1
|
Liao HC, Liu SJ. Advances in nucleic acid-based cancer vaccines. J Biomed Sci 2025; 32:10. [PMID: 39833784 PMCID: PMC11748563 DOI: 10.1186/s12929-024-01102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/05/2024] [Indexed: 01/22/2025] Open
Abstract
Nucleic acid vaccines have emerged as crucial advancements in vaccine technology, particularly highlighted by the global response to the COVID-19 pandemic. The widespread administration of mRNA vaccines against COVID-19 to billions globally marks a significant milestone. Furthermore, the approval of an mRNA vaccine for Respiratory Syncytial Virus (RSV) this year underscores the versatility of this technology. In oncology, the combination of mRNA vaccine encoding neoantigens and immune checkpoint inhibitors (ICIs) has shown remarkable efficacy in eliciting protective responses against diseases like melanoma and pancreatic cancer. Although the use of a COVID-19 DNA vaccine has been limited to India, the inherent stability at room temperature and cost-effectiveness of DNA vaccines present a viable option that could benefit developing countries. These advantages may help DNA vaccines address some of the challenges associated with mRNA vaccines. Currently, several trials are exploring the use of DNA-encoded neoantigens in combination with ICIs across various cancer types. These studies highlight the promising role of nucleic acid-based vaccines as the next generation of immunotherapeutic agents in cancer treatment. This review will delve into the recent advancements and current developmental status of both mRNA and DNA-based cancer vaccines.
Collapse
Affiliation(s)
- Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 307378, Taiwan.
| |
Collapse
|
2
|
Jin H, Zhao YR, Huang F, Hong Z, Jia XY, Wang H, Wang YG. Vaccinia virus-mediated oncolytic immunotherapy: Emerging strategies for gastrointestinal cancer treatment at dawn. Virology 2025; 602:110303. [PMID: 39577274 DOI: 10.1016/j.virol.2024.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Oncolytic vaccinia virus (VVs) based immunotherapy is a rapidly developing treatment for gastrointestinal (GI) cancers. Conventional treatments, such as chemotherapy, radiotherapy and surgery achieve good effects in early-stage GI cancers, but effects are limited in advanced disease. Immunotherapy has limited efficacy in GI cancers due to tumor heterogeneity and complex immunosuppressive mechanisms. Oncolytic VV immunotherapy is a novel treatment approach showing promising results in preclinical and clinical trials. Oncolytic VV's intracytoplasmic replication and assembly mechanism, diverse mature forms, and use methods make it extremely safe and versatile for drug delivery. Combining oncolytic VV with conventional therapies and immunotherapy (e.g., ICIs, CAR-T) enhances tumor regression and survival compared to monotherapies. Researchers are establishing response protocols and improvement strategies, rapidly developing VV tumor oncolytic immunotherapy. This article focuses on oncolytic vaccinia development and outlook in gastrointestinal cancer therapy, advantages when combined with other drugs to improve clinical survival, safety, and risk reduction for patients.
Collapse
Affiliation(s)
- Hao Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China; Oncology Department, Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China
| | - Ya-Ru Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China; Oncology Department, Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Zhang Hong
- Department of Respiratory and Critical Care Medicine, Second Medical Center, Chinese PLA General Hospital, Beijing, 100089, China
| | - Xiao-Yuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China
| | - Hui Wang
- Oncology Department, Zhejiang Xiaoshan Hospital, 311201, Hangzhou, China.
| | - Yi-Gang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China; Oncology Department, Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China.
