1
|
Chatterjee D, Kurup D, Smeyne RJ. Environmental exposures and familial background alter the induction of neuropathology and inflammation after SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626375. [PMID: 39677638 PMCID: PMC11642758 DOI: 10.1101/2024.12.02.626375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Basal ganglia disease has been reported as a post-infection sequela of several viruses, with documentation of this phenomenon from the H1N1 Spanish flu to the recent COVID-19 (SARS-CoV-2) pandemic. SARS-CoV-2 infection leads to multisystem deficits, including those affecting the nervous system. Here, we investigated whether a SARS-CoV-2 infection alone increases the susceptibility to develop parkinsonian phenotypes in C57BL/6J mice expressing the human ACE2 receptor, or in addition to two well-known toxin exposures, MPTP and paraquat. Additionally, we examined mice carrying a G2019S mutation in the LRRK2 gene. We also examined if vaccination with either an mRNA- or protein-based vaccine can alter any observed neuropathology. We find that the infection with the WA-1/2020 (alpha) or omicron B1.1.529 strains in ACE2 and G2019S LRRK2 mice both synergize with a subtoxic exposure to the mitochondrial toxin MPTP to induce neurodegeneration and neuroinflammation in the substantia nigra. This synergy appears toxin-dependent since we do not observe this following exposure to the direct redox-inducing compound paraquat. This synergistic neurodegeneration and neuroinflammation is rescued in WT mice that were vaccinated using either mRNA- and protein- based vaccines directed against the Spike protein of the SARS-CoV-2 virus. However, in the G2019S LRRK2 mutant mice, we find that only the protein-based vaccine but not the mRNA- based vaccine resulted in a rescue of the SARS-CoV-2 mediated neuropathology. Taken together, our results highlight the role of both environmental exposures and familial background on the development of parkinsonian pathology secondary to viral infection and the benefit of vaccines in reducing these risks.
Collapse
|
2
|
Pawlik MT, Rinneberg G, Koch A, Meyringer H, Loew TH, Kjellberg A. Is there a rationale for hyperbaric oxygen therapy in the patients with Post COVID syndrome? : A critical review. Eur Arch Psychiatry Clin Neurosci 2024; 274:1797-1817. [PMID: 39545965 PMCID: PMC11579208 DOI: 10.1007/s00406-024-01911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
The SARS-CoV-2 pandemic has resulted in 762 million infections worldwide from 2020 to date, of which approximately ten percent are suffering from the effects after infection in 2019 (COVID-19) [1, 40]. In Germany, it is now assumed that at least one million people suffer from post-COVID condition with long-term consequences. These have been previously reported in diseases like Myalgic Encephalomyelitis (ME) and Chronic Fatigue Syndrome (CFS). Symptoms show a changing variability and recent surveys in the COVID context indicate that 10-30 % of outpatients, 50 to 70% of hospitalised patients suffer from sequelae. Recent data suggest that only 13% of all ill people were completely free of symptoms after recovery [3, 9]. Current hypotheses consider chronic inflammation, mitochondrial dysfunction, latent viral persistence, autoimmunity, changes of the human microbiome or multilocular sequelae in various organ system after infection. Hyperbaric oxygen therapy (HBOT) is applied since 1957 for heart surgery, scuba dive accidents, CO intoxication, air embolisms and infections with anaerobic pathogens. Under hyperbaric pressure, oxygen is physically dissolved in the blood in higher concentrations and reaches levels four times higher than under normobaric oxygen application. Moreover, the alternation of hyperoxia and normoxia induces a variety of processes at the cellular level, which improves oxygen supply in areas of locoregional hypoxia. Numerous target gene effects on new vessel formation, anti-inflammatory and anti-oedematous effects have been demonstrated [74]. The provision of intermittently high, local oxygen concentrations increases repair and regeneration processes and normalises the predominance of hyperinflammation. At present time only one prospective, randomized and placebo-controlled study exists with positive effects on global cognitive function, attention and executive function, psychiatric symptoms and pain interference. In conclusion, up to this date HBO is the only scientifically proven treatment in a prospective randomized controlled trial to be effective for cognitive improvement, regeneration of brain network and improvement of cardiac function. HBOT may have not only theoretical but also potential impact on targets of current pathophysiology of Post COVID condition, which warrants further scientific studies in patients.
Collapse
Affiliation(s)
- M T Pawlik
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany.
- Institute of Experimental Medicine, Christian-Albrechts-University of Kiel c/o German Naval Medical Institute, Kronshagen, Germany.
| | - G Rinneberg
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany
| | - A Koch
- Institute of Experimental Medicine, Christian-Albrechts-University of Kiel c/o German Naval Medical Institute, Kronshagen, Germany
| | - H Meyringer
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany
| | - T H Loew
- Department of Psychosomatic Medicine, University Hospital Regensburg, Regensburg, Germany
| | - A Kjellberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Perioperative Medicine and Intensive Care, Medical Unit Intensive Care and Thoracic surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Leekha A, Saeedi A, Sefat KMSR, Kumar M, Martinez-Paniagua M, Damian A, Kulkarni R, Reichel K, Rezvan A, Masoumi S, Liu X, Cooper LJN, Sebastian M, Sands CM, Das VE, Patel NB, Hurst B, Varadarajan N. Multi-antigen intranasal vaccine protects against challenge with sarbecoviruses and prevents transmission in hamsters. Nat Commun 2024; 15:6193. [PMID: 39043645 PMCID: PMC11266618 DOI: 10.1038/s41467-024-50133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
Immunization programs against SARS-CoV-2 with commercial intramuscular vaccines prevent disease but are less efficient in preventing infections. Mucosal vaccines can provide improved protection against transmission, ideally for different variants of concern (VOCs) and related sarbecoviruses. Here, we report a multi-antigen, intranasal vaccine, NanoSTING-SN (NanoSTING-Spike-Nucleocapsid), eliminates virus replication in both the lungs and the nostrils upon challenge with the pathogenic SARS-CoV-2 Delta VOC. We further demonstrate that NanoSTING-SN prevents transmission of the SARS-CoV-2 Omicron VOC (BA.5) to vaccine-naïve hamsters. To evaluate protection against other sarbecoviruses, we immunized mice with NanoSTING-SN. We showed that immunization affords protection against SARS-CoV, leading to protection from weight loss and 100% survival in mice. In non-human primates, animals immunized with NanoSTING-SN show durable serum IgG responses (6 months) and nasal wash IgA responses cross-reactive to SARS-CoV-2 (XBB1.5), SARS-CoV and MERS-CoV antigens. These observations have two implications: (1) mucosal multi-antigen vaccines present a pathway to reducing transmission of respiratory viruses, and (2) eliciting immunity against multiple antigens can be advantageous in engineering pan-sarbecovirus vaccines.
