTS the intervention effectiveness was evidenced in seven studies. The results of the random effects meta-analysis show that there is a statistically significant difference between knowledge about preventing respiratory diseases, with an OR of 2.82 (95%CI 1.70 to 4.69) for the occurrence of events represented by improved knowledge. CONCLUSIONS most studies show the effectiveness of educational interventions, which was determined through the Knowledge, Attitude and Practice survey.
Collapse
|
5
|
Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication. Nat Commun 2022; 13:1406. [PMID: 35301296 PMCID: PMC8931115 DOI: 10.1038/s41467-022-28745-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/18/2022] [Indexed: 02/02/2023] Open
Abstract
Human rhinovirus (HRV), like coronavirus (HCoV), are positive-strand RNA viruses that cause both upper and lower respiratory tract illness, with their replication facilitated by concentrating RNA-synthesizing machinery in intracellular compartments made of modified host membranes, referred to as replication organelles (ROs). Here we report a non-canonical, essential function for stimulator of interferon genes (STING) during HRV infections. While the canonical function of STING is to detect cytosolic DNA and activate inflammatory responses, HRV infection triggers the release of STIM1-bound STING in the ER by lowering Ca2+, thereby allowing STING to interact with phosphatidylinositol 4-phosphate (PI4P) and traffic to ROs to facilitates viral replication and transmission via autophagy. Our results thus hint a critical function of STING in HRV viral replication and transmission, with possible implications for other RO-mediated RNA viruses. Evidence exists that the typically antiviral signaling mediator STING is, counterintuitively, needed for optimal human rhinovirus infection. Here the authors confirm this finding and show how human rhinovirus can reduce stored Ca2+ levels to drive this effect.
Collapse
|
6
|
Al-Rubaey NF, Hussain H, Ibraheem N, Radhi M, Hindi NK, AL-Jubori RK. A review of airborne contaminated microorganisms associated with human diseases. MEDICAL JOURNAL OF BABYLON 2022. [DOI: 10.4103/mjbl.mjbl_20_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Onohuean H, Al-kuraishy HM, Al-Gareeb AI, Qusti S, Alshammari EM, Batiha GES. Covid-19 and development of heart failure: mystery and truth. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:2013-2021. [PMID: 34480616 PMCID: PMC8417660 DOI: 10.1007/s00210-021-02147-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (Covid-19) is a novel worldwide pandemic caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). During Covid-19 pandemic, socioeconomic deprivation, social isolation, and reduced physical activities may induce heart failure (HF), destabilization, and cause more complications. HF appears as a potential hazard due to SARS-CoV-2 infection, chiefly in elderly patients with underlying comorbidities. In reality, the expression of cardiac ACE2 is implicated as a target point for SARS-CoV-2-induced acute cardiac injury. In SARS-CoV-2 infection, like other febrile illnesses, high blood viscosity, exaggerated pro-inflammatory response, multisystem inflammatory syndrome, and endothelial dysfunction-induced coagulation disorders may increase risk of HF development. Hypoxic respiratory failure, as in pulmonary edema, severe acute lung injury (ALI), and acute respiratory distress syndrome (ARDS) may affect heart hemodynamic stability due to the development of pulmonary hypertension. Indeed, Covid-19-induced HF could be through the development of cytokine storm, characterized by high proliferation pro-inflammatory cytokines. In cytokine storm-mediated cardiac dysfunction, there is a positive correlation between levels of pro-inflammatory cytokine and myocarditis-induced acute cardiac injury biomarkers. Therefore, Covid-19-induced HF is more complex and related from a molecular background in releasing pro-inflammatory cytokines to the neuro-metabolic derangements that together affect cardiomyocyte functions and development of HF. Anti-heart failure medications, mainly digoxin and carvedilol, have potent anti-SARS-CoV-2 and anti-inflammatory properties that may mitigate Covid-19 severity and development of HF. In conclusion, SARS-CoV-2 infection may lead to the development of HF due to direct acute cardiac injury or through the development of cytokine storms, which depress cardiomyocyte function and cardiac contractility. Anti-heart failure drugs, mainly digoxin and carvedilol, may attenuate severity of HF by reducing the infectivity of SARS-CoV-2 and prevent the development of cytokine storms in severely affected Covid-19 patients.