| |
Collapse
|
3
|
Yu J, An N, Zhu J, Zhu B, Zhang G, Chen K, Zhou Y, Ye T, Li G. AVL-armed oncolytic vaccinia virus promotes viral replication and boosts antitumor immunity via increasing ROS levels in pancreatic cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200878. [PMID: 39431173 PMCID: PMC11488421 DOI: 10.1016/j.omton.2024.200878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
Pancreatic malignant neoplasm is an extremely deadly malignancy well known for its resistance to traditional therapeutic approaches. Enhanced treatments are imperative for individuals diagnosed with pancreatic cancer (PC). Recent investigations have shed light on the wide-ranging anticancer properties of genetic therapy facilitated by oncolytic vaccinia virus. To illuminate the precise impacts of Aphrocallistes vastus lectin-armed oncolytic vaccinia virus (oncoVV-AVL) on PC, AsPC-1 and PANC-1 cells underwent treatment with oncoVV-AVL. Our findings revealed that oncoVV-AVL possesses the capacity to heighten oncolytic effects on PC cells and incite the production of diverse cytokines like tumor necrosis factor-α, interleukin-6 (IL-6), IL-8, and interferon-I (IFN-I), without triggering antiviral responses. Additionally, oncoVV-AVL can significantly elevate the levels of ROS in PC cells, initiating an oxidative stress response that promotes viral replication, apoptosis, and autophagy. Moreover, in xenograft tumor models, oncoVV-AVL notably restrained PC growth, enhanced IFN-γ levels in the bloodstream, and reprogrammed macrophages. Our investigation indicates that oncoVV-AVL boosts the efficacy of antitumor actions against PC tumors by orchestrating reactive oxygen species-triggered viral replication, fostering M1 polarization, and reshaping the tumor microenvironment to transform cold PC tumors into hot ones. These findings imply that oncoVV-AVL could present a novel therapeutic approach for treating PC tumors.
Collapse
Affiliation(s)
- Jianlei Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Nan An
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jili Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Borong Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guohui Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kan Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanrong Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
4
|
Larrieux A, Sanjuán R. Murine colon cancer derived cells exhibit heterogeneous resistance profiles against an oncolytic virus. Sci Rep 2024; 14:27209. [PMID: 39516525 PMCID: PMC11549347 DOI: 10.1038/s41598-024-78313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Oncolytic virotherapy has shown efficacy in various animal models and a few human cancers. However, there are still significant limitations for the implementation of these therapies. One such limitation is the emergence of cellular resistances, which may appear rapidly considering the high genetic heterogeneity of most tumors. We previously showed that cellular resistance to an oncolytic virus can be mediated by the chronic activation of innate immunity. Here, we explored the existence of additional resistance mechanisms in murine colon cancer-derived cells. For this purpose, we isolated two cellular clones that were resistant to the oncolytic virus VSV-D51. While one of the clones showed a strong resistance profile associated with increased cytokine-mediated antiviral responses, the other clone showed a lower level of resistance that involves cytoskeletal reorganization, signaling by small GTPases, and cell structural changes. These results demonstrate the capacity of tumor cells to deploy heterogeneous mechanisms of resistance to oncolytic viruses.
Collapse
Affiliation(s)
- Alejandra Larrieux
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, València, Spain.
| |
Collapse
|
5
|
Zhao JL, Lin BL, Luo C, Yi YL, Huang P, Chen Y, Zhao S, Huang ZJ, Ma XY, Huang L. Challenges and strategies toward oncolytic virotherapy for leptomeningeal metastasis. J Transl Med 2024; 22:1000. [PMID: 39501324 PMCID: PMC11539571 DOI: 10.1186/s12967-024-05794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Meningeal metastasis (LM) is commonly seen in the advanced stages of cancer patients, often leading to a rapid decline in survival time and quality of life. Currently, there is still a lack of standardized treatments. Oncolytic viruses (OVs) are a class of emerging cancer therapeutics with the advantages of selectively replicating in cancer cells, delivering various eukaryotic transgenes, inducing immunogenic cell death, and promoting anti-tumor immunity. Some studies applying OVs intrathoracically or intraperitoneally for the treatment of malignant pleural and peritoneal effusions have shown promising therapeutic effects. If OVs could be applied to treat LM, it would bring significant survival benefits to patients with LM. In this review, we analyzed past research on the use of viruses to treat meningeal metastasis, summarized the efficacy and safety demonstrated by the research results, and analyzed the feasibility of oncolytic virus therapy for meningeal metastasis. We also summarized the existing data to provide guidance for the development of OVs that can be injected into the cerebrospinal fluid (CSF).