Collapse
Affiliation(s)
- Ankita Leekha
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Arash Saeedi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - K M Samiur Rahman Sefat
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Monish Kumar
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Melisa Martinez-Paniagua
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Adrian Damian
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Rohan Kulkarni
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Kate Reichel
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Ali Rezvan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Shalaleh Masoumi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | | | | | | | - Vallabh E Das
- College of Optometry, University of Houston, Houston, TX, USA
| | - Nimesh B Patel
- College of Optometry, University of Houston, Houston, TX, USA
| | - Brett Hurst
- Institute of Antiviral Research, Utah State University, UT, Logan, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
4
|
Oliveira KB, de Souza FMA, de Sá LBM, Pacheco ALD, Prado MR, de Sousa Rodrigues CF, Bassi ÊJ, Santana-Melo I, Silva-Júnior A, Sabino-Silva R, Shetty AK, de Castro OW. Potential Mechanisms Underlying COVID-19-Mediated Central and Peripheral Demyelination: Roles of the RAAS and ADAM-17. Mol Neurobiol 2024:10.1007/s12035-024-04329-8. [PMID: 38965171 DOI: 10.1007/s12035-024-04329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Demyelination is among the most conspicuous neurological sequelae of SARS-CoV-2 infection (COVID-19) in both the central (CNS) and peripheral (PNS) nervous systems. Several hypotheses have been proposed to explain the mechanisms underlying demyelination in COVID-19. However, none have considered the SARS-CoV-2's effects on the renin-angiotensin-aldosterone system (RAAS). Therefore, our objective in this review is to evaluate how RAAS imbalance, caused by direct and indirect effects of SARS-CoV-2 infection, could contribute to myelin loss in the PNS and CNS. In the PNS, we propose that demyelination transpires from two significant changes induced by SARS-CoV-2 infection, which include upregulation of ADAM-17 and induction of lymphopenia. Whereas, in the CNS, demyelination could result from RAAS imbalance triggering two alterations: (1) a decrease in angiotensin type II receptor (AT2R) activity, responsible for restraining defense cells' action on myelin; (2) upregulation of ADAM-17 activity, leading to impaired maturation of oligodendrocytes and myelin formation. Thus, we hypothesize that increased ADAM-17 activity and decreased AT2R activity play roles in SARS-CoV-2 infection-mediated demyelination in the CNS.
Collapse
Affiliation(s)
- Kellysson Bruno Oliveira
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Fernanda Maria Araujo de Souza
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Letícia Barros Maurício de Sá
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Amanda Larissa Dias Pacheco
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Mariana Reis Prado
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Célio Fernando de Sousa Rodrigues
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Ênio José Bassi
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Igor Santana-Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Abelardo Silva-Júnior
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA.
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, 77843, USA.
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil.
| |
Collapse
|
5
|
Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Alexiou A, Batiha GES. The Potential Effect of Dapsone on the Inflammatory Reactions in COVID-19: Staggering View. Comb Chem High Throughput Screen 2024; 27:674-678. [PMID: 36999691 DOI: 10.2174/1386207326666230331121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
Severe SARS-CoV-2 infection is linked with an overstated immune response with the succeeding release of pro-inflammatory cytokines and progression of the cytokine storm. In addition, severe SARS-CoV-2 infection is associated with the development of oxidative stress and coagulopathy. Dapsone (DPS) is a bacteriostatic antibiotic that has a potent anti-inflammatory effect. Thus, this mini-review aimed to elucidate the potential role of DPS in mitigating inflammatory disorders in COVID-19 patients. DPS inhibits neutrophil myeloperoxidase, inflammation, and neutrophil chemotaxis. Therefore, DPS could be effective against neutrophilia-induced complications in COVID-19. In addition, DPS could be effective in mitigating inflammatory and oxidative stress disorders by suppressing the expression of inflammatory signaling pathways and the generation of reactive oxygen species (ROS) correspondingly. In conclusion, DPS might be effective in the management of COVID-19 through the attenuation of inflammatory disorders. Therefore, preclinical and clinical studies are reasonable in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Wien, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
6
|
Ha EK, Kim JH, Han MY. Long COVID in children and adolescents: prevalence, clinical manifestations, and management strategies. Clin Exp Pediatr 2023; 66:465-474. [PMID: 37350170 PMCID: PMC10626026 DOI: 10.3345/cep.2023.00472] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/09/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
Long coronavirus disease (COVID), also known as postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection, has been defined as signs and symptoms which persist for 4 weeks or even lasting for 6 months after the initial infection. Although the prevalence of long COVID in children is currently unknown, epidemiological investigations have reported cases in pediatric populations. Clinical manifestations of long COVID in children include respiratory symptoms, such as cough and dyspnea, as well as neuropsychiatric and general conditions, including fatigue, headache, and muscle weakness. The pathophysiology of long COVID in children is still being investigated, but potential mechanisms include viral persistence, autoimmunity, and neuroinflammation. Risk factors for long COVID in children are not yet well understood, but studies have suggested that children with a history of severe acute COVID-19 infection or comorbidities may be at increased risk. Evaluation for respiratory symptoms of long COVID in children is essential, including spirometry and imaging studies to assess lung function and any potential damage. Furthermore, long COVID in children has been associated with a higher prevalence of mental health problems than in adults, emphasizing the importance of monitoring and addressing these aspects in pediatric patients. Although our understanding of long COVID in children and adolescents is still evolving, it is clear that the condition can have significant impacts on their health and well-being. The aim of this review is to synthesize the current knowledge on the prevalence, risk factors, and pathophysiology of long COVID in children and adolescents, and to discuss potential management strategies based on existing evidence.