Collapse
Affiliation(s)
- Hope Onohuean
- Department of Pharmacology and Toxicology, Biopharmaceutics Unit, School of Pharmacy, Kampala International University, Western-Campus, Kampala, Uganda
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M. Alshammari
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511 Egypt
| |
Collapse
|
8
|
Ljubin-Sternak S, Meštrović T, Lukšić I, Mijač M, Vraneš J. Seasonal Coronaviruses and Other Neglected Respiratory Viruses: A Global Perspective and a Local Snapshot. Front Public Health 2021; 9:691163. [PMID: 34291031 PMCID: PMC8287126 DOI: 10.3389/fpubh.2021.691163] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/04/2021] [Indexed: 02/02/2023] Open
Abstract
Respiratory viral infections are the leading cause of morbidity and mortality in the world; however, there are several groups of viruses that are insufficiently routinely sought for, and can thus be considered neglected from a diagnostic and clinical standpoint. Timely detection of seasonality of certain respiratory viruses (e.g., enveloped viruses such as seasonal coronaviruses) in the local context can aid substantially in targeted and cost-effective utilization of viral diagnostic approaches. For the other, non-enveloped and year-round viruses (i.e., rhinovirus, adenovirus, and bocavirus), a continuous virological diagnosis needs to be implemented in clinical laboratories to more effectively address the aetiology of respiratory infections, and assess the overall impact of these viruses on disease burden. While the coronavirus disease 2019 (COVID-19) pandemic is still actively unfolding, we aimed to emphasize the persistent role of seasonal coronaviruses, rhinoviruses, adenoviruses and bocaviruses in the aetiology of respiratory infections. Consequently, this paper concentrates on the burden and epidemiological trends of aforementioned viral groups on a global level, but also provides a snapshot of their prevalence patterns in Croatia in order to underscore the potential implications of viral seasonality. An overall global prevalence in respiratory tract infections was found to be between 0.5 and 18.4% for seasonal coronaviruses, between 13 and 59% for rhinoviruses, between 1 and 36% for human adenoviruses, and between 1 and 56.8% for human bocaviruses. A Croatian dataset on patients with respiratory tract infection and younger than 18 years of age has revealed a fairly high prevalence of rhinoviruses (33.4%), with much lower prevalence of adenoviruses (15.6%), seasonal coronaviruses (7.1%), and bocaviruses (5.3%). These insights represent a relevant discussion point in the context of the COVID-19 pandemic where the testing of non-SARS-CoV-2 viruses has been limited in many settings, making the monitoring of disease burden associated with other respiratory viruses rather difficult.
Collapse
Affiliation(s)
- Sunčanica Ljubin-Sternak
- Clinical Microbiology Department, Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia.,Medical Microbiology Department, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tomislav Meštrović
- Clinical Microbiology and Parasitology Unit, Zora Profozić Polyclinic, Zagreb, Croatia.,University Centre Varaždin, University North, Varaždin, Croatia
| | - Ivana Lukšić
- Clinical Microbiology Department, Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Maja Mijač
- Clinical Microbiology Department, Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia.,Medical Microbiology Department, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jasmina Vraneš
- Clinical Microbiology Department, Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia.,Medical Microbiology Department, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
9
|