Collapse
Affiliation(s)
- Jia-Li Zhao
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
| | - Bi-Lin Lin
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
| | - Chen Luo
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
| | - Yan-Ling Yi
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
| | - Peng Huang
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
| | - Yu Chen
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
| | - Sha Zhao
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
| | - Zhen-Jie Huang
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
| | - Xin-Yi Ma
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
| | - Long Huang
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China.
| |
Collapse
|
6
|
Troyer Z, Gololobova O, Koppula A, Liao Z, Horns F, Elowitz MB, Tosar JP, Batish M, Witwer KW. Simultaneous Protein and RNA Analysis in Single Extracellular Vesicles, Including Viruses. ACS NANO 2024; 18:26568-26584. [PMID: 39306763 PMCID: PMC11447916 DOI: 10.1021/acsnano.4c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The individual detection of human immunodeficiency virus (HIV) virions and resolution from extracellular vesicles (EVs) during analysis is a difficult challenge. Infectious enveloped virions and nonviral EVs are released simultaneously by HIV-infected host cells, in addition to hybrid viral EVs containing combinations of HIV and host components but lacking replicative ability. Complicating the issue, EVs and enveloped virions are both delimited by a lipid bilayer and share similar size and density. The feature that distinguishes infectious virions from host and hybrid EVs is the HIV genomic RNA (gRNA), which allows the virus to replicate. Single-particle analysis techniques, which provide snapshots of single biological nanoparticles, could resolve infectious virions from EVs. However, current single-particle analysis techniques focus mainly on protein detection, which fail to resolve hybrid EVs from infectious virions. A method to simultaneously detect viral protein and internal gRNA in the same particle would allow resolution of infectious HIV from EVs and noninfectious virions. Here, we introduce SPIRFISH, a high-throughput method for single-particle protein and RNA analysis, combining single particle interferometric reflectance imaging sensor with single-molecule fluorescence in situ hybridization. Using SPIRFISH, we detect HIV-1 envelope protein gp120 and genomic RNA within single infectious virions, allowing resolution against EV background and noninfectious virions. We further show that SPIRFISH can be used to detect specific RNAs within EVs. This may have major utility for EV therapeutics, which are increasingly focused on EV-mediated RNA delivery. SPIRFISH should enable single particle analysis of a broad class of RNA-containing nanoparticles.
Collapse
Affiliation(s)
- Zach Troyer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- EV Core Facility "EXCEL", Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Aakash Koppula
- Department of Medical and Molecular Sciences, and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Zhaohao Liao
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Felix Horns
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael B Elowitz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Juan Pablo Tosar
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- School of Science, Universidad de la República, Montevideo 11400, Uruguay
| | - Mona Batish
- Department of Medical and Molecular Sciences, and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- EV Core Facility "EXCEL", Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
7
|
Yu B, Kang J, Lei H, Li Z, Yang H, Zhang M. Immunotherapy for colorectal cancer. Front Immunol 2024; 15:1433315. [PMID: 39238638 PMCID: PMC11375682 DOI: 10.3389/fimmu.2024.1433315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Colorectal cancer is the third most common cancer and the second most lethal cancer in the world. The main cause of the disease is due to dietary and behavioral factors. The treatment of this complex disease is mainly based on traditional treatments, including surgery, radiotherapy, and chemotherapy. Due to its high prevalence and high morbidity, more effective treatments with fewer side effects are urgently needed. In recent years, immunotherapy has become a potential therapeutic alternative and one of the fastest-developing treatments. Immunotherapy inhibits tumor growth by activating or enhancing the immune system to recognize and attack cancer cells. This review presents the latest immunotherapies for immune checkpoint inhibitors, cell therapy, tumor-infiltrating lymphocytes, and oncolytic viruses. Some of these have shown promising results in clinical trials and are used in clinical treatment.