Collapse
Affiliation(s)
- Eun Kyo Ha
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Ju Hee Kim
- Department of Pediatrics, Kyung Hee University Medical Center, Seoul, Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
7
|
Ahmadi S, Khaledi S. Brain Renin-Angiotensin System: From Physiology to Pathology in Neuronal Complications Induced by SARS-CoV-2. Anal Cell Pathol (Amst) 2023; 2023:8883492. [PMID: 37575318 PMCID: PMC10421715 DOI: 10.1155/2023/8883492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/26/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), a key enzyme in the renin-angiotensin system (RAS), is expressed in various tissues and organs, including the central nervous system (CNS). The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease-2019 (COVID-19), binds to ACE2, which raises concerns about the potential for viral infection in the CNS. There are numerous reports suggesting a link between SARS-CoV-2 infection and neurological manifestations. This study aimed to present an updated review of the role of brain RAS components, especially ACE2, in neurological complications induced by SARS-CoV-2 infection. Several routes of SARS-CoV-2 entry into the brain have been proposed. Because an anosmia condition appeared broadly in COVID-19 patients, the olfactory nerve route was suggested as an early pathway for SARS-CoV-2 entry into the brain. In addition, a hematogenous route via disintegrations in the blood-brain barrier following an increase in systemic cytokine and chemokine levels and retrograde axonal transport, especially via the vagus nerve innervating lungs, have been described. Common nonspecific neurological symptoms in COVID-19 patients are myalgia, headache, anosmia, and dysgeusia. However, more severe outcomes include cerebrovascular diseases, cognitive impairment, anxiety, encephalopathy, and stroke. Alterations in brain RAS components such as angiotensin II (Ang II) and ACE2 mediate neurological manifestations of SARS-CoV-2 infection, at least in part. Downregulation of ACE2 due to SARS-CoV-2 infection, followed by an increase in Ang II levels, leads to hyperinflammation and oxidative stress, which in turn accelerates neurodegeneration in the brain. Furthermore, ACE2 downregulation in the hypothalamus induces stress and anxiety responses by increasing corticotropin-releasing hormone. SARS-CoV-2 infection may also dysregulate the CNS neurotransmission, leading to neurological complications observed in severe cases of COVID-19. It can be concluded that the neurological manifestations of COVID-19 may be partially associated with changes in brain RAS components.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Shiler Khaledi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
8
|
Oliveira KB, de Melo IS, da Silva BRM, Oliveira KLDS, Sabino-Silva R, Anhezini L, Katayama PL, Santos VR, Shetty AK, de Castro OW. SARS-CoV-2 and Hypertension: Evidence Supporting Invasion into the Brain Via Baroreflex Circuitry and the Role of Imbalanced Renin-Angiotensin-Aldosterone-System. Neurosci Insights 2023; 18:26331055231151926. [PMID: 36756280 PMCID: PMC9900164 DOI: 10.1177/26331055231151926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Hypertension is considered one of the most critical risk factors for COVID-19. Evidence suggests that SARS-CoV-2 infection produces intense effects on the cardiovascular system by weakening the wall of large vessels via vasa-vasorum. In this commentary, we propose that SARS-CoV-2 invades carotid and aortic baroreceptors, leading to infection of the nucleus tractus solitari (NTS) and paraventricular hypothalamic nucleus (PVN), and such dysregulation of NTS and PVN following infection causes blood pressure alteration at the central level. We additionally explored the hypothesis that SARS-CoV-2 favors the internalization of membrane ACE2 receptors generating an imbalance of the renin-angiotensin-aldosterone system (RAAS), increasing the activity of angiotensin II (ANG-II), disintegrin, and metalloproteinase 17 domain (ADAM17/TACE), eventually modulating the integration of afferents reaching the NTS from baroreceptors and promoting increased blood pressure. These mechanisms are related to the increased sympathetic activity, which leads to transient or permanent hypertension associated with SARS-CoV-2 invasion, contributing to the high number of deaths by cardiovascular implications.
Collapse
Affiliation(s)
- Kellysson Bruno Oliveira
- Department of Physiology, Institute of
Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió,
Alagoas, Brazil
| | - Igor Santana de Melo
- Department of Physiology, Institute of
Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió,
Alagoas, Brazil
| | - Bianca Rodrigues Melo da Silva
- Department of Physiology, Institute of
Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió,
Alagoas, Brazil
| | - Keylla Lavínia da Silva Oliveira
- Department of Physiology, Institute of
Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió,
Alagoas, Brazil
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of
Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia, Minas
Gerais, Brazil
| | - Lucas Anhezini
- Department of Histology, Institute of
Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas,
Brazil
| | - Pedro Lourenco Katayama
- Department of Physiology and Pathology,
Dentistry School of Araraquara, São Paulo State University, Araraquara, São Paulo,
Brazil
| | - Victor Rodrigues Santos
- Department of Morphology, Institute of
Biological Science, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas
Gerais, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine,
Department of Cell Biology and Genetics, Texas A&M University School of
Medicine, College Station, TX, USA
| | - Olagide Wagner de Castro
- Department of Physiology, Institute of
Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió,
Alagoas, Brazil,Olagide Wagner de Castro, Institute of
Biological Sciences and Health, Federal University of Alagoas (UFAL), Av.
Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió,
Alagoas CEP 57072-970, Brazil.
| |
Collapse
|
9
|
Almasi F, Mohammadipanah F. Neurological manifestations of SARS-CoV-2 infections: towards quantum dots based management approaches. J Drug Target 2023; 31:51-64. [PMID: 35921123 DOI: 10.1080/1061186x.2022.2110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Developing numerous nanotechnological designed tools to monitor the existence of SARS-CoV-2, and modifying its interactions address the global needs for efficient remedies required for the management of COVID-19. Herein, through a multidisciplinary outlook encompassing different fields such as the pathophysiology of SARS-CoV-2, analysis of symptoms, and statistics of neurological complications caused by SARS-CoV-2 infection in the central and peripheral nervous systems have been testified. The anosmia (51.1%) and ageusia (45.5%) are reported the most frequent neurological manifestation. Cerebrovascular disease and encephalopathy were mainly related to severe clinical cases. In addition, we focus especially on the various concerned physiological routes, including BBB dysfunction, which transpired due to SARS-CoV-2 infection, direct and indirect effects of the virus on the brain, and also, the plausible mechanisms of viral entry to the nerve system. We also outline the characterisation, and the ongoing pharmaceutical applications of quantum dots as smart nanocarriers crossing the blood-brain barrier and their importance in neurological diseases, mainly SARS-CoV-2 related manifestations Moreover, the market status, six clinical trials recruiting quantum dots, and the challenges limiting the clinical application of QDs are highlighted.
Collapse
Affiliation(s)
- Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques. Protein Cell 2022; 13:920-939. [PMID: 35377064 PMCID: PMC8978510 DOI: 10.1007/s13238-022-00915-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 infection causes complicated clinical manifestations with variable multi-organ injuries, however, the underlying mechanism, in particular immune responses in different organs, remains elusive. In this study, comprehensive transcriptomic alterations of 14 tissues from rhesus macaque infected with SARS-CoV-2 were analyzed. Compared to normal controls, SARS-CoV-2 infection resulted in dysregulation of genes involving diverse functions in various examined tissues/organs, with drastic transcriptomic changes in cerebral cortex and right ventricle. Intriguingly, cerebral cortex exhibited a hyperinflammatory state evidenced by significant upregulation of inflammation response-related genes. Meanwhile, expressions of coagulation, angiogenesis and fibrosis factors were also up-regulated in cerebral cortex. Based on our findings, neuropilin 1 (NRP1), a receptor of SARS-CoV-2, was significantly elevated in cerebral cortex post infection, accompanied by active immune response releasing inflammatory factors and signal transmission among tissues, which enhanced infection of the central nervous system (CNS) in a positive feedback way, leading to viral encephalitis. Overall, our study depicts a multi-tissue/organ transcriptomic landscapes of rhesus macaque with early infection of SARS-CoV-2, and provides important insights into the mechanistic basis for COVID-19-associated clinical complications.
Collapse
|
11
|
Mossadeq S, Shah R, Shah V, Bagul M. Formulation, Device, and Clinical Factors Influencing the Targeted Delivery of COVID-19 Vaccines to the Lungs. AAPS PharmSciTech 2022; 24:2. [PMID: 36416999 PMCID: PMC9684852 DOI: 10.1208/s12249-022-02455-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic has proven to be an unprecedented health crisis in the human history with more than 5 million deaths worldwide caused to the SARS-CoV-2 and its variants ( https://www.who.int/emergencies/diseases/novel-coronavirus-2019 ). The currently authorized lipid nanoparticle (LNP)-encapsulated mRNA vaccines have been shown to have more than 90% vaccine efficacy at preventing COVID-19 illness (Baden et al. New England J Med 384(5):403-416, 2021; Thomas et al., 2021). In addition to vaccines, other small molecules belonging to the class of anti-viral and anti-inflammatory compounds have also been prescribed to reduce the viral proliferation and the associated cytokine storm. These anti-viral and anti-inflammatory compounds have also been shown to be effective in reducing COVID-19 exacerbations especially in reducing the host inflammatory response to SARS-CoV-2. However, all of the currently FDA-authorized vaccines for COVID-19 are meant for intramuscular injection directly into the systemic circulation. Also, most of the small molecules investigated for their anti-COVID-19 efficacy have also been explored using the intravenous route with a few of them explored for the inhalation route (Ramakrishnan et al. Lancet Respir Med 9:763-772, 2021; Horby et al. N Engl J Med 384(8):693-704, 2021). The fact that the SARS-CoV-2 enters the human body mainly via the nasal and airway route resulting in the lungs being the primary organs of infection as characterized by acute respiratory distress syndrome (ARDS)-mediated cytokine storm in the alveolar region has made the inhalation route gain significant attention for the purposes of targeting both vaccines and small molecules to the lungs (Mitchell et al., J Aerosol Med Pulm Drug Deliv 33(4):235-8, 2020). While there have been many studies reporting the safety and efficacy of targeting various therapeutics to the lungs to treat COVID-19, there is still a need to match the choice of inhalation formulation and the delivery device platform itself with the patient-related factors like breathing pattern and respiratory rate as seen in a clinical setting. In that perspective, this review aims to describe the various formulation and patient-related clinical factors that can play an important role in the judicious choice of the inhalation delivery platforms or devices for the development of inhaled COVID-19 vaccines.
Collapse
Affiliation(s)
- Sayeed Mossadeq
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA.
| | - Rajen Shah
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA
| | - Viraj Shah
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA
| | - Milind Bagul
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA
| |
Collapse
|
12
|
DePace NL, Colombo J. Long-COVID Syndrome and the Cardiovascular System: A Review of Neurocardiologic Effects on Multiple Systems. Curr Cardiol Rep 2022; 24:1711-1726. [PMID: 36178611 PMCID: PMC9524329 DOI: 10.1007/s11886-022-01786-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Long-COVID syndrome is a multi-organ disorder that persists beyond 12 weeks post-acute SARS-CoV-2 infection (COVID-19). Here, we provide a definition for this syndrome and discuss neuro-cardiology involvement due to the effects of (1) angiotensin-converting enzyme 2 receptors (the entry points for the virus), (2) inflammation, and (3) oxidative stress (the resultant effects of the virus). RECENT FINDINGS These effects may produce a spectrum of cardio-neuro effects (e.g., myocardial injury, primary arrhythmia, and cardiac symptoms due to autonomic dysfunction) which may affect all systems of the body. We discuss the symptoms and suggest therapies that target the underlying autonomic dysfunction to relieve the symptoms rather than merely treating symptoms. In addition to treating the autonomic dysfunction, the therapy also treats chronic inflammation and oxidative stress. Together with a full noninvasive cardiac workup, a full assessment of the autonomic nervous system, specifying parasympathetic and sympathetic (P&S) activity, both at rest and in response to challenges, is recommended. Cardiac symptoms must be treated directly. Cardiac treatment is often facilitated by treating the P&S dysfunction. Cardiac symptoms of dyspnea, chest pain, and palpitations, for example, need to be assessed objectively to differentiate cardiac from neural (autonomic) etiology. Long-term myocardial injury commonly involves P&S dysfunction. P&S assessment usually connects symptoms of Long-COVID to the documented autonomic dysfunction(s).