Respiratory microbes detected in hospitalized adults with acute respiratory infections: associations between influenza A(H1N1)pdm09 virus and intensive care unit admission or fatal outcome in Vietnam (2015-2017). BMC Infect Dis 2021; 21:320. [PMID: 33823790 PMCID: PMC8023524 DOI: 10.1186/s12879-021-05988-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Acute respiratory tract infection (ARI) is a leading cause of hospitalization, morbidity, and mortality worldwide. Respiratory microbes that were simultaneously detected in the respiratory tracts of hospitalized adult ARI patients were investigated. Associations between influenza A(H1N1)pdm09 virus (H1N1pdm) detection and intensive care unit (ICU) admission or fatal outcome were determined. Methods This prospective observational study was conducted between September 2015 and June 2017 at Bach Mai Hospital, Hanoi, Vietnam. Inclusion criteria were hospitalized patients aged ≥15 years; one or more of symptoms including shortness of breath, sore throat, runny nose, headache, and muscle pain/arthralgia in addition to cough and fever > 37.5 °C; and ≤ 10 days from the onset of symptoms. Twenty-two viruses, 11 bacteria, and one fungus in airway specimens were examined using a commercial multiplex real-time PCR assay. Associations between H1N1pdm detection and ICU admission or fatal outcome were investigated by univariate and multivariate logistic regression analyses. Results The total of 269 patients (57.6% male; median age, 51 years) included 69 ICU patients. One or more microbes were detected in the airways of 214 patients (79.6%). Single and multiple microbes were detected in 41.3 and 38.3% of patients, respectively. Influenza A(H3N2) virus was the most frequently detected (35 cases; 13.0%), followed by H1N1pdm (29 cases; 10.8%). Hematological disease was associated with ICU admission (p < 0.001) and fatal outcomes (p < 0.001) using the corrected significance level (p = 0.0033). Sex, age, duration from onset to sampling, or number of detected microbes were not significantly associated with ICU admission or fatal outcomes. H1N1pdm detection was associated with ICU admission (odds ratio [OR] 3.911; 95% confidence interval [CI] 1.671–9.154) and fatal outcome (OR 5.496; 95% CI 1.814–16.653) after adjusting for the confounding factors of comorbidities, bacteria/Pneumocystis jirovecii co-detection, and age. Conclusions H1N1pdm was associated with severe morbidity and death in adult patients hospitalized with respiratory symptoms. The diagnosis of subtype of influenza virus may be epidemiologically important. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-05988-x.
Collapse
|
10
|
Identification of the Functional Domain of HPIV3 Matrix Protein Interacting with Nucleocapsid Protein. BIOMED RESEARCH INTERNATIONAL 2021; 2020:2616172. [PMID: 33457403 PMCID: PMC7787747 DOI: 10.1155/2020/2616172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022]
Abstract
Human parainfluenza virus type 3 (HPIV3) is the main pathogen that causes respiratory infections in infants, young children, and the elderly. Currently, there are no vaccines and effective anti-infective drugs. Studying the replication and proliferation mechanism of HPIV3 is helpful for exploring the targets of anti-HPIV3 infection. Matrix protein (M) and nucleocapsid protein (N) are two key structural proteins of HPIV3 that exert important functions in HPIV3 proliferation. Herein, we aim to clarify the functional domains of M and N interaction. HPIV3 M and N expression plasmids of pCAGGS-HA-M and pCAGGS-N-Myc/Flag, M C-terminal truncation mutant plasmids of pCAGGSHA-MΔC120, MΔC170, MΔC190, and MΔC210, and M C-terminal plasmid of pCAGGS-HA-MC190 and C-terminal deletion mutant plasmid of pCAGGS-MΔN143-182 were constructed. By using immunoprecipitation, immunofluorescence, and virus-like particle (VLP) germination experiments, we found that N was encapsulated into M-mediated VLP through N and M interaction. Moreover, the C-terminus of the M played a key role in the interaction between M and N. The C-terminus of the M encapsulated the N into the VLP. We finally determined that the 143-182 amino acids in the M were the functional regions that encapsulated the N into the M-mediated VLP. Our findings confirmed the interaction between M and N and for the first time clarified that the 143-182 amino acid region in M was the functional region that interacted with N, which provides a molecular basis for exploring effective anti-HPIV3 targets.