Collapse
Affiliation(s)
- Bing Yu
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Jian Kang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hong Lei
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Zhe Li
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hao Yang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Meng Zhang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| |
Collapse
|
8
|
Zhang T, Yin W, Zhao Y, Huang L, Gu J, Zang J, Zheng X, Chang J, Sun J, Dong H, Li Y, Li Y. NOX2 Enzyme Mimicking Nano-Networks Regulate Tumor-Associated Macrophages to Initiate Both Innate and Adaptive Immune Effects. Adv Healthc Mater 2024; 13:e2302387. [PMID: 37975271 DOI: 10.1002/adhm.202302387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Macrophages, capable of both direct killing and antigen presentation, are crucial for the interplay between innate and adaptive immunity. However, strategies mainly focus on polarizing tumor-associated macrophages (TAMs) to M1 phenotype, while overlooking the inefficient antigen cross-presentation due to hyperactive hydrolytic protease within lysosomes which leads to antigen degradation. In light of the significant influence of reactive oxygen species (ROS) on TAMs' polarization and the inhibition of phagosomal proteolysis, a novel nanosystem termed OVA-Fe-GA (OFG) is engineered, drawing inspiration from the NOX2 enzyme's role. OFG integrates ovalbumin (OVA) and a network composed of Fe-gallic acid (GA), emulating the NOX2 enzyme's sequential ROS generation process ("O2 to O2 •- to H2O2/•OH"). Furthermore, it elucidates a biological mechanism that augments antigen cross-presentation by suppressing the expression of cysteine proteases. OFG restores the innate anti-tumor functionality of TAMs and significantly amplifies their antigen cross-presentation (4.5-fold compared to the PBS control group) in B16-OVA tumor-bearing mice. Notably, the infiltration and activity of intratumoral CD8+ T cells are enhanced, indicating an adaptive immune response. Moreover, OFG exhibits excellent photothermal properties, thereby fostering a system antitumor immune response. This study provides a promising strategy for initiating both innate and adaptive immunity via TAMs activation.
Collapse
Affiliation(s)
- Tingting Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Weimin Yin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, The Institute for Biomedical Engineering and Nano Science (iNANO), School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Li Huang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jingjing Gu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, The Institute for Biomedical Engineering and Nano Science (iNANO), School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Jie Zang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiao Zheng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiao Chang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiuyuan Sun
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, The Institute for Biomedical Engineering and Nano Science (iNANO), School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
9
|
Yuan Z, Zhang Y, Wang X, Wang X, Ren S, He X, Su J, Zheng A, Guo S, Chen Y, Deng S, Wu X, Li M, Du F, Zhao Y, Shen J, Wang Z, Xiao Z. The investigation of oncolytic viruses in the field of cancer therapy. Front Oncol 2024; 14:1423143. [PMID: 39055561 PMCID: PMC11270537 DOI: 10.3389/fonc.2024.1423143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Oncolytic viruses (OVs) have emerged as a potential strategy for tumor treatment due to their ability to selectively replicate in tumor cells, induce apoptosis, and stimulate immune responses. However, the therapeutic efficacy of single OVs is limited by the complexity and immunosuppressive nature of the tumor microenvironment (TME). To overcome these challenges, engineering OVs has become an important research direction. This review focuses on engineering methods and multi-modal combination therapies for OVs aimed at addressing delivery barriers, viral phagocytosis, and antiviral immunity in tumor therapy. The engineering approaches discussed include enhancing in vivo immune response, improving replication efficiency within the tumor cells, enhancing safety profiles, and improving targeting capabilities. In addition, this review describes the potential mechanisms of OVs combined with radiotherapy, chemotherapy, cell therapy and immune checkpoint inhibitors (ICIs), and summarizes the data of ongoing clinical trials. By continuously optimizing engineering strategies and combination therapy programs, we can achieve improved treatment outcomes and quality of life for cancer patients.
