1
|
Jenkins F, Mapulanga T, Thapa G, da Costa KAS, Temperton NJ. Conference Report: LPMHealthcare Emerging Viruses 2023 (EVOX23): Pandemics-Learning from the Past and Present to Prepare for the Future. Pathogens 2024; 13:679. [PMID: 39204279 PMCID: PMC11357271 DOI: 10.3390/pathogens13080679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
The emergence of SARS-CoV-2 has meant that pandemic preparedness has become a major focus of the global scientific community. Gathered in the historic St Edmund Hall college in Oxford, the one-day LPMHealthcare conference on emerging viruses (6 September 2023) sought to review and learn from past pandemics-the current SARS-CoV-2 pandemic and the Mpox outbreak-and then look towards potential future pandemics. This includes an emphasis on monitoring the "traditional" reservoirs of viruses with zoonotic potential, as well as possible new sources of spillover events, e.g., bats, which we are coming into closer contact with due to climate change and the impacts of human activities on habitats. Continued vigilance and investment into creative scientific solutions is required for issues including the long-term physical and psychological effects of COVID-19, i.e., long COVID. The evaluation of current systems, including environmental monitoring, communication (with the public, regulatory authorities, and governments), and training; assessment of the effectiveness of the technologies/assays we have in place currently; and lobbying of the government and the public to work with scientists are all required in order to build trust moving forward. Overall, the SARS-CoV-2 pandemic has shown how many sectors can work together to achieve a global impact in times of crisis.
Collapse
Affiliation(s)
| | - Tobias Mapulanga
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| | - Gauri Thapa
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| | - Kelly A. S. da Costa
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| | - Nigel J. Temperton
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| |
Collapse
|
2
|
Ugwu CA, Alao O, John OG, Akinnawo B, Ajayi I, Odebode O, Bejide I, Campbell A, Campbell J, Adole JA, B. Olawoye I, Akano K, Okolie J, Eromon P, Olaitan P, Olagunoye A, Adebayo I, Adebayo V, Babalola E, Abioye O, Ajayi N, Ogah E, Ukwaja K, Okoro S, Oje O, Kingsley OC, Eke M, Onyia V, Achonduh-Atijegbe O, Ewah FE, Obasi M, Igwe V, Ayodeji O, Chukwuyem A, Owhin S, Oyejide N, Abah S, Ingbian W, Osoba M, Alebiosu A, Nadesalingam A, Aguinam ET, Carnell G, Krause N, Chan A, George C, Kinsley R, Tonks P, Temperton N, Heeney J, Happi C. Immunological insights into COVID-19 in Southern Nigeria. Front Immunol 2024; 15:1305586. [PMID: 38322252 PMCID: PMC10844438 DOI: 10.3389/fimmu.2024.1305586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction One of the unexpected outcomes of the COVID-19 pandemic was the relatively low levels of morbidity and mortality in Africa compared to the rest of the world. Nigeria, Africa's most populous nation, accounted for less than 0.01% of the global COVID-19 fatalities. The factors responsible for Nigeria's relatively low loss of life due to COVID-19 are unknown. Also, the correlates of protective immunity to SARS-CoV-2 and the impact of pre-existing immunity on the outcome of the COVID-19 pandemic in Africa are yet to be elucidated. Here, we evaluated the natural and vaccine-induced immune responses from vaccinated, non-vaccinated and convalescent individuals in Southern Nigeria throughout the three waves of the COVID-19 pandemic in Nigeria. We also examined the pre-existing immune responses to SARS-CoV-2 from samples collected prior to the COVID-19 pandemic. Methods We used spike RBD and N- IgG antibody ELISA to measure binding antibody responses, SARS-CoV-2 pseudotype assay protocol expressing the spike protein of different variants (D614G, Delta, Beta, Omicron BA1) to measure neutralizing antibody responses and nucleoprotein (N) and spike (S1, S2) direct ex vivo interferon gamma (IFNγ) T cell ELISpot to measure T cell responses. Result Our study demonstrated a similar magnitude of both binding (N-IgG (74% and 62%), S-RBD IgG (70% and 53%) and neutralizing (D614G (49% and 29%), Delta (56% and 47%), Beta (48% and 24%), Omicron BA1 (41% and 21%)) antibody responses from symptomatic and asymptomatic survivors in Nigeria. A similar magnitude was also seen among vaccinated participants. Interestingly, we revealed the presence of preexisting binding antibodies (N-IgG (60%) and S-RBD IgG (44%)) but no neutralizing antibodies from samples collected prior to the pandemic. Discussion These findings revealed that both vaccinated, non-vaccinated and convalescent individuals in Southern Nigeria make similar magnitude of both binding and cross-reactive neutralizing antibody responses. It supported the presence of preexisting binding antibody responses among some Nigerians prior to the COVID-19 pandemic. Lastly, hybrid immunity and heterologous vaccine boosting induced the strongest binding and broadly neutralizing antibody responses compared to vaccine or infection-acquired immunity alone.