Collapse
Affiliation(s)
- Nicholas L. DePace
- Franklin Cardiovascular Associates, PA – Autonomic Dysfunction and POTS Center, Sicklerville, NJ USA
- Pennsylvania Hospital of the University of Pennsylvania Health System, Philadelphia, PA USA
- Neuro-Cardiology Research Corporation, LLC, Wilmington, DE USA
| | - Joe Colombo
- Franklin Cardiovascular Associates, PA – Autonomic Dysfunction and POTS Center, Sicklerville, NJ USA
- Neuro-Cardiology Research Corporation, LLC, Wilmington, DE USA
- CTO and Sr. Medical Director, Physio PS, Inc, Atlanta, GA USA
| |
Collapse
|
13
|
Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Batiha GES. Central Effects of Ivermectin in Alleviation of Covid-19-induced Dysauto-nomia. Curr Drug Targets 2022; 23:1277-1287. [PMID: 35950254 DOI: 10.2174/1389450123666220810102406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023]
Abstract
Covid-19 may be associated with various neurological disorders, including dysautonomia, a dysfunction of the autonomic nervous system (ANS). In Covid-19, hypoxia, immunoinflammatory abnormality, and deregulation of the renin-angiotensin system (RAS) may increase sympathetic discharge with dysautonomia development. Direct SARS-CoV-2 cytopathic effects and associated inflammatory reaction may lead to neuroinflammation, affecting different parts of the central nervous system (CNS), including the autonomic center in the hypothalamus, causing dysautonomia. High circulating AngII, hypoxia, oxidative stress, high pro-inflammatory cytokines, and emotional stress can also provoke autonomic deregulation and high sympathetic outflow with the development of the sympathetic storm. During SARS-CoV-2 infection with neuro-invasion, GABA-ergic neurons and nicotinic acetylcholine receptor (nAChR) are inhibited in the hypothalamic pre-sympathetic neurons leading to sympathetic storm and dysautonomia. Different therapeutic modalities are applied to treat SARS-CoV-2 infection, like antiviral and anti-inflammatory drugs. Ivermectin (IVM) is a robust repurposed drug widely used to prevent and manage mild-moderate Covid-19. IVM activates both GABA-ergic neurons and nAChRs to mitigate SARS-CoV-2 infection- induced dysautonomia. Therefore, in this brief report, we try to identify the potential role of IVM in managing Covid-19-induced dysautonomia.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyiah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyiah University, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.,AFNP Med, Wien, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
14
|
Méndez-García LA, Escobedo G, Minguer-Uribe AG, Viurcos-Sanabria R, Aguayo-Guerrero JA, Carrillo-Ruiz JD, Solleiro-Villavicencio H. Role of the renin-angiotensin system in the development of COVID-19-associated neurological manifestations. Front Cell Neurosci 2022; 16:977039. [PMID: 36187294 PMCID: PMC9523599 DOI: 10.3389/fncel.2022.977039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2 causes COVID-19, which has claimed millions of lives. This virus can infect various cells and tissues, including the brain, for which numerous neurological symptoms have been reported, ranging from mild and non-life-threatening (e.g., headaches, anosmia, dysgeusia, and disorientation) to severe and life-threatening symptoms (e.g., meningitis, ischemic stroke, and cerebral thrombosis). The cellular receptor for SARS-CoV-2 is angiotensin-converting enzyme 2 (ACE2), an enzyme that belongs to the renin-angiotensin system (RAS). RAS is an endocrine system that has been classically associated with regulating blood pressure and fluid and electrolyte balance; however, it is also involved in promoting inflammation, proliferation, fibrogenesis, and lipogenesis. Two pathways constitute the RAS with counter-balancing effects, which is the key to its regulation. The first axis (classical) is composed of angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and angiotensin type 1 receptor (AT1R) as the main effector, which -when activated- increases the production of aldosterone and antidiuretic hormone, sympathetic nervous system tone, blood pressure, vasoconstriction, fibrosis, inflammation, and reactive oxygen species (ROS) production. Both systemic and local classical RAS' within the brain are associated with cognitive impairment, cell death, and inflammation. The second axis (non-classical or alternative) includes ACE2, which converts Ang II to Ang-(1-7), a peptide molecule that activates Mas receptor (MasR) in charge of opposing Ang II/AT1R actions. Thus, the alternative RAS axis enhances cognition, synaptic remodeling, cell survival, cell signal transmission, and antioxidant/anti-inflammatory mechanisms in the brain. In a physiological state, both RAS axes remain balanced. However, some factors can dysregulate systemic and local RAS arms. The binding of SARS-CoV-2 to ACE2 causes the internalization and degradation of this enzyme, reducing its activity, and disrupting the balance of systemic and local RAS, which partially explain the appearance of some of the neurological symptoms associated with COVID-19. Therefore, this review aims to analyze the role of RAS in the development of the neurological effects due to SARS-CoV-2 infection. Moreover, we will discuss the RAS-molecular targets that could be used for therapeutic purposes to treat the short and long-term neurological COVID-19-related sequelae.