Collapse
Affiliation(s)
- Zijun Yuan
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sipeng Guo
- Research And Experiment Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zechen Wang
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China
| | - Zhangang Xiao
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
10
|
Zhang Y, Zhu Y, Jiang G, Chen K, Zhang G, Chen K, Ye T, Zhou Y, Li G. ROS Induced by Aphrocallistes vastus Lectin Enhance Oncolytic Vaccinia Virus Replication and Induce Apoptosis in Hepatocellular Carcinoma Cells. Mar Drugs 2024; 22:307. [PMID: 39057416 PMCID: PMC11278381 DOI: 10.3390/md22070307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Oncolytic virotherapy is expected to provide a new treatment strategy for cancer. Aphrocallistes vastus lectin (AVL) is a Ca2+-dependent lectin receptor containing the conserved domain of C-type lectin and the hydrophobic N-terminal region, which can bind to the bird's nest glycoprotein and D-galactose. Our previous studies suggested that the oncolytic vaccinia virus (oncoVV) armed with the AVL gene exerted remarkable replication and antitumor effects in vitro and in vivo. In this study, we found that oncoVV-AVL may reprogram the metabolism of hepatocellular carcinoma cells to promote ROS, and elevated ROS subsequently promoted viral replication and induced apoptosis. This study will provide a new theoretical basis for the application of oncoVV-AVL in liver cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanrong Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
11
|
Zhao Y, Liu H, Zhan Q, Jin H, Wang Y, Wang H, Huang B, Huang F, Jia X, Wang Y, Wang X. Oncolytic adenovirus encoding LHPP exerts potent antitumor effect in lung cancer. Sci Rep 2024; 14:13108. [PMID: 38849383 PMCID: PMC11161505 DOI: 10.1038/s41598-024-63325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
LHPP has been shown to be a new tumor suppressor, and has a tendency to be under-expressed in a variety of cancers. Oncolytic virotheray is a promising therapeutics for lung cancer in recent decade years. Here we successfully constructed a new recombinant oncolytic adenovirus GD55-LHPP and investigated the effect of GD55-LHPP on the growth of lung cancer cells in vitro and in vivo. The results showed that LHPP had lower expression in either lung cancer cells or clinical lung cancer tissues compared with normal cells or tissues, and GD55-LHPP effectively mediated LHPP expression in lung cancer cells. GD55-LHPP could effectively inhibit the proliferation of lung cancer cell lines and rarely affected normal cell growth. Mechanically, the oncolytic adenovirus GD55-LHPP was able to induce stronger apoptosis of lung cancer cells compared with GD55 through the activation of caspase signal pathway. Notably, GD55-LHPP also activated autophagy-related signal pathway. Further, GD55-LHPP efficiently inhibited tumor growth in lung cancer xenograft in mice and prolonged animal survival rate compared with the control GD55 or PBS. In conclusion, the novel construct GD55-LHPP provides a valuable strategy for lung cancer-targeted therapy and develop the role of tumor suppress gene LHPP in lung cancer gene therapy.
Collapse
Affiliation(s)
- Yaru Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Huihui Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qi Zhan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hao Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yiqiang Wang
- Surgical Department of Duchang County Second People's Hospital, Jiujiang, 332600, China
| | - Hui Wang
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xiaoyan Wang
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China.
| |
Collapse
|
12
|
Sun Y, Tang L, Kan X, Tan L, Song C, Qiu X, Liao Y, Nair V, Ding C, Liu X, Sun Y. Oncolytic Newcastle disease virus induced degradation of YAP through E3 ubiquitin ligase PRKN to exacerbate ferroptosis in tumor cells. J Virol 2024; 98:e0189723. [PMID: 38411946 PMCID: PMC10949840 DOI: 10.1128/jvi.01897-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
Ferroptosis, a form of programmed cell death characterized by iron-dependent lipid peroxidation, has recently gained considerable attention in the field of cancer therapy. There is significant crosstalk between ferroptosis and several classical signaling pathways, such as the Hippo pathway, which suppresses abnormal growth and is frequently aberrant in tumor tissues. Yes-associated protein 1 (YAP), the core effector molecule of the Hippo pathway, is abnormally expressed and activated in a variety of malignant tumor tissues. We previously proved that the oncolytic Newcastle disease virus (NDV) activated ferroptosis to kill tumor cells. NDV has been used in tumor therapy; however, its oncolytic mechanism is not completely understood. In this study, we demonstrated that NDV exacerbated ferroptosis in tumor cells by inducing ubiquitin-mediated degradation of YAP at Lys90 through E3 ubiquitin ligase parkin (PRKN). Blocking YAP degradation suppressed NDV-induced ferroptosis by suppressing the expression of Zrt/Irt-like protein 14 (ZIP14), a metal ion transporter that regulates iron uptake. These findings demonstrate that NDV exacerbated ferroptosis in tumor cells by inducing YAP degradation. Our study provides new insights into the mechanism of NDV-induced ferroptosis and highlights the critical role that oncolytic viruses play in the treatment of drug-resistant cancers.IMPORTANCEThe oncolytic Newcastle disease virus (NDV) is being developed for use in cancer treatment; however, its oncolytic mechanism is still not completely understood. The Hippo pathway, which is a tumor suppressor pathway, is frequently dysregulated in tumor tissues due to aberrant yes-associated protein 1 (YAP) activation. In this study, we have demonstrated that NDV degrades YAP to induce ferroptosis and promote virus replication in tumor cells. Notably, NDV was found to induce ubiquitin-mediated degradation of YAP at Lys90 through E3 ubiquitin ligase parkin (PRKN). Our study reveals a new mechanism by which NDV induces ferroptosis and provides new insights into NDV as an oncolytic agent for cancer treatment.