Collapse
Affiliation(s)
- Chinedu A. Ugwu
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Oluwasina Alao
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Oluwagboadurami G. John
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Blossom Akinnawo
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Israel Ajayi
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Ooreofe Odebode
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Ifeoluwa Bejide
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Allan Campbell
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Julian Campbell
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Jolly A. Adole
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Idowu B. Olawoye
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Kazeem Akano
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| | - Johnson Okolie
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
| | - Philomena Eromon
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
| | - Peter Olaitan
- Osun State University Teaching Hospital (UNIOSUNTH), Osogbo, Nigeria
| | - Ajibola Olagunoye
- Osun State University Teaching Hospital (UNIOSUNTH), Osogbo, Nigeria
| | - Ibukun Adebayo
- Osun State University Teaching Hospital (UNIOSUNTH), Osogbo, Nigeria
| | - Victor Adebayo
- Osun State University Teaching Hospital (UNIOSUNTH), Osogbo, Nigeria
| | | | - Omowumi Abioye
- Osun State University Teaching Hospital (UNIOSUNTH), Osogbo, Nigeria
| | - Nnennaya Ajayi
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Emeka Ogah
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Kingsley Ukwaja
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Sylvanus Okoro
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Ogbonnaya Oje
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | | | - Matthew Eke
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Venatius Onyia
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Olivia Achonduh-Atijegbe
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
| | - Friday Elechi Ewah
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Mary Obasi
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | - Violet Igwe
- Alex Ekwueme Federal University Teaching Hospital Abakaliki (AEFUTHA), Abakaliki, Nigeria
| | | | | | | | - Nicholas Oyejide
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
| | | | - Winifred Ingbian
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
| | - Moyosoore Osoba
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
| | - Ahmed Alebiosu
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
| | - Angalee Nadesalingam
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ernest T. Aguinam
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - George Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nina Krause
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Chan
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte George
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca Kinsley
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul Tonks
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent, Kent, United Kingdom
| | - Jonathan Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christian Happi
- The Africa Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun, Nigeria
| |
Collapse
|
3
|
Castillo G, Mora-Díaz JC, Breuer M, Singh P, Nelli RK, Giménez-Lirola LG. Molecular mechanisms of human coronavirus NL63 infection and replication. Virus Res 2023; 327:199078. [PMID: 36813239 PMCID: PMC9944649 DOI: 10.1016/j.virusres.2023.199078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Human coronavirus NL63 (HCoV-NL63) is spread globally, causing upper and lower respiratory tract infections mainly in young children. HCoV-NL63 shares a host receptor (ACE2) with severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 but, unlike them, HCoV-NL63 primarily develops into self-limiting mild to moderate respiratory disease. Although with different efficiency, both HCoV-NL63 and SARS-like CoVs infect ciliated respiratory cells using ACE2 as receptor for binding and cell entry. Working with SARS-like CoVs require access to BSL-3 facilities, while HCoV-NL63 research can be performed at BSL-2 laboratories. Thus, HCoV-NL63 could be used as a safer surrogate for comparative studies on receptor dynamics, infectivity and virus replication, disease mechanism, and potential therapeutic interventions against SARS-like CoVs. This prompted us to review the current knowledge on the infection mechanism and replication of HCoV-NL63. Specifically, after a brief overview on the taxonomy, genomic organization and virus structure, this review compiles the current HCoV-NL63-related research in virus entry and replication mechanism, including virus attachment, endocytosis, genome translation, and replication and transcription. Furthermore, we reviewed cumulative knowledge on the susceptibility of different cells to HCoV-NL63 infection in vitro, which is essential for successful virus isolation and propagation, and contribute to address different scientific questions from basic science to the development and assessment of diagnostic tools, and antiviral therapies. Finally, we discussed different antiviral strategies that have been explored to suppress replication of HCoV-NL63, and other related human coronaviruses, by either targeting the virus or enhancing host antiviral mechanisms.