Collapse
Affiliation(s)
- Lucía A. Méndez-García
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
| | - Alan Gerardo Minguer-Uribe
- Laboratory of Molecular Neuropathology, Cellular Physiology Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Rebeca Viurcos-Sanabria
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
- PECEM, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - José A. Aguayo-Guerrero
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
| | - José Damián Carrillo-Ruiz
- Research Directorate, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
- Department of Neurology and Neurosurgery, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Huixquilucan, Mexico
| | | |
Collapse
|
15
|
Analysis of the Relationship among Cognitive Impairment, Nutritional Indexes and the Clinical Course among COVID-19 Patients Discharged from Hospital—Preliminary Report. Nutrients 2022; 14:nu14081580. [PMID: 35458142 PMCID: PMC9033019 DOI: 10.3390/nu14081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Numerous data indicate the presence of cognitive impairment in people who have undergone COVID-19, often called COVID Fog (CF). This phenomenon persists even 6 months after infection, and its etiology and pathogenesis are not fully known. The aim of this article was to analyze the relationship among cognitive functioning, clinical data and nutrition indexes in patients discharged from the COVID-19 hospital of the Military Institute of Medicine, Warsaw, Poland. The sample comprised 17 individuals—10 women and 7 men, with ages of 65 ± 14 years. Cognitive impairment was measured with the use of the Montreal Cognitive Assessment (MoCA). The nutrition parameters included: hemoglobin, red blood cells, total cholesterol and its fractions, triglycerides, total protein, albumin, urea, creatinine, phosphates, calcium and sodium. The analysis showed that albumin concentration significantly correlated with the total MoCA score and especially with the short-term memory test score. Conversely, total cholesterol, and especially LDL concentrations, were highly and negatively associated with the MoCA score. In conclusion: markers of nutritional status are correlated with the severity of CF. Individuals with malnutrition or risk of malnutrition should be screened for CF. Further studies need to be performed in this area.
Collapse
|
16
|
Cortes-Altamirano JL, Yáñes-Pizaña A, Reyes-Long S, Angélica GM, Bandala C, Bonilla-Jaime H, Alfaro-Rodríguez A. Potential Neuroprotective Effect of Cannabinoids in Covid-19 Patients. Curr Top Med Chem 2022; 22:1326-1345. [PMID: 35382723 DOI: 10.2174/1568026622666220405143003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
The global pandemic caused by the SARS-CoV-2 virus began in early 2020 and is still present. The respiratory symptoms caused by COVID-19 are well established, however, neurological manifestations that may result from direct or indirect neurological damage after SARS-CoV-2 infection have been reported frequently. The main proposed pathophysiological processes leading to neurological damage in COVID-19 are cerebrovascular disease, and indirect mechanisms of inflammatory / autoimmune origin. A growing number of studies confirm that neuroprotective measures should be maintained in COVID-19 patients. On the other hand, cannabinoids have been the subject of various studies that propose them as potential promising drugs in chronic neurodegenerative diseases due to their powerful neuroprotective potential. In this review we address the possible mechanism of action of cannabinoids as a neuroprotective treatment in patients infected by SARS-CoV-2. The endocannabinoid system is found in multiple systems within the body, including the immune system. Its activation can lead to beneficial results, such as a decrease in viral entry, a decrease in viral replication, and a decrease in pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α or IFN-c through CB2R expression induced during inflammation by SARS-CoV-2 infection in the central nervous system.
Collapse
Affiliation(s)
- José Luis Cortes-Altamirano
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Departamento de Quiropráctica, Universidad Estatal del Valle de Ecatepec, Estado de Mexico, 55210, Mexico
| | - Ariadna Yáñes-Pizaña
- Escuela de Ciencias de la Salud, Medicina Veterinaria y Zootecnia, Universidad del Valle de Mexico, Mexico City, 04910, México.,Escuela de Medicina Veterinaria y Zootecnia en Pequeñas Especies, Federación Canofila Mexicana, Mexico City, 14430, México
| | - Samuel Reyes-Long
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 07738, México
| | - González-Maciel Angélica
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela de Medicina Veterinaria y Zootecnia en Pequeñas Especies, Federación Canofila Mexicana, Mexico City, 14430, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la reproducción, Universidad Autónoma Metropolitana, Mexico City, 09340, Mexico
| | - Alfonso Alfaro-Rodríguez
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico
| |
Collapse
|
17
|
Al-Kuraishy HM, Al-Gareeb AI, Qusti S, Alshammari EM, Gyebi GA, Batiha GES. Covid-19-Induced Dysautonomia: A Menace of Sympathetic Storm. ASN Neuro 2021; 13:17590914211057635. [PMID: 34755562 PMCID: PMC8586167 DOI: 10.1177/17590914211057635] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Among the plethora of debilitating neurological disorders of COVID-19 syndrome in survivors, the scope of SARS-CoV-2-induced dysautonomia (DNS) is yet to be understood, though the implications are enormous. Herein, we present an inclusive mini-review of SARS-CoV-2-induced DNS and its associated complications. Although, the direct link between Covid-19 and DSN is still speculative, the hypothetical links are thought to be either a direct neuronal injury of the autonomic pathway or a para/post-infectious immune-induced mechanism. SARS-CoV-2 infection-induced stress may activate the sympathetic nervous system (SNS) leading to neuro-hormonal stimulation and activation of pro-inflammatory cytokines with further development of sympathetic storm. Sympathetic over-activation in Covid-19 is correlated with increase in capillary pulmonary leakage, alveolar damage, and development of acute respiratory distress syndrome. Furthermore, SARS-CoV-2 can spread through pulmonary mechanoreceptors and chemoreceptors to medullary respiratory center in a retrograde manner resulting in sudden respiratory failure. Taken together, DSN in Covid-19 is developed due to sympathetic storm and inhibition of Parasympathetic nervous system-mediated anti-inflammatory effect with development of cytokine storm. Therefore, sympathetic and cytokine storms together with activation of Renin-Angiotensin-System are the chief final pathway involved in the development of DSN in Covid-19.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Almustansiriyia University
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Almustansiriyia University
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Gideon Ampoma Gyebi
- Department of Biochemistry, 236312Faculty of Science and Technology Bingham University, Karu, Nasarawa, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, 289643Damanhour University, AlBeheira, Egypt
| |
Collapse
|
18
|
Groppa SA, Ciolac D, Duarte C, Garcia C, Gasnaș D, Leahu P, Efremova D, Gasnaș A, Bălănuță T, Mîrzac D, Movila A. Molecular Mechanisms of SARS-CoV-2/COVID-19 Pathogenicity on the Central Nervous System: Bridging Experimental Probes to Clinical Evidence and Therapeutic Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:1-27. [PMID: 34735712 DOI: 10.1007/5584_2021_675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has dramatically impacted the global healthcare systems, constantly challenging both research and clinical practice. Although it was initially believed that the SARS-CoV-2 infection is limited merely to the respiratory system, emerging evidence indicates that COVID-19 affects multiple other systems including the central nervous system (CNS). Furthermore, most of the published clinical studies indicate that the confirmed CNS inflammatory manifestations in COVID-19 patients are meningitis, encephalitis, acute necrotizing encephalopathy, acute transverse myelitis, and acute disseminated encephalomyelitis. In addition, the neuroinflammation along with accelerated neurosenescence and susceptible genetic signatures in COVID-19 patients might prime the CNS to neurodegeneration and precipitate the occurrence of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. Thus, this review provides a critical evaluation and interpretive analysis of existing published preclinical as well as clinical studies on the key molecular mechanisms modulating neuroinflammation and neurodegeneration induced by the SARS-CoV-2. In addition, the essential age- and gender-dependent impacts of SARS-CoV-2 on the CNS of COVID-19 patients are also discussed.