Collapse
Affiliation(s)
- Yifan Sun
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Lanlan Tang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Xianjin Kan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Lei Tan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Cuiping Song
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Ying Liao
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Venugopal Nair
- Avian Oncogenic viruses group, UK-China Centre of Excellence on Avian Disease Research, The Pirbright Institute, Guildford, United Kingdom
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| |
Collapse
|
13
|
Liu X, Cheng Y, Mu Y, Zhang Z, Tian D, Liu Y, Hu X, Wen T. Diverse drug delivery systems for the enhancement of cancer immunotherapy: an overview. Front Immunol 2024; 15:1328145. [PMID: 38298192 PMCID: PMC10828056 DOI: 10.3389/fimmu.2024.1328145] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Despite the clear benefits demonstrated by immunotherapy, there is still an inevitable off-target effect resulting in serious adverse immune reactions. In recent years, the research and development of Drug Delivery System (DDS) has received increased prominence. In decades of development, DDS has demonstrated the ability to deliver drugs in a precisely targeted manner to mitigate side effects and has the advantages of flexible control of drug release, improved pharmacokinetics, and drug distribution. Therefore, we consider that combining cancer immunotherapy with DDS can enhance the anti-tumor ability. In this paper, we provide an overview of the latest drug delivery strategies in cancer immunotherapy and briefly introduce the characteristics of DDS based on nano-carriers (liposomes, polymer nano-micelles, mesoporous silica, extracellular vesicles, etc.) and coupling technology (ADCs, PDCs and targeted protein degradation). Our aim is to show readers a variety of drug delivery platforms under different immune mechanisms, and analyze their advantages and limitations, to provide more superior and accurate targeting strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Xu Liu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Cheng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yao Mu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | | | - Dan Tian
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yunpeng Liu
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ti Wen
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Jung BK, An YH, Jang SH, Jang JJ, Kim S, Jeon JH, Kim J, Song JJ, Jang H. The artificial amino acid change in the sialic acid-binding domain of the hemagglutinin neuraminidase of newcastle disease virus increases its specificity to HCT 116 colorectal cancer cells and tumor suppression effect. Virol J 2024; 21:7. [PMID: 38178138 PMCID: PMC10768451 DOI: 10.1186/s12985-023-02276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Oncolytic viruses are being studied and developed as novel cancer treatments. Using directed evolution technology, structural modification of the viral surface protein increases the specificity of the oncolytic virus for a particular cancer cell. Newcastle disease virus (NDV) does not show specificity for certain types of cancer cells during infection; therefore, it has low cancer cell specificity. Hemagglutinin is an NDV receptor-binding protein on the cell surface that determines host cell tropism. NDV selectivity for specific cancer cells can be increased by artificial amino acid changes in hemagglutinin neuraminidase HN proteins via directed evolution, leading to improved therapeutic effects. METHODS Sialic acid-binding sites (H domains) of the HN protein mutant library were generated using error-prone PCR. Variants of the H domain protein were screened by enzyme-linked immunosorbent assay using HCT 116 cancer cell surface molecules. The mutant S519G H domain protein showed the highest affinity for the surface protein of HCT 116 cells compared to that of different types of cancer cells. This showed that the S519G mutant H domain protein gene replaced the same part of the original HN protein gene, and S519G mutant recombinant NDV (rNDV) was constructed and recovered. S519G rNDV cancer cell killing effects were tested using the MTT assay with various cancer cell types, and the tumor suppression effect of the S519G mutant rNDV was tested in a xenograft mouse model implanted with cancer cells, including HCT 116 cells. RESULTS S519G rNDV showed increased specificity and enhanced killing ability of HCT 116 cells among various cancer cells and a stronger suppressive effect on tumor growth than the original recombinant NDV. Directed evolution using an artificial amino acid change in the NDV HN (S519G mutant) protein increased its specificity and oncolytic effect in colorectal cancer without changing its virulence. CONCLUSION These results provide a new methodology for the use of directed evolution technology for more effective oncolytic virus development.