Collapse
|
11
|
Gilca R, Carazo S, Amini R, Charest H, De Serres G. Relative Severity of Common Human Coronaviruses and Influenza in Patients Hospitalized With Acute Respiratory Infection: Results From 8-Year Hospital-Based Surveillance in Quebec, Canada. J Infect Dis 2020; 223:1078-1087. [PMID: 32761209 PMCID: PMC7454730 DOI: 10.1093/infdis/jiaa477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Background Few data exist about the role of common human coronaviruses (HCoV) in patients hospitalized for acute respiratory illness (ARI) and the severity of these infections compared to influenza. Methods Prospective data on virus etiology of ARI hospitalizations during the peaks of 8 influenza seasons (2011-12 to 2018-19) in Quebec, Canada, was used to compare patients with HCoV to those with influenza infections; generalized estimation equations models were used for multivariate analyses. Results We identified 340 HCoV infections which affected 11.6%(n=136) of children and 5.2%(n=204) of adults hospitalized with ARI. The majority of children (75%) with HCoV infections were also coinfected with other respiratory viruses compared to 24% of the adults (p<0.0001). No deaths were recorded in children; 5.8% of adults with HCoV monoinfection compared to 4.2% of those with influenza monoinfection died (p=0.226). The risk of pneumonia was non-significantly lower in children with HCoV than with influenza but similarly high in adults. Markers of severity (length-of-stay, intensive-care admissions and case-fatality ratio) were comparable between these infections in multivariate analyses, both in children and adults. Conclusions In children and adults hospitalized with ARI, HCoV infections were less frequent than influenza infections, but HCoV monoinfections were as severe as influenza monoinfections.
Collapse
Affiliation(s)
- Rodica Gilca
- Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec, Quebec City, Quebec, Canada.,Centre de Recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Sara Carazo
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Rachid Amini
- Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec, Quebec City, Quebec, Canada
| | - Hugues Charest
- Laboratoire de Santé Publique du Québec, Institut national de santé publique du Québec, Montreal, Quebec, Canada
| | - Gaston De Serres
- Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec, Quebec City, Quebec, Canada.,Centre de Recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
12
|
Ljubin-Sternak S, Meštrović T, Ivković-Jureković I, Kolarić B, Slović A, Forčić D, Tot T, Mijač M, Vraneš J. The Emerging Role of Rhinoviruses in Lower Respiratory Tract Infections in Children - Clinical and Molecular Epidemiological Study From Croatia, 2017-2019. Front Microbiol 2019; 10:2737. [PMID: 31849887 PMCID: PMC6901631 DOI: 10.3389/fmicb.2019.02737] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/11/2019] [Indexed: 01/06/2023] Open
Abstract
Rhinoviruses (RVs) are increasingly implicated not only in mild upper respiratory tract infections, but also in more severe lower respiratory tract infections; however, little is known about species diversity and viral epidemiology of RVs among the infected children. Therefore, we investigated the rhinovirus (RV) infection prevalence over a 2-year period, compared it with prevalence patterns of other common respiratory viruses, and explored clinical and molecular epidemiology of RV infections among 590 children hospitalized with acute respiratory infection in north-western and central parts of Croatia. For respiratory virus detection, nasopharyngeal and pharyngeal flocked swabs were taken from each patient and subsequently analyzed with multiplex RT-PCR. To determine the RV species in a subset of positive children, 5'UTR in RV-positive samples has been sequenced. Nucleotide sequences of referent RV strains were retrieved by searching the database with Basic Local Alignment Tool, and used to construct alignments and phylogenetic trees using MAFFT multiple sequence alignment tool and the maximum likelihood method, respectively. In our study population RV was the most frequently detected virus, diagnosed in 197 patients (33.4%), of which 60.4% was detected as a monoinfection. Median age of RV-infected children was 2.25 years, and more than half of children infected with RV (55.8%) presented with lower respiratory tract infections. Most RV cases were detected from September to December, and all three species co-circulated during the analyzed period (2017-2019). Sequence analysis based on 5'UTR region yielded 69 distinct strains; the most prevalent was RV-C (47.4%) followed by RV-A (44.7%) and RV-B (7.9%). Most of RV-A sequences formed a distinct phylogenetic group; only strains RI/HR409-18 (along with a reference strain MF978777) clustered with RV-C strains. Strains belonging to the group C were the most diverse (41.6% identity among strains), while group B was the most conserved (71.5% identity among strains). Despite such differences in strain groups (hitherto undescribed in Croatia), clinical presentation of infected children was rather similar. Our results are consistent with newer studies that investigated the etiology of acute respiratory infections, especially those focused on children with lower respiratory tract infections, where RVs should always be considered as potentially serious pathogens.