Collapse
Affiliation(s)
- Gino Castillo
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Mary Breuer
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rahul K Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.
| |
Collapse
|
4
|
Karaba AH, Johnston TS, Beck E, Laeyendecker O, Cox AL, Klein SL, Sullivan DJ. Endemic Human Coronavirus Antibody Levels Are Unchanged after Convalescent or Control Plasma Transfusion for Early Outpatient COVID-19 Treatment. mBio 2023; 14:e0328722. [PMID: 36625657 PMCID: PMC9973272 DOI: 10.1128/mbio.03287-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
The impact of preexisting antibodies to the four endemic human coronaviruses (ehCoV) (229E, OC43, NL63, and HKU1) on severe (hospitalization) coronavirus disease 2019 (COVID-19) outcomes has been described in small cohorts. Many studies have measured ehCoV 229E, OC43, NL63, and HKU1 antibody levels weeks after recovery rather than in the first weeks of illness, which is more relevant to early hospitalizations. Antibody levels to the spike protein of the four coronaviruses (229E, OC43, NL63, and HKU1), as well as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), were measured both before and immediately after convalescent or control plasma transfusion in 51 participants who were hospitalized and 250 who were not hospitalized, as well as in 71 convalescent and 50 control plasma donors as a subset from a completed randomized controlled trial. In COVID-19 convalescent plasma donors, the ehCoV spike antibodies were 1.2 to 2 times greater than the control donor unit levels, while donor COVID-19 convalescent plasma (CCP) SARS-CoV-2 spike antibodies were more than 600 times the control plasma units. Plasma transfusion, whether COVID-19 convalescent or control, did not alter the post-transfusion antibody levels for the endemic human coronaviruses (229E, OC43, NL63, and HKU1) in those hospitalized and not hospitalized, despite the 1.2- to 2-fold elevation in donor COVID-19 convalescent plasma. There was no influence of prior antibody levels to 229E, OC43, NL63, and HKU1 or post-transfusion antibody levels on subsequent hospitalization. These data, from a well-controlled prospective randomized clinical trial, add evidence that antibodies to ehCoV do not significantly impact COVID-19 outcomes, despite the apparent back-boosting of some ehCoV after SARS-CoV-2 infection. IMPORTANCE The relevance of preexisting immunity to the four endemic human coronaviruses in the first week of COVID-19 illness on the outcome of COVID-19 progression stems from the high prevalence of the ehCoV and SARS-CoV-2 coronaviruses. The question has been raised of whether therapeutic convalescent plasma or control plasma containing ehCoV antibodies might alter the outcome of COVID-19 progression to hospitalization. Here, we observed that plasma transfusion did not significantly change the preexisting ehCoV antibody levels. In over 50 hospitalized participants and 250 nonhospitalized participants, ehCoV antibody levels were comparable, without statistical differences. Antibody levels were stable over the more than 12 months of the intervention trial, with individual heterogeneity similar in hospitalized and nonhospitalized participants. The ehCoV antibodies in plasma transfusion did not alter the recipient preexisting antibody levels nor hasten the COVID-19 progression to hospitalization in this clinical trial data.