Collapse
Affiliation(s)
| | - Yong Hee An
- Libentech Co. LTD, Daejeon, Republic of Korea
| | - Sung Hoon Jang
- Graduate School of Medical Science, College of medicine, Yonsei University, Seoul, Republic of Korea
| | - Jin-Ju Jang
- Libentech Co. LTD, Daejeon, Republic of Korea
| | - Seonhee Kim
- Libentech Co. LTD, Daejeon, Republic of Korea
| | | | - Jinju Kim
- Libentech Co. LTD, Daejeon, Republic of Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Korea
- Institute for Immunology and Immunological Disease, College of Medicine, Yonsei University, Seoul, Korea
| | - Hyun Jang
- Libentech Co. LTD, Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Guerrero M, Hernández J, Gomez L, Guerrero C. Oxidative stress enhances rotavirus oncolysis in breast cancer and leukemia, except in melanoma with abundant matrix. Virus Res 2024; 339:199285. [PMID: 38013142 PMCID: PMC10711233 DOI: 10.1016/j.virusres.2023.199285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVES This study aimed to explore the impact of oxidative stress and extracellular matrix integrity on rotavirus infection in various cancer cells, including breast cancer, acute lymphoblastic leukemia, and melanoma. METHODS We induced oxidative stress using ROS-inducing drugs (cisplatin, metronidazole, melatonin, valproic acid, doxorubicin, losartan, nitrofurantoin, and DHA) and investigated the effects on viral infection in MCF-7, Reh, A375, B16-F1, and SK-MEL-28 cells and the generation of virions from infected cells by harvesting the supernatants every two hours, reinfecting other cells, and analyzing cell viability and DNA fragmentation. FINDINGS In MCF-7 and Reh cells, rotavirus Wt1-5 infection led to increased ROS generation, virion production, membrane permeability, mitochondrial dysfunction, DNA damage, and cell death. These effects were amplified by ROS-inducing drugs. Conversely, melanoma cells (SK-MEL-28 and A375) with a robust extracellular matrix network showed limited sensitivity to the drugs. Notably, losartan, which modulates the extracellular matrix, enhanced viral infection in melanoma cells (99 %). CONCLUSIONS Oxidative stress promotes oncolytic rotavirus infection in breast cancer and acute lymphoblastic leukemia cells, suggesting potential utility in combination with radiotherapy or chemotherapy due to their shared induction of intracellular oxidative stress.
Collapse
Affiliation(s)
- Marvi Guerrero
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, DC, Bogotá, Colombi
| | - Juan Hernández
- Grupo de Fisiología Molecular del Instituto Nacional de Salud. A. A. 80080. Av. Calle 26 No. 51-20 DC, Bogotá, Colombia
| | - Luis Gomez
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, DC, Bogotá, Colombi; Grupo de Fisiología Molecular del Instituto Nacional de Salud. A. A. 80080. Av. Calle 26 No. 51-20 DC, Bogotá, Colombia
| | - Carlos Guerrero
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, DC, Bogotá, Colombi.
| |
Collapse
|
16
|
Cheng H, Zhang H, Cai H, Liu M, Wen S, Ren J. Molecular biology of canine parainfluenza virus V protein and its potential applications in tumor immunotherapy. Front Microbiol 2023; 14:1282112. [PMID: 38173672 PMCID: PMC10761501 DOI: 10.3389/fmicb.2023.1282112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Canine parainfluenza virus (CPIV) is a zoonotic virus that is widely distributed and is the main pathogen causing canine infectious respiratory disease (CIRD), also known as "kennel cough," in dogs. The CPIV-V protein is the only nonstructural protein of the virus and plays an important role in multiple stages of the virus life cycle by inhibiting apoptosis, altering the host cell cycle and interfering with the interferon response. In addition, studies have shown that the V protein has potential applications in the field of immunotherapy in oncolytic virus therapy or self-amplifying RNA vaccines. In this review, the biosynthesis, structural characteristics and functions of the CPIV-V protein are reviewed with an emphasis on how it facilitates viral immune escape and its potential applications in the field of immunotherapy. Therefore, this review provides a scientific basis for research into the CPIV-V protein and its potential applications.