Collapse
Affiliation(s)
- Sunčanica Ljubin-Sternak
- Molecular Microbiology Department, Dr. Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
- Medical Microbiology Department, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tomislav Meštrović
- Clinical Microbiology and Parasitology Unit, Polyclinic “Dr. Zora Profozić”, Zagreb, Croatia
- University Centre Varaždin, University North, Varaždin, Croatia
| | - Irena Ivković-Jureković
- Department of Pulmonology, Allergy, Immunology and Rheumatology, Children’s Hospital Zagreb, Zagreb, Croatia
- Faculty for Dental Medicine and Healthcare/School of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Branko Kolarić
- Department of Epidemiology, Dr. Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Anamarija Slović
- Center of Excellence for Virus Immunology and Vaccines, Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Dubravko Forčić
- Center of Excellence for Virus Immunology and Vaccines, Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Tatjana Tot
- Department of Microbiology, General Hospital Karlovac, Karlovac, Croatia
| | - Maja Mijač
- Molecular Microbiology Department, Dr. Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
- Medical Microbiology Department, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jasmina Vraneš
- Molecular Microbiology Department, Dr. Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
- Medical Microbiology Department, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
13
|
Civljak R, Kosutic-Gulija T, Slovic A, Huljev E, Turcic N, Mestrovic T, Vranes J, Ljubin-Sternak S. An Outbreak of Human Parainfluenza Virus 3 (Phylogenetic Subcluster C5) Infection among Adults at a Residential Care Facility for the Disabled in Croatia, 2018. Intervirology 2019; 62:174-181. [PMID: 31661701 DOI: 10.1159/000503630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/20/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Although highly pertinent for children, outbreaks of human parainfluenza virus (HPIV) may cause up to 15% of all respiratory illnesses in adults and predispose them to serious adverse outcomes, with HPIV serotype 3 (HPIV3) being the most common. This study represents the first report of an HPIV3 outbreak among adults at a long-term health-care facility in Croatia. METHODS A retrospective study was conducted to investigate an outbreak of acute respiratory infection (ARI) at a single residential care facility for the disabled in Croatia. Demographic, epidemiological, and clinical data were collected for all residents, while hospitalized patients were appraised in detail by laboratory/radiological methods. Multiplex PCR for respiratory viruses and sequencing was performed. Partial HPIV3 HN 581 nt sequences were aligned with HPIV3 sequences from the GenBank database to conduct a phylogenetic analysis, where different bioinformatic approaches were employed. RESULTS In late June 2018, 5 of the 10 units at the facility were affected by the outbreak. Among the 106 residents, 23 (21.7%) developed ARI, and 6 (26.1%) of them were hospitalized. HPIV3 was identified in 18 (73%) of the residents and 5 (83%) of the hospitalized individuals. Isolated HPIV3 strains were classified within the phylogenetic subcluster C5 but grouped on 2 separate branches of the phylogenetic tree. During the entire outbreak period, none of the institution's employees reported symptoms of ARI. CONCLUSIONS Our study has shown that this health care-associated outbreak of HPIV3 infection could have been linked to multiple importation events. Preventive measures in curbing such incidents should be enforced vigorously.
Collapse
Affiliation(s)
- Rok Civljak
- Department of Respiratory Tract Infections,Dr. Fran Mihaljevic University Hospital for Infectious Diseases, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tanja Kosutic-Gulija
- Center of Excellence for Virus Immunology and Vaccines, Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Anamarija Slovic
- Center of Excellence for Virus Immunology and Vaccines, Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Eva Huljev
- Department of Respiratory Tract Infections,Dr. Fran Mihaljevic University Hospital for Infectious Diseases, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nikolina Turcic
- Department of Epidemiology, Zagreb County Institute of Public Health, Dugo Selo Branch, Dugo Selo, Croatia
| | - Tomislav Mestrovic
- Clinical Microbiology and Parasitology Unit, Dr. Zora Profozic Polyclinic, Zagreb, Croatia.,University Centre Varaždin, University North, Varaždin, Croatia
| | - Jasmina Vranes
- Clinical Microbiology Department, Dr. Andrija Stampar Teaching Institute of Public Health, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Suncanica Ljubin-Sternak
- Clinical Microbiology Department, Dr. Andrija Stampar Teaching Institute of Public Health, University of Zagreb School of Medicine, Zagreb, Croatia,