Collapse
Affiliation(s)
- Andrew H. Karaba
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Trevor S. Johnston
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evan Beck
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore, Maryland, USA
| | - Andrea L. Cox
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabra L. Klein
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - David J. Sullivan
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - COVID-19 Serologic Studies Consortium
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore, Maryland, USA
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Sayama Y, Okamoto M, Saito M, Saito-Obata M, Tamaki R, Joboco CD, Lupisan S, Oshitani H. Seroprevalence of four endemic human coronaviruses and, reactivity and neutralization capability against SARS-CoV-2 among children in the Philippines. Sci Rep 2023; 13:2310. [PMID: 36759702 PMCID: PMC9909632 DOI: 10.1038/s41598-023-29072-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Four endemic human coronaviruses (HCoV), HCoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-OC43, are closely related to SARS-CoV-2. These coronaviruses are known to infect humans living in temperate areas, including children under 5 years old; however, the seroprevalence of four HCoVs among children in tropical areas, including the Philippines, remains unclear. This study aimed to assess the prevalence of antibodies against four HCoVs and to determine the reactivity and neutralization of these antibodies against SARS-CoV-2 among children in the Philippines. A total of 315 serum samples collected from 2015 to 2018, before the emergence of SARS-CoV-2, in Biliran island, Philippines, were tested for the presence of antibodies against four HCoVs and SARS-CoV-2 using recombinant spike ectodomain proteins by IgG-enzyme-linked immunosorbent assay (ELISA). Reactivity to and neutralization of SARS-CoV-2 were also investigated. The seroprevalence of the four HCoVs was 63.8% for HCoV-229E, 71.4% for HCoV-NL63, 76.5% for HCoV-HKU1, and 83.5% for HCoV-OC43 by ELISA. Age group analysis indicated that seropositivity to all HCoVs reached 80% by 2-3 years of age. While 69/315 (21.9%) of the samples showed reactive to SARS-CoV-2, almost no neutralization against SARS-CoV-2 was detected using neutralization assay. Reactivity of antibodies against SARS-CoV-2 spike protein obtained by ELISA may not correlate with neutralization capability.
Collapse
Affiliation(s)
- Yusuke Sayama
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| | - Michiko Okamoto
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Mariko Saito-Obata
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Raita Tamaki
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | - Socorro Lupisan
- Research Institute for Tropical Medicine, Metro Manila, Philippines
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
6
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
7
|
Cantoni D, Siracusano G, Mayora-Neto M, Pastori C, Fantoni T, Lytras S, Di Genova C, Hughes J, Lopalco L, Temperton N. Analysis of Antibody Neutralisation Activity against SARS-CoV-2 Variants and Seasonal Human Coronaviruses NL63, HKU1, and 229E Induced by Three Different COVID-19 Vaccine Platforms. Vaccines (Basel) 2022; 11:58. [PMID: 36679903 PMCID: PMC9864028 DOI: 10.3390/vaccines11010058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Coronaviruses infections, culminating in the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic beginning in 2019, have highlighted the importance of effective vaccines to induce an antibody response with cross-neutralizing activity. COVID-19 vaccines have been rapidly developed to reduce the burden of SARS-CoV-2 infections and disease severity. Cross-protection from seasonal human coronaviruses (hCoVs) infections has been hypothesized but is still controversial. Here, we investigated the neutralizing activity against ancestral SARS-CoV-2 and the variants of concern (VOCs) in individuals vaccinated with two doses of either BNT162b2, mRNA-1273, or AZD1222, with or without a history of SARS-CoV-2 infection. Antibody neutralizing activity to SARS-CoV-2 and the VOCs was higher in BNT162b2-vaccinated subjects who were previously infected with SARS-CoV-2 and conferred broad-spectrum protection. The Omicron BA.1 variant was the most resistant among the VOCs. COVID-19 vaccination did not confer protection against hCoV-HKU1. Conversely, antibodies induced by mRNA-1273 vaccination displayed a boosting in their neutralizing activity against hCoV-NL63, whereas AZD1222 vaccination increased antibody neutralization against hCoV-229E, suggesting potential differences in antigenicity and immunogenicity of the different spike constructs used between various vaccination platforms. These data would suggest that there may be shared epitopes between the HCoVs and SARS-CoV-2 spike proteins.
Collapse
Affiliation(s)
- Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4TB, UK
| | - Gabriel Siracusano
- Division of Immunology, Transplantation and Infectious Disease, Immunobiology of HIV Group, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4TB, UK
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Disease, Immunobiology of HIV Group, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Tobia Fantoni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Spyros Lytras
- MRC-Centre for Virus Research, University of Glasgow, Glasgow G12 BQQ, UK
| | - Cecilia Di Genova
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4TB, UK
| | - Joseph Hughes
- MRC-Centre for Virus Research, University of Glasgow, Glasgow G12 BQQ, UK
| | | | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Disease, Immunobiology of HIV Group, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4TB, UK
| |
Collapse
|