Collapse
Affiliation(s)
- Huai Cheng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Hewei Zhang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, China
| | - Huanchang Cai
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Min Liu
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Jingqiang Ren
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, China
| |
Collapse
|
17
|
Zhang Y, Ji L, Wen H, Chu Y, Xing W, Tian G, Yao Y, Yang J. Pan-cancer analyses reveal the stratification of patient prognosis by viral composition in tumor tissues. Comput Biol Med 2023; 167:107586. [PMID: 37907029 DOI: 10.1016/j.compbiomed.2023.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023]
Abstract
The associations between cancer and bacteria/fungi have been extensively studied, but the implications of cancer-associated viruses have not been thoroughly examined. In this study, we comprehensively characterized the cancer virome of tissue samples across 31 cancer types, as well as blood samples from 23 cancer types. Our findings demonstrated the presence of viral DNA at low abundances in both tissue and blood across major human cancers, with significant differences in viral community composition observed among various cancer types. Furthermore, Cox regression analyses conducted on four cancers, including Head and Neck squamous cell carcinoma (HNSC), Kidney renal clear cell carcinoma (KIRC), Stomach adenocarcinoma (STAD), and Uterine Corpus Endometrial Carcinoma (UCEC), revealed strong correlation between viral composition/abundance in tissues and patient survival. Additionally, we identified virus-associated prognostic signatures (VAPS) for these four cancers, and discerned differences in the interplay between VAPS and dominant bacteria in tissues among patients with varying survival risks. Notably, clinically relevant analyses revealed prognostic capacities of the VAPS in these four cancers. Taken together, our study provides novel insights into the role of viruses in tissue in the prognosis of multiple cancers and offers guidance on the use of tissue viruses to stratify prognosis for patients with cancer.
Collapse
Affiliation(s)
- Yumeng Zhang
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China; Geneis Beijing Co., Ltd., Beijing, 100102, China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China
| | - Huakai Wen
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China
| | - Yuwen Chu
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China; School of Electrical & Information Engineering, Anhui University of Technology, Anhui, 243002, China
| | - Weipeng Xing
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China; School of Electrical & Information Engineering, Anhui University of Technology, Anhui, 243002, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China; Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.
| | - Jialiang Yang
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China.
| |
Collapse
|
18
|
Li Y, Duan HY, Yang KD, Ye JF. Advancements and challenges in oncolytic virus therapy for gastrointestinal tumors. Biomed Pharmacother 2023; 168:115627. [PMID: 37812894 DOI: 10.1016/j.biopha.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Tumors of the gastrointestinal tract impose a substantial healthcare burden due to their prevalence and challenging prognosis. METHODS We conducted a review of peer-reviewed scientific literature using reputable databases (PubMed, Scopus, Web of Science) with a focus on oncolytic virus therapy within the context of gastrointestinal tumors. Our search covered the period up to the study's completion in June 2023. INCLUSION AND EXCLUSION CRITERIA This study includes articles from peer-reviewed scientific journals, written in English, that specifically address oncolytic virus therapy for gastrointestinal tumors, encompassing genetic engineering advances, combined therapeutic strategies, and safety and efficacy concerns. Excluded are articles not meeting these criteria or focusing on non-primary gastrointestinal metastatic tumors. RESULTS Our review revealed the remarkable specificity of oncolytic viruses in targeting tumor cells and their potential to enhance anti-tumor immune responses. However, challenges related to safety and efficacy persist, underscoring the need for ongoing research and improvement. CONCLUSION This study highlights the promising role of oncolytic virus therapy in enhancing gastrointestinal tumor treatments. Continued investigation and innovative combination therapies hold the key to reducing the burden of these tumors on patients and healthcare systems.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China; School of Nursing, Jilin University, Changchun, China
| | - Hao-Yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - Jun-Feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|