Collapse
Affiliation(s)
- Stanislav A Groppa
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Dumitru Ciolac
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Carolina Duarte
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Christopher Garcia
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Daniela Gasnaș
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Pavel Leahu
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Daniela Efremova
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Alexandru Gasnaș
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Tatiana Bălănuță
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Daniela Mîrzac
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Alexandru Movila
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Institute of Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
19
|
Piontkivska H, Wales-McGrath B, Miyamoto M, Wayne ML. ADAR Editing in Viruses: An Evolutionary Force to Reckon with. Genome Biol Evol 2021; 13:evab240. [PMID: 34694399 PMCID: PMC8586724 DOI: 10.1093/gbe/evab240] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine Deaminases that Act on RNA (ADARs) are RNA editing enzymes that play a dynamic and nuanced role in regulating transcriptome and proteome diversity. This editing can be highly selective, affecting a specific site within a transcript, or nonselective, resulting in hyperediting. ADAR editing is important for regulating neural functions and autoimmunity, and has a key role in the innate immune response to viral infections, where editing can have a range of pro- or antiviral effects and can contribute to viral evolution. Here we examine the role of ADAR editing across a broad range of viral groups. We propose that the effect of ADAR editing on viral replication, whether pro- or antiviral, is better viewed as an axis rather than a binary, and that the specific position of a given virus on this axis is highly dependent on virus- and host-specific factors, and can change over the course of infection. However, more research needs to be devoted to understanding these dynamic factors and how they affect virus-ADAR interactions and viral evolution. Another area that warrants significant attention is the effect of virus-ADAR interactions on host-ADAR interactions, particularly in light of the crucial role of ADAR in regulating neural functions. Answering these questions will be essential to developing our understanding of the relationship between ADAR editing and viral infection. In turn, this will further our understanding of the effects of viruses such as SARS-CoV-2, as well as many others, and thereby influence our approach to treating these deadly diseases.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences, Kent State University, Ohio, USA
- School of Biomedical Sciences, Kent State University, Ohio, USA
- Brain Health Research Institute, Kent State University, Ohio, USA
| | | | - Michael Miyamoto
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Marta L Wayne
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Landtblom A, Berntsson SG, Boström I, Iacobaeus E. Multiple sclerosis and COVID-19: The Swedish experience. Acta Neurol Scand 2021; 144:229-235. [PMID: 34028810 PMCID: PMC8222873 DOI: 10.1111/ane.13453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic has brought challenges for healthcare management of patients with multiple sclerosis (MS). Concerns regarding vulnerability to infections and disease-modifying therapies (DMTs) and their complications have been raised. Recent published guidelines on the use of DMTs in relation to COVID-19 in MS patients have been diverse between countries with lack of evidence-based facts. In Sweden, there exists a particular interest in anti-CD20 therapy as a possible risk factor for severe COVID-19 due to the large number of rituximab-treated patients off-label in the country. Rapid responses from the Swedish MS Association (SMSS) and the Swedish MS registry (SMSreg) have resulted in national guidelines on DMT use for MS patients and implementation of a COVID-19 module in the SMSreg. Recently updated guidelines also included recommendations on COVID-19 vaccination with regard to the different DMTs. Social distancing policies forced implementation of telemedicine consultation to replace in-person consultations as part of regular MS health care. Patient-reported outcome measures (PROMs) in SMSreg have been useful in this respect. This paper reports our experiences on the progress of national MS health care during the COVID-19 pandemic, in addition to offering an overview of the present scientific context.
Collapse
Affiliation(s)
- Anne‐Marie Landtblom
- Department of NeuroscienceUppsala UniversityUppsalaSweden
- Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| | | | - Inger Boström
- Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| | - Ellen Iacobaeus
- Department of Clinical NeuroscienceDivision of NeurologyKarolinska Institute and Karolinska University HospitalStockholmSweden
| |
Collapse
|
21
|
Butowt R, Meunier N, Bryche B, von Bartheld CS. The olfactory nerve is not a likely route to brain infection in COVID-19: a critical review of data from humans and animal models. Acta Neuropathol 2021; 141:809-822. [PMID: 33903954 PMCID: PMC8075028 DOI: 10.1007/s00401-021-02314-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022]
Abstract
One of the most frequent symptoms of COVID-19 is the loss of smell and taste. Based on the lack of expression of the virus entry proteins in olfactory receptor neurons, it was originally assumed that the new coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) does not infect olfactory neurons. Recent studies have reported otherwise, opening the possibility that the virus can directly infect the brain by traveling along the olfactory nerve. Multiple animal models have been employed to assess mechanisms and routes of brain infection of SARS-CoV-2, often with conflicting results. We here review the current evidence for an olfactory route to brain infection and conclude that the case for infection of olfactory neurons is weak, based on animal and human studies. Consistent brain infection after SARS-CoV-2 inoculation in mouse models is only seen when the virus entry proteins are expressed abnormally, and the timeline and progression of rare neuro-invasion in these and in other animal models points to alternative routes to the brain, other than along the olfactory projections. COVID-19 patients can be assured that loss of smell does not necessarily mean that the SARS-CoV-2 virus has gained access to and has infected their brains.