| |
Collapse
|
14
|
Baker AT, Mundy RM, Davies JA, Rizkallah PJ, Parker AL. Human adenovirus type 26 uses sialic acid-bearing glycans as a primary cell entry receptor. SCIENCE ADVANCES 2019; 5:eaax3567. [PMID: 31517055 PMCID: PMC6726447 DOI: 10.1126/sciadv.aax3567] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/29/2019] [Indexed: 05/02/2023]
Abstract
Adenoviruses are clinically important agents. They cause respiratory distress, gastroenteritis, and epidemic keratoconjunctivitis. As non-enveloped, double-stranded DNA viruses, they are easily manipulated, making them popular vectors for therapeutic applications, including vaccines. Species D adenovirus type 26 (HAdV-D26) is both a cause of EKC and other diseases and a promising vaccine vector. HAdV-D26-derived vaccines are under investigation as protective platforms against HIV, Zika, and respiratory syncytial virus infections and are in phase 3 clinical trials for Ebola. We recently demonstrated that HAdV-D26 does not use CD46 or Desmoglein-2 as entry receptors, while the putative interaction with coxsackie and adenovirus receptor is low affinity and unlikely to represent the primary cell receptor. Here, we establish sialic acid as a primary entry receptor used by HAdV-D26. We demonstrate that removal of cell surface sialic acid inhibits HAdV-D26 infection, and provide a high-resolution crystal structure of HAdV-D26 fiber-knob in complex with sialic acid.
Collapse
Affiliation(s)
- Alexander T. Baker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Rosie M. Mundy
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - James A. Davies
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Pierre J. Rizkallah
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
15
|
Civljak R, Tot T, Falsey AR, Huljev E, Vranes J, Ljubin-Sternak S. Viral pathogens associated with acute respiratory illness in hospitalized adults and elderly from Zagreb, Croatia, 2016 to 2018. J Med Virol 2019; 91:1202-1209. [PMID: 30801727 PMCID: PMC7166480 DOI: 10.1002/jmv.25437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 11/22/2022]
Abstract
Aims To investigate the viral etiology of acute respiratory infection (ARI) in hospitalized adults and elderly patients in Croatia, compare the prevalence of detected viruses, and to determine clinical characteristics and seasonal occurrence of investigated infections. Methods From January 2016 to June 2018, a total of 182 adult patients presented with symptoms of ARI and admitted to the hospital were tested for 15 respiratory viruses by multiplex reverse‐transcription polymerase chain reaction. Clinical data were collected by retrospective analysis of the patient's chart. Results A virus was identified in 106 (58.5%) of the patients. The most commonly detected virus was influenza virus (41.5%), followed by respiratory syncytial virus (13.8%), human metapneumovirus (13.0%), parainfluenza viruses (12.2%), rhinoviruses (11.4%), adenovirus and coronaviruses with equal frequencies (3.3%), and enterovirus (1.6%). The serum level of C‐reactive protein and white blood cell count were significantly lower in patients with respiratory viruses identified when compared with those in whom no virus was detected (P < 0.001 and
P = 0.007, respectively). There were no differences in clinical symptoms according to the type of the detected virus, except for more frequent illness exposure recall for influenza infection (
P = 0.010). Influenza, parainfluenza, and pneumoviruses were detected mostly in winter months, while rhinoviruses in autumn and spring. Conclusions In addition to influenza, pneumoviruses, rhinoviruses, and parainfluenza viruses play an important role in etiology of ARIs in adults. Fast and accurate laboratory diagnosis for respiratory viruses in routine practice is needed for clinicians optimally manage patients with ARI and potentially avoid the unnecessary use of antimicrobial drugs.
Collapse
Affiliation(s)
- Rok Civljak
- Department of Respiratory Tract Infections, Dr Fran Mihaljevic University Hospital for Infectious Diseases, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tatjana Tot
- Department of Microbiology, General Hospital Karlovac, Karlovac, Croatia
| | - Ann R Falsey
- Department of Medicine, Rochester General Hospital and University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Eva Huljev
- Department of Respiratory Tract Infections, Dr Fran Mihaljevic University Hospital for Infectious Diseases, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jasmina Vranes
- Department of Clinical Microbiology, Dr Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia.,Department of Medical Microbiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Suncanica Ljubin-Sternak
- Department of Clinical Microbiology, Dr Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia.,Department of Medical Microbiology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|