Collapse
Affiliation(s)
- Rafal Butowt
- L. Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094, Bydgoszcz, Poland.
| | - Nicolas Meunier
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Bertrand Bryche
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Christopher S von Bartheld
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno, NV, 89557, USA.
| |
Collapse
|
22
|
Costa KCM, Brigante TAV, Fernandes GG, Scomparin DS, Scarante FF, de Oliveira DP, Campos AC. Zebrafish as a Translational Model: An Experimental Alternative to Study the Mechanisms Involved in Anosmia and Possible Neurodegenerative Aspects of COVID-19? eNeuro 2021; 8:ENEURO.0027-21.2021. [PMID: 33952614 PMCID: PMC8174008 DOI: 10.1523/eneuro.0027-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
The Coronavirus disease-2019 (COVID-19) presents a variability of clinical symptoms, ranging from asymptomatic to severe respiratory and systemic conditions. In a cohort of patients, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), beyond the classical respiratory manifestations, induces anosmia. Evidence has suggested SARS-CoV-2-induced anosmia can be the result of neurodegeneration of the olfactory pathway. Neurologic symptoms associated with COVID-19 have been reported; however, the precise mechanism and possible long-lasting effects remain poorly investigated. Preclinical models are valuable tools for describing and testing new possible treatments for neurologic disorders. In this way, the zebrafish (Danio rerio) organism model represents an attractive tool in the field of neuroscience, showing economic and logistic advantages besides genetic and physiologic similarities with mammalian, including the brain structure and functions. Besides, its external embryonic development, high availability of eggs, and fast development allows easy genetic manipulation and fast replications. In the present review, we suggest that the zebrafish model can be advantageous to investigate the neurologic features of COVID-19.
Collapse
Affiliation(s)
- Karla C M Costa
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900,
| | - Tamires A V Brigante
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Gabriel G Fernandes
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Davi S Scomparin
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Franciele F Scarante
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Danielle P de Oliveira
- EcoHumanTox Laboratory, Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, São Paulo, Brazil 14049-900
| | - Alline C Campos
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| |
Collapse
|
23
|
Yong SJ. Persistent Brainstem Dysfunction in Long-COVID: A Hypothesis. ACS Chem Neurosci 2021; 12:573-580. [PMID: 33538586 PMCID: PMC7874499 DOI: 10.1021/acschemneuro.0c00793] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Long-COVID is a postviral illness that can affect survivors of COVID-19, regardless of initial disease severity or age. Symptoms of long-COVID include fatigue, dyspnea, gastrointestinal and cardiac problems, cognitive impairments, myalgia, and others. While the possible causes of long-COVID include long-term tissue damage, viral persistence, and chronic inflammation, the review proposes, perhaps for the first time, that persistent brainstem dysfunction may also be involved. This hypothesis can be split into two parts. The first is the brainstem tropism and damage in COVID-19. As the brainstem has a relatively high expression of ACE2 receptor compared with other brain regions, SARS-CoV-2 may exhibit tropism therein. Evidence also exists that neuropilin-1, a co-receptor of SARS-CoV-2, may be expressed in the brainstem. Indeed, autopsy studies have found SARS-CoV-2 RNA and proteins in the brainstem. The brainstem is also highly prone to damage from pathological immune or vascular activation, which has also been observed in autopsy of COVID-19 cases. The second part concerns functions of the brainstem that overlap with symptoms of long-COVID. The brainstem contains numerous distinct nuclei and subparts that regulate the respiratory, cardiovascular, gastrointestinal, and neurological processes, which can be linked to long-COVID. As neurons do not readily regenerate, brainstem dysfunction may be long-lasting and, thus, is long-COVID. Indeed, brainstem dysfunction has been implicated in other similar disorders, such as chronic pain and migraine and myalgic encephalomyelitis or chronic fatigue syndrome.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological
Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia
| |
Collapse
|
24
|
Reza-Zaldívar EE, Hernández-Sapiéns MA, Minjarez B, Gómez-Pinedo U, Márquez-Aguirre AL, Mateos-Díaz JC, Matias-Guiu J, Canales-Aguirre AA. Infection Mechanism of SARS-COV-2 and Its Implication on the Nervous System. Front Immunol 2021; 11:621735. [PMID: 33584720 PMCID: PMC7878381 DOI: 10.3389/fimmu.2020.621735] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
In late December 2019, multiple atypical pneumonia cases resulted in severe acute respiratory syndrome caused by a pathogen identified as a novel coronavirus SARS-CoV-2. The most common coronavirus disease 2019 (COVID-19) symptoms are pneumonia, fever, dry cough, and fatigue. However, some neurological complications following SARS-CoV-2 infection include confusion, cerebrovascular diseases, ataxia, hypogeusia, hyposmia, neuralgia, and seizures. Indeed, a growing literature demonstrates that neurotropism is a common feature of coronaviruses; therefore, the infection mechanisms already described in other coronaviruses may also be applicable for SARS-CoV-2. Understanding the underlying pathogenetic mechanisms in the nervous system infection and the neurological involvement is essential to assess possible long-term neurological alteration of COVID-19. Here, we provide an overview of associated literature regarding possible routes of COVID-19 neuroinvasion, such as the trans-synapse-connected route in the olfactory pathway and peripheral nerve terminals and its neurological implications in the central nervous system.
Collapse
Affiliation(s)
- Edwin Estefan Reza-Zaldívar
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmaceútica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Mercedes Azucena Hernández-Sapiéns
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmaceútica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Benito Minjarez
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Mexico
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense, Madrid, Spain
| | - Ana Laura Márquez-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmaceútica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Juan Carlos Mateos-Díaz
- Biotecnología Industrial, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Jorge Matias-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense, Madrid, Spain
| | - Alejandro Arturo Canales-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmaceútica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| |
Collapse
|